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Folgende Themen standen im Vordergrund:

Modelle für Speichern

Algebraische Kodierungstheorie

"Road blocks" in der Informationstheorie.

Es wurden aber auch Bezüge zur Approximationstheorie (f-Entropie), Statistik (Algorith­
mische Beschr~ibung von Ensembles) und kombinatorischer Optimierung diskutiert.
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s. Arimoto

Information Theory and Machine Intelligence

The final goal of our research is to design a pictorial memory somewhat similar to what we
humans have in brain as a human memory. Given a sequence of pictorial patterns, such
a memory should be organized as a form of structured data-base which can be quickly
accessed. In this talk I propose an algorithm for construction of a structured data-base
in a self-organizing way when a sequence of patterns (vectors) are given and a distortion
measure is defined a-priori. The data-base is constructed in a form of binary tree through
comparison of the present pattern with registered patterns at tree nodes. If there exists a •
previously registered patterns in the tree whose distortion from the present patternis less
than a prescribed fidelty criterion € > 0, then the present pattern is not registered in the
tree. Comparison induces abi-partition of the pattern space and the tree yields a partition
of it to various scopes of inference. Finally I point out many interesting problems remain
unsolved in relation to this problem.

Th. Beth

Zero Knowledge Proofs. Secrecy and Authentication

After a short introduction to concepts of information processing the notion of secrecy
is viewed simultaneously under the aspects of complexity and information theory. In this
framework we present a new Zero Knowledge interactive proof system of low complexity and
exponentially small residual error/ cheating probability based on the DL-problem of finite
groups. For the special case of multiplication in GF(2 m

) with normal basis representation,
a very efficient algorithm is being presented.

R.E. Blahut

Channel Capacity

Some Un~nished Busine.ss I~formation theory was ~st formula~ed for purpose of finding.'
the capacIty of communlcatlon channels and for findlng the optimum waveforms for com- w)
rnunication. The capacity of discrete-time and continuous-time additive Gaussian noise
channels was described by Shannon. Since then information theory has moved on to study
many abstract problems. However, there are many problems of practical importance that
have been bypassed. The purpose of this lecture is to survey the many interesting channels
whose capacity is unknown. Specifically no results are known to me about the capacity of
the continuous-time channel with a bandlimiter at the output (which is different from the
discrete-time version of this channel). The capacity of the continuous-time channel with
bandlimiter at the input is unknown. The capacity of continuous-time and discrete-time
additive Gaussian noise channels with multiplicative phase noise is unknown. The capacity
of doppler spread channels in unknown.
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I.F. Blake

Enumeration of Constrained Sequences

Constrained sequences, such as the (d, k) sequences, have been \videly studied over the
past decade. Efficient techniques to encode them, even up to their capacity, exist as \vell
as decoding techniques that limit error propagation. They have been studied both fronl an
information theoretic and a combinatorial point of view and this talk attempts to illuminate
the relationship between the two approaches. Specifically a production rule is given that
leads directly to a generating function for the maximal size catenable (d, k) sequences of
length n. It is suggested that such a production rule should have an information theoretic
interpretation.

A.R. Calderbank, L.H. Ozarow

Non-Eguiprobable Signaling On The Gaussian Channel

Many signaling schemes for the Gaussian channel are based on finite-dimensionallattices.
The signal constellation consists of aH lattice points within a region 'R, and the shape of
this region determines the average signal power. In the limit as N ----+ 00, the shape gain of

the N-sphere over the N-cube approaches ~e = 1.53db. Vve show that the fuH asymptotic

shape gain can be realized in any fixed dimension by non-equiprobable signaling. The
peak to average power ratio of these schemes is superior to that of equiprobable signaling
schemes based on Voronoi regions or" multidimensionallattices. The new shaping schemes
admit a simple stage demodulation procedure.

G. Cohen

Wri te-Isolated Menlories

A write-isolated memory (WIM) is a binary storage medium on which no change of two
consecutive positions is permitted when updating. We prove that the optimal r~te (zero­
error capacity) for writing on a WIM is [092«1 +JS)/2) ~ 0.69. We give asymptotic group
constructions achieving 0.6.

M. Cohn

Observations on Lookahead Coding for Input-Restricted Channels

Consider a discrete, lossless channel with constraints on its transitions, represented by a
finite automaton. Shannon showed how to find ideal transition probabilities that allow
channel capacity to be achieved. We interpret a lookahead code to be a technique which
uses upcoming inputs to simulate transition probabilities which allow and encodes to attain
or approach channel capacity.

We also observe that there exist channels that can be coded at capaci ty using lookahead
alone but not state-dependence alone, aod there are channels, that can be coded at capacity
using state-dependence alone, butnot lookahead alone.
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1. Csiszar

Arbitrarily Varying Channels as Models of Memories

Memories with some cells stuck at zero and one can be regarded as arbitrarily varying
channels with three possible states (cell stuck at zero, stuck at one, or good). The capacity
of AVC's, for deterministic codes with the average probability of error criterion, when
the permissible state sequences are known to satisfy certain constraints hut neither the
encoder nor the decoder knowns the actual state sequence, has been determined by Csiszar
and Narayan (1988). Applying that result to memories, when the frequencies of the two
kinds of defective cells are known to be smaller than some Ao and Al" the storage capacity
(under the average probability of error criterion) turns out to be positive iff~O+~l < 1_
An explicit capacity formula is also available hut it is tedious. _

The results reported in this paper were obtained partly with P. Narayan and partly with
tbe student B.V. Than.

S.M. Dodunekov

Optimal Linear Codes

Let Fq = GF(q) be a finite field with q elements and let F:; be an n-dimensional vector
space over Fq• Aspace C ~ F: is called to be an [n, k, d] =[length, dimension, minimum .
distance]~code, if

d = min d(x,y)
x,yEC
x#y

(d(x, y) is the Hamming distance). n, k, d are so-caUed basic parameters of a code.

One of the main problems of the constructive coding theory is the following : given two
basic parameters to optimize the third. More precisely, let us consider th~ following three
functions:

Codes with parameters

Nq(k,d) = min n, 3

Kq(n,d) = max k, 3

Dq(n, k) = max d, 3

[n, k, d] - code;

[n, k, d] - code;

[n, k, d] - code.

[Nq(k, d), k, d], [n, Kq(n, d), d], (n, k, Dq(n, k)]

are said to be optimal.

A sUfvey of same problems and recent results concerning optimal linear codes is presented.

B. Dorsch

Algebraic Maximum Likelihood Decoding of Some Classes of Blockcodes

The performance of algebraic blockcodes is limited mainly by Bounded Minimum Distance
Decoding (BMD), where only up to t = L(do+1)/2J errors can be corrected, do =de~igned­
or BCH-minimim-distance. Correcting t + 1 or t + 2 errors as in sorne known algorithms
doesn't increase the performance much. Egon Schulz describes (in this Dr.-thesis 1988 at
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Techn. Hochschule Darmstadt) a new algorithm to decode algebraically much more than
terrors, for some classes even up to any number (Maximum Likelihood Decoding MLD).
The algorithm with MLD can be used especially for such codes of length n, dimension k,
with elements from GF(q), for which each codeword is detennined by a single element u E
GF(qk) in a transform domain, as it is the case for some BCH-codes and the powerful class
of QR-codes (usually with minimum distance D much greater than da). A new improved
estimate of block error probability Pe for a BCH is derived and compared to simulation
results, showing that for AWGN (with antipodal signaling and coherent demodulation) a
signal/noise-ratio Eb/Na ~ 2,5dB can be achieved by MLD (compared to ;:: 5,5dB with
BMD) with binary codes, n ~ 1000, k ~ 250.

G. Dueck

Combinatorial Ootimization in Information Theory

Two new optimization heuristics are presented for discrete optimization: Threshold Ac­
cepting algorithms (TA) and the Great Deluge Algorithm (GDA). In this structure they
resemble the well-known Simulated Annealing approach (SA), but they operate with dif­
ferent acceptance rules for worse intermediate configurations. Many empirical results show
that TA and GDA perform much better than tbe classical SA metbod. In information
theory, SA was- already used to construct new error-correcting codes. V{e show results
with TA and GDA. Another interesting problem is to compute capacity regions for various
(multi-user) communication systems. These computations were very difficult in the past,
even for small examples. TA and GDA, however, can be used to compute those compli­
cated formulas very fast. A main advantage of the new methods lies in their extremely
simple structure. Real implementations of those methods in FORTRAN, say, can be mostly
written using only up to one hundred lines of code.

1.1. Dumer

Nonbinary Codes with Distance 4: 5 and 6, asymptotically exceeding BCH-Codes

We construct linear code Cd, d = 4; 5; 6, over arbitrary alphabet L = GF(q), which has
asymptotical redundancy ,....., 1.5 logqn, ,....., 2.4 logqn and ,....., 3 logqn parity check symbols
respectively instead of f'V 2 logqn, f'V 3 logqn and f'V 4 logqn symbols for BCH-codes with
length n -+ 00. The decoding is also less complex than BCH-decoding and requires f'V

2.4n logqn addittions and ,....., 2.4n logqn multiplica~ions in L for d = 5.

The code Cd is constructed by parity check matrix

with locator set X = {x}, ... ,zn} C L8 and d - 1 numbers )1
qt+d-2 + 1.

Theorem 1 Cd has distance d ~ 4, iff: a) all locators are not proportional over L (i.e.
Xi f. ~Xj for Vi,), i =F) and V~ E L.). Codes es and C6 have distance 5 and 6 respectively
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iff two conditions hold: condition a) and condition b) each two-dimensional L-subspace in
Ls (L-plane) intersects with locator set X in 3 or less points.

We obtain minimal redundancy by choosing 8 and t as: 8 = 2m, t = m - 1 for d = 4;
8 = 2m + 1, t = m - 1 for d = 5; S = 2m, t = m - 2 for d = 6. We use the set of
(qS -l)/(q -1) nonproportionallocators in C4. The set X, constructed in es and c6, is a
cubic manifold in L 6l+1 (i.e. 8 = 6i + 1), generated by locators x = (TO, TI, ... ,Tal) with:

where N2 (a, ß) and N3 (d, ß, ;)-the norms of elements in L2 and L3 respectively as functions _
of their coordinates. _

Theorem 2 Conditions a) and b) hold for locator set X with lXI = q5i.

A. Dür

On the Decoding of Doubly-Extended Reed-Solomon Codes

In my talk I have presented a new bounded-distance decoding algorithm for doubly­
extended R~d-Solomon codes. This algorithm is based on BerIekamp's algorithm for
decoding Reed-Solomon codes and always produces a candidate for the error-Ioeator poly­
nomial of degree less than or equal to the packing radius of the code. Stated in terms of
shift registers, the algorithm solves the following problem:

Given a sequence 80,81, ... ,Sz in K, find the longest subsequence 8L, 8L+1, .0•• ,8M that
can be generated by a linear recursion from the subsequence So, 81, ... ,8L-l, and the
generating recursion.

Furthermore, I have shown that the covering radius of a doubly-extended Reed-Solomon
code of minimum distance dis either d - 2 or d - 1, and I have determined the exact value
unless q/2 + 3 < d < q.

Symmetrie Functions over Finite Fields

Abasie problem concerning symmetrie functions is: Given a convenient set of power sym­
t

metrie functions Sii = l:: X~i, i = 1, ... ,t, to compute the elementary symmetrie funetions
j=1

(7h = l:: Xl ••. Xh, h = 1, ... ,t and the surn is over all possible permutations of the vari­
ables. The decoding of linear cyclic codes up to the error correction capabilities is an
instance of this problem. The Berlekamp-Massey algorithm computes (71, 0'2, ..• ,(7t from
SI, 53, ... ,S2t+l and then provides the decoding of BCH codes within the BCH-bound.

Here we obtain the solution of the symmetrie function problem for ab (72,0'3 and 0'4 given
Sb 8_ b 83 , 5_3 and therefore we define the class of 4-errors correcting code
(2m + 1,2m +1- 2m, 9), m even. Algebraic decoding procedures for (33,13, w), (33,11,11)
and (47, 24, 11) codes are also shown, therefore completing the analysis by Bours, Taussen,
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van Aspeidt and van Tilborg concerning the algebraic decoding of every cyclic code with
n ~ 51. .

Th. Ericson

Generalizations of the Johnson and the BassalygerElias Bounds

Theorem 1 (Johnson bound): Let T be the size of a code with constant composition P

and minimum distance d. The distance function is such that .,p{P) ~ L P(a )P(b)d(a, b)
a,b

is concave. Then T ~ d d ( ); m/J(P) < d, where n is the length of the code.-n.,p P

Theorem 2 (BassalygerElias bound): Suppose the alphabet has a group structure änd let
the distance function have the form dCa, b) = w(a - b). Denote by An(d) the maximal size
of a d-eode and let Tn(P, d) denote the same quantity under the additional condition that
all codewords have the same composition P. Define

n!
Bn(P) = n [nP(a)]!

aEX

(provided all quantities nP(a) are integers) when X denotes the alphabet. The following
inequality holds:

P E P(X) is arbitrary.

L. Bassalygo, S. Gelfand, M. Pinsker

Coding for Channels with Localized Errors

The notion of a code for the binary channel with ~ t localized errors is introduced as
folIows.

A configuration E is a subset in {I,. . . ,n}. Denote by &t the set of all configurations with
#(E) ~ t. A code for channel with ~ t localized errors oflength n andsize M is a pair (cp, 'l/J)
where cp : {I, ... ,M} x Et -+ {O, l}n is an encoding mapping a:nd cp : {O, l}n -+ {I, ... ,M}
is a decoding mapping. A code is said to correct all localized errors of multiplicity :s: t
iff 'l/J(<p(m, E) EB e) = m for all m E {I, ... ,M}, all E E Et and all error vectors e =
(e}, ... ,en) E {O,l}n such that ej = °for i ft E; here EB is the mod 2 summation of
binary vectors.

Theorem 1 For any code correcting alilocalized errors of multiplicity ~ t we have
. t

M ~ 2n/~ (:).

Theorem 2 There exists a code correcting alilocalized errors of multiplicity S; t such that
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Corollary. The asymptotic (n -+ (0) rate R(r) of an optimal code correcting :::; t = rn
localized errors (T fixed) is giyen by

R(r) = 1 - her)

where h is the binary entropy function.

•eh. Heegard

Limits on Coding for Computer Memory

The role of error correcting codes in the design of semiconductor random accessmemory
systems (RAM's) is twofold: (1) the problem of reliable storage (i.e., the control of random
errors in the operation of the memory) and (2) the problem of yield (i.e., the control of
defects in the manufacturing process). This talk concerns the latter.

In practice, when a large array of memory cells is constructed, it is often the case that many
of the individual cells are defective. Ta improve on the yield (i.e., the fraction of accej>table
memory arrays) spare rows and columns are constructed and used to replace rows and
columns that are found to be defective (i.e., contain defective cells). For any fixed rate,
R > 0, (R = M/N, M = information size of memory, N = M + X, X =number of spare
cells) and defect density, p, (fraction of defective cells) there is a critical size, M*(R, p), for
which the yield is small whenever a memory of size M > M* is constructed. A study of
M*(R,p) shows row/column replacement is: (1) very effective for small p and large rate
R < 1, R ~ 1 and (2) dramatic improvements are not found for smaller R. In the case of
smaller R (for a fixed p, R smaller makes M* larger) error-correcting codes (e.g. a single
error-correcting Hamming code) in conjunction with row/ column replacement is a much
more effective method of improving yield.

T. Helleseth

Legendre Sums and Codes related to OR codes •This talk will give connections between Legendre sums and the weights of the codewords
in some circulant codes which are related to QR codes.

Let F = GF(p) be a finite field with p elements and let (~) denote the Legendre symbol.
Let C denote the binary circulant code of length p whose top row equals a = (ai) where
ai = 1 iff i is a square (mod p) and ai = 0 otherwise. Then the weight of the codeword in
C whieb is the sum of the rows j 1, . .. ,jr can be expressed in terms of the Legendre sum

r J(t)
where J(t) = n (t - ji) and gk(t) =--..

i=l t - Jk
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The results are proved using methods for solving system of equations in finite fields and by
using Gaussian sums. Generalizations of the above results are also discussed.

R. Johannesson, K.Sh. Zigangirov

A Lower Bound on the Distance Profile for fixed Convolutional Codes

It iso well-known that a good computational performance for sequential coding of a convo­
lutional code requires a rapid initial growth of the column distances. This led to the intro­
duction of the (m + !) - tuple 4 = (do, d}, ... , dm ], which is called .the distance orofile.
dj, 0 ~ j ~ m, is the j-th order column distance and m is the memory of the code. In the
talk we show that there exists a fix, binary convolutional code of rate R = b/c and memory
m whose column distances satisfy

d j ?:. pc(j +1)

in 0 ~ j ~ m, where p is the Gilbert-Varshaplov par~eter, i.e. the solution of h(p) = 1-R.

T. Kl0ve

Disjoint Distinct Difference Sets

An (I, J)-set of Disjoint Distinct Difference sets (D D D) is a set ~ = {~l' 6.2, ... , 6.]}
where 6.'i"= {aijl! ~ j ~ J} for 1 ~ i ::; I are disjoint sets of positive integers such that
for each ~, alfthe differences aij - aij' with j t= j' are distinct. Usually we assume that the
elements of 6.i .are sorted in increasing order, i.e. 1 ~ ail < ai2 < ... < aiJ. Let

h = h(6.) = max {aii 11 ~ i ~ I, 1 ~ j ~ J},

H(l, J) = min {h(6.) 1 ~ is an (I, J) - DDD}

It is known that H(I, J) ?:. J2 - 2J~.

Clearly H(I, J) - 1 ~ H(l - 1, J). Hence we have

• H(I,J)?:. H(l,J) +1-1.

Counting the total number of elements we get

• H(I, J) 2:: I . J.

For example for J
construction:

3 we have H(1,3) = 31 for l ~ 2 as is shown by the following

6.i = {i, I + i, 2l + 1 + i} for 1 :5 i ~ I

61 = {I, 21, 21 + I}.

In general we have a similar result:
Let aI,a2, ... , aJ be a sequence which satisfies tbe following condition:

(*) if ICj - k) - (r - 8)1 5 1,j > k and aj - a" = a r - a., then j = r and k = 8.
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Let I > 10 = max{(aj - ak) - (ar - as) II(j - k) - (r ~ 8)1 :::; I} and def1ne
~ = {{aij 11 :::; j ~ J} I 1 :::; i ~ I} by

aij == a j + i (mod I) , (j - 1)1 < aij ~ j I.

Then~isa DDD andh(.6)=IJ.InparticularH(I,J)=IJforI>1o.
Sequences satisfying (*) .may be constructed as follows: Let a, b, C be integers such that
a ~ b (mod 2) and gcd(a,p) = 1 where p is an odd prime, p ~ J -1.
Define aj by

aj == aj2 + bj + c (mod 2p) , 0:::; aj < 2p •

Combining these results we get
L(J) ~ 4J

where L(J) is minimal such that H(I, J) = IJ for all I ~ L(J).
Since H(I, J) ~ J2 - 2J~ + I - 1 we get L(J) ;:: J.

Kingo Kobayashi

Marginal Processes of jointly Markov Process.

To probe the essential character in the coding for Markov source, we study the marginal
processes {Xn } and {Yn } of jointly Markov process {Xn , Yn }. In general, these marginal
processes are not necessa.rily Markovian. Here we establish a theorem which gives a suf­
ficient condition for a function process of Markov chain (so called sofic system) being
Markovian.
Let M = [mij : i,j E S] = [Mab :. a, bE X] be the transition matrix of a Markov chain with
the output alphabet X and the set of interna! state S, where submatrices Mab correspond
to the output assignment <.p of states.
Then we have

Theorem. If for any a, b,c E X it holds that

Ub·
MabMbcl = Mahl, --1Mbcl,@

Uh'_

then {Xn = ",,(Sn)} is Markovian, where!! = {!!1'!!2' ...•Y..} is the stationary distribution.
of M and 1 = (1, ... ,1)'.
Under some weak condition, the condition @ is also necessary.

J. Körner

A Common Framework for Zero-Error Problems in Information Theory.

Let :F and g be two f~ilies of graphs on the same vertex set. We say that :F is covered
by Q ifVF E:F 3G E g with E(F) c E(G), where E(F) is the edge set of F. Let t(Q,:F)
denote the cardinality of the smallest subfamily G' c Q for which g' covers:F. Many
problems in information theory can be formulated in this language.
Let K n denote the complete graph on n vertices and let :Fk,n be the family of all the
subgraphs of K n on k vertices (with isolated points added). Fbr a graph G with IV(G)I <
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n and 3 f V(G') -. V(G) with

•

n the-graph G' is an n-spread of .G if IV(G') I
(a, b) E E(G') # (f(a), f(b)) E E(G).
Examples:

1) Shannon capacity of graph G
:F = :F2tn g: all the n-spreads of G.

2) Perfect hashing=zero-error capacityfor list codes
:F = :Fk,n
g: all the n-spreads of G, especially for (b, k)-hashing: G = Kb.

3) (i, j)-separa~ingsystems
:F: all the bipartite graphs with color classes of i resp. j vertices
g: all the n-spreads of K 2

4)" qualitatively k~independent'b-partitions
:F: all the bipartite graphs on k ~ertices

g: "all the n-spreads of K b.

Sub-additive functionals give non-existence bounds working reasonably in cases 1 and 2.
Limitations and merits of the technique are discussed. "

K.-U. Koschnick

Coding for Write Unidirectional Memories

Write Unidirectional Memories (WUM's) have been introduced by Borden and Will~ms/

Vinck. They are binary storage devices having the constraint that when updating the
information stored by a WU M the encoder can write l's to some positions ci! the W.U"M
or 0' s to some position of the WU ivf hut is not permitted to write combinations of 0' s and
l' s. .

WUM' s have been studied"intensively by several authors. Some basic results are ·ohtained.
The optimal rate of a WUM-code is known to be log2~ ~ 0.694. The best'known
WUM-code has been constructed by Zhang and has the rate log2 307/15 ~ 0.5508.

An important subclass of WUM -codes is the class of (n, k)-homogeneous WUM -codes.
A homogeneous WUM-code consists solely of permutations of a small number of basic sets
with a certain property. All known good W U M -codes are of this type.

Using Zhang's method of building basic WUM sets hy combining so called WUM patterns
and by using some new ideas for solving the task of finding disjoint permutations of these
basic sets we have constructed two new WUM-codes. The rates of these codes are 0.5525
resp. 0.5637.

A.V. Kuznetsov

Defective Channels and Defective Memories

The general defective channel (GDC) is defined as a finite set of arbitrary deterministic
mappings <PB' SES. It is supposed that the mapping <PB is realized by some physical
channel when it is used for the transmission of some message and has astate sES. We
consider the case when the encoder knows, hut the decoder does not know the mapping
<PB which will be realized by the physical channel during the transmission of the message.

                                   
                                                                                                       ©



- 11-

The capacity of such GDC is determined by the cardinality IY"I of the set of symbols
available at the output of the ehannel when it is in the worst state s, e.g. IYsl is minimum.
From such information-theoretical point of view Write Onee Memories (WOM' s), Write
Unidirectional Memories (WUM's) and some other W-M's can be considered as GDC.
This allows us to estimate the capacity of WOM' s, WU M' s, .... The examples are given.
The GDC with error is considered a.s weIl.

H. Marko

The Controlled Information Source

The bidirectional communication theory, published 1966 in German and 1973 in theIEE~
Trans. of Corno in English, uses the controlled information souree which produces the
present symbol x according to the eonditional probability p(xlxnYn). Here X n denotes n
past symbols of tp.e own sequence and Yn n past symbols of the controlling sequence. Two
entropies are given by:

H(x) = lim E[-logp(xlxn )] as usual, and
n-oo

F(x) = lim E[-logp(xlxnYn)] ~ H(x), called "free entropy".
n-oo .

The directed transinformation y ~ x is defined as:

(1). T(xly) = H(x) - F(x) ~ o.
For a bidirectional communication (dialogue) two theorems hold:

(2) T(xly) + T(ylx) = TShannon

(3) (Tz + (Tp ~ 1, where (Tz ':" ~~:i and (Tp = T~(~» are the stochastic coupling coeffi­

cients.

A coding theorem states that the mannel capacity needed to tran~mit all information in
both directions is:

( ) Cz _ y = F(x) + e < H(X)} for noiseless and delayless channels with priority to ful-
4 Cy_ x = F(y) + e < H(y) fill the real-time condition.

The evolution of p(xlxnYn) via a learning process (conditioning) leads to the understandi_
of the semantics or pragmatics of information. Biological examples are given. Possible
extentions and unsolved problems are mentioned.

J. L. Massey

Causality. Stochastic Depen"dence, and Directed Information

A discrete channel is a specification of P(Ynlxnyn-l) for all n ~ 1 and is memoryless if
P(Ynlxnyn-l) = P(Ynlxn), \:In. The directed information from the input sequence X N to
the output sequence Y N is defined (closely following an idea of Marko published 20 years
aga) as .

N

I(X N .-+ y N ) = L I(X n
; Ynlyn-l).

n=l
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The following properties are proved:
(1) For a discrete channel used without feedback, P(yNI~N) = n~=l P(Ynlxnyn-l),

where no feedback means P(xnlxn-lyn-l) = p(xn lxn - 1 ), \In.
(2) I(XN -+ y N) :5 I(X N;yN) with equality if the discrete channel is used without

feedback. .
(3) For a discrete memoryless channel, I(X N -+ yN) ~ E~=l l(Xn;Yn) with equality if

and only if Yl, Y2, ... , YN are independent.

Define now a causa! system of discrete channels and sources to mean P(Ynlxnyn-luk) =
P(Ynlxnyn-t) for every channel and every source Uk , \In, Vk.

(4) In a causa! system, I(UK;yN) ~ I(XN -+ yN).

Properties (3) and (4) give a simple proof of the well-known fact that the capacity of a
discrete memoryless channel is not increased by feedback.

E.C. van der Meulen, K.U. Leuven

Matching and Coding Results in Multi-User Communication

(1) Matching' results (joint with S. Gelfand, IPIT, Moscow).· Necessary and sufficient
conditions are derived for the reliable transmission of a two-component source aver a
multi-user channel in two situations: (i) for the transmission of an arbitrarily correlated
two-component source over a capability-degraded broadcast channel, and (ii) for the trans­
mission of a conditionally independent two-component source over an arbitrary discrete
memoryless multiple-access channel. Specifically, we have found

Theorem 1: An arbitrarily correlated source {S, pes, t), T} can be reliably transmitted
over a d.m. capability-degraded BC {X,P(y,zlx),Y x Z} if and only if

H(S, T) ~ min{I(X; V), [(X; YIU) + leU; Z)}

H(T) ~ leU; Z)

for some probability distribution of the form P(u, x, y, z) = P(u)P(xlu)P(zlx, y).

Theorem 2: A correlated two-component source {S, pes, t), T} such that S and T are
conditionally independent given K can be reliably transmitted over a d.m. MAC {X x
y, P(zlx, y), Z} if and only if

H(SIT) $ I(X;Z)Y,T,t.p)

H(TIS) ~ l(Y;ZIX,S,t.p)

H(S,TIK) ~ [(X,Y;ZIK,t.p)

H(5, T) ~ leX, Y; Z)

for some probability distribution of the form

P(q, s, t, x, y, z) = P(q)P(s, t)P(xls, q)P(ylt, q)P(zlx, y).

(2) Coding results (joint with R. Vanroose, K.U. Leuven, Belgium). Vanroose (IEEE IT,
Sept. 1988) investigated the binary switching multiple-access channel and established its
zero-error capacity region. It turns out that uniquely decodable codes for the BSMAC can
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be carried over to obtain UD code pairs for the Blackwell broadcast channel for every rate
pair in tbe capacity region of the Blaekwell BC. Tbis method yields consistently higber rate
pairs than the codes for memories with defects (due to Kuznetsov and Tsybakov (1974»)
or~ginally used by Gelfand to establish the capacity region of the Blackwell BC.

P. Narayan, I. Csiszar

The Gaussian Arbitrarily Varying Channel

The Gaussian arbitrarily varying channel (AVC) with input constraint r and state con-
straint A admits input sequences ± = (x, .... I Xn) of real numbers satisfying •

.!. E:-l ~~ ~ I', r > 0, and stat~ sequences :§. = (SI'.'.' Sn) of real numbers satisfying
n -

~ E~=I s~ ~ A, A > 0; the output of the channel is ± +~+~, where ~ = (VI, ... , Vn ) is a

sequence of independent and identically distributed Gaussian random variables with mean
o and variance (12. It is shown that the capacity of the Gaussian AVe for deterministic

codes and the average probability of error criterion is ! log (1 +'-Ar 2) if r > A; and 'is
. 2 + 0"

o ifr'~A.· .. "

H. Noltemeier

Voronoi Trees

A new data structure - Voronoi tr~es VT - are introduced which allows the compr'ehensive
representation of proximity properties of finite sets of an arbitrary quasi-metric space..

Some properties are deduced, furthermore experimental results are reported and same fields
of applications are pointed out.

M.S. Pinsker

On c:-Entropy

We consider epsilon entropy and epsilon entropy rate for s~veral classes for deterministic
arbitrarily varying sourees.

The formula is given for epsilonentropy rate Ht;(a) of a set of functions which is the
response of linear time invariant filter with the square criterion:

bere Ht;{'ET) is the epsilon entropy of tbe class ET of functions which can be represented
in tbe form

L. .1:.

f(t) ~ j 2 ~(T )(1(t'- T)dr, 12

<p2(t)dt ~ PT,
_L _1:.
2. 2

•
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q(t) E L2 ( -00, (0) is given function ~d Pis fixed positive number. Also we give expression
for epsilon-entropy of the class function

~

L ~ {f(t) : i: (f(k)(t)?dt},
2

J.P.M. Scbalkwijk

The 0.63056-Road Block

1 1
f(t) E L 2 ( -2' 2)'

1
f(-) = O.

2

We consider equal rate R = R 1 = R2 transmission over tbe binary multiplying C'bannel
(BMC). Shannon derived a lower and upper bound of 0.61695 and 0.69424, respectively, for
the rate R in bit per transmission. Schalkwijk gave a simple coding strategy that yields R =
0.61914 in excess of Shannon's inner bound 0.61695. By a technique called bootstrapping
tbe author later improved on bis original strategy now obtaining R = 0.63056. Zhen
Zhang, et al., and Hekstra, et al. lowered Shannon's outer bound to, r~pectivelYl 0.64891
and 0.64628. 1t appears that the remaining discrepancy between 0.63056 and 0.64628 can
only be resolved by studying the so called Shannon strategies in detail. In this paper
we make astart with such a study using the author's unit square ~epresentationof these
strategies.

G. Simonyi

Restricted Memories with Uninformed Encoder

Different types of restricted memories were widely investigated in the last few years. We
give a short summary about the lack of knowledge in those cases when the encoder does
not know the previous state of the memory. Two conjectures in extremal set theory related
to WUM's (write-undirectional memories) will be presented.

Recently Ahlswede, Cai and .Zbang introduced new extremal problems for graphs some of
which can be interpreted as "memory problems" witb uni~f~rmed decoder and informed

• encoder. We introduce an analogous problem with uninfo~medencoder..

H. Stichtenoth

Good Codes from Aigebraic Geometry

Goppa's algebraic geometrie codes have been used by Tsfasman, Vladuts and Zink (and
others) for the construction of asymptotical1y good families of codes over F q, using deep
results from algebraic geometry. On the other hand, special curves (or algebraic function
fields) yield some classes of good codes of "finite" lengtb: the rational function field F q ( Z )

yields RS-codes (resp. their generalizations) of lengtb :5 q + 1, tbe HerInitian function field
yV9 - y = xv'i+ 1 yields good codes of length ~ q. vq. We present a new function field
yq +y = xqo(xq+ x), q = 2q~ (joint work with J.P. ·Hansen, Aarhus). It has the maximal .
number of rational points of a field of genus 9 = qo(q·- 1) (bpt "less than the Hasse-Weil
bound q + 1 + 2g,;q), and thc resu1ting codes have length q2 and very good parameters,
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e.g. for q = 32 ·we obtain [1024, k, d]-codes with k +d 2:: 901 for any k. The codes can be
described explicitly, and there is a good decoding algorithm (found by T. Hßholdt).

A. Tietäväinen

Covering Radius Problems and Character Sums

Using a modification of the Delsarte-MacWilliams approach we get an upper bound for the
covering radius R of a binary code of length n and with dual distance d' in the following
form.

Theorem R < i -(.fii - .vuhln - u where u .= ld' ; 2J.
For s~all values of d' apower sum method gives better results. •
B.S. Tsyhakoy

Randomized and Unrandomized Multiple Access Algorithms

We consider packet-data "networks with multiple access algorithms (MAA).: We def1ne a
concept of randomized MAA (RMAA). A special case of RMAA for which probability of
packet transmission in a slot can be only 0 or 1 is called by unrandomized MAA (URMAA).

, Well known examples of RMAA are ALOHA and STACK MAA's. Well known example of
URMAA is part-and-try MAA.

We ask "Is it possible to get more e~cient data trans.mission in the network using RMAA
instead of URMAA in sense of network throughput ör in sense of mean packet delay?"

The answer 15 positive' in general case. There are simple examples of non-Poisson Input
traffic for which network has zero throughput for every URMAA and non-zero for· some
RMAA.

The answer is negative when input traffic is Poisson. We prove even more. Namely for
each RMAA there exists a URMAA equivalerit to the RMAA in sense'of properly defined
mutual distribution of .channel and packet histories: We do not oo1y prove the eqUiValence.
hut also construct eqwvalent URMAA for every gIven RMAA. For example we represent
ALOHA and STACK RMAA in URMAA form.

Main results of the paper were published in "Problems of Information Transmission" vol.
25, N 1, 1989.

. F. Willems

A Partitioning Lemma and its Applications

Suppose we have a 0-I-matrix with MI rows, M2 columns and with E ones. Then the index­
sets {I, ... , MI} and {I, ... , M 2 } can be partitioned into M I /2 resp. M 2 /2 2-element cells
such that the number ofproduct-cells with 4 ones does not exceed E(E-l)/2(MI -l)(M2 ­

1). This can be proved simply by random partitioning. Using this result we can give a
direct .~d simple proo! of the fact that for the broadcast channel the average-error capacity
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region and the maximal-error capacity region are identical. Under certain conditions the
result could be used to obtain a good memory from a (larger) bad one.

A.D. Wyner, J. Ziv

Some Asymptotic Properties of the Entropy of a Stationary Ergodic Data Source
with Applications to Data Comoression

In this talk we will obtain theorems concerning the entropy of a stationary ergodie in­
formation source, and use these results to yield some insight into the workings of certain
data-eompression coding schemes, in particular thc Lempel-Ziv data compression algo­
rithm.

Let {Xk}~-oo be a stationary ergodic information source with entropy H which takes
values on a finite set. A typical theorem is the following. Let 1= 1,2, ... , and define the

random variable N, as the smallest N > 0, such that

Then ~ log NI -+ H, in probability, as I -+ 00.

·V.A. Zinoviev, S.N. Litsyn

Shortening of Codes

Given some binary block code C = (n, d, N) with length n, minimal distance d and car­
dinality N, we want to construct from this code C a subcode Cl = (nI, dl , NI), where
nI $: n, dl :::; d and the cardinality NI is the maximal possible. Op.e of the gen­
eral constructions looks as follows. For given C = (n, d, N) let character tPu(C) of C
on vector 1! E {O, l}n, wt(!!.) = h, t/J~(C) = EVEC( -l)(!!J.!U, takes his maxi-mal value
l,pl. Let 5, 9 be natural numbers such that 9 :::; min(h/2, d/2). Then ~here exists a code
Cl = (nl,dI,NI ), nl = n - h - 5, dl ~ d - 2g,

J. Ziv

ABound on the Probability of an Individual Sequence Emitted by a Finite-State Source.
and Applications

A lower bound on - logp(~) is derived where ~ is a sequence emittel by a finite-alphabet,
fini t-state source.

This bound is then applied to universal data compression, universal Hypothesis testing as
weIl as to some estimation problems, yielding universal, asymptotically optimal rules for
the case where the probability measures are not available.
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In all these cases the resulting asymptotically optimal rules are related to the Ziv-Lempel
data compression algorithm.

Berichterstatter: K.-U. Koschnick (Bielefeld)
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