
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 11/1990

Interval Methods for Numerical Computation

4.3. bis 10.3.1990

Die Tagung fand unter der Leitung vonO.E. Lanford (Zürich) und A.

Neumaier (Freiburg) statt.

Schwerpunkt der Thematik waren einerseits Fragen der .Sensitivität,

Parameterabhängigkeit und· mehrdeutigen. Lösbarkeit bei endlich­

dimensionalen linearen und nichtlinearen Gleichungssystemen,

andererseits gelöste und ungelöste Probleme bei der Verifikation der

Existenz oder Nichtexistenz von -Lösungen von Randwertpro1;>lemen und

Funktionalgleichungen mit Komposition.

Mehrere Vorträge über Anwendungen in der mathematischen Physik

und bei IngenieurprobleIJ;len stellten den Bezug zur Praxis her.
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VORTRAGSAUSZÜGE

G.ALEFELD:

Enclosure methods for th~ range of yalues with higher order of

conyergence

In this talk we consider the problem of approximating the range of real

functions which admit a respresentation of the form ft:x) =p(x) + l(x)h(x).

We show that this can be done by an interval extension ofthe form.

f(X) = p(X) + t(X)h(X) and that under some assumptions on p(X), t(X) and

heX) the Hausdorff distance between f(X) and the range of f on X ia of order

. O(d(X)k). This generalizes recent results on centered forms as weIl as on

higher order centered forms and on remainder forms.

H.BAUCH

Accuracy. sensitiyity and tolerance in scientific computation (computer

arithmetic

The·new methodology for scientific computati~n is based on the so-calied

advanced computer arithmetic by KULISCH, MIRANKER 8.0. The com­

bination of the three features optimal scalarproduct, interval arithmetic

and residual correction guarantees high or even maximum accuracy.Iri

order to describe set-valued data in a more precise way, so-called tolerance

intervals are introduced. With the help of this new type ot intervals,

bounds and inner estimations of high accuracy are simultaneously com­

putable. In this way a proper numerical treatment of the influence of

direct (input-intervals) and indirect (computer arithmetic) tolerances in

scientific computation becomes possible.
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A. CELLETrI:

Computer-assisted KAM methods with applications 10 celestial mechanies

In nearly-integrable Hamiltonian systems of the form

H(y,X>=~W +Ef{x,~ , XE IRe , XE (1R/21t71)2

the existence of invariant surfaces can be established by means of KAM

theory. We implement a KAM theorem for the Hamiltonian describing

the spin-orbit interaction in a satellite-planet-system. The existence of

invariant surfaces is proved for "realistic" values of the perturbation

parameter E • However, since the amount of computations is very large we

use a computer implementing the interval arithmetic 10 control the

numerical errors.

J. DEMMEL:

Optimal euor bounds in numerical linear aleebra without interval

arithmetic

One application of interval arithmetic is comp~tingerror bounds for

problems in numerical linear algebra. Recent progress in perturbation

theory, algorithm design and error analysis permitsoptimal error b~unds

10 be computed for a variety of problems using neither interval ari~etic

nor extra precision. By optimal ~e mean that the~e is a small relative

uncertainty in each entry of the data (i.e. the original data consists of

intervals Ij where the width of Ij ia amall compared 10 the smalles~

number in Ij), and that the error bounds are nearly attainable for same

initial data in the intervals. This can be done, with some limitations, for

linear equation solving, least squares, the bidiagonal SVD, the dense SVD,

the symmetrie tridiagonal eigenproblem, the dense pos~tive definite

symmetrie eigenproblem, and the dense positive definite generalized

eigenproblem. The algorithms are ahout as fast and sometimes faster
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than conventional algorithms which do not deliver error bounds~ Many cf

these algorithms will be incorporated in the LAPACK linear algebra

library.

J.-~. ECKMANN. and O.E. LANFORD

The cQmputer-assisted :groof of the Feie:enbaum conjectures

Our objective in ~his talk is to d~scribe a concrete example of the use of

interval arithmetic methods in the proof of a qualitative mathematical e
theorem. We consider the operator

1
T : J ~ J(l) J(J(f(1)x» ,

aeting on an appropriate domain in the spaee of even analytic mappings of

the interval [-1,1] to itselfwhich send 0 to 1. The Feigenbaum conjectures

are

1. T has a fixed point, Le., there is an analytie solution

.g(x)::= 1.0 - 1.5276 ... x 2 + 0.1048 ... x4 + ...

of the Feigenbaum-Cvitanovit equation -
1

g(x) = - ;:-g(g('Ax)),

where Ä = - g(1) ::= 0.3995 ....

2. The linear operator DT(g) has a11 its spectrum inside the open unit disk

except for a single simple eigenvalue B> 1.

(For the applications, one also needs to know something about the globale

behavior of the (one-dimensional) unstable manifold for T at g, but we will

not formulate the exact assertions here.)

In outline, the proof goes as follows:

1. Using a simplified version of Newton's method, we convert the original

fixed point problem to a fixed point problem for a contraction cJ) .•
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2. We study the fixed point problem for cl> in a Banach space of analytic

functions, normed with the (1 norm of the Taylor coefficients. This norm

has the advantage that it is relatively easy 10 make sharp estimates of

Dorms of linear operators.

3. We introduce a data structure - in the spirit ofthe interval data

structure - giving a finite representation for a large elass of ''balls'' in this

Banach space, and construct a set of procedures for "doing elementary

operations on these balls". These procedures are based on interval

arithmetic.

4. By stringing together calls to these procedures, we make a program

which verifies that <I» is contractive on an explicit ball in the Bansch space,

and hence that an analytic fixed point exists.

5. It turns out to be possible 10 organize the estimates so that the assertion

about the spectrum of DT 8t the fixed point follows from essentially the

same calculations as are needed 10 proye its existence.

D.M. GAY

Automatie differentiation of nonlinear AMPL models

One can now express nonlinear constraints and objectives in AMPL (a

modeling language for mathematical programming). Nonlinear

expressions are translated to loop-free code, which makes analytically

correct gradients and Jacobian matrices particularly easy to compute ­

static storage allocation suffices. Interval enclosures of gradients,

Hessians, and Jacobian matrices should also be straightforward to

compute, which invites using interVal techniques to seek global optima of

mathematical programs written in AMPL.
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F. HEIZMANN:

Solution oe parameter dependent systems of eguations

Given a function F : D ~ (Rn ---+ IRm , n > m, the concern is 10 find all zeros

which F has within an .a priori interval x ~ D.

A method is pointed out how an enclosure of the solution, consisting of

finitely many sets of the form {Qr Ire r} , can be computed, where

Q E IRnxn and r is an-dimensional interval, of which m components

should be narrow.

It is shown haw the existence of solutions within those sets can be

numerically verified.

eH. JANSSON:

Sensitiyity and errar analysis for linear programming problems

A method for calculating guaranteed bounds for the solution of a linear

programming problem is presented. All input data are allowed to vary

between given lower and upper bounds. The method calculates very sharp

and guaranteed errar bounds and allows a rigaraus sensitivity analysis.

The sharpness of the computed bounds can be estimated.

R.B. KEARFOTT:

Splittin~ preconditioners for the interyal Gauss-Seidel method

Interval Newton methods involve finding bounds on the solution set Xk to

the linear interval equation

F'(Xk )Xk ~ Xk ) = -F(X k),

where F'(Xk) is a suitable interval extension to the Jacobian matrix of the

function F over the box X, and where Xk E X; i.e. we find a box Xk for

which

•
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Ta obtain Xk which is as small as passible, we may multiply by a non­

interval preconditioner matrix Y 10 obtain

YF'(Xk)(Xk - Xk) = - YF;

we the may obtain bounds.Xk by formally applying the interval Gauss­

Seidel methode

On strategy for obtaining Y is 10 make the widths of the coordinate

intervals OfXk as small as possible; this has been investigated by the

speaker and bis associates. Another strategy is 10 force a division by a

zero-containing interval in the interval Gauss-Seidel method, and 10 make

the gap in the resulting extended interval as large as possible.We will

analyze and discuss this possibility.

KELCH:

Numerical quadrature with result yerification

Starting from Romberg-extrapolation the recursive implementation of the

T-table·elements T1t is replaced by direet evaluation of an accurate scalar

produet representing a weighted sum of function values:

Tik =110 · L Wikj nXij). Explicit fonnulas are derived for the weights.The

weights can be represented precisely, are independent of the function and .

may be apriori computed and stored ina table.

An enelosure R' ofthe remainder term R may be eomputed via automatie

differentiation algorithms by R' = Cm. f(i) ([a,b] ), with a known constant

Cm. The integral is then enelosed as J € Tmm+R'. We consider different step

size sequences and introduce a new one, called Ifdecimal sequences". It is

possible to compute a pnori a list of optimal methods depending on the

desired T-table-diagonal. A fast search algorithm. determines that method

of this list which requires the least eomputation effort while satisfying the

requested accuracy.
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Only after this eomputation of the optimal remainder term the appropriate

Tmm is eomputed (direetly without requiring any other Tik).

Loeal adaptive refinement via biseetion and iner~ase of the approximation

degree make it possible to reduee the global error effieiently to the

requested size, since additional computation is done only where

necessary.

It is just in ease of difficult functions that the classical estimator often

indicates an error being several orders smaller than it rea11y iso Thus,

reliability of this estimator and the quality of the approximation become

doubtful. In eontrast the new algorihm provides guaranteed intervals

with narrow bounds.

L. KOLEV:

Interval methods for finding all solutions of quasilinear systems

We consider quasilin~ar systems of the form f(a) =tex) where f X(O) --+ Rn

with X(O) e I(R ), fi(x) = fiCx]) snd tex) =Hx+s with H and s being a constant

matrix and a eonstant veetor, respectively. The problem is to find all the

solutions eontainecl in X(O). Three methods for solving the problem

considered are presented. The first two are due 10 Hansen and Sengupta

(1981) and Alefeld and Herzberger (1983), respeetively, and are applicable

for the ease where fe Cl. The third method is valid for a11 eontinuous f. It

is based on an iterative procedure making use of F(X)nL(X) at eaeh

eurrent step. A numerieal example illustrates the efficiency of the three

methods eonsidered.

R. de la LLAVE:

Computer assisted proofs of stability of matter

In this talk I describe joint work with C. Fefferman. We study the

behaviour of an arbitrarily large number of electrons interacting among

•
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inf

\V E L
2
antisymN,M,Yt' ... 'YM

themselves and with an arbitrarily large number of nuelei at fixed

positions. We show that the energy per particle is bounded by a term

proportional to the oumber of particles - and not to the number of particles

raised to a higher power. Mathematically, this can be formulated as

proving bounds of the form

inf

where

H =H(N,M,Yt, ...,yJ =L -al~ + a. (L IXt-xJI- t + L IYk-yd- 1"L IXt-Ykl- t
),

ij=l, ... ,N, k,l=l, ... ,M, aod L2aotisym denotes the square integrable

functions on (R3)N which are antisymmetrie on the exchange of

arguments.In this ease, obtaining good values of the constant C is very

important.

The model above can be eontrolled by showing that a similar model in

which -ß is replaced with (-ß)Y' is positive definite.

We show that this problem cao be reduced to estimating a single singular

integral operator and showiog it is positive. This proofis aecomplished

using interval analysis in order to improve the constants.

One can hope that this is a prototype for the study of many analysis

problems that can be reduced to obtaining estimates of conerete

"maximal" operators.

R. LOHNER:

Interval methods for ordinary differential eguations

Methods for the computation of bounds for the solution of ordinary initial

and boundary value problems are presented, which were developed during

the past 5-10 years. For initial value problems Taylor expansion is used

where the remainder term is enclosed by use of interval arithmetic. Also

special eare is taken to reduce the "wrapping effecf' which often severely
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blows up the enclosures ofth global error. For boundary value problems

single and multiple shooting methods are used to reduce the problem to a

finite dimensional problem and the integration of initial value problems.

"Then existence of solutions. of the boundary value problem can be shown

within the computed bounds. All metho~s can be programmed on a

computer in such a way that only the problem has to be entered in some

mathematical form. The algorithm then works fully automatically.

G. MAYER:

Enclosure for the inverse algebraic eigenyalue problem

The inverse algebraic eigenvalue problem consists in finding real

.numbers Ch C2, ••• , Cn such that the nx n-matrix

A(Ch C2, ••• , cn) := Ao + L c,A, has prescribed eigenvalues At < A2, ••• < An,

where the At, i=l,... ,n are given nx n-matrices. Based on Newton's

method, an algorithm is presented which verifies existence and

uniqueness ofthe c, within some small intervals [eh, i=l,... ,D.

F. MRAZ:

Solution function of an interyal l~near programming problem

A linear programming prpblem whose constraint coefficients are

prescribed by intervals is investigated. Let A be an m by n interval matrix,

let b be an interval m-vector.

Interval linear programming (abbr. ILP) problem is a family of linear

programming problems

max {ctx IÄx=b, L>O}, S(A,b)

where A E [A], b E [b] . Let us denote by ttA,b) the optimal value ofa

problem S(A,b). The function defined in this way is called a solution

function of an ILP problem. Same algorithms for co~puting its

supremum f = sup (ftA,b) IA E [A] , b E [b]} are mentioned. A necessary

•
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eondition for the infimum value fis proved and an algorithm for its

eomputation is given. It terminates with the value fifthe ILP problem is

basis stahle, and with a loeal minimizer of f in the general case.

E.A. MUSAEV:

Comparison of traditiona}, generaliz~d and aposteriori interval analysis

The aposteriori interval method of Matijasevieh has been extended to the

• ease of arbitrary programs. Traditional, generalized and aposteriori

interval arithmetie (lA) were implemented and a comparison of these

three methods was made. It shows that:

1) by time and storage aposteriori IA is nearer to traditional IA than

generalized one as predieted;

2) by precision aposterioriIA is nearer to generalized IA than to

traditional one as predicted;

3) there are eases when traditional JA is most precise (especially when

••

input errors are large);

4) nowadays aposteriori JA is applicable to arbitrary programs and shows

good results for scientific computations, hut suitable realizations are

needed.

M.T. NAKAO:

A numerical verification method for the existence or solutioDs for partial

differential eguations

We propose a numerical method for the automatic proof of existence of

weak solutions for elliptie and parabolic partial differential equations.

First, for the line"ar Dirichlet problem, a verifieatioo eondition based 00

Schauder's fixed point theorem is formulated and, using the finite

element approximation and its error estimates, we present a numerlcal

verifieation algorithm by computer. Then the method is extended to the
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ease of interval eoefficient equations as weIl as more general linear

problems. Moreover, we also consider the nonlinear Diriehlet problems.

Finally, it is shown that these verificati~nprinciples are applicable to the

second order nonlinear parabolic initial boundary value problems. Some

numerical examples are given.

A. NEUMAIER:

Inclusion a1e-ebras end numericeJ integration

As a natural and flexible setting fot the caleulation with re~ons in

function space (describable by finitely many parameters), the concept of an

inclusion algebra is introduced. After reviewing standard inclusion

algebras related to interval polynomial and Taylor series, two new

inclusion algebras for analytic functions and for asymptotic enclosures

. are defined. These are applied to adaptive integration with verification of

integrals of the form

afb fl:x)dx and OfOD k(x,t)ftx)dx.

Among the kerneIs treated are k(x,t) = e-tx, cos(tx), sin(tx).

D . OELSCHLÄGEL:

Einige·lnteral1-0ptimierungsprobleme

Es wird ein Überblick über Anwendungen der Intervallmathematik in

Merseburg und über die gewonnenen Ergebnisse gegeben. Eine besondere

Rolle spielt dabei die Optimierung. Seit den siebziger Jahren werden

Untersuchungen zur intervall-mathematischen Behandlung von

konvexen Optimierungsproblemen IDit Datenfehlem durchgeführt. Unter

Benutzung der Kuhn-Tucker-Theorie wurden auf verschiedenen Wegen

Einschließungen der Menge der O·ptimalpunkte und der Menge der

optimalen Zielfunktionswerte gewonnen. Seit Beginn der achtziger J~re

werden Verfahren zur Lösung von Intervallanfangswertaufgaben ent-
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wickelt, die meist Polynomschrankenfunktionen für den

Lösungsschla~ch liefern. Durch Verwendung genügend hochgradiger

Polynome wird ein evtl. auftretender wrapping-Effekt in seiner Wirkung

hinausgezögert.

Rein praktische Anwendungen waren die intervallmathematische

Untersuchung von Mehrschichtenströmungen, die Behandlung

chemischer Fragestellungen mit Intervallinterpolation,

intervaJlmathematische Trendrechnungen in der Metrologie, die

intervaIlmathematische Behandlung von Massenbilanzierungen und die

Fließschemasimulation in der Verfahrenstechnik.

G.REX:

Interval hQmotopy methode for zeros oe systems of non1inear eayations

Let a system of.nonlinear equations f{.) = 0, f: IRn -+lRn be ·given. Hy means

of the homotopy concept there is a possibility for the eomputatioD of a zero

x* orft·). The homotopy concept is generalized by defining an·interval

homotopy functian and moving alang a family of paths from a a given

interval vector XO E I(lRn) to.x·. This method is related 10 the global Newton

method, and this process can be continued for the computation of other

zeros. This practice can be advant.ageous 10 increase .robustness of

numerical procedures.

J. ROHN:

Linear interyal eguations witb dependent cQefficients

when solving a linear interval system by usual methods, it is assumed

that the coefficients and the right-hand sides may range independently of

each other over the prescribed intervals. In ease of dependent coeffici~nts

(think e.g. of a symmetrie matrix), this approach may lead to an

unnecessary overestimation of the hull. We shall present a method which
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takes into aeeount linear dependenees among coefficients of a rather

general type and, under certain assumptions concerning sign stability of

same expressions, computes the exaet hull by constructing two sequences

of matrices whose diagonals eonverge to the upper and the lower bound of

the. hull, respectively.

S.M. RUMP:

Sensitiyity analysis for systems or linear and nonlinear eguatiQns

Methods are presented for performing a rigorous sensitivity analysis for

general systems of linear and nonlinear equations w.r.t. weighted .

perturbations in the input data. The weights offer the advantage that all or

part ofthe input data may be perturbed, e,g, relatively or absolutely.

System. zeros may, depending on the application, stay zero or not.

Estimations for the sensitivity eorne ~ogether with very sharp and "guaran­

teed bounds for the solution;

L.A. SECO:

Computer assisted solutions to' o~dinary differential ßguatioDs

Given the ODE, the problem consists in, first, producing good bounds for

the solution to initial value problems, and, second, to use these bounds '10

produce information on boundary value or eigenvalue problems.

The particu1ar ODE dealt with comes from a problem in atomic physics.

H.J. STE'ITER:

Some problems in the contra} or inclusioQ algorithms for ODEs <initial

yalue problems)

We consider the Moore-Lohner approach (Taylor series, remainder term

inclusion) and discuss some questions regarding the contral of its

parameters (order and step-size). The various contributions to the
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stepwise excess of the method are analyzed, analogies and distinctions

with regard to appproximation methods are identified. Possibilities for

loeal control mechanisms are suggested and their limitations are

discussed. It appears that. it will be advisable 10 collect information about

the global behavior of the problem in a first pass over the ,interval (without

inclusions) so that the expensive inclusion pass may be economically

controlled.

v. WIEBIGKE:

Anwendung hochgenauer Algorithmen 'in der Systemyerfahrenstecbnik

Gegeben ist eine technische Anlage mit Ii Bausteinen (Reaktoren und Ab­

scheider). Gesucht ist die Massenbilanzienmg dieses technischen

Syste~s, wobei der Massenstrom aus m Komponenten besteht. Die

Modellierong dieses Problems führt zu einem line~en Gleichungssystem

Ax =b > 0 der Dimension (mnx mn). Den Techniker interessiert die

Zusammensetzung der Massenströme, wobei bestimmte Koe~zienten it1

vorgegebenen Intervallen enthalten sind und fur jeden Reaktor j die

folgenden Bilanzbedingungen erfüllen müssen:

~ ,_tm 1-" J=1, 1." J20, 1." Je: [IJ' J). (*)

Die Koeffizientenmatrix.A ist für jede technisch sinnvolle Konstellation (*)

eine ·M-M~trix. Nach Einsetzen der Intervalle [I-" J] kann die'se .

Eigenschaft für das Oberschrankenproblem Xx = b verlorengehen. Die

Einschließung aller technisch sinnvollen Konstellationen wird erreicht

durch die Lösung reeller Randprobleme ~ = b (A ist immer"M-Matrix)

und Äx = b (falls Aeine M-Matrix ist), wobei nur die Relation

1 ~ 2:'_1m (",1,] realisiert ist und damit eine Überschätzung der Lösung

vorliegt. (Mitautoren: S. Kutscher, J. Schulze)
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M.A. WOLFE:

The anplicatioD of functional programmin~ languae-es to interval

arithmetic computation

Th.~ use of functional programming languages to create computational

environments for the .excution ,or interval arithmetic algorithms is

illustra~d u~ing the language Miranda. The Miranda libraries utils,

intfns, imolib, and pracks which will illustrate input-output functions, a

naive implementation of real interval arithmetic, interval vector and e
interval matrix manipulation, and the manipulation of generlc data

structur~s a~e presented. The algorithms MNp and MSp (Alefeld 'and

Potrs, Computing 42 (1989» are implemented using intfns. The. value of

functional programming languages for implementing ·parallel .

algorithms is discussed. Fi.oally some 'work which we hoped 00. begin in

, the nea:r futl:lre is described.

A.G. YAKOVLEV:

Int.erval computatioDs in,the USSR

In the last years, interval computations in the USSR were intensively

developed. But as it follows from 1t8cience Citation Index", Western

,specialists don't cite Soviet works. ,Reasons for such a situation are

discussed. ~e report contains information conceming directions of

research, public~tions,,conferences, software development "and other

aspects ofprofessional activity in this area in the USSR. Some proposals

on 8tre~gheningof communications between Soviet and West specialists .

on interval computations are given.

Berichterstatter: A. Neumaier
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