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Die Tagung fand unter der Leitung von H. Föllmer (Bonn) und L. Rüschendorf
(Münster) statt. Auch diesmal hatte sie vor allem das Ziel, Querverbindungen
zwischen Wahrscheinlichkeitstheorie und Statistik zu betonen und zu verstärken.
Im Vordergrund standen also Themen, bei denen Fragestellungen und Methoden
aus heiden Gebieten in engem Zusammenhang stehen und sich in ihrer Entwicklung
gegenseitig beeinflussen. Insbeso~dere ging es um'

- stochastische Analysis und partial likelihood in der Statistik stochastischer
Prozesse .

- Zusarnmenhänge zwischen statistischer Inferenz, stochastischer Analysis und
Differentialgeometrie

- statistische und wahrscheinlichkeitstheoretische Aspekte räumlicher stocha­
stischer Modelle, insbesondere auch für Expertensysteme

- metrische Methoden bei der Konstruktion von Dichteschätzem und von Schät­
zern für stochastische Prozesse und bei der Untersuchung von Bootstrap­
Verfahren

- Anwendungen der stochastischen Analysis auf Optionen und Portfoliostrate­
gien

-. große Abweichungen und ihre Anwendung in der Risikotheorie.

Insgesamt wurde deutlich, daß sich die Wechselwirkungen zwischen den verschie­
denen Arbeitsrichtungen der Stochastik weiter intensivieren.
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Vortragsauszüge

s. V. Anulova:

Functionallimit theorems for semimartingales and diffusion approx...
imations for queueing systems

We eonsider a multidimensional queue Qn, where n = 1, 2, ... is a parameter such
as the number of servers, capacity of the wmting room etc. In order to study the e
behaviour of Qn, appropriate approximations are investigated. Under reasonable
assumptions the proeess qn = Qn/n eonverges to a (deterministie) solution q of a
eertain differential inelusion with values in a eertain eonvex set 0 in lRd

• And the
deviation v'ii(Qn /n-q) eonverges to a.solution of a eertain linear It8 equation with
refleetion from 80 (r<;lughly speaking). It turns out that the latter eonvergenee
holds not for the usual Skorohod topology, but for sorne other one, admitting
eonvergenee of eontinuous funetions to diseontinuous.

Convergence is proved by the martingale method. To this end we. etablis~ a
FLT for semimartingales Wlder general metries. Furthermore we provide ametrie
on the Skorohod spaee whieh suits the ease of queueing systems.

o. E. Bamdorff-Nielsen:

Stochastic calculus, statistical inference and differential geometry

Reeent developments in analysis, stochastie calculus, statistieal inferenee and reia­
tivistie physics have turned out to have a eomrnon ground in a mathematical con­
eept that it is proposed to term phyla. Phyla are geometrie objects, on manifolds,
of a very general kind. The eoneept eomprises those of ordinary and covariant
higher order derivatives, connections, tensors, higher order differentials, stochas- e
tie seeond order (differential) tangent vectors, and others. While eoordinate-free
formulations are possible and important, it is often useful to eharaeterize par-
ticular phyla in terms of the transfonnation law they follow under a change of
coordinate system. To exemplify, let M be a d-dimensional differentiable man-
ifold and let w i ,wi , ... and "pa, t/Jb, ... be generic coordinates of two coordinate

systems w and t/J on M. One may define eztended Christoffel symbols r~~·.::~:

by r~~:::~: = L: r~1 ... r~: where the summation is over all ordered partitions
of J = il .. .jn into m blocks JI, ... , Jm and where the single factors follow a

transformation law as in r~ iM = f: r: b t/J,bl: .. b.... w,i where / indicates differ-
I··· 11=1 I···... }I···}M a

entiation and ,p~j~·".~in = E ,p~~1 ... tP~jm' summing again over ordered partitions.
The extended Christoffel symbols give rise to tensorial higher order derivatives
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that are symmetric in the indices if the r~~:::~: are. A related concept, termed
yokes, induces higher order geometries - with extended Christoffel symbols that
are symmetric - and also invariant Taylor expansions. A yoke is a function on
M x M that satisfies (1) 9/i(W,W) == 0 and (2) 9/ij(W,W) is nonsingular (here
differentiation refers to cpordinates in the first factor of M x M ooIy). Important
statistical examples are the' expected lilcelihood yolce g(w; w') = EW' {l(w) - lew')}
and the observed likelihood yoke g(w;w') = i(w;w')a-i(w';w',a) where adenotes
an ancillary statistic.

A paper giving abrief survey of these developments is in preparation, joint
with Wilfrid Kendall and Peter E. Jupp..

T. Bednarski:

Statistical expansions and lo.cally uniform Frechet difFerentiability

Statistical functionals which are Frechet differentiable at a smooth model have
stochastic expansions that hold locally unifonnly in probability over product mea­
sures induced by shrinking neighbourhoods. This means in particular that if {P,}
is a model, F'1n = {(I - c/~)P8 +c/~H : H probability measure} are the
shrinking neighbourhoods, while a functional T estimating (J is Frechet differen­
tiable at P, , then for some function '1'(x, 8)

.1 n

~(T(Fn) - Tn) =~~ \}I(Xi. Tn) + oG:(l)

holds for all sequences {Gn } and {Tn } such that Gn E F Tn,n , ~ ITn -81 is bounded
and Fn is the empirical distribution function based on the sampie from Gn . This
strong expansion may be very useful in studies of estimators' behaviour under
small violations of the model assumptions.

In fact ·a converse of the statement holds. An estimator having strong expan:­
sion is asymptotically equivalent to an M -estimator whose M -functional is Frechet
differentiable. Therefore the strong expansions are typical to Frechet< differentia­
bility only.

The results were obtained jointly with B. Clarke and W. Kolkiewicz.

D. T. Daley:

Order relations applied to a general epidemie model

Consider the class of epidemies occurring in a closed homogeneously mixing finite
population. The total size of auy such epidemie depends only on the infection
distribution. Depending on the first two moments of this distribution, the mean
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total size can be bounded above and below. The requisite techniques for this
studyinvolve order relations for distributions and their transforms and of regarding
branching processes in finite populations as embedded in random walks. The latter
technique faeilitates the numerical study of the total size distribution because,
using forward Chapman-Kolgomorov equations, the only operations involved are
addition and multiplieation of probabili~ies.

P. L. Davies:

Global dispersion functionals

Consider the set W(IR k ) oI probability measmes on JRIt: with

6(tQ) = sup tQ ({x: xT {) = Q}) < l.
",1It711=1

One problem arising in the context of linear, regression is to define a functional
T : W(lRk ) --+ PDS(k) into the set of positive definite symmetrie matriees which
satisfies the following conditions:
(i) T is weH defined.

(ii) T(CQA) = AT(fV)AT for ~1 non-singular k x k-matriees A .
. (iii) T has a high breakdown point at each (JJ E W(lRk ).

(iv) T is smooth.
Using an idea due to Donoho and Stabel such a T may be defioed by eonsidering
all projeetions ooto one-dimeosional subspaces. T satisfies (i) and (ii) and has a
finite sampie breakdown point oI i (1 - t5(OJ») at each point (/j. This is slightly

less than the .highest possible breakdown pointof ! (1 - 6(OJ»). FUrthennore T
satisfies locally a Lipschitz condition oIorder 1 with respeet to a linearly invariant
Prohorov type metrie based on ellipsoids and parallelograms.

H. Dinges:

Wiener germs and formal E'dgeworth expansions

Wiener germs are the objects in a theory designed to give a new approach to
asymptotic nonnality a.nd (elementary aspects oI) large deviation theory. They
are families of distributions {dJ-le(x) : e --+ O} tending to a 6-measure in a peculiar
way. They can be represented by "admissible exponents" in various ways. An
admissible exponent is given by a uniform asymptotic expansion

1 1
-K(e, x) = -K(x) + Ko(x) + eK}(x) + ... + ern ·Km(x) + o(e rn

)
e e

where K"(.) is positive definite 2m-times continuously differentiable and Kj(·) is
(2m - 2j)-smooth. Three ways to specify a Wiener germ {dj.Le(x) : e --+ O} are
partieularly nice and important:

•

•
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a) Referring to densities (or something analogous in the lattice case)
b) Referring to cumulant generating functions
c). Referring to uniform asymptotic expansions of "tail probabilities" .

Th~ one-to-one correspondances connecting the various admissible exPonents
are different for smooth and for lattice-Wiener germs. This is one of many indica­
tions that something is wrong with the philosophy offonnal Edgeworth expansions,
which says. that refinements of asymptotic normality are best described by "approx­
imate cumulants" , i.e., by the asymptotic expansions of the cumulant generating
function. The good coefficients seem to be the Taylor coefficients of the admissible
exponent arising in c) ("tail probabilities"). On similar grounds there are objec­
tions against the practice in traditional large-deviation theory: In Pr(X~ E A)

will not have a nice asymptotic expansion; ~ [~-l(Pr (X~ E A))]2, however, is
connected with an admissible exponent.

E. Ebexlein:

Almost sure approximation aitd an application to stock price mod­
elling

Two topics concerning strong approximation of continuous time stochastic pro­
cesses are discussed. First we sketch sufficient conditions which allow the almost
sure approximation of semimartingales by continuous processes with independent
increments due to N. Besdziek. Seeond, let (Xn(t))t>o' (yn(t))t>o be two se­

quences of stochastic processes. We discuss pathwise approximatio~in the sup­
norm on finite intervals of the form

IIxn(t) - yn(t)J1tn ~ En a.s.

As an application we show that geometrie Brownian motions modelling the stock
price in the Black-Scholes model of option pricing can be approximated in a path­
wise sense by processes with price changes at discrete time points only.

P. Embrechts:

Aggregate claims and generalised renewal theory

Motivated by the following examples:
(EX.l) The Spitzer-Baxter identity for the first ascending ladder height of a ran­

dom walk on IR;
(EX.2) The Random Record Process where times (and interrecord times) till the

records in a renewal process, marked point process are studied, and
(EX.3) The aggregate claim distribution in a P6lya process over [0,1] where the

claimsize distribution satisfies Cramer's condition,
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we discuss the following result.

Theorem. Suppose {Xn ; n E N} i.i.d. (F) with mean J.l and F non-Iattice.
Suppose a : 1R+ ~ JR+, a(x) =' X CX L(x) with L slowly varying.

. ~ h
(i) If 0: > -1, then Vh > 0 : E a(n)P{x < Sn :::; X + h} "'J 0+1 a(x) (1)

. . n=1 P
as X ~ 00.

(ii) If a = -1, and

(*) L is monotone, and (**) 3K ~ 0 : 1- F(x) "'J Ka(x) as x ~ 00,

then (1) holds.

(iii) Ho:< -1, and (**), then (1) holds.

M. Falk:

Statistical inference of conditional curves: Poisson process approach

A Poisson approximation of a truncated, empirical point process enables us to
reduce conditional statistical problems to unconditional ones. Let (X, Y) be a
(d + m)-dimensional random vector and denote by F('lx) the conditional density
function of Y given X = x. Applying our approach one may study the fairly gen­
eral problem of evaluating a functional parameter T(F( ·lxI), ... , F( ·Ixp ») based
on independent replicas (Xl, YI ), ... , (Xn , Yn ) of (X, Y). This will be exempli­
fied in the particular cases of nonparametric estimation of regression means and
regression quantiles.

u. Gatber:

Outlier detection

The problem of detecting the "outliers" in a univariate sampie Xl, ..• , X n is formu­
lated as follows: identify those observations if any which lie in same outlier region
out(an ; N(J.l, (12») := {x; Ix - J-li > (1ZI-0n!2} say with respect to a normal target
and some given an E (0,1) where 1J and (12 are unknown. The performance of
corresponding an-outlier identifiers is measured first by their masking breakdown
point adapting a definition given by Donoho and Huber (1983) for estimators..We
also consider least favourable constellations for tbe "outliers ." and are thus able
to distinguish further between outlier identifiers with the same optimal masking
breakdown point: for Rousseeuw's procedure (Rousseeuw 1984) and tbe outward
testing procedure (Rosner 1975, Simonoff 1987) we give asymptotical results about
largest non identifiable outliers and the conditions under which all large outliers
will or will not be identified. (This is joint work with P.L. Davies)
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H. O. Georgii:

Large deviations and eonditionallimit theorems for Gibbs measures

An alternate approach to the large deviations principle for the empirical field
of a Gibbs random field ·is presented. This approach has two features. On tbe
one hand, it allows to sharpen tbe large deviations estimates, in that tbe weak
topology is replaced by the finer topology of convergence of cylinder-probabilities.
On the otber hand, it also yields a limit theorem for conditional distributions
of microcanonical type and thus sheds so.me light on the intimate relationship
between the large deviations principle, the maximum entropy principle, and tbe
equivalence of Gibbs ensembles.

P. E. Greenwood:

Partially and fully speeifted semimartingale models and efflciency

Suppose we observe two semimartingales, Xl, a process· of interest, and X 2 which
supplies additional information. The triplet of predietable characteristics', TJ ,. of
Xl, with respect to the filtration generated by both proeesses, is speeified up to an
unknown parameter which we wish to estimate. Tbe stoehastic structure of X 2 is
unknown and ~odelled. A concept of asymptotic efficiency for estimation of a
funetional of 8 is proposed which can be based on the partially specified likelihood
as defined by Jacod. We show that the partially specified likeliho~d is the true
likelihood of a family of measures of (Xl, X2) obtained by changing TJ. As a result
this likelihood ean be used without loss of efficiency whenever the dependence of
the joint law of (Xl, X 2 ) on (J is only through TJ. This is joint work with Wolfgang
Wefelmeyer.

G. R. Grimmett:

Pereolation and the contact proeess: loeal changes and global effeets

Tbe teehnique of making "Ioeal changes at bounded eost" may be used to establish
an attractive general eondition on a pair J:" J:,' of Iattices [of arbitrary dimension
and such that J:, C .c'] which ensures the strict inequality Pe(J:,) > Pc(.c' ) of the
critieal probabilities of the corresponding percolation processes. A general for­
mulation of such aremark may be used to see that the "entanglement transition
transition" takes place at a parameter-value strict1y less than the critical proba­
bility (joint work with Michael Aizenman).

Use of the same general technique allows tbe applieation of percolation tecb­
nology to the contact process, yielding thus exponential-tail theorems and critical­
exponent inequalities (joint work with earol Bezuidenhart).
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C. Hesse:

Theorems and applications for processes with infinite variance

We will discuss some inferential methods for linear processes with infinite variance,
espeeially autoregressive processes with stable innovatioDS. It has been claimed
that these processes provide a better fit to certain economic time series, such as
stock price changes, than classical finite-variance models. In this talk we focu~ on
the construction of confidence interval sequences for distribution percentiles and
rates of convergence of estimators of autoregressive parameters.

C. .Hipp:

Efflcient estimation under constraints

H Xl, X2, . .. are iid with unknown distribution P lying in some unrestricted fam­
ily of distributions, then the empirical distribution Pn of X I, ... , X n is an efficient
estimator for the underlying distribution P, i.e., for smooth funetionals H the
estimator H(Pn ) is an efficient estimator for H(P) in the sense of Hajek's convo­
lution theorem. Here we consider the case of families of distributions P which are
restricted by a finite set of linear or nonlinear constraints. This type of families
of distributions occurs e.g. when Jl. is estimated while (72 is known, or when (72 is
estimated while Jl. is known. For these families, a minimum Pearson distance pro­
jection of -Pn is efficient. Modifieations of these projections are simpler and work
under less restrictive assumptions than the minimum discriminant information
adjusted estimators investigated by Haberman (1984) and Sheehy (1988). They
are also simpler than the nonparametrie maximum likelihood estimators for this
problem (see Gill (1989».

Most semiparametrie models can be written as families of distributions that
are restricted by an infinite set of nonlinear constraints. Efficient estimators under
eonstraints can be used to eonstruet approximately efficient estimators in these
models. Consider, e.g., the classieal problem to estimate the mean Jl. of a dis­
tribution which is known to be symmetrie. For this problem tbe sampie inean
Xl +...+X n of the iid observations is not efficient, we ean improve the estimator
using additional information. If the underlying distribution P has density h(x - J.L)
then tbe following information ean be used:

Jg(x -1')P(dx) = 0, where g(x) = h'(x)/h(x).

This information yields an estimator which, at P, has minimal asymptotic variance
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R. Höpfner:

A "second LeCam lemma" Cor Markov step processes

Consider a Markov step process X = (X, )t~O taking values in some state space
(E, E), starting from an arbitrary point x E E. Assurne that the generator of
X is govemed by an unknown parameter iJ E 8, e c lRd open. This induces a
statistical model {P:l:

t
" : iJ E 8} on the canonical path space (n:l:,:Foo,lF) of t.he

process X.
Observing a trajectory of ~ over a long time and eonsidering th~ resulting

statistieal model loeally over shrinking neighbourhoods of some point iJ E e, we
prove a decomposition of log-likelihood ratio processes in the loeal model, of type

where h E lRd is the loeal P8!ameter and M; is the score funetion martingale,
suitable normed and sealed. Dur assumptions link together convergence properties
of X, under iJ, and smoothness properties of the parametrization near f). They
are sufficiently general to include

- "ergodic/non-ergodic models" in the sense of Basawa and Scott, (e.g. models
for supercritical branching processes),

- models eontaining points iJ E e such that X is recurrent (positive or null)
under {J,

- a non-LAMN example.

1. Ibragimov:

About probability density estimation

The talk (joint work with R. Hasminski) deals with upper and lower bounels
for the quality of density estimation on the base of iid observations Xl,···, X n

with common density fex), x E IR.!:. Connections are established between these
problems and the theory of approximations of funetions. In parlicular, for any
11 = (111, ••• , lIi) there exists an estimator in., such that

cI(l + 1I/lIp) [/:,,(1) + ("";;"')9] , 1 ~ p < 2 .

c2(1 + IIfllp ) [E.,(f) +~ , 2 :5 p < 00

ca(l + 1I/lIp) [/:,,(1) + /"'''''''In~"""".)], p = 00.

Here [1I(f) denotes the value of the best approximation of f by entire funetions
of tbe exponential type 11 in .cp ( lRk)-norm.
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J. Jacod:

.Regularity for likelibood and partial likelibood

Consider a statistical experiment where we observe a semimartingale X, plus pos­
sibly some covariates. The value 8 of the parameter describes the tripie of char­
acteristics of X, hut nothing else, so for each 8 we bave a family Is of probability
measures.

Pick PIJ in IIJ for each 9. Regularity of tbe experiment is differentiability of
8 t-+ v'Zi in r,2, wbere ZIJ is tbe likelihood. process of Ps with respect to Po and _
differentiability holds "locally" in time. •

We then introduce the partial likelihood process ZS, which is given by the
explicit form of Girsanov's theorem: hence Z8 is same sort of a projection of Z8
on the stable subspace of martingales generated by X. We can then introduce
partial regularity as differentiability of 8 ~ .JZi as above.

Then we have two theorems:
1. Regularity implies partial regularity.
2. Partial regularity is equivalent to a suitable notion .of differentiability of the

characteristics of X, in 8.
HeIice partial regularity is something which can be read off direct1y from the

model, without actually knowing the true measures PIJ.

M. J anZura:

A general view of tbe maximum likelihood estimation

Let the model for an estimation problem be giyen by a measurable space (X, S)
with sorne family M of probability measures which are assumed to be invariant
with respect to a suitable group r of transformations. The data are considered to
be given by .

{f 0 ,(x)} IEF,"fErn

where j: is a collection of real-valued observable functions and finite r n C r stays
for the set of repetitions of observations. We shall assume X metrizable, ~ ,
continuous, and M a subset of Radon invariant measures MI. Due to the ergodie
theorem and Choquet '8 representation theorem we conclude that it is not worth
to try to distinguish between measures belonging to tbe same (minimal for thern)
faces in MI. Therefore, instead of a family of distributions, we rather consider a
family of pairwise disjoint closed faces.

Since we know that an afline upper semicontinuous (a.u.s.) function assumes
its maximum on a closed·face we shall use the (more special) functions of the type

b(p) +Jh dp
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(where b is fixed a.u.s., and h belongs to some space 1l) to parametrize the faces
by the functions h E 1l.

Thus, the estimate of unknown h is constructed in order to approach the
"empirical" value to the theoretical maximum. Under some natural conditions the
method provides a consisten~ estimate. As an example we mention the random
fields. In the special case of i.i.d. we obtain the usua! MLE. Some robust estimates
can be re-formulated in this way as weIl.

J. L. Jensen and J. M~ner:

Pseudolikelihood for exponential family models of spatial processes

A number of properties for the pseudolikelihood method are investigated for gen­
eral spatial processes with a density w~ich belongs to an exponential family model.
In particular, the pseudolikelihood for spatial point processes including marked
poirit processes is derived. Moreover, consistency of the maximum pseudolike­
lihood estimate is established for lattice processes as .wen as for ·spatial point
processes.

1. Karatzas:

Clark's formula for the representation of WieDer functionals, and
its applicatioDs

A modification of J.M.C. Clark's formula is established, for the stochastic integral
representation of Brownian functionals as stochastic integrals, under an equivalent
(Girsanov) change of probability measure. It is shown how this modified Clark
formula leads to the representation of optimal portfolios for a variety of situations
in the modern theory of financial economics.

H. Kellerer:

On a stochastic p~ocess arising in a lottery

The stochastic model (for a "permanent jackpot") given by the recursion

X o ~ 0 and X n = Yn(Xn- 1 + 1) for nEIN

is treated under the assumptions

Ca) 0 ~ Yn :$ 1 (resp. 0< Yn < 00) with identical distribution v,
(b) X 0, Y1 , Y2, ... independent random variables.
Denote by '7 the essential infimum of Yn and let (Sn)n2: 0 be the random walk with.
summand Zn = logYn; then:
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(1) Sn -+ +00 a.s. <=> X n --+ 00 &.S.,

(2) Sn oscillating ===? liminf X n = "1/(1 - "1) and limsupXn = 00,

(3) Sn -+ -00 a.s. <=> .c(Xn) converges to some limit p..

In case (3) the distribution function F belonging to p. is the solution of an integral
equation which, hardly being solvable, at least yields continuity of F for all v.

Moreover, ~ue to special features of the kernel associated with the Markov process
(Xn)n2:0 , P. is either absolutely continuous or singular for all v.

Applications concern some learning model and the original lotto problem.

H. KÜDScb:

Long ra~ge dependence

We discuss the use of models with long range dependence in statistics. For simplic­
ity we consider processes with second moments and define long range dependence
by requiring the spectral density to behave like IAI 1- 2H , i < H < 1, as A --+ O.
This implies that the covariances are not summable and the variance of the arith-

. metic mean is O(n 2H-2). We present some empirical evidence for such models
in geophysical data and also in measurement processes. Results for estimating H
are surveyed and the behavior of least squares in a regression model with long
range dependent error,s is studied. An application to testing treatment effects in
randomized comparisons is also given.

S. L. Lauritzen:

Probabilistic expert systems based on directed Markov ftelds

A rigorous approach to reasoning with uncertainty in expect systems is presented.
The approach is based upon modelling the system under investigation as a directed
Markov field which is a generalisation of the notion of a Markov chain to a directed
acyclic graph.

.The directed Markov field is then embedded ioto an undu-ected Markov field
on a triangulated graph. The computation of conditional probabilities is carried
out locally in a junction tree of cliques of the undirected graph by "message pass­
ing" among neighboUTS.

Finally extensions of the methodology involving sequential Bayesian updating .
and structural monitoring were touched upon. These "learning" processes. were
based on random probability measures of so-called hyper Markov type.
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A. Le Breton:

Linear filtering in linear models with infinite variance

The problem of linear filtering in a linear stochastic system is revisited in the case of
models which generate possibly non second-order processes. At first some examples
are discussed in order to motivate tbe need of modifying the ordinary Kalman-Bucy
algorithm and to introduce a possible approach for doing that. Then a formuIation
of the filtering problem is proposed for some class of random systems in such a way
that the optimality criterion for alinear filter extends the usual minimum variance
criterion. The optimal linear filter is derived; it appears that it is recursively
defined through equations which reduce to the Kalman-Bucy equations when the
system is driven by gaussian white noises. Finally, some comments are made about
the prediction and smoothing problems.

The talk is based on ajoint work with Marek Musiela, U.N.S.W., Kensington,
Australia.

F. Liese:

Strong convergence of distributions of diffusion processes

Given a diffusion process X t defined by dXt = a(Xt ) dt + dWt and a non-negative
function which vanishes for negative arguments an explicit formula for the Laplace

Tc:
transform of J h(X~) ds is given. Tc denotes the hitting time of level c. Combin-

o
ing this result with a general criterion in terms of the Hellinger processes for
the variation convergence of distribution of stochastic processes, a necessary and
sufficient condition on the sequence an is established to guarantee the variation
convergence of the distribution of the corresponding diffusion processes. Explicit
upper and lower bounds for the variational. distance are formulated in terms of the
corresponding drift coefficients. To test the hypothesis Ho : W versus the trend

Tc:
alternative HA : X where a(x) ~ 0 we use the test statistic Uc = J h(Xs)ds. The

. 0

Laplace transforms of Uc both under the null hypothesis and under the alternative
are calculated. A limit theorem for ~Uc is established as c ~ 00.

"H. Luschgy:

Deftciencies between location models for stochastic processes

Consider location models Y = {J + X for stochastic processes with noise distribu­
tion Q. The possible loss of statistical information about {) when Q is replaced
by some other noise di~tribution P is measured by· the deficiency 6(P, Q). This
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number is shown to be the suprem~ of the defieieneies between loeation models
given by finite dimensional marginal distributions of the noise (arising from dis­
crete sampling, observation of Fourier coefficients of sampie paths and so forth).
Moreover, S(P, Q) ~ HP - QII (variational distance), a convolution divisibility cri­
terion for the equation S(P, Q) = 0 holels and in case S( P, Q) = 0, one obtains
S(Q,P) = IIP-QII provided"P and Q are Gaussian. For particular Gaussian noise
processes good lower ancl upper bounels of 6(P, Q) are available and sometimes
precise formulas for S(P, Q) can be derived.

.e
T. J. Lyons:

Infinite dimensional marting~lesand inequalities in parametrie stat­
istics

Let jJ : M -+ 'P(O, .1"), jJm = p(m,w)v(clv) be.a smooth parametrisation of a
family of probability measures. Let (P) C :F be a (partially ordered) filtration
and pt ~ lE(pIP) be the associated likelihood function. For v-a.e. wobserve that
for rieb enough families (P) the single sampie path t ....... pt(·,w) of the function
valued process cames full information about jJ and w. Incompletely specified
models can be described by considering pt(·,w) for restricted classes of t.

Although some models have natural filtrations, it can be informative to intro­
duce others deliberately. For example if 0 = JRn then the dyadic partition of lRn

can be informative and makes available classical Littlewood-Paley theory. They
do not seem to have been exploited by statisticians.

This' structure can be exploited by considering the score fonn process (and
related stochastic integrals). Let o:t be the differential of Iogpt on M. This
process is intrinsie - and independent of the reference measure m. Moreover, it e
can easily be transformed into a J-lm -martingale for any m. Stochastic integrals of
these martingales can then be analyzed against their () processes. In continuous
cases the () is independent of m and so the Gaussian measure with this co-variance
provides an approximate pivotaI distribution. The degree of this approximation
can be established using Bernstein type inequalities. Examples in the literature
(e.g. Heyde + Jacod) do not operate at this level of abstraction and so have tended
to consider the score form process over one or two points of m" It is not clear that
such restricted processes will be as powerful at discriminating.

The ( ) of a (or its martingale modification) provide a rieb structure on M
including a stochastic flow which represents the uncertainty in the likelihood func­
tion from a boot-strap perspective. But that 's another story.
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E. Mammen:

Bootstrap and asymptotic normality

In this talk we give a simple proof for the equivalence of asymptotic normality and
consistency of bootstrap for .linear functionals Tn(G) = Jhn(x)G(dx). The proof
gives a simple explanation for this equivalence which does not hold in general for
arbitrary statistical functionals: Here the conditions for consistency of bootstrap
and nonnal approximation coincide: (a) continuity of the distribution of the esti­
mator as a functional of the underlying distribution (bootstrap) and (b) Lindeberg
condition (asymptotic normality). .

The presented result is a generalization of results of Athreya (1985) and Gine
and Zinn (1989).

A. Martin-Löf:

Entropy and risk theory

We study the standard model of Risk Theory, i.e., U(t) = u+pt-S(t), t 2:: O. U(t)
= surplus of the company, pt = inßow of premiums, Set) = payments = compound
Poisson process defined by

00

E(~zS(t») = exp.xtJ(ez:z - l)F(dx) =: exp.xt g(z).

o

F(dx) = distribution of the. claim sizes.
We derive large deviations estimates of the time of ruin: T = min{t; Set) >

u + pt}. These estimates can be expressed in terms of the entropy function h(x)
associated with g( z) by the conjugate relation h(x) = min (g( z) - zx), so that

z

hex) = g(z) - zx, when x = g'(z).
The weIl known Esscher-Cramer estimate

_ P(S(t) ~ x) ~ (exp.xt h(x/.xt))/zJ2dt g"(z),

with x / >..t = g'(z), valid for z > 0, i.e., x / >..t > p" can be extended to an estimate
in path space: Put S,\(t) = >..-1 Set), and think of A as large. Then we have

t

P(S,\(s) ~ x(s), 0 :5 s :5 t) ~ exp>..J h(x'(s)) ds, where x(·) is an absolutely
o

continuous path with x(O) = O. Using this we can derive the follQwing estimate

of the ruin probabilities: (putting ul>" = a, pi>" = b and Rt = {x(.); x(O) =

O,x(s) > a + bs for some s :5 t})
t

peT ~ t) = pes>. > a + bs for sorne s :5 t) ~ exp A rnax Jh(x'(s») ds.
2:(·)ERa

o
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For any fixed r ~ t the maximum over all x(·) going from (0, 0) to (T, a + bT) is
obtained for the straight line with slope x' = b +air, so the maximum is given
by max r h(b+ alT). The entropy fWlction of the random variable T is hence

O:$r:$t .'

H(r) = rh(b + aIr), and

peT ~ t) ~ exp AH(t) for t ~ T
peT ~ t) ~ exp AB(T) for t ~ '1'
peT ~ t) ~ exp AH(t) for t ~ '1',

where T is the point of maximum for H(t): H(T) = maxH(t), detennined by
. t

the equations g(R)IR = b, g'(R) = .b + alT, H(T) = -a.R. This means that
,P(T< (0) ~ ~-).aR, and P (IT - TI> cJT < 00) ~ exp -A(H(T)-H(T+c») ---.. 0
rapidly. The .above "equations of state" define a natural splitting of u and p for
two independent subsystems "in equilibrium" with a common value of R and T:
H Ag = Algl + A2g2 then p = Ab = Ag(R)IR = At91(R)IR+A292(R)/R =Pl +P2
and u/T = AalT = Ag'(R) - P = Alg~(R) - Pt + A2g~(R) - P2 = (Ut + 'U2)/T, and
P(T< 00) ~ e- Ru = e-RUt ·e-RU2 ~ P(T1 < 00)P(T2 <-00). This CRD be used
for decentralized planning of a company with several independent branches.

Reference: A. Martin-Löf: Entropy, a Useful Concept in Risk Theory. Scand.
Act. J. (1986).

J. M;Jller aild M. S;Jrensen:

Parametrie models of spatial birth-and-death processes with' a view
to modelling linear dune flelds

Statistical inference for parametric models of spatial birth-and-death processes is
discussed in detail. In particular, a ßexibleand statistically tractable parametric
class of such processes, defined on the realline, is presented. The suggested meth­
ods are illustrated by applying them to two sets of data given in the form of air
photos from the Kalahari Desert.

M. Röckner:

. Martin boundary on Wiener space

We study the positive parabolic fWlctions of the Ornstein-Uhlenbeck operator on
an abstract Wiener space E using the approach developed by E. B. Dynkin. This
involves first proving a characterization of the entrance space of the corresponding .
Ornstein-Uhlenbeck semigroup and deriving an integral representation for an arbi­
trary entrance law in terms of extreme ones. It is shown that the Cameron-Martin

•
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densities are extreme parabolic functions, but that if dim E = 00, not every pos­
itive parabolic function has an integral representation in terms of those (which is
in contrast to the finite dimensional case). Furthennore, conditions for a parabolic
function to be representable in terms of Cameron-Martin densities are proved.

u. Rösler:

How reliable is Quieksort?

Let X n be the nwnber of comparisons needed by the sorting algorithm Quieksort
to sort a list of n numbers into their natural ordering.

We show that (Xn - E(Xn))/n converges weakly to some random variable U.
The distribution of U is characterized as the fixed point of some contraction. It
satisfies a recursive equation, which is used to provide recursive relations for the
moments. The random variable IU I has exponential tails. Therefore the proba­
bility that Quicksort performs badly, e.g. that X n ~ 2E(Xn ), converges to zero
polymially fast of every order.

H. Rost:

Minimal entropy production

Recent results by Guo-Papanicolaou-Varadhan, Spohn, Mürmann are interpreted
as providing examples how in a possible non-equilibrium theory of thennodynamics
"entropy production" at the macroscopic level can be derived from tbe correspond­
ing quantity at the micro-Ievel, in a striking analogy to what happens for entropy.
(This latter example is weil known since a couple of years under the name of "pro­
jection principle" in large deviation theory.) The connection of the two levels for
entropy production also gives the right transport (diffusion) coefficient: Spohn's
interpretation of the Green-Kato formula as solution to a variational problem.

A. Rukhin:

Estimation of varianee: New procedures for an old problem

The problem of estimating an unknown variance in a multivariate nonnal dis­
tribution is reviewed. Inadmissibility of the traditional estimator is related to
the absence of solutions to the adjoint heat equation which can be. approximated
by positive and integrable functions. Behaviof of admissible and minimax im­
provement due to Brewster and Zidek is discussed. An asymptotic setting of a
nonparametrie variance estimation problem is studied and asymptotic estimation
of variance (also of the mean vector) is shown to be related to the estimation of
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a positive mean on a basis of one observation. Finally, admissibility of the usual
estimator of the discriminant coefficient is established.

M. Schweizer:

Semimartingale methods in option hedging

We use a general semimaxtingale X E 8 2 on a probability space (O,:F, IF, P) to
model the price process of a stock; an option is described by a random variable
H E ~2. The existence of an optimal hedging strategy for H is then equivalent to
a representation

T

H=Ho +Je~dX.+L!J.
o

of H, where the martingale LH roust be orthogonal to the martingale part M of
X. We obtain such a decomposition in the case where H is a stochastic integral
of X with respect to a larger filtration F ~ lF. Furthermore, we show how the
optimal strategy eH can be computed direct1y in terms of a minimal equivalent
martingale measure P~ P for X.

J. Steinebach~

Same remarks on the convergence rates of Bahadur-Kiefer type
statistics

Let Sn denote the n-th partial sum of an i.i.d. sequence {XJ:} with EX1 = JL :;>: 0

and 0 < Var(X1 ) = u2 < 00. Denote by N(t) = min{n 2:: 0 : Sn+l > t} the
corresponding renewal process, and define a Bahadur-Kiefer type process

K(t) = (JL-1 S[t] - t) + (N(J.lt) - t) = S*(t) + N*(t), t ~ o.

Deheuvels and Mason (1990) have recently proved via strong invariance that, if
EXt < 00, then

•

•
(1)

which also implies

lim IIKlln/(IIN*lIn1ogn)1 = u/J.l a.s.
n-oo

(2) limsuPIIKlln/(nloglogn)*(logn)i = 2i / 4u 3/ 2 /J.l3/2 a.s.,
n-oo .

where IIflln = sUPO<t<n If(t)l· This provides analogues of Kiefer's (1970) uniform
rates in the Bahad~r- representation of sampie quantiles. It was left as an open
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•

problem whether an extension of (1) and (2) might be possible under a lower
moment condition.

It is shown here that th.e fourth moment condition above is essentially sharp,
i.e., it cannot be replaced by EIXlr < 00 for some r < 4. By a more detailed
discussion under Pareto-typ~ distributions, it turns out that a possible extension
of (1) and (2) under lower moments depends upon tbe underlying distribution.
Finally, it is outlined that even more general Bahadur-Kiefer type processes can
always be handled via strong invariance, provided an approximation rate of order

o {n/loglogn)l(logn)i } is given. .

1. Vajda:

Asymptotic Renyi distances

Let P, Q be probability measures on (X, :F). Renyi distances are defined by means
of Hellinger integrals of order a by Ra(P, Q) = (a - 1)-1 In Ha(P, Q) for a > 0,
a t= 1, and.by

Rl(P,Q) = limRa(P,Q) = I(P,Q)
afl

for a = 1, where [CP, Q) is the Kullback-Leibler distance. Let us now consider
a filtration (:F>..I A E A) on (X, F), where A is a directed set. Asymptotic Renyi
distance characterizes the rate at which Ra (P>.., Q>..) tend to 00. It .is defined by
thc condition

where c>.. is positive, increasing to 00, such that for at least one a > 0 it holds 0 <
Ra{P, Q) < 00. This condition defines Ra(P, Q) uniquely up to a multiplicative
constant.

Let Q>.., ß). be probabilities of error of a test "P). of si~ple hypothesis P). against
simple alternative Q).. Uncler mild regularity conditions on Ra(P, Q), a > 0, it
holds for every a-Ievel Neyman-Pearson test

and for every Bayes or minimax test

lim(a>.. + ß).)l/C>" = exp{ -(1 - a.)Ra.(P, Q)},
A

where a. maximizes (1 - a)Ra(P, Q) on (0,1). Various examples and interesting
particular cases are discussed.
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A. Wakolbinger:

Palm formula and persistence of discrete .and continuous measure
valued critical branching processes

Let Nt be·a population of individuals on lRd which has evolved from an initially
homogeneous Poisson population as follows: each individual moves and after 'an
exponentially distributed lifetime gives rise to a cluster of children (all this in-
dependently of the other individuals). The "Palm population" of relatives of •
an individual 6%, given that 6% belongs to Nt, can be constructed in an intu-
itive way from the random genealogy of 6%. This population of relatives stays
for t -+ 00 locally finite if and ooly if the mobility of the individuals is strong
enough to spread out the branching clusters. If this is the case, then the popula-
tion Nt is "persistent" in the large time limit. The results are stated for a class
of monotype branching populations (GorostizafWakolbinger, to appear in Ann.
Probab.) and of multitype populations with mutation and monotype branching
(GorostizafRoelly-CoppolettafWakolbinger 1990); in this latter case, persistence
depends on the most mobile and the most clumping type.

An analytic proof for the Palm formula, using Feynman-Kac representation,
is indicated. Also the corresponding results for (multitype) Dawson-Watanabe
processes, which arise as limits in case of many particles, small mas.ses, small life­
times (and small mutation probabilities) are stated (GorostizafRoelly-Coppolettaf
Wakolbinger, to appear in Sem. Probabilites; ßame authors, 1990).

W. Wefe1meyer:

Efficient estimation in partially specifted semimartingale models •

Suppose we observe two stochastic processes X I and X 2 such that X I is a semi­
martingale with respect to the filtration generated by Xl and X 2 • Assurne that the
predictable characteristics of Xl are known up to a possibly. infinite-dimensional
parameter. Such a model is called partially specified. We describe conditions
on the characteristics under which Jacod 's partially specified likelihood is locally
asymptotically normal, and obtain a convolution theorem for estimators of differ­
entiable functionals of the parameter~ As examples we consider a diffusion process
with multiplicative drift process, a counting process with multiplicative intensity'
process, a Markov chain in a random environment, and a linear regression model.
This is joint work with P. E. Greenwood.
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L. Younes:

Some remarks on synchronously simulated flelds

Existence theorem and uniqueness condition for the invariant law of a probability
kerne! where simulation at each site E ~2 is simultaneous. The particular case of
the synchronous Ising model, i.e., where simulation at site ij is done according to

1rii(XiiIY) cx exp [-kXii - aXiiYij - ß L Yi/jlXii] ,
nearest

neighbours

is studied; in that case, the potentialcan be explicited and identifiability can be
sho~. .

Berichterstatter: Martin Schweizer
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