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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOL.FACH

Tag u n g 5 b e reh t 14/1990 .

Kontinuumsmechanik der festen Körper

25.3. bis 31.3.1990

Die Tagung stand unter der Leitung der Herren· G. Herrmann

(Stanford) und H. Lippmann (München). Bewährt hat sich wie

schon bei den vorausgegangenen gleichnamigen Treffen in Ober­

wolfach die Zu~ammensetzun:g.desTeilnehmerkrei~es aus "Neulin­

9~n" und "Wiederholern", wodurch sich sofort der für das In­

stitut typische freundschaftlicheKontakt einstellte und dies

den Austausch sQwie die Erörterung v~n wissenschaftlichen Fra~

gestellungen ~nd Ergebnissen anregte ~d intensivierte. Auch

das bewußt nicht zu eng gefaßte Tagungsthema trug durch die

Mannigfaltigkeit"der angesprochenen Gebiete wesentlich zur

gegenseitigen Anregung bei. Der Themenbogen spannte sich z.B.

von funktionentheoretischen Betrachtungen bei Problemen ela­

scher Körper mit Schädigung bis hin zur Anwendung der Wahr­

scheinlichkeitsrechnung und numerischer Meth~den bei der Schä­

digung von WerkstOffen und Konstruktionsteilen. Bei der der­

zeitigen Entwicklung neuer Werkstoffe und dem Zwang größtmög­

licher Zuverlässigkeit von Konstruktionen ist die Aktu~lität

mathematischer und ingenieurmäBiger Behandlung von Schädigung

erklärlich. Eine Reihe von Vorträgen zeigte aber auch, daß bei

der Behandlung "schon mehr klassischer Fragen zu konstitutiven

Gesetzen und ihrer Anwendung auf verschiedene statische und

dynamische Ingenieuraufgaben - etwa der numerischen und phy­

sikalischen Stabilität-- weiterhin neue Erkenntnisse erzielt
werden.
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vortragsauszüge

H. ALTENBACH:

Das Kontinuumsmodell 'der Gebrüder Cosserat und seine Anwen­

dung .auf die 'Modell'ierung von 'Flächentra'gwerken

In Ergänzung des klassischen Cauchy-Boltzmann-Kontinuums tre­

ten beim Cosserat-Kontinuum drei zusätzliche Rotationsfrei­

heitsgrade auf. Entsprechend diesem kinematischen Modell kön­

nen die Wechselwirkungen zwischen benachbarten Punkten des

Kontinuums zusätzlich durch Momentenspannungen beschrieben

werden. Diese Uberlegeungen sind entsprechend dem mathemati­

schen Kontinuumsbegriffunabhängig von der Dimension des Rau­

mes. Neben allgemeinen Aspekten werden daher im Beitrag, Fra­

gen der Formulierung einer Flächentragwerkstheorie, die für

Flächentragwerke bei Berücksichtigung spezieller Materialei­

genschaften (elastisch, nichtelastisch, inhomogen'in Dicken­

richtung) gültig ist, diskutiert. Dabei wird insbesondere auf

die Methodik der Ermittlung der effektiven Tragwerkseigen­

schaften eingegangen.

H. BARGMANN:

Erosion by liquid or solid, impact - A random process

In constructing,a general theory of erosion'u~der repetitive,

impact loading one would define the IIhistory up to time t of

an attack process" 'by.a sequence of space/time neighbourhoods

~xu: on,the surface of.the target, N=l, ••• To each attack

process an erosion process is then defined by the motion of

that portion of the target which, at time t, still remains

intact. In general both processes are coupled. In important

cases ,of the 'decoupled problem, the stochastic space-depend­

ence of the attack process can be brought down to the quest­

ion:"What is the probability P~; to hit, at the Nth attack,

as an i-th repetition the same 'neigbourhood?" - Restricting

ourselves to attacks over neigbourhoods U~ of the same rela­

tive size p~1 with respect to the target surface, admitting

that in a 1st approximation the transition from the (N-1)th

to the N-th attack configuration is Markov, and counting

neighbourhqods u~ as either completely overlapping or not at

'.
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all, we can show that
P'" • = (N~~)pL (1_p)~/-i. (1)1\loC.p. ~ B (i , N-1 , p)

For the specific lass of ma,terial ~ as 'a-random variable the

expected value, at the Nth attack, may then be given by

P(N)~E~;Nl:Ep(V;N)dv... Iv~p; (N) . (2)

with p~(N)~P~i ; the determination of the particular values

vi of specific lass of material is left as an exercise in

continuum rnechanics. Eq .. (2) agrees qualitatively weIl with

experimentally obtained erosion eurves ~n the literature and

should allow fairly good quantitative predictions of the ero­

sion rate.

H. BEDNARCZYK:

Me~hanieal influencing of absorption speetra

There exist very 'elose rel~tions be~ween artifici~l birefrin­

genee, i.e. the stress-optical effeet and the resonance peaks.

and frequeneies of ultraviolet a~d infr~red absorption spec-.~

tra. By that means a n easy explanation of change of normal"

and anorrnalous dispersion of artificial birefringenee in pho­

toplastieity, as it was' observed by many experirnentalists, is

possible. The absorption\spectra can be influeneed by rnech~-'

nieal loading in twofold way: Either by detuning of moleeular

oscillators, or. by alignment of dipole-~ype oscillators_~para­

llel to a certain preferred direction. Using experirnental.da-­

ta of the lierature it is shown that ~he effeet of alignment

1s dominant especially for the infrared absorp~ion spectrum'

when'the specimen 1s oversta~ned into the plastic range. The

definition of an appropriate factor of anisotropy in order to .

• describe the amount of alignment of dipole-type oscillators

during mechanical.loading of the material leads.to a better

understanding .of the observed sudden rise of anormalous dis­

persion when overstraining the specimen into the plastic ·ran­

ge.

J.F. BESSELING:

Pitfalls in the discretization of the nonlinear elastic de­

formation problem

Equations of equilibrium relate the "observablen stresses to

the externally applied forces. These stresses are determined
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,by the. deformation in a neighbourhood of a material point in

a continuurn model, and by the deformation in a finite element

in a discretized model. In both models the stresses are the

duals of the deformation rates, deterrnined by the velocities.

in the discretized rnodel·the coeffic"ients in the equilibrium

'equations are the derivatives of the deformation functions

with respect to the kinematic nodal variables. If the dimen­

sion of the deformation space is larger than the dimension of

the velocity space 'of the element minus the degrees of free­

dom as a rigid body, than the element has a statical redunda­

ncy. On the element-level the redundancy is of the same order

as the number of equations that express compatibility. Howev­

er on the element level full eompatibility usually is by no

means the optimum choice for the strain distribution.

In-an elasic geometrically nonlinear problem the stresses

are expressed in terms of deformations. These equations can

be solved by a step by step procedure with iteration after

.each step. However since in each step the increments of stress

are expressed linearly into the increments of displacement,

the geometrieal nonlinearity will cause a eontinuity error in

the dual strains, that .will in part correspond to statically

indeterminate stresses. These spurious stresses will be built

up i~ the solution process and cannot be removed by iteration.

the spurious stresses .can. only be avoided if adjoining ele­

ments have the deformation of· their interface in ~ommon. They

are kept small by adopting a Lagrangian updating technique in

which strains are obtained by incrementation such that the

compatibility conditions for the strain rates are sufficient

-ta ensure compatibility· of strains and·displacements.

J.-P. BOEHLER:

. Theoretieal and experimental study Df.an~sotropic hardening

of rolled sheet-steel at large deformations: Influence of

morphologie texture and loading path

In order to separate effects of crystallographic and morholo­

gic texture on the anisotropie hardening at large deformati­

ons an experimental program has been developed on soft rolled

steel exhibiting the same crystallographic, but different mor­

phologie textures: one steel with equaxed grains, the other
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with elongated grains. The experimental results show that the

morphologie texture plays a 'significant role in the develop­

ment of anisotropie hardening. Moreover, la~ge plastie strains

applied in a direetion different from the rolling and trans­

verse"direetion gradually change the initial orthotropy in a

new orthotropy, the privileged direetions of whieh coineide

withthe prineipal girections of straining.

Within the theory of representation of tensor functions a

model for plastie materials, including initial orthotropy and

anisotropic hardening effeets, has been developed. The model

~ is able to describe correctly the experimental observations.

Finally, important loading path effeets are disclosed in the

anisotropic hardening behaviör of both steels.

G. DEL PIERO:

Meehanics of fractured continua

•

For a body undergoing fracture the deformations can be assumed

to be C' only in 'those regionswhich do not undergo any frac­

ture. Justas in Continuurn Mechanics the set of C' deformati­

ons is'completed'with respect to a "Sobolev norm, the set of

piecewise c 1 deformations isto be eompleted with respect to a

norm which takes into account the diseontlnuities. It comes

out that the elements' of the"completion are not funetions, but

tripIes (g,G,~) of L2 functions, the.domain of 9 and G being

the region occupied by the body and that o~ 0/ being the frac­

tured zone.

G and ~ are interpreted.as the fields af ela5tic deformati­

ans and microfractures, re5p. If it happens that G=Dg and o/=Jg1

the jump associated with .g, then (g,G,~) i5 a deformation in

the classical sense. Ötherwise Dg-d and Jg-~are measures of

diffused and concentrated inelastic deformations. Depending

,upon the canstitutive equations they represent microfractures,

plastic.slip, damage etc.

A first advantage of this approach is that of giving a kine­

matical meaning to quantities .which are usually considered as

state variables. A second advantage ~s that in this space it

is possible to write a Gauss-Green .formula in which the defor­

mations (g,G,~) are coupled with L2 stresses with L2 divergen­

ce. This is an essential property' for the weak formulation of
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the equilibrium problem.

A first example is the equilibrium problem'of the material

which dces not support tension or masonry-like material. With

the use of the Gauss-Green formula the problem is transformed

into a variational inequality in a convex set or .into the mi­

nimum problem of:the.total potential energy in the same con­

vex set.

G. FICHERA:

Analytical methods and 'P?ysical reality: a difficult relati-

onship •

Two ..theories of Mathemati·cal Physics are considered.

1) Viscoelasticity. It is shown .how the so-called principle

of fading memory' strongly depends on. the topology which has

been introduced in the space of the admissible functions. In

fact the physical results present completely different featu­

res when t~is topology.1s changed. On~the other ha~d it 1s

shown that this topology cannot be introduced on the basis of

physical experiments, but it i5 a purely mathematical choice.

2) Heat diffusion. Fourier~s theory of heat diffusion has

been criticized by several ~uthors on the basis that, accor­

ding to it, disturbances of temperature propagate with infi­

nite speed. It is shown that this crticism 1s unfounded when

the theory is properly interpreted. U~ing correctly .quantita­

tive analysis the theories which have been. proposed as alter­

natives to .the classical one are roucn more open to criticism

than theFourier theory.

F.D. FISCHER:

A microroechanical study on martensitic transformation in me­

tals

The physical aspects of martensitic transformation are dis­

cussed. The proces~ can be explained as a sequence of a stret­

ching/reduction (Bain strain), an .invariant shear and a latti­

ce rotation leading to a free transformation tensor ~' descri-,c
bed with respect to the Ioeal coordinate .system with x' ,y' in

the habit plane; E' .. E' ~t· .. , E 33=1, E, 13= ~ 31 = "-;2 (I:=c .c C,1J . c, c, c, 6'

transformation .volurne cha~ge, r: invariant shear being geome-

trically reversible (twinning) or not (plastification). Addi-

•
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tionally an interaction occurs between the different trans­

formed microregions as weIl as the p~rent phase. This inter­

action can be perforrned elastically or elasto-plastically.

Now the relation between a global load stress tensor~ and

the global strain tensor.~ for a·transforming material is

studied under the assurnptions:

- ~ remains constant during the transformation

- each transformed microregion shows .one ~nd the same final

strain tensor! (Taylor-Lin-hypothesis).

Two cases are studied:

- a transformation induced plasicity-steel with geometrically

irreversible shear and plastic interaction

- a shape memory alloy.with geometrically reversible shear

and elastie interaction.

Good agreement with experiments i~ demonstrated.

R.D. GREGORY:

The general form of. the elastic field inside an isotropie

plate with free faces - an rigorous expansion theorem

a hornogeneous, isotropie plate has· free faces and is stret­

ched by traetions around .its edge whieh are symmetrical about

the mi-plane, but are otherwise generally distributed. We gi­

ve a rigorous proof ·that the most general state of stress ~ ..
. ~)

which can-be generated in the.plate can be deeomposed in the
'PS S 'Pt: lt~ . .

form 'C .. ='t'.. +tt'..+~ ., where 't' .. is an exact plane stress sta-
~~~) 1) 1.) 1) . 1) "Pr

te, ~. is a shear state, and ~.. 1s a Papkovich-Fadle state
1) 1)

which is a 3-dimensional generalisation of the Papkovoch-Fad-

le eigenfunctions for the elastic strip.

Furthermore we proof that, as the plate thiekness h~, ~~.
1)

and ~~~ are exponentially small at points inside the plate
1)

and represent edge effets of thieknes~ O(h).

Corresponding results ar~ also given for the bending case.

G. GRIOLI:

St.Venat's problem: Comparison with the exact theory

St.Venant's theory of equilibrium of a cylindrical elastic

body loaded on its ends has attracted the interest of mathe­

maticians scince it appeared.

It is interesting to compare the conclusions of St.Venant's
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theory which is an approximate theory with those of the ex­

act theory. To do so, several authors have studied St.Ven­

ant's problem from.various points of view investigating the

behavior of the stored energy, the analytic characterisation

of the solutions, ,the general,ization to rnicropolar continua,

,the ,possible measures of overall strain. I consider, this last

point of view, defining for the exaet solution an'overall

strain and showing that in three important instances the va­

lue of the overallstrain for St.Venant's solution is the a-

symptotic limit of.that for the exact ~heory when the length ~

of the cylinder approaches infinity. ~

P. HAUPT:

On the thermodynamies. of rate-independent materials

Rate-independent ,material behavior is characterized by hys~e­

resis properties which ,da not depend on the rate of cyclic

processes. Therefore, the idea of reversible processes as an

asymptotic limit of slow processes is cf no use in this case.

Nevertheless, it is poss~ble to model rate-independent hyste­

resis behavier within the classical thermodynamic theory of

i~ternal variables, based on the Clausius-Duhem-inequality.

On basic idea i5 to' interpret a plastic deformation as a se­

quenee of equilibrium states with periodieally changing sta­

bili ty -properties. 'Another possibili ty is the applieation of

an are length description. Starting from the concept ofdual

variables and·derivatives the intermediate configuration is

utilized as a material, reference configuration to formulate

equations of state, to define thermodynamic potentials via

Legendre transforrns andl' finally, to represent constitutive

assumptions of rate-independent themoplasticity.

G. HERRMANN:

Conservation laws for systems without a Lag~agian

Consider a system deseribed by n 'dependent variables and In

independent variables x and governed by a set.of partial dif­

ferential equations DE[U]=O, (1). For' a variety of reasens it

is most desirable to find an m-component vector P, such that

divxP=O, (2), but only when (1) is satisfied which is called

a 'non-trivial conservation law. Provided (1) is a set of Eu-

•
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ler-Lagrange equations derived by a variational procedure on

the basis of a Lagrangian function, 'Noether' s first theorem

s~pplies a complete methodology on how to obtain (2). In ca­

se -a Lagrangian cannot be readily written down (dissipative

systems), Noether's theorem is no longer of any help. It is

shown, however, that a procedure with an integrating function

leadsto desired results in many cases, both for linear and

nonlinear systems. To hit, one sets fDE[u]=div P and deter-
- x

-mines both fand the components of P from the resulting set

of PDE's. This procedure is illustrated with several examples

includ~ng the diffusion eq~ation and linear viscoelasticity.

In the latte.r case, (-2) supplies ameng several ether possible

statements th"e energy bill"ance "relation which usually would be

obtain~le enly through the application of.the first and

f1rst part of the second.law of thermodynamies.

Cracks under creep' conditions

Energy-balance based concepts in fracture mechanics are deri­

ved fram translational invariance of the energy-balance in

terms of conservation laws andpath-independent integrals .. It
, .

is shown experimentally" that creep crack growth is correlated

by the 's~o-called CH 'integral independent of speciinen size and

'ge·o'#1et:ry. Furthermore, same .~umerical aspec,ts of fini te ele­

ment simulation are d1scussed,' like proper medelling of the

crack tlp regibn, explicit .and impllcit time i~tegration

scheme, the influence-of materail constants in the constitu­

tive equ~tions,' 2-D and 3-D simulations' and simulation of

crack growth. The agreement between experimental and numeri­

ca! re'sults :are r:ath'er ·sati-sfactorily.

R.J. KNOPS:

Spatial decay in elastodynamical problems

An exämination 1s undertaken of the vibrating elastic cylin­

der ~xcited by a time-dependent end displacement. The methqd

est~biishesla "differentiai inequality'for'the quantity ana­

arialoguous to the total entropy flux across a cross-section

of the cylinäer. Integration along the forward and backward

characteristic curves enables some limited information to be
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obtained on the behavior of the solution which confirms the

intuitive expectation that the excitation propagates along

the cylinder with a finite speed. Of interest, however, is

the determination of the solution within the excited portion.

In order to make progress, recourse is made to the correspon­

ding linear theory under sinusoidal end-displacements. applied

to avoidshock propagatio~ and resonance effects. By suitable

decomposition of the displacement it may be concluded that

the solution in the disturbed region consists of a permanent­

ly deformed part and apart that decays spatially with axial·

distance. The latter component is analogous to.the behavior

in the corresponding equilibrium problem of the end-loaded

cylinder (St.Venant~s principle).

The work described was joint with J.N. Sayin and L.E. Payne.

F.G. KOLLMANN:

Two-point tensors" and kinematics of rate dependen't elastic

solids

•

In this lecture the manifold theoretical approach of"Marsden

and Hughes is taken. L~tJ an~ 1 be two differentable n-mani­

folds and assume a bijective map ..p: ~"1J1. Then 4 associated

two-point tensors of rank 2 can be defined a~ linear maps

between tangentand .cotangent spaces defined on i andr. If

further the manifolds a and ~ are'equipped with Riemannian

metries inner products can be deflned. Next an abstract defi­

nition of tran~posed two-point te~sors is given. Be U a line­

ar vector space defined ~n 8. Then the tw6-point tensor T is

·a linear map T: U.V. V is a linear vector space defined on T. •
The transpose~ two-point tensor is defined as !T: V+UH ~here
UM is the dual of the space U, and equality of inner .products

on T and ~ is required. Some rernarks on orthogonal two-point

tensors and. symmetrie ordinary tensors follow.

Next the deformation gradi~nt f which is a ~wo-point tensor

is decomposed multiplicatively inta an elastic part !e and a

plasti~ part F introducing the nation of an intermediate con--p .
figuration. ExPbiting the concepts af push-farwards and pull-

back~ of metric tensors 3 families of deformation tensors are

derived. Starting fram the definition of Green#s strain mea­

sure on the reference configuration strain tensors and their
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additive decomposition on all three configurations are obtai­

ned. Next two families of covariant velocity gradients are

obtained where again.push-forwards and pull-backs are applied

Finally two families of rate of deformation tensors are in­

troduced. The first family defines the covariant rate of de­

formation ·tensor. as' synunetric part of the covariant velocity

gradient. In the second approach .the rate of .deformation ten­

sor is obtained as the Lie derivative of Almansiis strain

tensor. By pulling back to the intermediate and reference

configuration. representation's and additive' decompositions are

obtained.

M. KORZEN:

A viscoelastic~plastic'mödel of material behavior

The constitutive model i5 characterized by the equations

i) (j(t)= E).(t)+ (;mem(t) with

6" (t) = 3' (G" (1:'") , bCO (~) ), }': fading memory
mem . t'~'t 0

- slow:l': 0, :- fast: '; =~O-()410

ii) G"'GQ (t) =~cQ( E.("t') ), Ru.: rate independent
1:lt .

iii) ~ (t)~R (t(~», R : räte independent
o ~,to· "0· .

For statie continuations, i.e .. t(t)=t(t*)=const. (t~t*) i the

stress er relaxes to ·.i1:s 'e"quilibrium value 'c;-~(t~') which is

identical to the res'p'onse of i) -ii1) in. the asYmp.to.tie limi­

ting case of slow proeesses. This property characterize's t"he

main difference to those·eonstitutive models of'viscoplastic

ty'pe which' ,are not purel'y viscoelastic. R~presenting;-by

t 6 l~ -i) ( 6'~ li)r G"'~ (i) ) elf I cL! = d.! I k ( t;;~ )o .
one obtains an analytical solution for monotonic loading at

. .

constant· strai.n rate io in th.e limit t-f)GO•. Assuming a positive

SUffi of exponentials for k(~m~m) this solution i5 used to iden­

tify the eorresponding'material'parameters by a self-starting

algorithm of Gustafson which 'guarantees convergence elose to

the global minimum.

J. KRATOCHVIL:

Stability analysis of. non-linear'continuum with mierostrueture

From micromeehanical point of view (scale ~m) any plasically

deformed solid ean be treated as a non~liear continuum with

microstructure. The microstructure is represented by the dis-
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.loeation population and the main non-linearity comes fram

field equations for stress and strain of a prestressed body.

The stability analysis of the system of eq~ations describing

such eontinuum (infinite size) provides a valuable key to an­

swers of basic problems of plastieity and damage. Two types

of instability oceur:

1) Struetural instability leads to a self-organization of

stored .dislocations into charaeteristic patterns of low and

high disloeation density regions. Piling up and subsequent

annihilation of·stored disloeations in the high density r~-

gions cause work-hardening which canbe understood as a tran- 4It
sient stage approaching a plastic steady state. The steady

state is reaehed when all dislocations produeed by plastie

deforciation are ann~hilated.

2) Geometrical instability cause~ by non-linear stress and

strain effects leads. to amisorientation of elementary volu-
. .

mes (cells).and 'localization of strain. Localization may re-

sult in failure or damage of the solid and thus terminate the

approach to the plastie steady state.

E. KREMPL:

Viscoplasticity theory'based on overstress

After a short introduction of the methods of modern plastici­

ty theory research the viscoplastieity theory based on over­

stress for finite deformation was introduced.. No yield sur­

face, no loading/unloading conditions are used. The eurrent

configuration is the reference conf. and the rate of deforma­

tion tensor is the sum of its elastic and inelastie part.

Since applications are restricted to metals and their alloys

a rate form of the isotropie Hooke law is used for the elastic

·rate of deformation tensor. The inelastic rate is solely a

function of the overstress, the differenee between the current

stress a~d the equilibrium stress a.state variable of the the­

ory. The rest of the talk was devoted to explain why visco­

plastieity was used instead of rate independent plastieity,

why FeFP was not used at all. Indeed arguments were presented

that the unloading condition has to be represented by·the con­

stitutive equation rather than by kinematics. The talj 'conclu­

ded with adefinition of.history dependence in the sense of.

-I
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plasticity which was proposed as the discrirninating feature

for identification of "plasticityll •.

TH. LEHMANN:

Balance of energy and entropy in inelastic deformations in­

cluding damage processes

In most cases during inelastic deformations solid bodies un­

dergo certain changes of~ the internal structure. Examples are

hardening of the material due to rearrangement of lattice de­

fects, solid phase t"ransformation, hut .also damage processes

by arising micro-defects. Based on the assumption" that the bo­

dy can be considered.as a classical continuum even if it is

damaged by such microdefects a certain thermodynamical frame

for the description of the ~nteraction between external energy

supply and changes of the .internal structure is developed.

Thts frame and some resulting consequences for'the formulation

of constitutive laws particularly with respect to the evoluti­

on ofdarnage is di?cussed in ~ome details.

H. LIPPMANN:

Plane rigidjplastic bending of a slender beam

A one-dimensional theory using the local bending moment M(~),

the normal force ~(~) to the cross-section, and the transverse

force Q(~) as .generalized stresses is pres~nted where ~ denotes

a materi~l pgr~~t~r along th~ axis of the beam. Large deforma­

tion is allowed, ~nd the possible shapes of the bent beam are

searehed under conditions when the external loads or angular

4It deflections are prescribed at the ends of the beam only.The

governirig differential equations are deduced for an arbitrarily

~train-hardeninger rate-sensitive material. For the special

case of an iqeally plastic material showing a constant genera­

lized yield limit IMI=L the bending process develops as a cen­

sequence of stationary or moving yield hinges. This leads ei­

ther to loeal folQing or to a ~mooth bending curve the end ro­

~ations of whieh, i.e. the motion of the supporting tools may

easily be obtain~p by elementary geometr~c considerations.
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O. MAHRENHOLTZ:

Constitutive equations of iee
,

lee is eonsidered as a building material in arctie regions.

While sea iee is highly anisotropie artifieial ice may be mo­

modelIed as isotropie and hornogeneous. Henee, an isotropie

flow potential or cre~p potential is assumed for creep of ice.

The main parame~ers of the model are identified in an uniaxial

cornpression'test. The progress achieved lies in the success­

full application to a eombined state of stress, namely combi­

ned compression and· torsion of a cylindrical specimen.

Additionally, the model is extended to so-ealled tertiary

creep by including a" Kachanov approach." But no verific~tion

has been carried out so far.

A. MIELKE:

On Saint-Venant~s problem and.Saint-Venant's principle for

nonlinearly elastic bearns

According to ideas of Ericksen /1983/ we consider deforrnations

of long beams having bounded .strains. It can be shown that

these solutions" can be compared to so-called Saint-Venant so­

lutions which are defined to be deformations of the infinite­

ly ling beam. The difference of these solutions is found to be

uniformly exponential with respeet to the distanee from the

nearer end. Moreover ±t turns oui that St. Venant solutions

are actually describable by rod equatio~s of Kirchhoff-Antman

type. In particular we are able to derive the constitutive law

of the rod in a mathematically rigorous way from the material

properties of the beam.

I. MÜLLER:

Pull-out of an elastic rod alued into a rigid wall

A problem is conside~ed as shown in the Fig. in which an ela­

stic rod is glued into the hole of a rigid

::~~~i~h:p:~~:si:h;::e~~;db:~a:::r:e:i::n ~=="======~~
6(t)

extension. If the end of the rod is subject

to a time-dependent displaeement ~(t) we ask for the l~ngth

of detachment of the rod as a function of time. It is hoped
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that some information from this simple one-dimensional de­

t~chment problem may be of heuristic value in more "realistic

dynamic fracture problems. e.g. in whisker reinforced ceramiC5.

w. MÜLLER:

Fracture mechanics and life-time predictions of ceramic roller

bearings

The instability of surface and subsurface flaws in the raceway

of aceramie roller hearing are studied by means of a quanti­

tative model: An elastic halfspace (raceway) which contains an

arbitrarily oriented Griffith crack is subject to the normal

and frictional forces of an infinite sliding cylinder (roller).

The stress intensity factors of the crack are calculated by

means of Erdogan~s integral equation technique. The results are

furthermore used for the prediction of the critical crack

length in the raceway for different ceramic materials. It turns

out that for Al20 3 , Sie and HPSN the critical crack length is .

in the order of the average grain size, i.e. in the order of

the length of microcracks which exist in the cer~mic due to fa­

brication. In the use of Zr0
2

, however, the KIc i5 high enough

to give a.critieal crack length.which i5 large enough to enspre~

a reasonable long Iife-tirne.

Z. OLESIAK:

Stress singularities in elastic matrix with surface Iayer gene­

rated by thermodiffusion fluxes

The fundamental question was whether the existence of fields of

temperature and that of diffusion generate the significant

stress, in particular stress concentrations or singularities.

For the case ofaxial symmetry it was possihle ·to construct

a model of asolid with inextensible membrane bonded to the

bouriding plane and to solve analytically the problem. There

exist the singularities in the dis~ribution of stresses at the

lines of jump of temperature or diffusion.(logarithmic type)

and one over square root 5ingularities at the lines of the

closure of the bonded domain.
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G.P. PARRY:

Invariants of defective crystals

The cassical theory of continuous distribution of dislocati­

ons has traditionally focussed on the Burgers vectors and the

dislocation density tensor as descriptors of defectivness. We

prove that, ·generally, there i~ an infinite number of tensor

densities with similarly descriptive properties, and that

'there 1s a functional basis which strictly includes the Bur­

gers vector and dislocation density. Moreover the changes of

state which preserve these densities turn out to' represent

slip incertain surfaces associated with crystal geometry, so

that the basic mechanism of plasticity'theory emerges natur­

ally from abstract ideas which do not anticipate the kinema­

tics of particular types of crystal defects.

H.'PETRYK:

Upper bounds to the onset of·.instability in.elastic-plastic

sol~ds

Instability of a quasi-static deformation path at varying

loading is distinguished from a narrower concept of instabi­

lity of an equilibriurn state. Energy criteria of instability

are formulated under general ass·umptions concerning the non­

linear constitutive +ate equations and the boundary conditi­

ans which ensure existence of a global potential for the in­

cremental boundary value p~oblem. In typical circumstances

studied so ·far in the literature, the onset of path instabi­

lity is shown to coincide with the primary bifurcation point

while stability of equilibrium is usually maintained in some

interval beyond that point. It 1s shown that path instabili­

ty in the energy sense is associated with sensitivity of the

solution to vanishingly small perturbing forces. This provi­

des a theoretical basis for an upper bound technique for de­

termining the onset of instability in incrementally nonline­

ar, .time·-independent solids. Analytic estimates are obtained

for the onset of necking under uniaxial and biaxial tension,

taking into account the effect of formation of a vertex on

the yield surface.
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J. SIVALOGANATHAN:

Stability of regular and singular eguilibria

In the leeture I eonsidered the statie stability of smooth &

singular solutions of the equilibrium equations of finite ela­

stieity. For smooth solutions I demonstrated that every equi­

librium has strong loeal rninimising properties if the eorre­

sponding stored energy is polyeonvex (uniformly).

The singular solutions eonsidered eorrespond to the mathe­

matieal phenomenon of eavitation in whieh a hole forms in an

initially perfeet ball of isotropie elastie material hel~ in

tension under preseribed boundary displaeements. It is known

that the eavitating rnaps are minimising in the elass of radi­

al maps. I shoWed that the stabi-lity of these singular maps

with ~espeet to general 3-D perturbations depends strongly on

the top~logy used.

E. STEIN:

Elastie-viseoplastie deformations at finite strains

On the basis of the multiplieative split of the deformation

in sperieal, isoehorie elastie and isoehorie inelastie parts

and the maximum inelastie dissipation prineiple a flow rule

for elastovoseoplastieity is derived. The flow rule is formu­

lated ~n the eurrent configuration,an turns out in terms of a

relaxation -stress rate~ i.~. ~train space ~ormulation.

With -the help of -the covariant Doyle-Ericksen formula, tpe

tangent material tensor for elastoviscoplasticity in eurrent

configuration is ealculated. So Newton~s method can be app­

tIt lied to solve the nonlinear finite element equations which .

leads to a effective numerical proeess.
- -

Examples are presented for impacts of steel cylinders. The

elastoviscoplastic solut~ons are compared with rigid plastie

results and experimental data.

M. WAGROWSKA:

Some problems of elastic-inelastic periodic composites

Exact solutions to the boundary value problems for micraperi­

adic composites are tao complieated to be sueeessi~ly app­

lied in the engineering practice. There are rnany approximate
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methods for modelling of 'these kinds of materials. One of

them is a non-standard homogenization method leading to the

microlocal parameter theories of microperiodic composites. In

this lecture the aforementioned method is applied to elastic­

inelastic microperiodic materials. Problems are analysed

within the small gradient deformation frame.

D. WEICHERT:

COmbined shakedown- and crack-propagation analysis of elastic­

plastic structures

The shakedown analysis of elastic-plastic structures under va­

riable loads is not always suffic~ent in order to get reliable

informations about the performance.of a mechanical structural

element: Even if plastic shakedown is predicted, the undercri­

tical propagation of small cracks, initially present or devel­

oping during plastic adaptation, may lead to failure.

Some extensions and new developments concerning' the solution

of the shakedown problem are reviewed, in particular the in­

fluence of geometrical nonliearities and of the limitation of

kinematic hardening, modelied by a simplified two-surface

yield condition. The crack propagation ;?roblem is tackled at

the time being by the assumption of a c~ack in a given place

at the shakedown-loading situation. Its velocity is then de­

termined by an empirical law for undercritical mode-I crack

propagation for the state of stress associated to the shake­

down load previously determined.

z. WESOLOWSKI:

Nonlinear interaction between two waves in elastic materials

The second order elasticity theory (5 elastic constants) i5

applied. The total displacement consists of the fundamental

motion, correction terms and interaction terms. If the funda­

mental motion is one pulse, then both the second and third

order approximation may be obtained analytically. If the fun­

damental motion represents two colliding pulses one numerical

integration is necessary to obtain the displacement field.

Dynamics of the transition region between two homogeneous ma­

terials
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Between two homogeneous elastic materials there. is a transi­

tion region where the propagation speed is a linear function

of space. It is shown that the dynamic behavior cf this

structure may not be approximated by n steps cf homogeneous

material.

F. ZIEGLER:·

Dynarnics of visco-plastic structures

Nonlinear vibrations of ductile structures under periodic for­

ces are considered. High velocity impact, resulting in elast­

ic-plastic wave formation.is treated as weIl.

In both problems the linear elastic virgin state is kept

permanently to determine a 'background structure. Plasticity

and quctil~ damage are considered in the· form of distributed

defects of the Hooke body. Going back to a therrnodynamical re­

asoning, the internal variables become related macroscopically

to inelastic strain rates an a damage parameter. Such distor­

sion results in an additional internal loading of the back- .

ground material which drives the linear system into the nonli­

near deformation state. The respon~e to that inetrnal loading

can be determined by means of static Greenis functions applied

to the vibrational case or dynamic Greenis functions and time­

convolution integrals in case of the hyperbolic wave problem.

Displacement and stresses in both cases are calculated in two

parts: A portion which is due. to the external .loading of the

background structure and a portion which is due to the inter­

nal loading. A further splitting into the quasistatic and the

complementary dynamic part is applied to the vibrational case

for reasons of numerical stability. As ~ byproduct the plastic

drift is determined. The integral equations ~re solved best by

modal analysis of the dynamic portion. Darnage produces a kind

of plastic chaos in the modal responses, to be detected by

Poincare maps.

Explicit results are discussed for visco-plastic and biline­

ar plastic serni-infinite rods loaded under kinematic as weIl

as dynamic boundary conditions. Stability of the numerical so­

lution after space-tirne discretization is almost unlimited.
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H. ZORSKI:

Dynarnics of dipoles, a one-dimensional chain

An elernentary dipole is defined as a pair of points with a

prescribed distance between them. Equations of motion and

conservation principles are discussed and some elementary so­

lutions are presented. It is shown that there are discontinu­

ities of first derivative in the dependence of the dipole mo­

ment of the external elastic field. Interactions between di­

poles are inroduced and a one-dimensional chain of dipoles is

examined in more detail. Various solutions are derived and ~.
the corresponding dispersion curves are presented. It is shown

that for the ordinary interaction potential there are no soli-

tons in the system. A class of interaction potentials exists

leading to the sine-Gordon equation. It is shown that the re­

placement of an oscillator as ·the basic element of the theory

of polarization by a rotating dipole affects the resulting

polarization~

Berichterstatter: V. MANNL
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