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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r i· c h t 9/1990

Mathematische Modelle in der Biologie

18.2. bis 24.2.1990

Continuing the tradition of (five since 1975) meetings on Mathematical Models
in "Biology at Oberwolfach the Mathematical Research Institute with its experi­
enced staff and great facilities brought together a group of mathematicians, theo­
retical biologists, and other scientists interested in Mathematical Biology. Among
the participants there were a quite large number of young scientists, and most
fortunately, many participants had elose connection ~o experimental work 6r field
data. ..

The meeting has been organized by W. Alt (Bonn), U. an der Heiden (Witten­
Herdecke), K.P. Hadeler (Tübingen). Among the various topics those related to
physiology (Neurophysiology, Cell Biology, Microbiology) have been emphasized,
although ther~ were quite a nunlber of presentatiolls OD. population dynaolics,
ecology, and epidemiology.

On the other hand this meeting again showed the role that mathematics plays
in dealing with systems of different scale and complexity on all levels of Biology
.(molecules, ceUs, organs, individuals, populations, communities, ecosystems, bio­
sphere), e.g. the dynamies of the cell cycle and the dynamies of infectious diseases
lead to' related, though not identical mathematical problems. Epithelial growth
has much in common with' spatial organization of populations of microorganisms.

It would be impossible to review all co~tributions (see abstracts). We just list
some of the fields covered in the meeting: Cell cycle, locomotion and orientation of
cells, growth of tissues and spatial organisation, receptors, epidemics, in particulcu
the concepts of basic reproduction numb~rs, competing species in ecosystems,
stochastic systems, cellular automata models versus numerical methods, neurai
networks. Some further comments seem ~o be appropriate. The large number of
partic~pants reflects· the increasing interest in Biomathematics for scientists from
various fields. On the other hand this large number has exhausted the tec~nical

facilities of the Institute and it has required a smooth organization of various
sessions and informal workshops. Of course the ample facilites of the library
building are very much adapted to infc;>rmal workgroups. In future meetings on
Mathematjcal Biology the organizers should stay strictly within the traditional
limits, perhaps by emphasizing a particular topie.
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Fortunately in Mathematical BiQlogy the interaction- between mathematicians
and biologists is increasing. As far as Oberwolfa.ch conferences are concerned, the
mathematical aspects will be emphasized: Mathematics which leads to better
understanding cif biological phenomena, Biology which leads to further progress in
Mathematics.

Mathematical Biology i~ Europe is still a developing field, and apparently the
growth rates are very different in different countries. It can be truly said that the
development so far has been enormously furthered by the Oberwolfach conference,
by the interaction of scientists fronl all over the world.

As a postscript we would like to mention that the recently installed computer
facilities have been very useful, both for the organizers in producing the program •
and for individual participants presenting their simulations or working on joint )
papers.

Vortragsauszüge

Wolfgang Alt

Models for cell plasma mot.ion and shape c~anges

White blood cells(in particular leukocytes) as weH 88· various tissue ceIls,
spread on a (glass) surface like a fried egg, show irregular protrusions and retrac­
tions of so-called lamellipods in all directions, as long as the cell.stays unpolarized:

. SiAL. Vl4l" cwe
-~SQ,"~

Responsable for the observed motions of the peripheral plasma membrane
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surface is the interior hydrostatic pressure in relation to the (contractile) stress of
the cortical actin-myosin filament network. °

I: A one-dymensional fluid-dynamic~model (in the high viscosity limit) for
the density a(t, x) of actin network and its mean translocation speed v(t, x) in
radial direction' x is analyzed:

ßta"! 8z:(av) = I(a),

83: {fl(a)8z;v + s(a)} = <p(a) . v

with monotone non-linearities p., I, t.p and cubic s. The one-sided boundary condi­
tion v(t, L(t» ~ L(t) at the free boundary, besides v(t, 0) = 0, leads to sustained
periodic oscillations of extension (L > 0) and contraction (L < 0).

II: An analogous "circular model" for density a( t, <p) and angular velocity
v(t, "p) in tangential direction tries to mimic the ~ore general (and more difficult)
2-dimensional PDE- system with moving botindary: An additional stress term
due to surface tension of the cortex-membrane boundary now appears in. s(a)
and constitutes a parabolic equation for the radial extension r(t, <p) of the ·cell
periphery:

"P}(a)8t r = Per, a) +8",(ra8",r)

This non-linearily coupledsystem of a hyperbolic, and elliptic and a parabolic
equation on the unit circleoexhibits characteristic properties of morphogen~tic"in­
stabilities (linear stability analysis) and shows a variety of (mostly regulär) oscilla­
tory patterns of cell shape changes (numerical simulations using altern·atiitg steps
with upwind resp. central difference approximations)."

Ellen Baake

Modelling and paranleter identiflcation in the light reaction Qf photo­
synthesis~

The induction kinetics of chlorophyll fluorescence is one of the most important
probes for studying the light reaction' of photosynthesis. It exhibits a typical bipha­
sic behaviour,. which, though well-known since its discovery by Kautsky (1931),
has not been understood till today. .

As ,a first approach towards a quantitative description, areaction scheme·
of photosystem 2 electron transport is combined with a description of excitation
energy distribution, yielding a highly nonlinear ODE system. Its· .free parameters
are fitted to experimental/data by means of the multiple shooting algorithm as
developed by Bock (1981) for parameter identification in systems of differential
equations. The outcome is a very good description of the induction cur"ves at
moderate light intensities, and the estimated parameters correspond closelY to
physiological values. In dealing with the deviations occuring at low~r intensities,
model refinements are discussed with a special emphasis on photosystem 1.
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Jonathan Bell

Modelling transduction in a skin receptor."

Mechanoreceptors are physiological units that convert mechanieal stimuli to
neural responses.' The largest mechanoreceptor in t"he skin is the Paciniari cor­
puscle, which is associated with the sense of touch. A Pacinian eorpuscle (PC) is
basically a dentritic terminal surrounded by a capsule made up of alternating lay­
ers of viscous fluid and elastic shells. When the skin is compressed, the PC feels
a compression on its outer boundary. The capsule transmits strai~ to the eore
receptor membrane of the dendrite. The receptor membrane has strain-activated
ionic channels which allow current flow across the membrane. This changes the
receptor potential which initiate an aetion potential. To model the mechanical­
t«>electrical proeess in a PC, we have developed a continuum mechanical model
for the capsule, an electrophysiological model for the dendrite, and a transducer, .
model to explain the action of the strain'-activated channels. The caj>sule normally
requires for each layer coutinuity and momentum equaiions for the fluid coupled
to elastic shell 'equations. There are 30-60 layers, so we employ a formal homog­
enization techniqueon the capsule model to recluce the system to a two variable
theory. The two variables are normalized radial displacement , and a homogenized
pressure variable. Out of the model comes an expression for the hoop strain 8t the
receptor membrane which is used in a model for the strain-activated transduction
current." This is also a component of a model for the nerve..The nerve model takes
account" of the f~ct that the nerve has cytoplasmic extensions distri~uted over it,.
and our theory assumes these are the site of the transduction channels. We dis­
cuss some aspects of known pe behavior, and show that the model reproduces
qualitatively this behavior. This includes the PC's ability to rapidly adapt to step
in pressure stimuli, and to produce frequency and intensity characteristics, given
periodie stimuli. This work represents an initial investigation into mechanisms
responsible for generi~ properties of mechanoreceptors, and the start of a ptoject
to develop a' quantitative model for the som'ato sensory system.

Nicola BelloIDo

Solution of partial differential equations with random parameters.

I consider initial-boundary value problems for partial differential equations •
with random coefficients and/ar random initial and ~oundary condjtions.. The
solution refers to the time evolution' of the moments and correlations of the de-
pendent variable and of the first and second order probability density joined to
the dependent variable.· .

The analysis is developed by the so ealled "adaptive.stochastic interpolation
methods" which malte suitable use of the stochastic lagrange polynomials and of
the stochastic splines. . ,

Application to the analysis of biological models is dealt with.

4

                                   
                                                                                                       ©



•

Oana Brosteanu

Analysis of lamellipodial behaviour of leukocytes.

Leukocytes or related cells stimulated to move on a substrate show membrane
protrusioos (lamellipodia) in various directions. The main problem concerning
lanlellipodial activity is to describe and eventually model the temporal and spatial
behaviour of these deformations of cell periphery (extensions resp. retractions). A
first approach, using data obtained by drawing the cell outlines from film images
for succesive time steps, is to quantify the peripheral change in normal" direetion at
points on the cell outline (per fixed time step) and to ealculate the auto-correlations
of the displacements. This method allows to characterize spatial correlations,
but ooly spatial, since points on the periphery are difficult to follow over several
tinle steps. A .second approach is to calculate the weighted Inoments (taking into
aceount the mass distribution of the cell) and from these the momental ellipse
(defined by the eentralized moments of second order). This ellipse can be used as
a ieferenee shape, looking at the displaeements along the normals of this ellipse.
This allows to compare the displaeements over multiple time-steps and to evaluate
the temporal and spatio-temporal dependencies.

Stavros Busenberg

Dynamics of disease tr.ansmission in populations of varying size.

In populations of constant size, a single threshold parameter Ro suftices to
determine the initiation of an epidemie. This is 00 longer the case in variable size
population and a finer structure of the threshold parameters needs to be obtained.
For example in the S -+ [ -+ R -+ S model there are essentially five distinct
thresholds, 1l(), R~,6 and R;,6, where:

with a holding when Ho :5 1 and b when Ra > 1.

R;.6 < 1 => I(t) -+ 0; R;,6 > 1 => [(tl -+ 00

with the a threshold holding if Ro :5 1 and the b when Ro > 1.

Thus the disease' affects the demographics, and conversely the demographics of
the population affects the possihility that the disease gets established either ~ a
proportion I(t)j(S(t)+ [(tl +R(t» of the total population or in absolute numbers.
This type of fine structuring of the threshold criterion is necessary in understanding
the dynamies of disease transmission for lethal diseases and in populations which

•
Ro < 1 => [(i) -+0·

- S(t) + I(t) J

R~·6 < 1 ~ I(t) + S(t) + R(t) --+ 0,

D_ I(t).. 0
~L() > 1 => S(t) +I(t) -+ t >

and R~,6 > 1 => I(t) +S(t) + R(t) --+ 00
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are undergoing demographie change. .These results were obtained in joint work
with P. van den Driessche, K. Cooke, and H. Thieme. They required the use of
techniques from dynamical systems andin one case, the proof of a new theorem
which provides a general criterion for the non-existence of periodic solutions or of
orientied phase polygons on smooth oriented two-dimensional manifolds.

Vincenzo Capasso

Optimal control problems ror a class of man-environment-man (MEM)
epidemics modelIed by reaction-diffusion systems with boundary feed­
back.

A class of MEM diseases which apply to coastal regions (typhoid fever, in­
fectious hepatitis A, ... ) has been modelIed by the author and his collaborators,
according to the following nonlinear evolution system

OUl ) () Qoom(t,x = ßUl(t,x)-allUt t,x, In

~2(tlx)= -a22u2(t , X) + g(Ul(t,X»), m Qoo

~: (t, /T) + QUI (t, /T) = fo k( /T, e)U 2(t, e)~ I in l:r'

OUt() . ,,00a; t, (7 = 0, In Ll2

subject to suitable initial conditions. Here Q represents the habitat. Apart r 1 of
its boundary an represents the eoastline, where the coupling with the sea waters
occurs; the other part r 2 being completely isolated. (QT = [0, Tl x 0; Er =
[O,T] x r1;Ef = [O,T] xr2 ). J.Ll(t,x) representsthe concentrationofthe infeetious
agent (bacteria, viruses, ... ) afpoint x E n and time t > O. U2(t, x) represents the
spatial density of infectives at time t in n.

The integral operator In k(cr, {)U2(t, {)d{, (7 E rl describes the mechanism of
transfer of the infectious agent produced by infectives U2 at any point { E {l, to a
point (7 of the coastline r}, hence making it available for diffusion in the habitat.
The term 9 (u i (t, x) represents the force of infection of human susceptibles due to
the coneentration 1.'1 of the infectious agent. When 9 is strietly concave a threshold
parameter can be identified .

t9 = g'(O) sup f k(x, {)d{1r1

such that if fJ < 1 the epidemie tends to extinction, otherwise a nontrivial endemie
state appears.

Optilnal control problems arise based on the fact that the epide~ic can be
reduced by reducing the kernel k(x, x') by means of a multiplicative factor w(t, x).

6
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The following costs have to be taken into account

J1 = l T Lf(U2(t,X»)cUdt (eost of the epidemie)

h = [T [ h(w(t,x»~dt (eost of the sanitation program)
Ja Jr 1 .

J3 = ')'(T) (cost of the duration of the epidemie)

J4 =Ll(u2(T,x»)cU (penalization due to the final value of the epidemie)

An optimal control can be based on the minimization of the total cast

with a fixed duration T.
Another approach is based on vector optimization in which the various costs

are considered in a vector form. In this context Pareto-optimality plays a major
role; consider the veetor cast J = (J}, J2, J3). J(w*) is P.O. iff 3ei, i = 1,2,3
S.t. Vi = 1,2,3, Ji(W·) is minimum in the set {WIJk(W) ~ Ck, k i= i}. This is an
important tool for decision-makers when the costs cannot "be optimised all at the
same time.

Jacques D~mongeot

Use of exhaustion proC'edures coming from the study of the auditory
system in segmentation of medical images.

The post-cochlear neural network (cochlear nucleus, geniculate body) detect
and emphasize correlated trains of spikes on fibres eorresponding (in the tonotopic
mapping) to elose frequeneies; we apply this technique to exhaust homogeneous
images (tumours or functional elements of the brain like the grey nuclei at the
basis of the cortex) coming from the CAT - scanner or from the NMR; after we
use this exhaustion in order to define a gradient and a hamiltonian·rel~ted to the
grey level observed after and before the image processing by the neural network.
Finally, we define a differential system having as limit cycle the contour of the
homogeneous image previously exhausted.

Odo Diekmann

How to decide whether an infectious disease can establish itself in a
population?

The expected number of secondary eases produced by a typical infected indi·
vidual during its entire period of infectiousness is mathematically defined as the

7
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dominant eigenvalue of a positive linear (so-called "next-generation") operator. In
special cases one can compute this eigenvalue in terms of ingredients for submodels
describing infectivity. The case of pair~formationsubmodels ala Dietz & Hadeler
is given special attention. Thus the lecture served as an introduction to the le,cture
by Klaus Dietz.

Klaus Dietz

The threshold number of partners Cor the transmission of HIV.

The basic reproduction number, i.e. the number of secondary cases generated
by one case during the infectious period in a susceptible population, is calculated
for the pairing olodel by Dietz & Radeier (J.Math.Biol.1988). It is represented as
'a function of the number of partners during the infectious period. Variable infec­
tic:;>usness during the infectious period in~reasesconsiderably the minimum number
of partners for the persistence of HIV. The threshold number of partners is in a
sensitive way dependent on the assuIllptions about the duration of a partnership.

Dietmar Dorninger

Predicting and reconstructing the spatial order of chromosomes.

According to Bennett 's model the spatial arrangement of the chromosomes
of eucaryot.es is such that adjacing C'hromosome arms are of "most similar size" .
During metaphase the centromeres cf the n chromosomes of a haploid genome are
assumed to form a plane regular n-gon, whereby the arms of the chromosomes
are stretched to the outside.

A graph theoretic Inodel is presented that shows that there occur inconsis­
tencies in 'Bennett's model and the cases, when this may happen, are classified.
Moreover olodifications of the principle of most similar arm size are discussed
where such inconsistencies da not arise.

Further the H P-complete algorithm used ,by biologists to reconstruct the
original order of the centromeres from the coordinates of the displaced centromere­
positions which they measure are considered and eventually substituted by an
algorithm that only needs polynamial time.

Friedhelm Drepper

Zufall und Kausalität im Informationsproduktionsproftl von Masern
Epid~mien.

Das Skalenverhalten von Informationsproduktionsraten der Renyi Ordnung
2 scheint in besonderer Weise geeignet, das komplexe Zusammenspiel von Zu­
fall und instabilem Determinismus be~ der Entstehung von Unvorhersagbarkeit
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zu trennen. Die Informationsproduktion kann als Unsicherheit einer bedingten
Kurzzeitv~rhersageinterpretiert werden. Die Bedingtheit bezieht sich hierbei auf
eine gleich genaue Kenntnis der jeweils jüngsten Vergangenheit. .

Die Anwendung dieser neuen Methode der nichtlinearen Zeitreihenanalyse
auf die Epidemiologie zeigt, daß die Unvorhersagbarkeit der Masern Epidemien
durch lokale Instabilität der zugrundeliegenden nichtlinearen "deterministischen"
Dynamik wesentlich beeinflußt wird.

Herhert I. Freedman

Stage..structured models of population growth.e Models in which populations are structured into immature and mature stages
are considered. The time to maturity ~s represented as both a constant and a
dellsity-dep~ndent time delay. Single. species and predator-prey models are inves­
tigated in this manner.

Ursula Gaedke

Predator-luediated coexistence of calanoid copepods in a spatially het­
erogeneous environment.

Literature data on life history and ecology of two sympatric calanoid copepod
species, Eurytemora affiniJ and Acartia ton$a, were analyzed for density-dependent
processes and those promoting direc.t and indirect intera.ctions between the two
populations. The impact of these processes on competition and coe~stence was
examined with a complex numerical simulation model integrating comprehensive
experimental evidence with theoretical concepts on species coexistence. Model
results suggest that -in the present case study competition is mainly- caused by

.common predators (i.e. carnivorous zooplankton), but not by utilization of com­
mon resources. Competition for cammon resources is weak and diffuse, due to
numerous other herbivores. Predation of it tonsa on nauplii of both species en­
hances intra- and interspecific competition at highabundances hut despite be­
ing species specific it does not support coexistence within a reasonable parame­
ter range. Non-selective predation by carnivorous zooplankton depending on the
combined abundance of the two prey species appears as the main factor promoting
competition between copepod species. At the same time, it is - at least in the
model - the most important mechanism Qf coexistence if prey species are spatially
heterogenously distributed and predation pressure relies on local prey density. Re­
vealing this mechanism of coexistence allows a 'Petter explanation for the observed
distribution of some copepod species.

9
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Annette Grabosch

A functional analytic approach to a model of red blood cell production.

Invariance properties for closed, invariant sets play an important role in the
theory of differential equations. For ordinary differential equations in IRn a suffi­
cient and necessary condition ~or the positive cone

c = {( Xi) : Xi 2:: 0 for i = 1, ... , n}

to be invariant under the semiflow generated by the ordinary differential equation

x'(t) = f(x(t)) , x(O) = Xo E lRn,

where J is locally Lipschitz continuous, is the subtangential property:

lim"lo~dist(x+hf(x),C) = 0 for all x E ac.

lf we consider the differential equation x' (t) = J(x(t)), x(0) = Xo E X in a
Banach lattice X, where f : X ~ X is locally Lipschitz continuous, then the sam~
result holds. To extend this result to partial differential equations we assume .that
we have an operator A on a Banach lat.tice X which generates a linear, positive,
strongly continuous semigroup (T(t»t~o. We consider the dual problem

u'(t) = A·u(t), u(O) = VJ E D(A·),

which is well-posed in a weak*-sense. For Y := D(A-) we assume that F : Y ~

X· is locally Lipschitz continuous. Additionally we assume that 111 : X· ~ ~ is
a strict1y positive, locally Lipschitz continuous, locally bounded functional. Then
we consider the Cauehy problem -

u'(t) = \It(u(t»A·u{t) + F(u(t», u(O) = VJ E D(A·).

If we additionally assume that Y is a Banach lattiee and that X is separable the
following result holds.

There exists a loeal "mild" solution u(t; VJ) of (*) whieh satisfies the semigroup
property and limtTtmax(Y') lIu(t; l;?)11 = 00 holds. If the subtangential property

lim"TO ~dist( 'f' + hF( 'f'), Xi-) = 0 .

is satisfied for"all VJ E 8X'+, then VJ ~ 0 implies u(t;VJ) 2:: 0 for all t E [O,tmax(ep».
Moreover the subtangential property is equivalent to a "positive-off-diagonal"
property, that is, if VJ E Y+,x E X+ with (x,ep) = 0, then (F(~),x) 2:: O. Further­
more a uprinciple of linearized (in)stability" holds.

10
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This result can be applied to a model for the production of red blood cells. Pro­
duction takes .place mainly in the bone marrow. The main stage for the "real"
production process is the stern cell compartment, where cells undergo the cell cycle
and have the capability to divide continuously. Some of the cells are committed to
undergo a differentiation process to become hlood cells. The red blood cell line is
one out of three possible pa~hs. Stern cells entering this line will undergo several
divisions in aprecursor cell compartment. At the same time (hut independently)
maturation, e.g. hemoglobin synthesis, takes place. Finally the. cells will enter
the blood cell compartment. Regulation of this process is not well understood.
Nevertheless it has to function very precise, since every day about 1% of all cells
has to be replaced by new ones ancl the total develop"ment of a cell from its birth
to its final form takes more than 6 days. There are several possible failures of this
system which lead to common diseases such as anemias, leucemias, etc. .
Here the process is modelIed by a system of first-orcler partial differential equations
with several nonlinear couplings. This system can be reformulated as a Cauchy
problem of the form (*) and the above result applies. .

Johan Grasman

A deterulinistic lllodel of the cell cycle.

The variability of the duration of the cell cycle is explained from the" phe­
nomenon of sensitive dependence upon initial conditions as it may occur in de­
terministic nonlinear systems. Chaotic dynamics of a system is the result of this
sensitive dependence. First a deterministic system is formulated that is equivalent
to the Smith-~artintransition probability model of the cell cycle. Next the model
is extended to adynamie process that ranges" over the cell generations. A deter­
ministic nonlinear relationship between the cycle time of the mother- and daughter
cell is established. It clarifies the variability of mother-daughter correlations for
the different cell types. The model is fitted to two different cell cultures; it shows
the constancy of the nonlinear relation over different cell types.

Michael Guevara

Mechanisms of cardiac arrhythmias.

Ventricular arrhythmiaS . which cau a"rise due to disturbances in the conduc­
tion of the cardiac impulse in the ventricles of the heart - are often implicated
in sudden cardiac death. In a variety of circumstances the stage of induction
of ventricular arrhythmias is often preceded by aphase of alter:nans - beat-ta- .

. beat alternation in the morphology of the action potential. We show in single
ventricular cells isolated from the rabbitheart that alternans can be "seen as the
pacing frequency is increased. We attribute this production of alternans to a
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period-doubling bifurcation. Further increase in pacing frequency leads to a sec­
ond period~doublingbifurcation, which is' followed by. an irregular rhythm upon
increasing pacing frequency still further. We show that a simple one-dimensional
finite-difference equation predicts the existence of the above behaviors: more~ver,

the irregular rhythm is chaotic.

Karl P. Hadeler

HOlllogeneous evolution equations.

Motivated by problems from demography and epidemiology we study equa­
tions x = f(t,x), wher~ f : lRn

-+ IR" is homogeneous of degree 1, f(t,o:x) =
o:f(t,:x). We derive stability criteria for the analogues of stationary and peri­
odic solut~ons (exponential solutions and "spirals"). We generalize the notions
of a Lyapunov function and of a gradient field, and we prove a Bendixson-Dulac
criterion.

Uwe an der Heiden

A silllpie 1110del oe illUDune response.

The immune system protects the organism against foreign substances (anti­
gens), viruses, bacteria, tumor cells etc. In order to describe the interaction be­
tween the iinmune systenl and these invaders we illtroduce two time-dependent
variables:

e(t) = amount of antigens, viruses, ... of some type.

k(i) = amount of active immune cells competent for this type.

The proposed model consists of the following system of two ordinary differ­
ential equatiC?ns:

de/dt = ae - ßek

dk/dt = ""ff(e) + g(k) - fJk.

The time-constant parameter a,ß, ""f, fJ are positive, except 0:, which is positive if
e-molecules or cells can reproduce, and negative if, after infection, the invadors
simply decay. The function fee) = e/(l + e) describes the activation of immune
cells by antigens, g(k) = k"'f(1 + k fl

) means autocatalytic production of immune
cells.

This clearly oversimplified model of immune response has the advantage that
it can -be studied favorably by methods of phase plane analysis and analytic discus­
sion of the vector field, which is defined in IR~ by the right hand sides of the two
differential equations. This analysis exhibits a large variety of different types of
solutions of the model system. Depend~ng on" parameters there can be up to four
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constant solutions (equilibria). These equilibria correspond to states, described by
immunologists as "virgin state", "immune state", "state of tolerance". The model
successfully replicates the so-called "secondary response": A second infection (hy
the same type of antigen) is more quickly overcome than the first one. There .may
be permanent" coexistence of antigen and competent immune cells in the system
(corresponding to a positive equilibrium). Antigen and immune response can oscil­
late with either decreasing amplitude or in the form of a limit cycle oscillator. This
last possibility means that the organism becomes alternatingly ill and healthy at
regular interVals without being iofeC'.ted again from outside. Uoder certain va.lues
of parameters the immune system is not able to overcome the antigen a:ttack, i.e.
lime(f) = 00 as t ~ 00.

Zygmunt Hejnowicz

·Modeling of plant organ growth by means of the growth tensor.

Plant ti,ssues grow in such a way that neighboring. cells do not slide one past
other; their walls are cemented. A growing plant organ resembles the deformation
of a visco-elastic body, thus a tensor, designated as the growth tensor, (GT), is
applicable. The GT is the covariant derivative of displacement velocity of markers
in the growing organ. The principal directions of GT (PDGs) are represented (in
a steadily.growing organ) by cell walls aligned in so called periclines and anticlines
which are orthogonal.

The mathematical task in descrihing organ growth is thus following: given
ia the pattern of periclines and anticlines, formulate the growth tensor such that
its PDGs fit the pattern. This task was fulfilled for root apices. A paraboloid
coordinate system (u, v, 4» was used.

The growth rate (relative) of a line element in the direction Q, r'(a), is: r'.(a) =
(GT) . ea . eQ where ea is the unit vector in the direction Q. The Q for PDG was

. obtained {rom dr~~a) = 0 'as a function of (~,*'u, v ) . The point functions

~(u,v), *(u,v) were chosen so that PDGs of the corresponding ST matched the
required peri/anticline pattern. The obtained GT gave a realistic distribution of
vol~etricgrowth rate (the trace of ST).

Solving the equations ~ = f(u,v);"* = g(u,v) with respect to time allowed
modeling of the displacement of markers in the apex.

The maintenance of the peri/anticline pattern in the apex of a mature root,
and the formation of new apex (transient cellular pattern) were simulated.
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Josef Hofbauer

New results on the hypercycle systenl.

A hypercycle, as introduced by Eigen and' Schuster, is a system of n self­
replicating macromolecules, which are coupled together by a closed loop of cat­
alytic reactions, such that each species catalyses the self-reproduction of the next
one. Such hypercycles have been postulated as missing links in the prebiotic evo­
lution from simple self-replicating elements with enzyme-free copying meehanism
to the early forms of RNA. With the simplest form of reaction kinetics, this leads
to the system of ODEs [2]:

n

Xi = Xi(Xj-l - F), i = 1, ... ,n, F = L XjXj-l'

i=l

(1)

Here Xi denotes the coneentration of the ith species, and i is understoQd modulo
n. Oue to the flux term F the total number of elements remains constant and (1)
defines a flow on the simplex Sn = {z E IRn

: Xi ~ 0 and E7=1 Xi = I}. It is
known [2] that the equilibrium p = (~, ~, ... , ~) of (1) is globally asymptotically
stable if n ~ 4. Since the eigenvalues at p are the nth ro<?ts of unity (except 1),
p is unstable for n ~ 5. Numerical simulations suggested convergence to a stable
limit cyele (which follows the edges 123··· nl for large n). Sigmund (see [I, p.
101]) proved that (1) is permanent: There is a fJ > 0 such th8.t for an initial values
x Eint Sn, lim inft _ oo Zi(t) ~ 6 > O. .

Theorem. Every orbit of (1) in int Sn converges either to p or to a nontrivial
periodic orbit.

Ir. p is unstable (i-.e. n ~ 5) then even the existence of an asymptotically
stable periodic orbit can be shown. The theorem holds also for mor,e general
systems than (1). This result is a consequence of the recent deep work of Mallet­
Paret and Smith who proved a Poincare-Bendixson type theorem for monotone
cyclic feedback Jy.stemJ. These are systems

i = 1, .. . ,n, (2)

on (some open set in) IRn where ~Ö!i does not change sign. This is a discrete ver-
VZ,_l

sion of an analogous result on reaction diffusion equations (with periodic boundary
conditions). T.he proof uses the fact that the number of sign changes of the vector
x(t) decreases monotonically along solutions of th'e linearized' problem. Using sim­
ilar methods, another open problem on the competitive exclusion of hypercycles
(see [1, p. 104] has been solved.

1. J. Hofbauer, J. Mallet-Paret and H. L. Smith: Stable periodic solutions for
the hypercycle syste~. J. Dynamics Diff. Equ. (Submitted)
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2. J. Hotbauer and K. Sigmund: "The Theory 01 Evolution and Dynamical Sy$.
temJ. Cambridge Univ. Press 1988.

Frank C. Hoppensteadt

Analysis o( a Dlodel neur~l network.

A network of voltage controlled oscillator neuron (VCON) models is described
by the differential equations

dx" ~
-dJ = wi + L....., Gki cos+ Xi cos+ Xi + f(t) cos+ xi

t It<N

for 0 $ j < N where Clei is the strength of connection from VCON k to VCON j,
f(t) is the external signal applied to the network, and Wj is the center frequency
of the jtl VCON. The following notation is useful for computer simulation since
it presents at once the data, inputs and outputs.

N-l
f( )

tapa'.

J 1(1)f(l) ,
,-1.0 ,-0.0

"1\ lI"t;j .

-
.-

••" ..t~ ..vcnt:
~

t
Oatpau

The arrangement of the network provides a visualization of the .connection
stencil C = (Ctj) where the size of the circle at the intersection (k,j) is propor­
tional to Cltj.

The system can be studied using the rotation vector method. If f is almost
periodic, then the limt_oo Xj(t}/t = pj"exists and describes the output frequency
of the jth circuit~ and the entropy of the distribution x/lxi can provide a useful
Liapunov function for the it (Proc.Nat'l Aead.Sci.(USA) May, 1989]. In turn, the
network represents f as a generalized harmonie poynomial
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~ames P. I(eener

The effects of discrete gap junction coupling on propagation in my­
ocardium.

The myocarclium is c.omprised of anisotropically coupled exitable cells, through
which an action potential propagates to initiate each eardiac eontraetion. In spite
of the obvious inhomogeneity of myocarclial tissue, eardiologists and physiologists
have had reasonable success understanding action potential propagation using only
continuous cable theory. Continuous eable theory is based on the assumption that
the tissue is homogeneous, and implies that the tissue's resting space constant, the
speed of propagation, and the stimulus threshold are inversely proportional to the
square root of the total cable resistance.

Cardiac cells are coupled via low resistance gap junctions, the resistance of
which is us.ually incorporated into the av~rage cable resistance for continuous cable
theory. However, because they are discrete objects, gap junctions can have impar­
taut effects on propagation, especially in conditions of high resistance or befare
full recovery of the tissue.

The purpose of this work is to reexamine continuous cable theory, and to
- discuss modifications to the speed of propagation and stimulus threshold neces­

sitated by the inclusion of gap junctions as discrete objects into a mathematical
model of propagation. Of special significauce is the calculation of a critical value
of gap junction resistance above which action potential propagation is impossible.
From the calculation of these quantities, it is possible to give an explanation of
some previously unexplained experimental observations. In addition, to further
test these observations, five predictions about the relationship between physically
adjustable parameters and characteristics of propagation are made. .These pre­
dictions all have the feature that they are counterintuitive, being in disagreement
with the usual reasoning based on continuous eable theory. As a result these pre­
dictions provide an interesting test for the 1110dified nlathell1atical theory. Ta date,

. experiments testing these predictions have not been carried out.

Mirjam Kretzschmar

A lualaria n~odel with illllllunity.

In areas where malaria is highly endemie a form of immunity is observed,
whicq is acquired very slowly in the course of repeated infections. This situation
is modelled by a nonlinear system of' four ordinary differential equations. The
dyn&111ic variables are the class of susceptibles S, the class of infectives I, the total
immunity X in the susceptible class, and the total immunity Y in the infective
class. The force of infection is described by an asymptotically homogeneous term,
i.e. for low population sizes approximately by a law of mass action, for large
populations the infeetion rate is proportional to the fraction of infectives in the
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population. Depencling on parameter values there can exist asymptotically expo­
nentially growing solutions as well as stationary states. We study several variants
of the model, which incorporate effects of immunity on the infection rate c.p, the
differential mortality Q and the recovery rate "y, respectively, and compare to the
dynamics of the system without effects of immunity. In the case that immunity of
infectives decreases their dif:[erential m<.;>rtality one can get bistability and periodic
solutions. This is of interest w'ith respect to the various epidemiological patterns
(stable and unstable endemie situations) that are observed in reality.

Heike Lischke

A Dlodel to simulate the population dynamics of the codling moth.

The codling moth, one of the major apple pests, is supposed to be controlled
hy the means of the integrated pest management using a virus as biolQgical pes-.
ticide. For this aim the population dynamies of the eodling moth is simulated to
be ahle to forecast the virus-sensitive stage of the pest.

Two main elements of the life cycle of the animal (development and repro-
duction) are formulated as deterministic submodels. .

- Development is modeled as a stage-structured ODE-system with the maturing
tilne for each stage depending on the stage specific developnlellt.al rate, which
itself depends on temperature with an optimum-function. 'Simulations run with
this simple model show satisfying ressenlblance to phenological field data of codling
moth.

- Reproduction is formulated as a complex behavioral ODE-model. One of its
submodels deseribes the ftight of the male moth to copulation. Parameter esti.ma­
tion could be made with this submodel and validation shows a good result. The

.estimated parameters indieate that the male moth flight-activity depends mainly
on temperature, whereas hunlidity seems to be of less importance.

Markus Löffler

Models of temporal and spatial organisation of epithelia.'

Epithelia are tissues on biological surfaces. They are characterized by very
specific spatial arrangements of cells which are macroscopically stable although an
underlying mechanism of cellular regeneration induces a high microscopic dynamlc
with a continuous replacement of individual cells. The leading questions refer to
the c0111plexity of the proliferation-differentiation prograIn, the lllechallislns of cell
migration and the process that maintain the spatial stapility. To investigate these
questions models of the intestinal crypt system are investigated. The first model
is designed to analyse cell cycle characteristics. It is based on ordinary differential
equations and yields typical time parameters. In ~rder to take temporal and spatial
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aspects over aperiod of a few cell cycles. into account a model of stochastic cellular
automata is discussed. All available data can be quantitatively understood by the
following assumptions:
1) Existence of an age structured population with an internally determined proli­
feration-differentiation program (stern cells, transient cells with a fixed number of
divisions, postmitotic cells );.
2) Loeal eell displacement ordering mechanisms based on cell to cell interaction
(next neighbour). "

In a third model the size distribution of entire crypts and their life cycle can
be explained by a stochastic branching proeess of the individual stern cells in the
crypts. The model involves a Galton-Watson-Process with an asymmetrie division
and two symmetrie eell divisions as weIl as a threshold dependent fission proeess
of the erypt into two with binomial distribution.of eells. A eomparison of model
results with data shows that stern cell divisions i~ the biological system are almost
always asymmetrie. This justified the assumptions made in the seeond ~odel on
the age structure of the cell system.

Dimitrii Logofet

An approach to nlodelling structured populations.

Partitioning a population into age groups, which is typical for classical Leslie
models of age-struetured populations," often turns out insufficient for practieal
applications. An additional structure by another basis (e.g. body weight,· or
size, or physiological status, etc.) then generates the partition into age-"status"
groups and brings about block structure of the projection matrix A in the pop­
ulation dynamies equation x( t + 1) = Ax(t), where x is a vector of age-status
group sizes. Whether the additional structure introduces some new features in the
asymptotic behaviour of x( t) should be analyzed in terms of indecomposability and
(im)primitivity properties of the block matrix A. These are equivalent respectively
to strong connectedness (or strongness) of the associated digraph D(A) and to a
eertain relationship anlong the lengths of all directed cycles in D(A). The digraph
ia now to be defined on a two-dimensionallattiee of vertices and the digraph theory
provides the eriterion for regular block structures only. Extending the theory to
the gene"ral case leads to new concepts, such as the age and status factorgraphs
and the factorclosl:lre of D, and gives a eonstructive criterion of strongness.

The criterion can also serve as a tool to derive sufficient conditions relevant
to particular classes of double-structured populations. For example, a Leslie-type
model of a reindeer population under harvesting pressure includes 19 yearly age
classes and 3 status groups within each age class ("weak", "normal", and "strong"
animals), admits age- and status-specific vital rates, and implements the practical
harvesting rule that "the weakest animals are harvested first". Under arealistic
pattern' of status transitions, the 57 x 57-matrix A is proved to be indecomposable
and primitive already at t~e earIy stage of formulating the ~ode1.
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Both the presence and the absence of strongness in D(A) can be interpreted
properly in terms of the biology of a population under concern.

Michael C. Mackey

The dynamic origin of increasing entropy.

Thermodynamic states are assumed to be characterized by densities. Recent
ergodic-theory results on the evolution of densities are used to give a Unified treat­
ment of the origin of classical nonequilibrium thermo-dynamic behavior. Asymp­
totic periodicity is sufficient for the existence of at least one state of (metastable)
thermodynamic equilibrium and for the evolution of the entropy to a relative max­
imum that depends on the way the system is prepared. Ergodicity is necessary and
sufficient for a unique state of thermodynamic equilibrium to exist. Exactness, a
pr~perty of chaotic semidynamical (irre'versible) systems, is necessary and suffi­
cient for the global evolution of the entropy to its tinique maximum for all initial
states. Since all of the laws of physics are formulated as (reversible) dynamical
systems, it is unclear why entropy is observed to approach maximum. Setting
aside the possibility that all of the laws of physics are incorrectly formulated; it is
demonstrated that either observation of a subset of the complete dynamics (trivial
coarse graining) or interactions with an external heat bath (addition of noise) may
induce exactness with a consequent evolution of entropy to a maximal state.

Joseph M. Mahaffy

Modeling inition of DNA replication in Escherichia coli.

This work is a collaboration with Judy Zyskind, who is in the Department of
Biology at San Diego University specializing in experimental work on the origin

.of replication, ori C in E. coli. The models examine how the protein DnaA
can act as the principal control in the initiation of ONA replication, which is the
first step in the cell cyde for prokaryotes. DnaA protein existsoo. in many forms;
however, only the form bound with ATP is active in the initiation process. In
the models a stochastic process is used to determine when Dna-ATP becomes
bound or unbound to ori C. When a threshold of 30 moleeules bind to an origin,
it replicates and is a.ssumed to continue to completion. There is an 8 minute
delay after initiation when DnaA cannot bind to ori C. The remaining dynamics
are deterministic. The models assume that there i's a reserve pool of DnaA-ATP
bound to sites along the chromosome. In one model, the DnaA protein is first
produced in the active form and from there it redistributes to activate ori C,
bind to the reserve sites along the chromosome, or is inactivat~d. Its production
is standard repression kinetics assuming excess substrates for most quantities. A
second model paralIeIs the one described above; however, it differs by having DnaA
first enter as inactive DnaA from whic~ it produces the active form. In addition,
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the second model examines gene dosage of the dnaA gene affecting production.
Numerical simulations show that hoth models fit data weil for several growth
rates. The first model is numerically very stahle, hut fails to properly represent
the hiologieal situation. The second model is hiologically as accurate as is known
to date; however, numerical simulations often lead to ceUs which "died" as DnaA
became too dilute. Future studies hope to improve our models, so stay tune<!.

Mario MarkuS

Isotropie automato~.ror the simulation of waves in excitable media.

_ The cellular automata proposed so far for the simulation of excitable media
• are ba.sed on periodie grids. These automata Buffer from the drawback that the

. shape of the cells propagates into macroscopic scales, leading to anisotropie wave
propagation. This problem is overcome in this work by setting randomly one
point in- each cell of a square grid. Each point mayassume an integer ~umber of
states. Excitation propagaies within a neighbourhood defined by a cirele centered
at each point. The following processes are simulated in agreement with experimen-

. tal observations in the.Belousov-Zhabotinskii reaction and the slime mold: spirals
with different topological charges, oscillations of the distance between the tips of
multi-armed spirals, the spiral core, turbulences due to interaction .of chemieal
waves with hydrodynamic processes, an eikonal relationship, a dispersion relation,
breaking of waves at inhomogeneities (as in heart tissue) and seroll waves in three .
dimensions.

Jim D. Murray

~ wave problem with alligators.

Development of spatial pattern and form is one ~f the central issues in embry.
ology. The rieb spectrum of patterns and structures observed in the anima! world
evolve from a homogeneous mass of cells and are orchestrated by genes through
the initiation and contral of pattern forma.tion mechanisms. Although there are
now several mechanisms, ~uch as reaction-diffusion models and mechanochemical
mOdels, which can generate a wide spectrum of spatial patterns, little is k.now~

about the actual mechanisms involved in any specific patte~ng event. One of the
reasons ia that it is not known when in development the generator is operative.
The embryological development of the alligator poses ,the usual pattern generation
problems but in particular has one of the simplest and distinctive skin patterns,
namely regular stripes down the dorsal side of the anima!. Fortuitously it is an an··
imal for which there exists a large amount of embryological information. The work
I discuss here was used to 8Uggest specific experiments which provided interesting
information on this specific embryological patterning process.
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In the alligator embryo it is known that the stripe pattern is laid down like a
travelling wave from the head to the tail tip. It is also known that there is a higher
density of melanocyte cells in the dark stripe regions. So, after describing the basic
features a general mechanism must have I shall take a simple cell-chemotaxis model
in which the dermal cells are considered to produce their own chemoattractant ancl.
describe how spatial patterns in cell and chenloattractant density can be formed.
I shall then discuss in detail ·the mathematical problem of a travelling wave which,
as it progresses down the dorsal surface of the embryo, leaves behind a spatial
pattern of regularly spaced stripes. I shall describe how a line~ theory can be
used to provide qualitative results for the speed of propagation and the wave length
of the resulting nonlinear pattern.

Returning to the specific embryological problem, it is extremely difficult to
determine any pattern formation mechanism experimentally since in general we
do not know when in development the pattern generator is oper.ative since .the
patterning mechanism has alr~ady ceased by the tinle the pattern is observed. I
shall show how this model was used to determine when in development the stripe
pattern generator was ~ctive and how resulting experiments' provided the answer
to an embryological problem of current interest.

Beate Pfistner

A one dhllensional model Cor the swarming behavior O(.lllyxobacteria.

Myxobacteria belong to the gliding bacteria. They show coordinated move- .
ment of many ·cells, a process called swarming. Single cells tend to join other cells.
Either they glide past each other or they move parallel in the same. direction.

. The swarm edges of the suborder Cystobacterinae are typically fringed and build
peninsulas. The outermost zone, the spreading. zone, is a thin. cell zone, which .
expands progressively. Cells at the swarm edge rarely leave the swarm tot8.11y. If
they venture from the swarm edge· they stop after a short distance, reverse their
direction and enter the swarm again.

For one dimension this complex phenomenon is modeled by· a PDE system.
.The density ch~nge in both directions is calculated as the·difference of cells turning
out of arid into each direction. The turning frequencies of individual cells depend
on the weighed distribution of surrounding cells. Simulations of stationary states
show the influence of sensitivity to cell distributions. For linear weight functions
this sensitivity increases with increasing perception radius. Then the swarm shape
extends with a large spreading zone.
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An-shen Qi

The application of cellular automata to biological problems.

The application of two dimensional cellular automata to the immune surveil­
lance against cancer is explored. In the modeling, the replication and the death
of normal cells and abnormal cells, the cytotoxic behavior of effector cells and the
escaping or clissolving of dea4 ~ells are taken into account. A global description
of the cancerous growth is obtained. A picture of the cancerous evolution can be
intuitively shown on a computer screeo. The affection of the cytotoxic rate on the
tumoral growth is investigated. The inßuences of the dissolving rate of dead cells
and a quantity depicting the conlpetition between angiogenesis and the blocking
of the vascular system on cancer evolution are also studied. Maxima of these two
quantities are found. Aparting {rom them, the tumor would grow more slowly.

Klaus Reichard

Simul~tion of imnlune cell activities.

T~is simulation model has sever~ cells of different types moving in a 2­
dimensional plane (the surface of the computer screen). There are four types of
cells;
U p: unprimed cells, they may convert into killer cells (Ki)
Su: supressor cells, inhibiting the conversion U p => Ki .
Tu: tumor cells, they can be destroyed and proliferate by cell division
He: helper cells, specific for Tu, recognizes Tu and actually converts Up =} Ki

The state of each cell is given by a certain set of data: individual number type,
.position, interna! clock, preferred directional movement t state flag (attached to,
destructed, free).
When cells meet, certain actions are taken:
Up - -Su: stay together for some time Tl, during which (Up ~ Ki)

is impossible.
He - - Tu: stay together for some time T2 •

Up - -Tu: NO ACTION'
Up ~ ('IU + He): conversion Up ::;. Ki, and destruction of Tu, stop doubling

after that Ki =* Up, and He free. .
Tu ~ (Tu Tu): doubling ofTu with doubling time T3 •

Movements are made in an orthogonal quadratic grirl. Cell moves to one of the 8
adjacent places t whose probability depends on the preferred direction. All times
Tl, T2t T3 are chosen stochastically with predefined nieans and variances.

Results of the Dlodel running: Two possible results: Total elimination of Tu,
or unlimi ted growing of Tu. Even if the model is stochastic, there is a ratber sharp
"jump" from success to failure t when changing parameters.
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Frank Rinn

Dendroclimatology by densitometric tree ring.

A new electric-mechanical method allows the measurement of density pr~files

of conifers and (for the first time) of decideous trees. Time series of special tree
ring parameters which can be determined in the densi ty profiles correlate with
climatic variations, fertilizations, air pollution and oth~r growth limiting factars.

Klaus R. Schneider

Relaxation Oscillations in Be~ousov-Zhabotinskii- like systems.

In the first part we give a survey on recent developments in BZ- like reactions
imd their modelling. In particular we report on the light and oxygen sensitivity
and derive the corresponding mathematical models.

In the second part we describe a general approach to establish .existence,
uniqueness and st~bilityof a relaxation oscillation in singularly perturbed systems
with more than two time-scales. The method under consideration is a two-~tage

approach. In the first step we reduce the singularity perturbed (n + 2)- dimen­
sional system to a -singularly perturbed two-dimensional system by using integral
manifold theory. In the second step we apply a window~version of a general the­
orem due to Mishchenko- Rozov on singularly perturbed systems to get a unique
stahle relaxation oscillation near some closed curve. .

In the last part we apply our general approach to systems modelling BZ­
like reactions. Especially we describe ~the mechanism of decreasing of relaxation
oscillations in c~e of UV..:radiation and oxygen influence. This mechanism is the
"french duck" mechanism and its modification ("russian duck").

Lee Segel

An analytic Inodel for the developlnent of dOlllinance in a population
of interacting organisms.

We present an analytic treahnent of hypothesis studied in computer simu­
lations by P. Hogeweg (Utrecht) and coworkers. The work concerns the possible
role of a scalar variable x, called dominance in the interaction of social organisms
such as hees. There is evidence that certain bees' participate in encounters that
result" in a winner and a loser. It is supposed that the result of an encounter is
a chance event, with the more dominant more likely to win. After an encounter
the dominance of the winner (loser) is incremented (decremented)- with larger·
changes when a result of lower probability occurs. The probability distribution
function of dominance in the population f(x, t) is shown to satisfy the following
equation, where <p(','), w(','), W1(·,·), J(.,.) and L I (·,·) are given:
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8f(x,t) J J [' ] f[w(p,x),t]
-m=-f{x,t) f(y,t)dy+ t/Jw(p,x),p l+WI[W(P,X),p]f(p,t)d~

J [ ] f[l(q,x),t] .
+ <P q, I(q, x) 1 _ LI [l(q, x), q] I(q, t)dq

Other versions of the basie equation are derived and compared. Various special
cases are an~yzed. A major goal is to find conditions under which the dominance
distribution is bimodal, yielding an "automatie" way to divide the population into
2 groups.

e·
Donatas Shvitra

Modeling of the blood sugar system.

Wi~h the help of mathematical modeling there is a possibility to verify some
hypotheses on the functioning of the physiological regulation system of the normal
blood sugar level as weIl as pathologie, ensuing in the development of diabetes
mellitus and hyperinsulinism. It is nl0st important at that to take iota' account
oscillatory nature of the considered physiological volume, appearing as a conse­
quence of time delay in the blood sugar system, equal to the duration of production

. of insulin on ß-cells of the pancreas. The mathematical model of the blood sugar
level regulatiop is eonstructed and investigated with the help of a system of four
nonlinear difference-differential equation:

jet) = 7"/[G(t) +a(G(t) _ IA(t») _ pI(t - hp )+ (1- p)I(! -.h)]J(t),. (1)
"'G "'0 "'lA "'I

iA(t) = 7"IA[G(t) + b(G(t) _ I(t») _ IA(t)]IA(t), (2)
"'G K,G "'I "'I A

G(t) = 7"0 (1 + c(l - JA(t») _ G(t)] G(t), (3)
1'i.1 A IiG

•

is(t) = 'TlS[I~t) + d(l(t) _ IA(t») _ ls(t)jls(t), (4)
"'I "'I "'lA KIS

where J(t), Is(t), IA(t) and G(t) are levels of all the insulin produced in ß-cells,
joint, active insulin in plasma and blood sugar, correspondingly at the time mo­
ment t,h and hp are delays, TI,TIA,TG, 'TIS,KI,KIA, KO,KIS,P, a,b,c and d are
some parameters.

Within the mathematical model (1 )-(4) dietary regimen is taken inta account,
the problem of controlling the dynamics of the blood sugar level is also stated and
solved.

25

                                   
                                                                                                       ©



Angela Stevens

A model for gliding and aggregation of myxobacteria.

The myxobacteria are ubiquitous soil bacteria which glide on suitable surfaces
during the vegetative state of their cell eyde. They prefer to glide on slime trails
produced by themselves. 'rhe myxobacteria tend to glide cooperatively. Under
starvation conditions different'patterns are formed until the bacteria aggregate to
form so called fruiting bodies.

Different biological hypotheses are tested by a eellular automaton model to
understand the myxobacterial gliding. The results are that the following of the
slime t.rails does not account for aggregation but for certain patterns which can be
seen before the formation of fruiting bodies. So a chemo-attractant is introdueed.
This leads to the following equations:

Defille b : density of bacteria, s : density of sliIne, c : density of ehemo­
attractant, 11, IC E 1f4, 0 ::; e <c: 1

8t b = V(a( b, s)V'b) - V'(bV'c),

8t s = eßs + ß,(b, s) - "1,s,

8t c = ßc + ße(b, c) - '"'fee.

Yurij M. Svireshev

Nonlinear models in mathematical ecology and genetics.

Non-linearity is a principal feature of models in mathematieal ecology and
mathematical genetics. Even the simplest classical models of mathematical ecol­
ogy - the "predator-prey" system and the system of two species competing for
one resource - present typical non-linear effects: Hopf cycles, relaxation cycles
and hysteresis. In random environment these cycles split producing parametrie
resonances.

Cornpetition and natural selection at the ecosystem level can be· modelled
by closed trophic chains. Taking the total amount of matter as the bifurcation
parameter, one can see how its increase raises the structure complexity.

Interestingly, these sa.me objects - closed trophic chains - demonstrate such a
specific non-linear behavior as dynamic chaos.

There is a hypothesis that in ecology and genetics dissipative structures ap­
pear rather due to complexity of boundaries than due to non-linearities in assumed
model equations of the "reaction- diffusion" type.

More general equations than the classical Fisher-Haldane-Wright equations
are suggested as equations of population geneties. These are non-linear integral
equations of a·. new type.

In conclusion same new problems from ecology and genetics are considered.
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Horst. Thieme

Stability change of the endemie equilibrium in age- structured epidemie
models.

Age-structure has been introduced ioto epidemie models in a double meaning:
as chronalogical age J i.e. th~ elapse of time since 'birth, and as infection age, i.e.
the elapse of time since the oloiuent of being infected. The illtroduction of any of
the twa structures can destabilize the endemie equilibrium in models where it is
stahle otherwise. This is shown for an infection age model for sexually transmitted
diseases which can be lethai and for a model with chronological age for a non-Iethal
disease in a population of constant size and age distribution. It still has to be
examined whether this destabilization occurs in a realistie parameter range.

Robert. T. Tranquilla

Mod~l for reeept~r-mediatedprotrusions of leukoeytes.

When exposed to a receptor-speeific chemical stinlulus known as a chemoat- .
tractant, white blood ceIls exhibit anloeboid-like movement. UnderIying this ab.il­
ity of the cell to translocate" aeross a substratum or through a fibrous matrix is a
Ioeal protrusive activity occuring over the ceU surface, the protrusions being mostly
associated with but not restricted to the leading front of the cell J or lamellipodium.
Protrusions are the manifestation of cytoplasmic forces acting on the cell mem­
brane, the direction and magnitude of the forces being regulated by intracellular
biochemical species associated with receptor binding. Translocation is commonly
believed t.o be the result of "competition" between protrusions which transiently
adhere to a suhstratum or anehor around matrix fibers. Ta begin to understand
the complicated relationship between chemoreception and directed motility, also
known as chemotaxis, at the molecular level, it is proposed to model the "ruffiing"
behavior and consequent morphological polarization exhibited by leukocytes when
initially subjeeted to a uniform concentration of chemoattractant.

Using a time-dependent random field model of an idealized receptor-sensing
motile cell, pr~liminary predictions of the spatial-temporal pattern of protrusion

.. activity in a uniform chemoattractant concentration have been made. The model

.. synthesizes a continuum description of the actin-based contractive properties of
eeU cytoplasm proposed by W.Alt with a stochastic description of receptor bind­
ing and diffusion (the consequences of statistical fluctuations in receptor binding
for the ability.of cells to sense chemoattractant gradients have been examined in
earlier work and shown to be of significance). Predictions are numerical results
obtained by simulating the time-dependent randorn field» i.e. solving the 4th-order
PDE continuurn equation describing the distribution cf actomyosin around the
annulus of an idealized circular cell, representing the cell cortex, with a finite dif­
ferenee algorithm» where a parameter(s) in the equation is taken to be a prescribed

27

                                   
                                                                                                       ©



where S : A x V -+ A is a given transformation and {(n} is a sequence of identically
distributed independent random vectors with values in V (A c m.d , V C IRk

). The
behaviour of system (1) is described by the sequence of distributions

Joanna Tyrcha

Stability problems for dynamical systems with stochastic perturbations.

Consider discrete time dynanlical systems

•

(1)n == 0,1, ...

B C A, B - Borelian.

28

Fn(B) = prob(xn E B),

function of the Ioeal (fluctuating) densitiy of bound receptors. The latter is deter­
mined by receptor binding and diffusion on the adjacent cell surface and described
by a SPDE upon accounting for statist.ical fluctuations in those phenome~a. The
SPDE is approximated by an SDE system using a small noise expansion of the
FDE obt.ained via a Kramers-Moyal expansion of the governing master equation
(the steps collectively being equivalent to a van Kanlpen system size expansion
of low~st order). Thus, t.he fluctuations in bound r~ceptor density are charac­
terized solely in terms of fundamental molecular parameters (i.e. bir:tding kinetic
const.ants and diffusion coefficients). The spatial-temporal correlations of bound
receptor density which can be realized upon numerical integration of the SDE
system (e.g. stochastic Euler algorithm) are then manifested in the actomyosin
distribution around the annulus, from which protrusion is inferred.

The preliminary numerical analysis assurnes that the coneentration parame­
ter in the mechanical force balance equa,tion for the actomyosin "fluid" is a linear
function of the loeal bound receptor density. Thus, the details of receptor sig­
nal transduction are omitted at this stage for simplicity. Prior to conducting the
simulations, the expected pattern of protrusions can be easily predicted from a
linear stability analysis of the determinist.ic PDE for the actomyosin concentra­
tion, obtained by eliminating the annular velocity from its associated conservation
equation by subst.itution from the inviscid limit of the mechanical force balance
equation. The simulations show that whenall modes are predicted to be lin­
early stable for an appropriate choiee of parameters in thecontinuum actomyosin
model, the fluctuations in the loeal bound receptor density can stimulate the"lowest
model, progressing through a transient of low amplitude deviations of actomyosin
concentration around the annulus (rufHing) to a single maximum (lamellipodium)
reminiscent of the polarization observed in leukocytes. The lif~time ~d position
of the maximum vary between realizations, suggestive of the periodic random 10­
comotion characteristie of leukocytes in uniform chemoattractant. concentrations.
Other choices of parameters which cause additional modes to be linearly unsta-

. ble leads to competition patterns between transiently coexisting maxima, another
common feature in leukocyte random motility.

                                   
                                                                                                       ©



•

•

Our first goal is to find effective sufficient conditions for the convergence of Fn

to a unique distribution F. independent of Fa. Then we show applications of our
stability results to dynamical systems appearing in the Inathem~ticaltheory of the
cell cycle (Lasota-Mackey and Tyson-Hannsgen models) and in the theory of the
plant growth. .

John J. Tyson

A cellular automaton model of excitable media

To study wave propagation in two- and three-dimensional excitable media
by numeric.a1 solution of uilderlying partial differential equations is a costly un­
dertaking. -To provide ~ alternative method requiring ~od~st comp~ter power,
'we h~ve inv~tigated cellular automata luodels discrete ~n ~p~e, time ~g $t~te

~abl~. By carefully designing the rules of the CA to mimic the ph~e phmes
~~~~t~rjsticof excitable media, we obtain a fast and reliti.ble m~thoq for e~p19r­

ing the behavior of wav~ traveling in excitable media. The behavior of CA has
been c;omp~ed in some detail with reslllts of numerical iQtegr~tion c;>f PDEs .~d
of siJ;1gul~ pertub~t.ontheory. l'he clQse agr~m~nt f;9nfirms the ~sef\.Jln~$sof the
CA approach.

fl.ol~d Waldstätter

CQe.xi.t~gc~ 9f two types 9f pl~111ids in a prokarYQtic cell PQPulatiQn.

Selftr~smissibleplasmids are extra-chromosomal circular DNA-molecules in
prQ~9tes,for instance E.coli. Th~se pl~mids code for genes that cause th~ hast
cell to produce lang, thread-like, pili which enable conjugation between the host

. c;ell and other cells. The conjugation allows the other cell to receive a copy of
the pl~mj~DNA. Plasmids usqal1y benefit their host cells and there seems tQ be
~election to regulate the plasmid copy n~lber within one cello .Further~ore there
is selection on hoth host and plasmid genes to favour t~e regular trtiUlsmi~si9nof
plasmids into daughter cells. The model presented here is part of a co-work with
s. ~vin ~d C. Macken, where a cell population with two types of plasmi~s is
~~idered. Let Z be the number of cells without plasmids and y; the cells with
n - j p.J~~d~ 9f type 1 and j plasmids 9f type 2. T~e mOclels eg~atio~~ ~~:

~ n

Z == L fkr~y. + rx - t'(x,Yo, ..·,Yn)x - ß~ LYk,
k=O . k=O

n {ßXE:=o n~·Yk,
Yj;:: L(l-IIc)P;ltrItYIc - ;:'j(z,yO, ... ,Yn)Yj + ßxE;=o~YIt,

k~O 0,

29

j=o,
j=n,
oth~rwise,
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The model has several equilibria. In th;e special case of only one type of plasmids
(YI = ... = Yn. = 0) the model can be also interpreted as an epidemiological model
with vertical transmission.

Gail Wolkowicz

The use of ~yapunov functions in models of competition in the chemo­
stat.
(joint work with Lu Zhigi)

The following model of exploit.ative c.ompetition of n species in a chemostat
for a single', essential, nonreproducing, growth-limiting substrate is considered:

'n. X .(t)
S'(t) = (S° - S(t))D - L -'-Pi(S(t»)

i=l Yi

x~(t) = xi(t)(-Di + pi(5(t») i = 1,2, ... , n.

5(0) ~ 0, Xi(O) > 0, i = 1,2, ... , n.

Here S denotes the concentration of substrate at time t aod Xi(t) the concentration
of the i th competitor. SO is the concentration of substrate in the feed vessel, D
is the dilution rate, D i involves the dilution rate and species specific death rate,
Yi is a yield constant aod Pi is a response function. Prototypes for the Pi include
Michaelis-Menten, Lotka-Volterra and signloidal fornls. .

Hsu applied the LaSalle Extension Theorem of Lyapunov stability theory to
study the global asymptotic behaviour of solutions in the special case that the
response functions were modeled by response functions of Michaelis-Menten form
thus providing a sleeken praof of the result in a previous' paper by Hsu, Hubell
aod Waltman. They showed that all solutions approach an equilibrium concen­
tration at which there is at nlost one survivor. The survivor is the competitor
with the lowest break-even concentration and in order to survive the 'break-even
concentration must be lower than So. Hsu used the Lyapunov function :

. n.

V(5, Xl, ... , Xn.) = 5 - .xl - ..\lln(5/.AI) + Cl [(Xl - xi) - xi In(xl/xi)] + L CiXi .
- i=2

with Ci = mi/(Yi(mj - Di ». Here (Al, xi, 0, ... ,0), xi > 0 is an equilibrium concen­
tration. (This function has also been used by Volterra and Goh in other contexts.)

We indicate the limitations of this functions and a natural extension

30
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where ki ~ 0 are constants, and we sh~w that the function

where Qi > 0 are constants, .works for a wider class of response functions, including
any combination of the thr~ prototype~. This ~xt~pds same re~ult$ 9f Butler ~d
Wolkowicz to allow for differential death rat.es.

Berichter$tatter: R. WaltLstätter
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