
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLyACH
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Funktionalanalytische Methoden bei Evolutionsgleichungen

28.5. bis 3.6.1989

Diese Tagung wurde organisiert durch die Herren H. Amann und P. Bess (beide Universität Zürich).

Das grosse Interesse an dieser Tagung spiegelt die hohe Zahl von 44 Teilnehmern aus 17 Ländern

wider (wobei leider etliche weitere Interessenten nicht berücksichtigt werden konnten). In 38

Vorträ.gen wurde ein Überblick über die neuesten Entwicklungen auf diesem Teilgebiet der Mathe­

matik gegeben, wobei sowohl abstrakte Fragestellungen in der Theorie der Evolutionsgleichungen

als a.uch konkrete Anwendungen auf nichtlineare parabolische und hyperbolische Differentialglei­

chungen behandelt wurden. Das Vortragsprogramm. wurde durch anregende Diskussionen und

persönliche Gespräche in harmonischer Atmosphäre ergänzt.

Der Lei~ung des Institutes sowie dem freundlichen Personal des Hauses danken wir ~ dieser Stelle

herzlich.
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VORTRAGSAUSZÜGE

P. ACQUISTAPACE:

e
We study the regularity properties of the evolution operator V(t, s) relative to the Cauchy problem

REGULARITY PROPERTIES OF FUNDAMENTAL SOLUTIONS OF ABSTRACT NON­
AUTONOMOUS PARABOLIC EQUATIONS

u'(t) - A(t)u(t) = J(t), t E [0, T], u(O) = x ,

under classical Kato-Tanabe's assumptions (hut the domains of the A(t)'s may be not dense .jn the
Banach space E). We show that if t > s then there exists 1;U(t, s)x V x E E, and study some
features of this operator. We also give an application to boundary control of parabolic equations,
in a Hilbert space setting~ .

F. ALl MEHMETI

GLOBAL EXISTENCE OF SOLUTIONS OF CERTAIN "NONLINEAR EVOLUTION EQUA-
TIONS WITH APPLICATIONS TO INTERACTION PROBLEMS .

Consider n bounded domains of possibly different dimension and nonlinear wave equations on
these domains. We use the interaction formalism of [1] to deseribe many different kinds of infiuence
between the evolution on the different domains, including interface problems and transmission
problems on ramified spaces (e.f. G. Lumer, S. Nicaise, J. von Below, B. Gramsch). This formalism
furnishes a maximal aecretive operator in a suitable Hilbert space, which 3Jlows to transform the
interaetion problem ip.to an evolution equation.

Global existence and uniqueness of solutions are proved for locally Lipschitzian nonlinearities in a
situation applieable to wave equations with damping. More singular nonlinearities are treated .­
the case of networks using results of J. Shatah and T. Kato. •

Finally a eommon research with S. Nicaise is mentioned where convex analysis is used to study
nonlinear interactions.

[1] All Mehmeti, F.: Regular solutions of transmission and interaction problems for wave equations;
to appear in: Math. Meth. Appl. Sc.
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8.B. ANGENENT

PARAMETRIC PARABOLIC EQUATIONS OF QUASILINEAR AND FULLY NONLINEAR
TYPE

Let V: R2 X SI X R --+ R, V = V(x,y,8k) be 30 given function which s30tisfies ~r > 0, as weIl
as some more conditions.

Corresponding to this V, one has the following initial value problem: Given a. plane immersed curve
Co, find 30 maximal f~liy of smooth curves Ct(O :$ t < T) which s30tisfy

(1) V·.L = V(x,y,8k)

for 0 < t < T, 30t each point (x, y) E-Ct . Here V.L is the normal velocity of the curve, 8 is the angle
between the tangent to Ct 30t (x,y) and (say) the x-axis, and k is the signed curvature 30t this point.

Under a few technical assumptions (all of which are satisfied by V(x, y, 8) =: k), one can prove
that there exists aglobal weak solution to (1), whieh is smooth except at 30 discrete set of times
t},t2,t3, ••• • (This is our main result.) The proof involves 30 number of geometrie arguments,
based on a. theorem of Sturm's , of 1836. .

w. ARENDT

ELLIPTIC OPERATORS AND POSITIVE SEMIGROUPS

It is shown that 30 degenerate elliptic operator

N

A= L D.ai;D;
i,;=1

generates a. positive semigroup on LP(O) (1 :$ p :$ (0) if ai; E Wl,oo. We treat simultaneously the
ease where n is an open bounded set in Rn (and Dirichlet boundary conditions are imposed), or
0= RN or where n is 30 Lie group. .

• PH. eLEMENT

COMPLETELY POSITIVE MEASURES AND FELL-ER SEMIGROUPS

We consider the problem li [bo u(t,x) +[toob1(t - s) u(~,x)dsl =

Coo ßu(t, x) + li[t
oo

Cl(t - s) ßu(s,x)ds + J(t,x), t E R, x E fl with the boundary. condition

u(t,x) =0, t E R, x E 0, where 0 is a bounded domain in.RN with smooth boundary. We assume:

b}'Cl E Ll(R+) nonnegative, nonincreasing, bo +100

b1(z)dz > 0, Coo > 0, Cl(O+) < 00.
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We prove that if f E LP(R; Lq(n», 1 < p, q < 00, then problem (P) has one and only one solution
u E LP(R, Lq(n)) satisfying ßu E LP(R; Lq(n», u E LP(R; w~,q(n)), Cl * ßu E W1tP(R; Lq(!l»,
bo + bl * u E W1tP(R; LP(!l)), (where * denotes the convolution).

For the proof we use an extension of a theorem of Dore and Venni, due to.Prüss and Sohr, on
the closedness of the sum of two closed operators, and an estimate on the norm of the imaginary
powers of the negative generator of a semigroup on LP(R; Lq(n)) "induced" by a FeIler semigroup
on R. (This is joint work with J. Prüss.)

G. DA PRATO

FLOQUET EXPONENTS FOR PERIODIC PARABOLIC SYSTEMS

We g;ive some result on stabilizability of parabolic systems with coefficients periodic in time.

w. DESCH

ESSENTIAL GROWTH RATE OF HYPERBOLIC PDE's ON AN INTERVAL

The essential growth rate of a semigroup is the infimum of growth rates that can be obtained by
finite dimensional feedback, thus it teIls hpw much the system may be stabilized.

If the hyperbolic PDE

Ut{t,x) = A(x)ux(t,x) + B(x)u(t,x) (+ suitable boundary cond.)

is transformed to diagonal form (A(x) is a diagoI;lal matrix), then the essential growth rate of its
solution semigroup depends only on ACx) and the diagonal elements of B(x).

G. DORE

MAXIMAL REGULARITY FOR PARABOLIC EQUATIONS IN HIGHER ORDER SpACES

We study the homogeneous IBVP for a parabolic equation such as u' = ß u + f in Sobolev sP.
through functional analytic methods.

The main tool is a theorem that allows to obtain -maximal regularity for the abstract equation
Au +Bu =f in spaces related to D(AN ), starting from maximal regularity in the space in which
A and B are defined.
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H.O. FATTORINI

SEMILINEAR PARABOLIC EQUATIONS WITH NON-SMOOTH NONLINEARITIES

This work is motiva.ted by the control theory of distributed parameter systems of the form

{
Yt(t,x) = ßy(t,x) + ~(t,Y(t,x)~u(t,x))

y(t,x) = 0 (x E T)

where x E ft, ft a domain in rn-dimensional Euclideon spa.ce Rm with boundary T.

For physical reasons, it is better to treat as an abstract differential equation in LOO(ft). However,
there are three diffi.culties:

(a.) The semigroups S(t) generated by ß (with the corresponding boundary condition) is not
stro~gly continuous 30t t = O.
(b) The nonlinear control term, a.s a function of t with values on LOO(n) m30Y not be strongly
measurable. ·Exa.mple: the system

Yt(t,x) = yxx(t,x) + u(t,x)

in 0 ~ t :5 1 with n = (0,1); if, for insta.nce, u(t,x) is the characteristic function of the triangle
o~ x ~ t 5 1 t ~ u(t, .) is not strong1y measurable.

(c)Linear functionals in LOO(O) (used in control theory) are difficult to chara.cterize.

However, some of these difliculties are essentia.lly due to the smoothing ·properties of the semigroup
Set). We develop here a theory based on an abstract "two-spaces" scheme introduced in H.O.
F3ottorini, The time-optimal problem in Banach spaces, Appl. Math. 'Optimization 1(1974) 163-188:
the two '!paces here are C(n) and LOO(t.!). The theory applies without changes to the spaces LI(n)
and z::(n) (regular Borel rneasures on n with the total varia.tion norm).

B. "FIEDLER

COMPLICATED DYNAMICS OF SCALAR REACTION DIFFUSION EQUATIONS WITH A
NON-LOCAL TERM

e We consider the dynamics of scalar -equations

11" = 'Uxx + l(x,11,) + c(x)a(11,), 0 < x < 1 ,

where adenotes a weighted spatial average and Dirichlet boundary conditions are assumed. Pre­
scribing I, c, a appropriately, it is shown that complicated dynamics can occur. Specifically, lin­
earizations at equilibria can have any number of purely imaginary eigenva1ues. Moreover, the
higher order terms of the reduced vector field in an associated center manifold can be prescribed
arbitrarily, up to any finite order. These results are in marked"contrast with the case a = 0, where
bounded solutions are known to converge to equilibrium.

The above results are joint work with Peter Pola.cik.
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H. GAJEWSKI

ON NONLINEAR EVOLUTION EQUATIONS GOVERNING THE CARItIER TRANSPORT
IN SEMICONDUCTORS

Evolution equations modelling the transport of charge carriers in semiconductor devices were pro­
posed already 1950 by van Roösbroeck. These equations form the basis of the numerical simulation
of the behaviour of semiconductor devices, which nowadays is a powerful tool of device obsigners.

Inspite of their physical and technical relevance the device equations received relatively little at­
tention from the side of the mathematical analysis for a lang time. It is the aim of the lecture to
direct the attention to these interesting equations and to state some basic results about existence, _
uniqueness and asymptotic behaviour of solutions. _

J .A. GOLDSTEIN

SPIN-POLARIZED THOMAS-FERMI THEORY

This is joint work with Ph. Benilan and G.R. Rieder. Consider a quantum mechanical system of
N electrons and Z protons with Z ~ N and an external electric field. We establied the ,existence
and uniqueness of the ground state electron density in" the appropriate version of Th. Fermi theory.
The ground state is spin polarized, i.e. the densities of the spin up and spin down electrons differ.
One of our tools i~ a new method for solving the elliptic system

- ßu + ßl(U) + ß2(V) = 1
- ßv + ß3(U) + ße(v) = 9

where ßi is a nondecreasing continuous function on R with ßi = 0 on (-00,0], and 1,9 are finite
measures on R3 •

G. GREINER

WEAK SPECTRAL MAPPING THEOREMS FOR FUNCTIONAL DIFFERENTIAL EQUA­
TIONS

For a Co-semigroup (T(t» on a B-space X one can characterize the resolvent set of a single operator
T(t) in terms of the resolvent of the generator A as follows: "e- lSt E p(T(t)) iff J.L + (~Z E p(A)
and {(,\ - A)-l : ,\ E J.L +i~Z} is bounded in L(X)".

We sketch the proof 'of this result and'give two applications:

1. One can give a simple proof of a result of Henry on neutral differential equations (J. Diff. Equ.
'15 (1974). In this result the spectrum is described as zeros of a characteristic function.

NO'

2. For retarded equations x(t) = ~AiX(t - r) + IrA(S)X(t + s)ds one obtains a similar result

by studying the associated Co-semigroup in the space L 1([r, 0], Cn ).
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M. GROBBELAAR

THE NAVIER-STOKES EQUATIONS WITH DYNAMIC BOUNDARY CONDITIONS IN L2
AND LP

When a symmetric body performs a rotation in a viscous incompressible fluid, the system of gov­
erning equations consists of the conservation laws of linear momentum of the :fluid (Navier-Stokes)
equations and angular momentum of the rigid body. The la.tter equation wruch is of a dynamic
nature can be considered as a boundary condition for the Navier-Stokes equations. In trus Navier­
Stokes problem with dyna.Dlic boundary conditions the unknowns are v, wand p with v the velocity
fie1d for the fluid, w the angular velocity of therigid body and p the pressure field. Existence and
uniqueness results are obtained by following a Hilbert space approach and using as main tools. the
theory of B-evolutionsand the theory of fractional powers of aclosed pair of operators.

We also report on the progress ·made in LV.

A. HARAUX

ANTI-PERIODIC SOLUTIONS OF SOME NONLINEAR EVOLUTION EQUATIONS

Followinga recent work of H. Okochi in the monotone setting, we point out that many quasi
autonomous evolution equations of non monotone type associated to odd nonlinearities have some
anti-periodic solutions provided the forcing term is anti-.periodic. This comes from the fact that
thespace of anti-periodic functions is transversal to the kernel of the linear part and stahle under
the action of odd nonlinear operators. The proofs of our results combine strang a .priori estimates
independent of the nonlinearity with an application of Schauder'sfixed point theorem to some
related dissipativeequations.

N. KENMOCHI

NEUMANN :PROBLEMS FOR PARABOLIC-ELLIPTIC EQUATIONS; STABILITY OF
PERIODIC SOLUTIONS

• We treat a. nonlinear evolution equa.tion of singular and degenerate type

(1) Ut - /i.ß = /,ß = ß(t,x) E ß(u(t,x», in Q = (0,+00) xn

with Neumann boundary condition

(2) Onß =h on E = (0,+00) Xan.

Here n is a bounded domain in RN(N ~ 1) with smooth boundary -an, ß is a given maximal
monotone graph in R x R and /, h ar~ given data. In this talk,assuming that the domain of ß is
bounded and not a singleton, Le.

D(ß) = [r., r·] for some - 00 < r. < r· < +00,
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we show: (a) for any Uo E LOO(O) with r. ::; Uo(x) ::; r* and

r.< ,~,{Luo+[Lf+ [!eoh}<r' Vt~O,

problem (1)-(2) has a unique solution u such that u(O,·) = Uo; (h) if f and h are T-periodic (Le.
periodic in time with period T) and Co is a number with .

r. < I~I {CO +[ Lf +[ !eo h} < r' Vt E [0, T]),

then problem (1)-(2) has a T-periodie solution w with

Lw(O,x)dx = CO;

(e) any solution of (1)-"(2) converges to a certain T-periodic solution as t tends to +00.

"G. LUMER

ApPLICATIONS OF NONSTANDARD ANALYSIS METHOnS TO THE APPROXIMATION
AND REGULARITY OF SOLUTIONS OF EVOLUTION EQUATIONS

•

One establishes (easily) the following nonstandard e~ponentialapproximation formula (for a stable
familiy of generators):

Lemma. Let X be a standard Banaeh space (with standard norm), {Ak} a standard stable family
of semigroup generators in X convergjng strongly in the (Kato) generalized sense to a densely
defined operator. Then

etA. ~ (1- ~Ak)-N

on the standard elements of X, for all k, 0 5; t limited, 0 < N infinitely large integer. Also

( t )-n1- JiA k ~ 1

on the standard elements of X, for 0 ~ t infinitesimal, al1 integers k 2: 0, n 2:: 1. •

We derive several classica.l eonsequences: (i) Very short proofs of the Trotter-Kato semigroup
eonvergence theorem (and its usual variants); (ii) A necessary and sufficient condition for the
eonvergenee of a very general abstract discrete approximation scheme, whieh is essentially gjven by
the following result.

Theorem. Let {Ak} be a stable sequence of generators in X, A a generator in X. Then
(1 - ~Ak)-n -+ etA stro~gly on X, uniformly in t on t-compaeta, as n,k -+ 00, iff R('x,Ak ) -+

R(A, a) strongly on X for one (all) A> w.
t .

(iii) Using1(1- t -; s A) -NF(s)ds, .5 > 0 infinitesimal, N as in the lemma above, we give a very

transparent and simple proof of a known regularity result (*), which sheds additional light into
further regularity matters.
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(*) Theorem. For A a generator in X, du/dt = Au + !(t), u(O) = UO, t E [O,a], has a unique
classicaJ solution V uo E D(A) if FE WI,I(]O,a[,X).

A. LUNARDI

STABILIZABILITY OF INTEGRODIFFERENTIAL PARABOLIC EQUATIONS

We consider the stabilizability problem for an abstract parabolic integrodifferential equation. Under
suitable hypotheses, we give a necessary and suflicient condition for stabilizability, generalizing
the well known Hautus condition. Then we apply the abstract result to a classicaJ parabolic
integrodifferential equations in bounded domains, including the heat equation with memory. (Work
written in collaboration with G. Da Prato.)

K. MASUDA

ASYMPTOTIC BEHAVIOR OF SOME REACTION-DIFFUSION EQUATIONS

I consider the reaction-diffusion system of the form:

(1)

•

where dj > 0, e;, b; > 0, a;,k are given constant.

I am concerned with the asymptotic behavior of (1) with the homogeneous Neumann boundary
condition.

J. MIERCZYNSKI

THE KREIN-RuTMAN THEOREM FOR SEMIFLOWS ON BANACH BUNDLES AND ITS
APPLICATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Assume that <p = {<pt} is a flow on a compact metric space M. Let B be a Banach space, partially
ordered by a closed normal cone B+ with nonempty interior Int. B+. Let ~ = {~t} be a: linear
skew-product semiflow on a Banach bundle M x B, covering Cf' and such that for each t > 0, ~t
takes B+ \ .{O} into its interior. Under some additional assumptions, it is proved that there is an
invariant direct sum decomposition of the bundle M x B = VI ffi V2, where VI is one-dimensional
and contained in Int B+U (-Int B+) U {O}. A spectral statement is proved which is analogous to
the Krein·Rutman theorem.

The above abstract theorem can be applied to the case where the semiflow {~t} generated by a
linearized parabolic partial differential equation of second order. .
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E. MITIDIERI

ESTIMATES FROM BELOW OF THE SOLUTIONS OF A CLASS OF SECOND ORDER
EVOLUTION EQUATIONS

Let H be areal Hilbert space. Let F: H --+] - 00,+00] be a I.s.c. proper convex function. If

F(tz) = tPF(x) Vt > 0, P > 2, x E D(F)

then the solution to

.1.1." E 8F(u)

u(O) = Uo E D(F)

supllu(t)1I < +00
t>o

satisfies
lIu(t)1I ~ K(Uo)(l + t)-i6 t ~ to

where Ko, to are positive constants depending on tLo.

R. NAGEL

SYSTEMS OF LINEAR EVOLUTION EQUATIONS

We ~tudy systems of linear evolution equations which can be written in the form

ü(t) = Au(t), 1.1.(0) =Uo

where u(t) E En, E a Banach space, and A = (Pij(A»nxn, A a fixed closed densely defined
operator on E and Pij E C[x]. It is characterized under which conditions on the operator A and
the polynomials Pij the operator matrix A generates a strongly continuous semigroup on En, resp.
on appropriate "energy spaces". The results have been obtained jointly with K.J. Engel. .

J. NAUMANN

DIFFERENZIERBARKElT SCHWACHER LÖSUNGEN PARABOLISCHER SYSTEME MITe
QUADRATISCHEN NICHTLINEARITÄTEN

In einem zylindrischen .Gebiet des Rn+l betrachten wir pa.rabolis~he Systeme der Form

8au
i

~ -aOAi(x,t,u,Vu) =Bi(X,t,u,Vu) (i = l, ... ,N)
t XOt

mit IBi(x, t, u, e)1 :S c(l + leI2). Es wird gezeigt, dass für jede Hölder-steti"ge schwa.che Lösung u
gilt: Vu E Ltoc. Dieses Resultat basiert wesentlich auf dem Nachweis einer gebrochenen Differen­
zierbarkeit von Vu bzgl. t. Die lokale quadratische Integrierbarkeit der zweiten verallgemeinerten
Ableitungen von u bezüglich x folgt dann mit Standardargumenten.
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S.OHARU

THE FRÄCTIONAL STEP METHOD FOR ANISOTROPIC DIFFUSION EQUATIONS

Anisotropie diffusion equations of the form

are diseussed from the point of view of the approximation theory for nonlinear eontraetion semi­
groups in the Banaeh lattiee X = L1(R N ). Here ~i : R ~ R are supposed to be nondeereasing and
loeally Lipsehitz eontinuous on R. A notion of generalized solution to the initial-value problem for
(ADE) is introdueed and a nonlinear eontra.ction semigroup G == {Set) : t ~ O} which provides
the generalized solutions is eonstrueted in -X. The generators A of G represents the anisotropie

N

diffusion operator L 0;. ~i(U) and satisfies the range eondition R(I - AA) = L1(RN) n LOO(RN
)

i=l
for ;\ > O. The method is based on the use of produet formula.e for nonlinear semigroups and a
system of one-dimensional finite-differenee approximation of the form

•
(ADE)

N-

Ut = L 8;. ~i(U),
i=l

•

un+1(x) = U~ll(x), uö(x) =un(x), i = 1, ... ,N, n =0,1,2, ....

Consequently, two types of fraetional step methods for eonstrueting the generalized solutions of
(ADE) are obtained.

J. PRÜSS

AN EXTENSION OF THE DORE-VENNI THEOREM AND APPLICATIONS

We present an extension of the Dore-Venni theorem on the closedness of the sum of two eommuting
operators, and discuss some of the tools needed for the prcof. The result is illustrated by means of
several applieations to elliptic and parabolie PDE's as well a.s to Volterra convolution equations a.s
arising in the theory of viseoelastic materials.

P. QUITTNER

VARIATIONAL INEQUALITIES

We investigate the stability of stationary solutions of inequalities of the type

du
u E K: (dt - F(u), v - u) ~ 0 V v E K, u(0) = Uo,

whereK is a closed eonvex set in areal Hilbert space V, (".) is the duality between V and its
dual V, and F : V ~ V, is a (semilinear) map fulfilling some additional properties. We introduee
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conditions which are sufficient for the stability or the instability of a given stationary solution and
we show that these conditions are in some sense optimal and that they can be in many applieations
easily verified.

R. RACKE

ASYM~TOTIC BEHAVIOR OF (NON- )LINEAR DISSIPATIVE SYSTEMS

We deseribe the deeay behavior of LQ-norms, 2 :$ q :$ 00, of solutions u to parabolie resp. damped
hyperbolic systems of the following type: ~t + Lku = 0 resp. Utt + Lku +Ut = 0, where L =-6.
or L = -ai aik(X)ak elliptic with L = -6 outside a ball, in an exterior domain n c Rn, togethe
with initial and suitable boundary conditions. We use a generalized eigenfunction expansion and
are led to the study of pointwise estimates of solutions of exterior boundary value problems· for the
operator L. - As further motivation we diseuss the importance of these estima.tes for corresponding
nonlinear systems.

B. SCARPELLINI

SINGULAR SOLUTIONS OF SINGULAR BOUNDARY VALUE PROBLEMS

The following singular boundary value problem 1s investigated, which goes back to Brauner and
Nicolaenko.

(*) 6u = }..f(u)u- k where x E sn ={xix ERnIlxII :$ I}, u = 1 on aSn.
An additional notion, due to Brauner-Nicola.enko, is introduced:

Definition: A function 11. E C1 ([0, 1]) is a singular solution of (*) iff 11. E Cl ([0, 1]) n C 2([ro, 1])
for some ra E [0,1) (== singularity radius), u == °on [O,ro],(rn - 1 11.r )r = }..f(u)u- k on (ro, 1]' and
u == 1 on aSn'
Theorem: Under mild assumptions on Ul, U2, U3 : if Ul, U2, U3 are three distinct classical solutions
of (*) for some ).. > 0, then there exists a singular solution of (*).
[Remark:-.j is supposed to be smooth, and to satisfy f ~ Jlo > c for some /.Lo, and fu :$ c, fuu ~ 0.]

P. E. SOBOLEVSKII

INVESTIGATION OF A MATHEMATICAL MODEL OF THERMOELASTICITY •
We consider the boundary value problem
,,-1 ~~ _ 68 + '11; div v = _x-1Q

p~ - /.Lßii - ().. +p) grad div v+ "y grad e = pF, 0:$ t :$ T, x E 0;
a = 0, v =0, 0:5 t :$ T, x E an,
8(0,x) = eO(x), v(O, x) =VO{x), x E 0,
which describes the motion and the temperature change of a homogeneous isotropie elastic medium
occupying the volume n with density p, Lame's constants }..,p and thermal coefficients."}', K, 1].
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Here e is a. devia.tion of temperature, V = (VI, 172, VJ) is a vector of elastic displacements, Q is an
outward flow of heat, F = (F}, F2,F3 ) is a vector of volume density of outward forces, n is the
domain of R3 with boundary an and n= nu an.
Problem (I) is reduced to the Cauchy problem ·for the system of two differential equations of
parabolic and hyperbolic types in Banach spaces. In this way the existence and uniqueness theorem
of solution of problem (I) in tlie dass

•
ae {Pe
7ft, {)Xi{)Xk E Lp ([O,T],L2[{lD (p> 2);

a2v a2v a2v
at2 ' ataxä' {)Xä{)Xk E C([O,T),L2[n]); [x = (Xt, X2,X3)]

was obtained under the problem data conditions which are elose to the necessary conditions.

J. SOLA-MonALES

INERTIAL MANIFOLDS AND THE SINGULAR LIMITS HYPERBOLIC-PARABOLIC AND
ELLIPTIC-PARABOLIC

We have been interested in the dynamici .defined by the equation

. eUtt +- Ut = U:z::z: ~ f(u)

(for e > '0, for x in a bounded interval, and with boundary conditions 30t the ends); near the
parabolic limit e = 0. We have proved that this limit is no more singular when one restricts
the fiow to a suitable finite dimensional globally attra.cting (smooth) invariant manifold of finite
dimension, embedded in the (function-) spa.ce of states (Le., an inertial manifold).

We h30ve also an example of nOD-existence of such a manifold for e large.
This work can be considered a.s one part of 30 larger study developed by our group in Barcelona.

A. STAHEL

THE WAVE EQUATION WITH SE.MILINEAR BOUNDARY CONDITIONS

in [O,T) x n
on [O,T) x an
in n

Theorem:

We present ä. joint work with Irena Lasiecka.. On a. bounded smooth domain n in Rn(n ~ 3) we
consider the initial value problem

{

uu-ßu+u=O

(P) /;u = g(u)

u(O) =UQ, tl(O) =Üo
" Using aresult"of Miyatake (1973) we obtain

3
9 E C3 (R, R), 2 < 8 ~ 2
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and tL is a solution of (P).

If we assume an HI energy estimate and some growth conditions on 9 we also obtain global solutions.
This second result is based on arecent regularity result of Lasiecka., Triggiani.

H. TANABE

CONTROL THEORY FOR LINEAR DELAY-DIFFERENTIAL EQUATIONS IN A HILBERT
SPACE

Let

(1) du(t)/dt =Aou(t) +A1u(t - h) +LO" a(s)A2u(t +s)ds •
be a linear delay·differential equation in a Hilbert space H. Here, Ao is the operator associated
with a sesquilinear form defined in V x V satisfying Gärding's inequality, where V is a Hilbert
space such that V eHe V*. At and A2 are bounded linear operators from V to V*, and a is a
real valued Hölder continuous function in (-h,O]. Let Set) = etA and F be the solution semigroup
and structural operator for (1) respectively considered as an equation in V·. Then, it is shown
that FS(t) = Sf(t)F, S*(t)F* = F*ST(t), where ST(t) is the solution semigroup for the adjoint_
equation. In the special case At = 7Ao and A2 = Ao with some real constant '1 it can be shown
that the generalized eigenvectors of A are complete in H x L2 (-h, 0; V). Some applicat~ons are
given.

B. TERRENI

BOUNDARY CONTROL FOR NON-AUTONOMOUS PARABOLIC SYSTEMS OVER INFI­
NITE TIME-HORIZON

We consider a boundary control problem over infinite time horizon for a dass of linear nonau­
tonomous parabolic systems. We use a Hilbert space approach and some results from the theory of
evolution operators. The cost functional is quadratic and we get a feedback formula for the optimal
pair by a dynamic programming argument after a direct study of the Riccati equation relatedt.
the problem.

P. VUILLERMOT

INVARIANT MANIFOLDS FOR NONLINEAR KLEIN-GORDON EQUATIONS ON
R2: SOME RECENT RESULTS

Recent results concerning the existence of spatially localized almost-periodic oscillations to semi­
linear wave equations on R2 will be discussed within the framework of nonlinear functional analysis
and dynamical system theory. .
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w. VON WAHL

THE INSTATIONARY NAVIER-STOKES EQUATIONS ON EXTERIOR DOMAINS

We consider the problem

over a-cylindrieal dömain (0, +00) x'n:C R4,. where n is unbounded. This is precise1y the situation
where a body n c is surrounded by a fluid with ve10city u and pressure 'Ir. First we eollect some
a-priori information for any weak solution, in partieular we show that 'Ir E LS/ 3 (O,T) x Q),.T > 0.
Making strong use of this information we can eonstruet· a particular weak solution fulfilling a
localized energy inequality and being bounded outside a compaet region around the body (provided
the external force dies out if t -+ 00). Thus all possible singularities are eoneentrated in this eompaet
region. Moreover this solution is stable in the sense that lIu(t)IIL2(o) tends to 0 a.s t -+ 00. There is
almost no hope to carne by a singularity by numerieal or physi'eal experiments. The reason is that for
any T > 0, any smooth f and L8(O,T),Lr(n»)~neighbo~rhoodof f with radius c > O(~ + ~ > 4)
there is a smooth fe, lying in this neighbourhood, such th30t (1) (with' f replaced by .Je) has 30
smooth solution on [0, Tl x.o. The work rep?rted was d~ne jointly with ;H. Sohr and M. Wiegner.

•
(1)

{

u' - Au +u . V'u +V''Ir
V'. u

u(O)

ulan

f,
0,

tp,

o

E. ZEIDLER

NONLINEAR SYMM~TRIC HyPERBOLIC SYSTE.MS

Let us eonsider the following general nonlinear symmetrie hyperbolJe system of .~rst order

(1)

where

du'
dt = F(u), u(O) = Uo

(Fu)(x) = j«x,u(z),ou(x»).

• It is possible to prove a theorem for (1) co~cerning
(i) existence and uniqueness;

(ii) regularity, and

(iii) well-posedness.

The solution lives in the space

G([O,Tl, H') n G([O, Tl, H '-1),

where
s ~ [nJ2] +3 and H' = B'(Rn ,Rm

).

(In the quasilinear ease we only need s ~ [n/2) +2. )
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The fairly simple proof of this theorem due to M. Günther (Leipzig) is based on a substantial
generalization of arecent abstract theorem by Kato and Lai (J. Funet. Anal. 1984) and on a new

. theorem about nonlinear interpolation. The detailed proof along with applications will be provided
in the book Zeidler, Nonlinear Functional Analysis, Vol. 5.

It was discovered by K.D. Friedrichs in the 1950's that a large dass of problems in mathemati­
ca! physics can be reduced to problem (1). For example, this concerns magneto-hydrodynamic,
compressible fluids, and general relativity.

ZHENG SONGMU

GLOBAL SMOOTH SOLUTIONS TO NONLINEAR EVOLUTIONS WITH DISSIPATION •

This talk is concerned with the global existence of smooth solution to the following initial boundary
value problems of nonlinear hyperbolic system:

n

Ütt = L8i (äi(Aü) = fo(x,t),
,=1

n

Lv,äi (A11) + b(x,8t iI) =h(x,t),
i=1

ü(x,O) =11o(x), 11,(x ,0) = 111 (x)

in {} x (0,00)

on r x (0,00)

in {}

where {} is a bounded domain in Rn with smooth boundry r, ü = (Ul' ... ,Ut)T with I = n or
I = 1; Aü =(ci;) with Eij = !(8iUj +8jUi).
Let b= (b1 , ••• ,b2 ), bij = 8b i /8(ot'Uj).

Under the assumption L: bijeiej ~ 61el 2 with 6 > 0, which physically means that then{is a da.mping
force depending on the velocity, and other reasonable assumptions on äi, bit is proved jointly with
Shibata that the problem admits a unique global solution provided the initial.data and 10, h are
sma.ll. Two applications to nonlinear elastodynamic systems and nonlinear acoustic wave equations
with damping boundary conditions are also shown.

BERICHTERSTATTER: H. Amann und P. Hess
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