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Nonline8l' Evolution Equations, Solitons and the Inverse Seattering Trans­
form

was organized by Professors Mark J. Ablowitz (Boulder), Benno Fuehssteiner
(Paderborn) and Martin Kruskal (Prineeton). .

The participants (35 mathematicians and physicists from several countries)
presented their most reeent work in the meeting. The lively scientific atm~

sphere of the conferenee resulted in very many stimulating diseussions whieb
certainly will influenee future directions and will contribute to further progress
in the field.

The leeture program consisted of 35 leetures on topics such as Inverse prob­
lems in multidimensions, notions of integrability, algebraic and geometrical aB­

peets of Donlinear evolution equations, Solitons, Painleve analysis, explicit so­
lutions of special systems in 1 + 1 and 2 + 1 dimensions, direet linearization
of special systems, computational and algorithmic aspects, Quantum systems,
soliton equations in differential geornetry and various other applications.
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Vortragsauszüge

M.J. ABLOWITZ

Aspects of Solitons and Computations

There are many nonlinear evolution equations which bave discrete approxima­
tions which for suitable initial values do not properly reßect tbe correct solution,
in a numerical sense, for intermediate values of tbe mesh size. Tbe prototype
equation is tbe nonlinear Schrödinger equation (NLS) with periodic conditions.
Tbe NLS equation possesses a denumerably infinite number of homoclinic orbits
whicb are related to soliton "solutions of the defocusing NLS equation. Initial val­
ues proximate to these bomoclinic orbits are difficult to resolve numerically. In
particular standard numericalschemes reßect puious chaotic behavior which dis­
appears for sufliciently refined mesh. Well known integrable numerical schemes
associated with the NLS equation give good approximations which cove~age uni­
formlyas tbe mesh is refi.ned. Finally homoclinic orbits are, in fact, selected to
multiple eigenvalues of tbe underlying spectral problem.

S.J. ALBER

Associated integrable Hamiltonian systems. Regular and singular
problems.

Link betweeo different problems is establisbed in tbe form of isomorphism of
spaces of 8Olutions. These problems form a complex of nonequivalent Hamilto-,
nian structures over the same space of 801utions. Sbrlnking process is used for
the investigation of tbe singular integrable problems. "
Theri associated discrete and continuoUB integrable systems are introd~ced ~

the systems witb tbe same spectrum, tbe same dynamical or. spatial H~lto-
nian and similar latticed Jacobi systems of inversion. '.
In particular, hierarchies of continuous integrable systems associated witb Toda
lattices, relativistic Toda lattices and Volterra lattices' are found and investi­
gated.

M. BLASZAK

SYDlDletri~s, ConservatioD LaW8 and MultisolitoD Perturbation Th~
ory

00 tbe basis of action/angle variables for multi80litons new symmetries (mas­
tersymmetries) are constructed. For a system with known bierarchies of oon­
bamiltonian mastersymmetries the bierarchies of bamiltooian mastersymmetries
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are constructed (KdV for example) and for a system with known hamilto­
nian mastersymmetries the hierarehies of Don-hamiltonian mastersymmetries
are construeted (Benjamin-Ono for example). Moreover, with the help of the
action/angle variables, the N-solitons perturbation theory, on soliton subman­
ifold (adiabatic approximation), is formulated. The explicit form of the time
evolution of asymptotie data under the influence of perturbation is presented.

A.I. BOBENKO, L.A. BORDAG

Periodie multiphase 801utioDB of the Kadomtsev-Petviashvili equa·
tion

N-Pha.se solutions of the Kadomt&ev-Petviashvili (KP) equation, that are peri­
odic in space variables x and y, were obtained and effectively investigated using
the Schottky uniformisation, of which a sbort "description is giveil. Dur auto..
morphic approach leads 10 a general result; namely, to a natural description of
an arbitrary number of interacting phases and to an effeetive determination cif
the periodie solutions. Many· wave patterns are represented graphieally as con- ­
tour plots and as isometrie projections for different parameter values of two-,
three- and four-phase solutions of the.KP equation. "

F.CALOGERO

Some results on C-intergrable nonlinear PDE's

(1) C-integrable and S-integrable equations
Some examples were presented, and adefiniton: nA nonlineat PDE is C-integrable
(" integrable by change of variables") if its solution cau be obtained by solving:

(i) A finite system of nondifferential (possibly nonlinear , Le., algebraie or
transcendental) equations.

(ii) A finite system of linear PDE's (including ODE's and quadratures)" ..
The corresponding definition of S-integrability ("integrability by the Spec­

tral transform , or inverse Scattering, teehnique") is c10selY analogous, except
for the replacement (extension) of (ii) aB folIows: "(ü) a finite system of linear
PDE's (including ODE's and quadratures) , as weil as linear integral equations
(Ftedholm, Volterra, Riemann)".
(2) A clu8 of C-integrable Equations
A technique 10 generate C-integrable equations has been presented, and some
examples given. The results "reported are. those published in tbe Addendum
10 the chapter by F. Calogero, n Why are certain nonlinear PDE's hoth widely
applicable and integrable?", in the forthcoming book "What is integrability?",
edited by V.E. Zakbarov, Springer, 1990. Some extensions have also been men­
tioned.
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(3) Burgers equatiQD OD the semiline with general boundary cODdi­
tODS at the origin .
üoint work with S. Oe Lillo)
The problem characterized by the following equations is treated: u == u(z, t);
u,.= u%% + 2u%u, Z ~ 0, t ~ 0; u(z,O) =uo(z) given ,z ~ 0;
H[u(~,t);u~(O,t);t] = 0, t ~ 0, H(cr;{3;l) given.

H.W.CAPEL

Integrable lattice systems and hierarchies

.Integrable equations on three-dimensiooal lattices are studied via the direct
linearizatioo method which is based on a linear integral equatioo with arbitrary
measure and cootour. For every measure and cootour the integral equation
yields the basis functions of a Lax representatioo and the potential satisfying
the compatibility condition can be evaluated by integration over the same con­
tour with the same measure. The integrable equations are ob~ained as N x N
matrix equations embedded in an infinte matrix structure. AB an example the
N x N matrix lattice version of the isotropie Heisenberg ferromagnet in 2+1 di-

. mensions ist discussed. Special cases include the three-dimensional N x N matrix
lattice version of the KP, the modified KP and the two-dimensional Toda equa­
tion. Hierarehies cf integrable systems with one or more continuous coordinates
are obtained applying continuum limits with a vertex operator to the lattice
equation as weB as to the Lax representation. In fact, the equations of the
hierarchy can be expressed in terms of the monodromy matrices for a special
value of the spectral parameter. The monodromy matriees ean be ~valuated via
an expansion in terms of the (canonical) field determined by the leading part
of the expansion. The eontinuum limits yield a variety of hierarchies including
th~ ones associated with the KP, tli~ modified KP, the DS, the 2+2 dimensional
Toda equations and their diserete anaiogues.

S. CARILLO

An applicatioD. of the action-angle transform: The Liouville equa­
tiOD
üoint work with B. Fuchssteiner)

A method for constructing the action-angle transformation especially in the
ease of multi-soliton solutions has been obtained in [ B. Fuchssteiner, S. Car­
illo:"The action-angle transforma~ion for soliton equations" sub. Physica A ].
There l+l-dimensional Donlinear evolution equations admitting a hereditary
reeursion operator have been considered. Indeed, a key role, at first, seemed to
be played by the nonlinear link between the two isospectral problems; however,
a further analysis lead us to sh~w how such action-angle transformatic)ß can be

4

.~

                                   
                                                                                                       ©



obtained from the study of the symrnetry structure cf the nonlinear evolution
equation under investigation and, specifically, of the related intera.cting soliton
equation.
In this perspective we have been investigating various different nonllnear evolu­
tion equations such aB the KdV, mKdV (thus, also sine-Gor~on) and nonlinear
Schrödinger equations.
Here, as an example of application of the actJon-angle transformation, it is
shown how such transformation naturally induces the construction of the gen­
eral solution of the initial value problem for the LiouviUe equation.

A. DEGASPERIS .

Explicit 8Olutions of the Davey-StewartsoD equatioD

The interest in the Davey-Stewartson 1 equation, a 2+1 (space and time) non­
linear evolution equation, is weil motivated: it is both applicable and integrable
(via the spectral transform). Here we face the praetieal problem of construct-.
ing explicit 8Olutions of this equation. In the case of (1+1) integrable evolution
equations (such as KdV, NLS etc.) this problem has been solved by various tech­
niques (f.e. inverse spectral theory, Bäcldund transformations, Birota method,
r -function theory), which have all produced the multi-soliton class of solu­
tions. The building-blocks of these construction methods are the exponentials
e~p(pz+ wt) , which Are just particular solutions of the linearized form of the
evolution equation (namely u, +u~~~ =0 for KdV, iu, + u~~ =0 for NLS etc.).
We show that, by means of the spectral theory, solutions of the DSI equation
can be explicitly constructed by using 88 building-blocks any solution of the
linear 1+1 Schrödinger equation il,"+ ,~~ +v{z, t)1 = 0, with a gjven (solvable)
potential v(z, t).To this purpose we discuss the algorithmic way of generating
solvable potentials v(z, t). In particular, we introduce a class of 8Olutions of the
DSI equation, which describe the interaction of bumps that are localized with
a gaussi8ll (rather than exponential) profile (gaussons); each bump, however,
disperses away with a characteristic dispersion time T. In the limit in which aU
dispersion times go to infinity, this solution coincides with the multi-dromion
solution, that turns out to be just a special subease. Collissions of gaussons
with gaussoDB and dromions can be easily investigated in this formalism. Work
is in ,progress, and this indudes also radiation ~d dromion creation processes.

J. DORFMEISTER

Danach manifolds and evolutioD equatioDS

Let H =/2 (51
) and choose the natural ONB{/R;n ElZ}, H =H+ + H_.

Let w: Z ..... (0,00) be a weight (w(r + 8) ~ w{r)w{8), w{O) =I, wer) =w{-r»).
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Set BKP ={(: :) E B(H), L:w(ij)lb;jl < 0:, L:w(ij)lc;jl < 00,

and similar conditions on a,d}. Set GKP = (BKp·)O, PKP == (~ :) E GKP.

Then XKP =GKP/PKP is a "Segal-Wilson Like" manifold. We define a T­

function Tw for w E XKP as usual and set SKP = {L: a~21nTw, w E XKP}.
Theorem: GKP ~ XKP ~ SKP is achain of submersions of Banach mani­
folds. In particular, the set SK P 801utions to the KP equation associated with
w E X K pisa Banaeh manifold. We coDsider also the natural KdV-reduction a
and obtain: Theorem: G KdV ~ XKdV ~ SKdV is achain of submersions of .'
Hanach manifolds. We consider. tbe natural inclusions and obtain: Theorem:
The natural inclusions GKdV ~ GKP, XKdV ~ XKP and SKdV ~ 8KP are
embeddings of Banach manifolds.

B. FUCHSSTEINER

Symplectic ideals and the structure of mastersymmetries

For completely integrable systems the hereditary algebra spanned by 8yni.ni~tri~' "
and mastersymmetries is considered. This algebra is made into aLie algebra .:
module by introduction of scalar fields. Furthermore, by use of a suitable sym­
plectic form a natural completion of ideals in this Lie algebra module is defined.
Ideals which are complete in this sence are called syinplectic ideals. It turns out
that multisoliton manifolds can be characterized as zero sets of symplect~cprime
ideals. The identities obtained by this characterization are used to determine
the nonlocal part of the mastersymmetries of the systems under consideratioß:.

J.P. FRANCOISE

Periodie orbits. and perturbation tbeory Cor Calogero systems

The systems we studied are of the following type:

e
m

H(z,y) Ho(z,y) +(E h(Zi)
i=1

m

W = E dZi 1\ dYi
i=1

We proved that the systems (1) are associated to a symplectic action of the
torus nm when the root system ist Am, Bm, Cm , Dm and (T2. One gets as

6

                                   
                                                                                                       ©



•

consequences the spectrum of tbe quantum system and a formula of Gallavotti
and Marchioro. Then we reported on works obtained in collaboration with
O. Ragniseo and A. ·Celletti on perturbations of Ho(2). The perturbed system
remains iotegrable in the Aroold-Liouville sense if h is a polyoomial of degree
four. But there are computer experiments which teod to establish the oon­
integrability of aix-order perturbations io tbe two-particles case. We mentioned
related subjects and questions. Second-order matrix differential equations of
the form i + 2h(z)h'(z) =0 h(z) =.\Z + JJz2 where z is symmetrie have m
integrals in involution . We do not know if such an equation is integrable.

C. HOENSELAERS

Prolongation atructures ror nonlinear differential equation8

One first rewrites a given partial differential equation in two independent vari­
ables as a set of first order equatioDB and tben as a set of differential forms.
These forms are supposed to form a c10sed ideal and, wben restricted to a
solution manifold and annulled, to give back tbe original equations. Pseudo po­
tentials are introdueed by enlarging tbe dimeDBion of tbe manifold of dependent
and independent variables. The enlarged ideal consisting of the original set of
forms and additional one-forms for tbe pseudo potentials is agam supp08ed to
be c108ed. One is thereby led to a set of vector fields and commutation relations
between them; not &11 commutators, however, are given. Tbe questioD now ist
whether th08e vector fields generate an infinite dimensional Lie algebra and if
80 which ODe. If they generate a loop algebra one uses a matrix representation
to write an AKNS pair for tbe pseudo potentials. Let us now assume tbat we
are given an infinite dimensional Lie algebra, ODe forms dual to tbe generating
vector fields and tbe Maurer-Cartan forms. By setting alm08t all one fOrIns to
zero one derives two sets of equations for tbe remaining ones. These sets are a
closed ideal and yield on tbe integral manifold some differential equations whicb
depends on tbe parametrisation. Again using a matrix representation one can
derive Bäcklund transformations for the ideal, and tbereby for all differential
equations on its integral manifold, by purely algebraic means.·

B.G. KONOPELCHENKO

Nonlinear soliton eigenfunction's equations: The IST iDtegrability
and some properties

The soliton equations Me related with tbe linear systems of equatioDs with vari­
able coefficients. The corresponding eigenfunctions obey nonlinear equations..
It is shown tbat tbese eigenfunction equations are integrable by the inverse.
speetral transform (IST) method too. Tbe operator form of the correspond­
ing compatibility conditions is gjven by tbe Manakovs triad operator equations.
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The eigenfunction equations are the generatiog equations and possess other io­
teresting properties. Eigeofunction equations for several typical 1+1 and 2+1
dimensional soliton equatioos are considered.

H. LANGE

Attractors of Donlinear Schrödinger systems
üoint work with G. Rüoger)

We consider nonlinear time-dependent Schrödioger equatioDs of type

(NLS) iu, = U zz +wu

where the potential w may depeod nonlinearilyon u. We investigate the asymp­
totical behavior of solutions 10 initial-boundary-value problems for (NLS) for
t ~ 00, namely in case where

or
(ii) wzz(u) = 1 -lul2 (VlosOtJ - N LS).

For (i) we prove th~t in same cases (e.g. /(s) = ASP, heB) = s9, A > 0, ß < 0 ;
n Don-focusing ~ispersiven case) a11 finite energy solutions decay to zero uniformly
in spate: For (ii) with appropriate periodic initial-boundary-value conditions we
prove the existence of a maximal global attractor for all H2-solutioos of the 88-.

sociatedproblem for (NLS) which has finite Hausdorff and fracta! dimension
when a d.amping term i7u (7 > 0) is included additionally into (NLS). Also
in this case a condition is given such that a solution of the problem has afinite
set of" determinating modes" (in the Fourier expansion).

D. MAISON

Gravitating solitons

The ooly known 3-dimensiona! solitons ( = particle-like solutions) in nonlinear
8pecial-relativistic field theories are the non-abelian magnetic monopoles (resp.
dyons) and sOocalled Don-topological solitons of charged scalar fields. The in­
dusion of gravity (in the form of General Relativity) changes the situation in.
several respects. Although there are still 00 regular solitons in the Einstein­
Maxwell theory and in a large class of Kaluza.-Klein theories, these theories
alJow for finite mass black holes showing particJe like behaviour. In addition to
gravitating versions of the ftat-space solitons there exist new smooth solitons
for charged scalars (so-called B080D stars). However, what carne as a surprise
to many was the recent discovery of static, spherically symmetrie solutions of
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the Einstein-Young-Mills theory by Bartnik and Me Kinnon (through numerieal
integration). Although a rigorous existence proof for these solutions based on
standard method seems diffieult, we present a computer-aided existenee proof
combining the Dumerieally obtained knowledge on approximate solutions with
rigorous estirnates using Lipschitz conditions. Unfortunately linear stability
analysis shows that these solutions are unstable against gravitational collapse.

S.V. MANAKOV

e On a Class of Integrable Nonlinear Nonlocal Evolution Equations

.The 80lutions .p("\,l,t) of the local 8 - problem !i!.. = .pR, 1/J(oo) = I with
_ 8~_

R(l,"\, t) evolving in time according 10 the equation Re = [K, RJ , where K(>', l)
is an arbitrary vanishing at infinity matrix - valued function on the eomplex
plane· l, satisfy the equation in 2 + 1 dimensions

. ~ + tPK =8l-1(t/J~tP-l)t/J .
u, 8),

This equation is Lagrangian and integrable. To solve the initial - value problem
tor it one has 10 eonstruet R("\, l, 0) = (t/J-l!E)1,=0 and then to solve the

8l
integral equation

An analogous equation can be obtained via the Riemann - Hilbert problem
t/;+ =t/;- R, ~ = [K(l), R], l E R 1• In this case one getS a 1 + 1 dimensional
nonlocal evolution equation. The simplest example of this type is Cl nonlin­
tarization of the 2 + 2 AKNS spectral problem:

{) .

äiX + il[U3' Xl =[(13, < X >lX(l),

where < X >=i: X(~,t)d~.

J. MATSUKIDAIRA

Soliton Equations expressed by trilinear form and their 801utioDB

Most of all soliton equations whieh have N-80liton solutions can be expressed by
bilinear form through suitable dependent variable transformation. It has been
shown by various people that bilinear forms of soliton equations such as KP
equation or Toda equation are nothing but the identities of Wronskian deter­
minant or Casorati determinant. Recently, we have found Brouer-Kaup system
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or tbe classical Boussinesq equation can be expressed by trilinear form tbrough
suitable dependent variable transformation. It will be ShqwD in my talk that
the trilinear form of this system may be cODsidered to be an identities of tw~
component WroDskian. Furthermore, tbe existence ofinfinite number oftrilinear
forms of equations connected with characteristic polynomials of General Linear
Group will be discussed.

V.B. MATVEEV

Algebrogeometrical aspects 01 the solvable chiral Potts model

Tbe conjecture of Perk, Baxter et a1. about tbe structure of tbe normaliza­
tion factor R(p,q,r) eotering ioto tbeir new solution of tbe star-triangle equa­
tion is verified. Same properties of the underlying algebraic curve are studied.
Particularly the exact formula of its matrix of B-periods is obtained. As a cOß­
sequence tbe related rnultidirnensional tbeta-function may be represented as a
surn of finite number of terms, eacb term being a product of one-dimensional
tbeta.--functions. Tbe relation of tbe Picard-Fuchs equatioos of tbe curve with
thermodynamic properties of tbe model are discussed.

F.W. NIJHOFF

Multidimensional Lattices, the Simplex Equation and Quantum Groups

Tbe d-simplex equations are generalizations of the wellknown Quantum Young­
Haxter equations (QYBE's). Tbe first rnember of tbe hierarchy of simplex equ~
tions is matrix commutativity (d =l)t next we have tbe QYBE's (d =2), tbe
Zamolodcbikov equations (d = 3) : etc. Tbe work in collaboration with J.M.
Maillet (CERN) is motivated by tbe problem of arriving at a genuinely mul­
tidimensional notion of integrability. It is convenient to work on lattices (also
time-discrete) because in d =2 the corresponding Zakbarov Sbabat (ZS) equa.-­
tions look like

L," • L" =1/". L,
(in which L" L" are translation matrices of tbe linear problem, I, I' denoting
different lattice directions, and superscript denotes translation in tbe corre­
sponding directions). Tbus tbe ZS system is very similar to al-simplex equa.-­
tion. We develoPt analogous to tbe structure in tbe simplex hierarchy, a method
of building in obstructions at any level, thus climbing to one higher level in the
hie"rarcby. Thus we arrive in d=3 at an equation

KIl' • KI;:, •K",,, =K'",,, • KIl" • K:;;
for plaquette-objects KIl' t . .. , in wbich tbe couplings are exactly as in the
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QYBE. We interpret this local version of the QYBE's as a classical equation,
generaljzing tbe discrete ZS equatioDS, governing tbe dynamics of a d=3 dimen­
sionallattice. Connections witb quantum groups, and gauge tbeories on spaces
of loops are also discussed.

G.OEVEL

Canonical variables for Multi-Soliton Systems
(joint work witb B. Fuchssteiner and M. Blaszak)

For all integrable bamiltonian equations in (1+1) dimensions we present tbe
geometrical structure of tbe manifold of N-soliton solutions. With tbe help of
mastersymmetries we are able to derive eanonieal variables for tbe multi-soliton
systems in terms of tbe field variable u. Furtbermore we present a bereditary
reeursion operator for the multi-soliton system of the Benjamin-Ono equation
and discUS8 its properties.

W.OEVEL

The Bi-Hamiltonian Structure of Fully Supersymmetrie Korteweg­
de Vries EquatioDS
(joint work witb Z. Popowicz)

Tbe bi-Hamiltonian structure of supersymmetrie extensions of tbe KdV related
to the N=1 and the N=2 supercooformal algebras is fouod. It turns out that
same of these extensions admit "inverse" Hamiltonian formulations in terms of
presympleetic operators rather than in terms of Poisson tensors. For one ex­
tension related to the N=2 case additional symmetries are found with bosonic
parts that cannot be reduced to symmetries of tbe classieal KdV. They ean
be explained by a factorization of tbe eorresponding Lax operator. All the bi­
Hamiltonian are derived in a systematie way from the Lax operators.

U. PINKALL

Soliton equatioD8 in differential geometry

Many classieal topics in differential geametry (surfaees with eanstant mean ­
or Gaussian curvature, minimal surfaces in sn ... ) are direetly equivalent to
tbe study of eertain soliton equations. For example, all tori with constant
mean curvature in R;3 ("soap-bubble tori") ean be classified using soliton the­
ory. Conversely, describing soliton theory in differential geometrie terms adds
new insight to tbe subjeet and reveals very naturally the eonnection between
soliton equations and Kac-Moody algebras.
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J. PÖSCHEL

Quasiperiodie Solutions of Nonlinear Schrödinger and Wave Equa­
tioDB

I describe an extension of the classical KAM-Theorem about the existence of
quasi-periodic motion to sorne infinite dimensional Hamiltooian systems, such
as tbe nonlinear wave equations u" = Uz % - Q(z)u - ef(z, u) on 0 $ z $ 1f

witb Dirichlet b.c., depending on a potential Q E L 2(O, m), with f analytic in
u. The idea is to consider finite dimensional KAM-tori in infinite dirn. systems
and to make use of tbe asymptotic behaviour of the Dirichlet eigenvalue PI: (Q)
of Q. Tbe result is: Given n ~ 2 , for suff. smail e there exists "Iarge" 0­

dimenional eantor set Cn(e) C E ={Q : JJl(Q) > O} such that the correspond­
ing wave equation pOSSesseB quasi - periodic solutions with basic frequences dose
to ~, .. . ,;ii:. Moreover, if E J(z, 1/) = u3 + h.o.t, then Cn is in fact open
and dense in E. AnalogoUB results bold for the nonlinear Schrödinger equation
iu, = u%%-Q(z)u-ef(z, (us2)u), and the idea also applies to perturbed periodic
KdV-equations. Tbis theory was also developed independently by S.ß. Kuksin.

o. RAGNISCO

Integrable Mappings and stationary ver8ions of Nonlinear Integrable
Systems

It is shown tbat, under suitable regularity 8B8umptions, Lagrangian mappings
(i.e.: diserete-time systems eoming aB stationary point of a given actioo fune­
tional) can be viewed as siInpleetic mappings .00 a manifold. This result allows
to introduce the concept of completely integrable mappings, which are tbe dis­
crete counterparts of completely integrable systems in Hamiltonian mechanics.
It is proven that stationary versions of integrable nonlinear discrete evolution
equations provide families of completely integrable mappings. As an example,
some mappings coming from an integrable hierarchy of discrete equations re­
cently introduced by Th Guizhang are briefty discussed. A discrete integrable
version of tbe harmonic 08cillator is also presented.

A.G. RAMM

Multidimensional inverse sC8ttering problems and completeness of
the set of products of solutions to PDE

A general method is given for proving uniqueness theorems for a wide dass of
inverse scattering problems. For example, it ja proved that the scattering am­
plitude Aq(8' , 8) given at a fixed energy K2 > 0 for all 8' and 8 running througb
solid angles (however smaIl) determines uniquely the potential q(z) in the dass
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Qo:= {q: q = q, q E L 2(Bo), q = 0 in Ba'}, Ba = {Z: z ER3, Izl:5 a}.
A recoDstruction formula for finding q(z) given A(8', 8) for all 9', 8 E 52 is
given. Stability problem is discussed. Namely, suppose {6, A6A(9',9)} are

giveo, where 8,8
8
U

P c IA6 - AI < 6, A6 is not necessarily a scattering ampli-
• 1 <V'

tude. Then q6(~) is coostructed such that Iq6('\) - q('\)1 :5 '7(6) -. 0 as 6 -. O.
Here ~ E R 3 is an arbitrary fixed vector, '7(6) can be chosen the same for all
1"1 $ ~01 where '\0 > 0 in an arbitrary fixed number. ()ther results are meo­
tioned. The method is based on the property C for pairs {..cl, .c2} of partial
differential expressions. Property C means completeness of the set of products
{UI,U2} VUj E ND(!,j):= {u: ..cjUj =0 in D}.

s. RAUCH-WOJCIECHOWSKI

On connection between stationary ftows of soliton equatioDS and in­
tegrable, separable natural Hamiltonian systems

F. RENNEI.t

N ecessary conditioD8 ror Painlev~ property

For a given system of polynomial evolution equations (SPE) the r-equivalent
SPE is introduced and a theorem stated that connects Painleve property (PP)
of the first in a necessary way with PP of the second. Defining when a SPE is
r-reduced respectively r-degenerate and citing sorne further conditions for the'
resooance polynomial a theorem is proved concerning the leading order of a
Painleve expansion for a given SPE. .

C. ROGERS

PiDney-Ermakov Systems

A linearization. of the celebrated Ermakov system is presented along with associ­
ated nonlinear superposition principles. The linearization is exploited for a par­
tieular Ermakov system whic.h arises out of & symmetry reduction in two..layer
long wave hydrodynamics . Thus reduetion to Inee-type equatioDB is presented
and used to infer stability and periodicity properties for the original Ermakov
system. In eonc1usion, it is shown how, in the esse of the simplest Ermakov
system, the nonlinear superposition may be used 10 salve a wide dass of initial
boundary value problems. Detailed results are preseoted for He~viside and blast
loading boundary conditions applied to a thin hyperelastic tube.
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S.N.M. RUIJSENAARS

KP Soliton vecto~ in fermion Fock 8pace

From work by tbe Kyoto sehool, Segal/Wilson and other authors it is known
that tbe group G2(1l) of Bogolinbov transformations of the Dirae field on tbe
fermion Fock space FaCH) over 1l =12{Z) may be viewed as & symmetry group
for tbe KP equation and its assoeiated higher order equations. More in detail,
viewing 12(Z) aB tbe Fouriertransform of L2-functions 00 51 Ce, one needs
a Dirac decompositioo 'H. = 1t+ e 'H._, where 'H.+/1l_ contains the bolomor­
pbie functions inside/outside 51 with L2 boundary values; tben G2(1t) is tbe
group of operators 00 1{ that are bounded and boundedly invertible and have
off-diagonal Hilbert-Schmidt parts w.r.t. tbe 1t+/1l_ decomp08ition. Denot­
iog tbe Foek space implementer. of an operator G E G2(1l) by g, the vacuum
expectation value r(z) = (0, eH(~)gO) 80lves the KP hierarehy of Hirota bi­
linear equations. Here, tbe KP evolution operator eH(~) is tbe implementer of
tbe "i-partide evolution" eh(~) • Tbe latter belongs to G2(1l), provided this
time sequenee (ZI, %2,"') in tbe multiplication operator h(z) == L~1 Zl Z -

1

decays fast enough. We have reported an explieit solution to tbe problem of
finding implernenters and (henee) Fock 8pace vectors yielding the KP N-soliton
r-functions. Tbe solution exhibits remarkable parallels witb tbe so-ealled soli­
ton vertex operators. Tbe latter are formal maps that do not operate within
Fock 8pace, but which eRD and have been used by tbe Kyoto school to 80lve the
problem just mentioned in a formal fashion.

P.M. SANTINI and A.S. FOKAS

Solitons and dromions, coherent structures in a nonlinear world

We linearize an initial-boundary value problem for tbe Davey-Stewartson I
equation, sbowing tbe genericity and tbe spectral interpretation of the 8880­

ciated multidimensional coberent structures. Unlike solitons, whieh are nonlin­
ear modes of integrable equations in 1+1 dimensions, these coherent struetures
are nonlinear distorsions of tbe modes of tbe linearized version of tbe Davey­
Stewartson equation. Upon interaction they not only exhibit a two-dimensional
phase-shift, but also a change of form and an exchange of energy; furthermore
they can be driven everywhere in tbe plane cboosing a suitable motion of the
boundaries and they radiate energy if their motion is not uniform. We bave
ealled tbe ahove novel, localized, coherent structures "dromions" since they
travel on tbe tracks (in greek "dromos") generated by tbe boundaries and are
driven by them.
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J. SATSUMA

A Representation of Solutions for the Soliton Equations and its AI­
gebraic Structures

The determinant representation of solutions for the KP equation proposed by
Nakamura is generalized for all equations of the KP hierarchy. It is shown that
the algebraic structure of this determinant is paralleltothat of the Wronskian.
The structure of the KP hier81chy in the bilinear (orm is c1early seen through
this representation of solutions. The relation between the determinant and the
solution o( the Gel'fand-Levitan-Marchenko equation is also discussed. Fur­
thermole. the extension to the modified KP hierarchy, Toda hierarchy and the
multi-component KP hierarchy are presented.

F. SCHWARZ

An Algorithm far Determining tbe Size of Symmetry Graups

To determine the symmetry group of a differential equation is of great theoreti­
cal and practical importance. There does not seem to exist a finite procedure for .
determining the symmetry group of an arbitrary differential equation. However,
the more restricted problem of determining the size of the symmetry group may
be solved in a finite number of steps. An algorithm is described which allows
it to determine the number of parameters if the group is finite and the number
of unspecified functions and its "arguments if it is infinite. In many cases this
algorithm allows it to determine the symmetry group completely, e.g. if it is
just the identity or if the coefficients of the infinitesimal generator are algebraic
of low degree.

W.STRAMPP

Symmetries 01 the KP and Sato's theory

We use Sato'8 theory for obt~ing symmetries of the KP-equation. The billnear
form of higher order KP-equations is give"n. The connections 16 the recursion
operator obtained by Fokas and Santini are discussed. Further recursion oper­
ators arising from Sato's theory are described.
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TU GUIZHANG

A trace identity and its application to discrete and continuous in­
tegrable Systems

Tbis is a summary 00 sorne receot common works in eollaboratioD with Pro­
fessors Fuchssteiner, Ragniseo, Oevel and my eolleague Mr. Zhang. We start
from a wide d888 of continuoUB and diserete isospectral problems and prop08e
a systematie procedure for deriving the corresponding hierarchies of evolution
equatioDB and then reducing them into forms of generalized Hamiltonian equa­
tions. In tbis approach a trace identity - wbich takes exactly tbe same form botb
in eontinuous and in diserete case - plays an important role. Tbis identity can be
effectively used to derive botb the whole hierarchy and the sequence of Hamilto­
nians from a single stationary zerc>curvature equation. Furthermore we present
a general and explicit formula for Poisson brackets which implies immediatly
tbe Liouville integrability of the derived hierarchy of Hamiltonian equations.
We emphasize that the above procedure applies to hotb continuoUB and 10 dis.
crete systems. A eomparison between these two cases is given to clarify their
common points and to emphasize the different features. AB an illustration of
the procedure, a new hierarchy of discrete integrable systems i8(roposed. The

relevant isospectral probem is given by Et/J = Ut/J with U = ~ .~gr ~).
where 9 =g(m, t), r =r(m, t) are two field variables depending oh t ER ·and
mEZ, l is the spectral parameter, E is the translation operator defined by
(Ef){n) = f{n + 1). The rnastersymmetries and the recursion structures are
also addressed for tbis new hierarchy and for tbe Bogoyavlensky bierarchy of
diserete integrable systems. .

W. WIWIANKA

Aigorithms to detect complete integrability in 1+1 - dimension
(joint work with B. Fuchssteiner)

Algorithms to test and detect eomplete integrability for nonlinear partial differ­
ential equations are given, their implementatioDB in MAPLE are described. For
sorne examples of solvabl~ equations these algorithms are used to find symme­
tries and mastersymmetries, yielding the recursive structure of their hierarchies.

Berichterstatter: Gudrun Oevel
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