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Die Tagung fand unter der Leitung von Herrn Jungnickel (Giessen) und Herrn van Lint
(Eindhoven) statt.

Die Design- und Codierungst1.leorie sind zwei Teilgebiete der diskreten Mathematik, welche

zahlreiche inhaltliche Bezüge besitzen. Das Hauptziel dieser Tagung war es, die Interaktion

dieser beiden zur Zeit sehr aktiven Theorien zu fördern, die auch zahlreiche praktische
Anwendungen haben.

Dazu wurden hauptsächlich Wissenschaftler eingeladen, deren Forschung beide Gebiete

betrifft. Dementsprechend standen Vorträge, die beide Theorien miteinander verbanden, im

Mittelpunkt des Interesses. Diese machten einen Großteil des Programmes aus. _Daneben gab

es auch noch weitere Vorträge, die über neuere Entwicklungen in einem der beiden Gebiete

informierten. Die vorgestellten Ergebnisse fanden großes Interesse bei den Teilnehmern, wie
die allgemein regen Diskussionen zeigten. .

Hervorzuheben ist, daß die T~gung einen stark internationalen Charakter hatte; es nahmen

46 Wissenschaftler aus 12 Ländern· davon 15 aus Nordamerika - teil. Von den zahlreichen

auf beiden Gebieten arbeitenden Doktoranden waren einige junge Wissenschaftler

eingeladen, deren sehr ansprechende Vorträge auf große Zustimmung stießen.
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Vortragsauszüge:

2

R. AHLSWEDE:

Coding for ehannels witb loealized errors: tbe non·binary ease

Bassalygo, Gelfand and Pinsker [1] introduced the interesting notions of localized errers and

ef codes correcting t of those errors. These authors also derived asymtotically exact bounds

for the rates of such codes over binary alphabets. They mentioned at the Gotland meeting

that, quite surprisingly, there are serious difficulties in extending their results to general e
alphabets. We establish here those results.

Actually, the channel model of localized errors can be viewed as a special case of the model

AVC with partial side information about states. In [2] we wrote on p621 "There is a large

number of coding problems for these chaimels, because a sender, receiver and jammer can

have at ev~ry time instant t a certain side information abeut the past, present, and future

operating of the system..."

References:

[1] L.A. Bassalygo, S.I. Gelfand and M.S. Pinsker, "Coding for channels with localized errors",

Proceedings of the fourth Swedish-Soviet International Workshop on Information Theory,

Gotland, Sweden, August 27 - September 1, 1989,95-99. Also presented at the Meeting on

Information Theory, Oberwolfach, May 15-20, 1989.

[2] R. Ahlswede, "Arbitrarily varying channels with states sequenee known to the sender",

IEEE Trans. Information Theory, vol. IT-32, no. 5, 621·629, 1986.

E.F. ASSMUS, Jr.:

Hadamard matrices, projective planes and their codes

If a symmetrie design has order fi, then 4n.1~v~n2+ n + 1. Those designs meeting the lower

bound are the Hadamard designs, those meeting the upper bound are the projeetive planes.

For the Hadamard designs we have a strong "rigidity" theorem which says that for n = 2m the

mod 2 span of the ineidence matrix of any such Hadamard design has dimension at least that

of the classical design of points and hyperplanes of the projeetive space over GF(2) with

equality iff it is the c1assical design. There is also a weak "rigidity" theorem which says - in the

elassical case with n =pm, J>+2 - that if the eode of an affine plane of order n satisfies

H =C(AG(2,n»nC(AG(Z,n).L~1r~It- then dimC(1T)~dimC(AG(2,n»with equality iff 1T is

isomorphie to AG(2,n). The proof appears in a joint paper with J.D. Key "Affine and

projective planes", Diserete Math. 83 (1990).

e
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Th.,BETH:

Same remarks on a conjecture by J.W.P. Hirschfeld

We give an algebro.;geometric proof for the dimension fonnula of the GF(p)-code generated

by the lines of PG(n,q) resp. AG(n,q). By canonically relating the projective geometry

PG(n,q) to the affine geometry AG(n,q) we obtain for the respective p-dimensions Pn and an

the recursion formula Pn =3n+Pn-l. In determining 3.n we embed the code C = C( l,n,p)

generated by the lines of AG(n,q) into the group ring GF(p)[xl' ..'xn]/
< (xq-l), ..,(x~-l) >.

We show that C=RP-l where R is the radical of the group ring, which has the basis

{(xl- l )i1···(xn-"1)in IO=::;ik:5p-l for k= l,..,n}. Thus RP-l has the basis .

{(x1-1)i1···(xn-l)in ILik~P-1}. As ~=dim(d-) =pn-dimC wf? see immediatly that dim(C.l.)

is the cardinality of the "discrete" simplex. a~= I{(x l-l)i l···(xn-1)in II:ik < p-l} I =

(n~~22), thus proving a conjeture by J.W".P. Hirschfeld presented earlier at this

meeting.

A. BEUTELSPACHER:

Geometrie authentieation systems

The classical example of a "perfectll authentication system (Gilbert, MacWilliams, Sloane) is

constructed from an affine plane A as folIows. The messages (source states) are the parallel

classes of A, the keys are the points and the authenticators (messages) are the lines of A.

The perfect authentication systems have the following disadvantages.

-They have only few messages (compared to the number of keys).

-There are only "few" examples.

-They are only secure if the key is used only onee.

We discuss several examples of authentication schemes based on geometrical objects, such as

spreads, conics, quadrics whith solve the above mentioned problems.

I.F. BLAKE:

On the eomplete weight enumeration of Reed-Solomon eodes

The complete weight enumerator of a code enumerates the codewords by the number of

symbols of each kind contained in each codeword. As for the ordinary weight enumerators,

the complete weight enumerators for linear codes satisfy a duality theorem. These weight
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enumerators are studied for certain realizations of Reed-Solomon codes of dimensions two,

three and four over GF(2ID). Some applications of these resul.ts are considered.

A. BLOKHUIS:

Characterizat,ion of Hermitian unitals

We show that a unital in PG(2,q2) is Hermitian if and only if it is in the code generated by the

Iines of PG(2,q2). This proves a conjecture by Assmus and Key. The proof uses identities in e
the group algebra relating the unital with the decomposition of the Singer group in subgroups

of order q2_q + 1 and q2+ q + 1.

A.E. BROUWER:

Codes of elassieal generalized quadrangles

We study binary codes C (generated by the lines) and P (generated by the point

neighbourhoods) in general and determine their dimensions for the classical quadrangles

Sp(4,q) and O(5,q). A.s a side result we find that if a generalized quadrangle of order (s,s)

contains an antiregular point, then a11 its points are antiregular. (Joint work with Bagchi and

Wilbrink)

A.A.BRUEN:

Some remarks on geometrie codes

For a binary linear code we explain the idea of a point base in terms of an intersection set for

codewords, and generalize to arbitrary linear codes. Examples are discussed, including MDS

codes. A new proof of Bruck-Ryser (for special cases) is sketched using point bases. Bases for

certain codes in finite geometries e.g. the row space of PG(2,q) are constructed and "a

configuration theorem generalizing the O'Nan criterion for Hermitian unitals is presented. A

connection between MDS codes and certain polynomials in GF(q)[xl,..,xnl with multiplicity

conditions is made.

                                   
                                                                                                       ©



5

A.R. CALDERBANK:

Regularity in codes and designs

We use invariant linear forms to study regularity in designs, particularly those designs

afforded by eodewords of a flXed weight in same code. The most important theorem relating

codes and designs is due to Assmus and Mattson, and we extend this theorem in several ways.

These results specialize to give results obtained by Venkov and Koch using modular forms,

but our proofs use only· a Iiule representation theory of the symmetrie group. (Joint work with

P. Deisarte)

G.COHEN:

Perfect multiple coverings of Hamming spaces

Let On be the n-dimensional q-ary Hamming space. A perfect multiple cavering

PMC(q,n,M,r,J.L) is a subset C (ar code) of On with size M such that every vector in On is

within distance r from exactly JJ. codewords of C. We give a few constructions of PMC's,

focusing on the case r = 1.

Theorem 1: Let q be a prime power. A linear (q,n;,l,~) PMC exists iff n=(~qi-l)/(q-l) for

some i€NQ•

Theorem 2: Let q be a prime. A (q,n;,l,I-L) PMC exits iff n=(~Oqi-1)/(q-1) for same i€NO'

J.'O€N, J1.0 IJJ. and J1.5qi~O·

We conjecture that theorem 2 can be extended to prime powers q. (Joint work with G.J.M.

van Wee and S. Litsyn)

J.A. DAVIS:

Relative difference sets in p·groups

Many of the character theory techniques that have been exploited on regular difference sets

also apply to relative difference sets. These techniques can be used to provide exponent

bounds, show that certain candidates for an ROS are true ROS, and use number theory to

exclude extensions of Menon difference sets. I am main]y interested in determining the

existence of RDS (or nonexistence), and these ~re powerful techniques.
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J.F. Dillon:

Some open problems on designs and codes

1. Conjecture (Dillon and Schatz). If a symmetric design with parameters (V,k,A), v=22m,

attains the minimum 2-rank 2m +2 then the code of the design must contain the all-l-vector.

This would imply that the designs of minimum rank are precisely those given by the words of

minimum weight in the code spanned by RM(I,2m) and a difference set in F~m.

2. Conjecture (Dillon). If a group of order 22m contains anormal subgroup E=Z~\ then

G contains a nontrivial difference set. This result would follow if for every subgroup L of _

order 22m in GL(m,2) the matrix M=[l(x)] whose rows and columns are indexed by L arid ,.

FT, resp., has a transversal.

3. Problem. Determine the groups of order 64 which have a (nontrivial) difference set. In

particular, settle the case of the modular group G =< a,b Ia2 =b32 = 1, aba-1 =b 17 > .

G. GODSIL:

Edge recontructions ~f graphs and minimum distance

A graph F is a edge-reconstruction of a graph G if there is a bijeetion ß from the edges of G to

the edges of F such that G\e=F\ß(e), for all edges e of G. If any edge-reconstruction of G

is isomorphie to G, then we say G is edge-reconstructibie. Müller proved that a grapn on n

vertices with m edges is edge-reconstructible if rn-I> log2(n!). I outline a new prüof of this,

which reduces to adetermination of the minimum distance of the Reed-Muller code

R(k-l,m). The argument also yields several generalisations of Müller's resuit. (Joint work with

Krasikov and Roddity)

H.D. Gronau:

On a conjecture of Demetrovics, Füredi and Katona concerning partitions

Demetrovics, Füredi and Katona considered in 1980 the following problem which originally

arose from the theory of data bases.

Problem: Given an n-element set X, say X = { 1,2,.. ,n}, n~2. Da there exist n partitions

PI ,P2""Pn of X such that their pairwise intersections are just the atoms of the partition lattice

ofX?
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It is simple to check the answer for smal,l values of n: n 2 3 4 5 6 7

answer yes no yes no no yes

They constructed solutions of the problem for all 0=1 or 4 mod 12, and gave the

Conjecture: The problem has solutions for all n~7.

Ganter and Gronau (see "Kombinatorik", Feh. 26, - March 4, 1989, Oberwolfach) proved that

the conjecture fails for n =8, is true for all n=l mod 3 (actually they proved a stronger result)

and is true forall sufficiently large n.

In this talk, which is based on joint work with R.C. Mullin (Waterloo), we present and s~etch

the proofof the final

Theorem: The conjecture is true for all n+3,5,6,8.

D.HACHENBERGER:

Translation ·nets

A translation net oforder sand degree r~3 with translation group G is a pair (N,G), where N

is an (s,r) 'Bruck net (Le. an affine 5r(1,s,s2» which admits G as an automorphism group

acting regularly on the set of points of N and fixing each parallel dass.

An (s,r)-translation net exists iff there i.s aset H ={H1,..~Hr} of subgroups of G satisfying

IHi I =s for i =1,..,I and HiHj =G for i,j =1,..,r and i+j. H is called an (s,r)-partial congruence
partition (PCP for short).

We summarize the main group theoretic techniques which lead to existence results on

translation .flets. Let T(G) = max{ r Ithere is an (s,r)-PCP in G}. If G is a p-group of order p2n

and not elementary abelian, where p is odd and n~:4 we prove T(G)<pn-l. This generalizes a

result of D. ·Frohardtwho dealt with 2-groups.Furthermore we prove that T(G)~p2+1 holds

if G is not.elementary abelianof order p6(p odd). We characterize 'aII groupsof order p4 (p

prime)which admit 'a (p2,3)-PC'P and determine T(G) in all these cases.

J.HAYDEN:

{P,L)-transitivity in finite planesand generalized Hadamard matrices

Let 1f be a finite plane of order n. If P is a point incident with a line L of 1T, the plane is said to

have a (P,L)-transitivity jf there exist n elations with axis Land center P. These n elations

form a group G called a cartesian group. The structure of the group Gis, in general, not

                                   
                                                                                                       ©



8

known. If'lr admits further elations with axis L, a theorem of Baer implies G is an elementary

abelian p-group for some prime p. A theorem of Hayden implies G must be elementary

abelian if certain add.itional homologies with axis Lexist. We study the case when no extra

collineations are assumed. The main resul t is:

Theorem: Assume 1r is a projective plane of order n and 'Ir admits a group G of n elations with

axis Land center P € L. If G is abelian, then G is an elementary abelian p-group for some

prime p. In particular, n is a prime power.

Corollary: Let X = (xi1) be a matrix of order n whose entries Xij are from an abelian group G,.

of order n. If {(xm,if xk,i Ii = 1,..,n} = G whenever m+k, then G must be an elementary •

abelian p-group.

The matrix X is called a generalized Hadamard matrix of order n and the corollary follows

from the fact that such a matrix is equivalent to a plane of order n with a (P,L)-transitivity.

R. HILL:

Optimal linear codes

Let "q(k,d) denote the smallest value of n for which there exists a linear code of lenght n,

dimension k and minimum distance d over a field of q elements. The problem of finding

nq(k,d) for binary codes (Le. q =2) has received much attention and has been completely

solved for k:57, for a11 d. We briefly mention some new results concerning n2(k,d) for k~8.

We then consider the problem for ternary codes (q =3) and show that n3(k,d) is known for

k:$4 for all d. We discuss also some of the thirty cases for which n3(5,d) remains unknown;

they raise intriguing open questions concerning the existence or otherwise of certain two- a
weight or tree-weight codes. •

J.W.P. HIRSCHFELD:

Projective geometry codes

The projective geometry code C· (r,n,q) is dual to that generated by the incidence matrix of

points and r-spaces in a finite projective space PG(n,q). Some properties of the geometry of

such codes were given. A formula for the dimension of C· is due to Hamada; for q a prime p

this reduces to
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n-r LS(p-l)/pJ . .
L L (_1)1(nt 1 ) (n+S(p-l)-1p)

5=0 i=O 1 n

It was suggested that, for r =1, this equals (n+~-l). During the conferenee, this was

proved by l.H. van Lint and an outline of the geometrie reason for the lauer number was

given by Tb. Beth.

C.Y.HO:e Planar difference sets

Tbe study of finite cyclie planat difference sets is equivalent to the study of finite cyelie planes.

Arecent result of Kantor followed by work of Feit rekindled interest in finite cyclic planes.

Pott and I proved recently that if the order of a group of multipliers is divisible by the odd

part of the order of the automorphism group of a Singer group, then the order of the plane is

2,3,4 or 8. Tbis yields another proof of Feit's result mentioned above. Also we prove that n+1

is "an upper bound for the odd part of the order of a group of multipliers. This bound is best in

t~e sense that n + 1 is attainable. Note that n + 1 is the faetor appearing in the critieal ease in

Kantor's result. Some other reeent results of the speaker will be diseussed.

D.R. HUGHES:

Extended partial geometries

Tbe problem of finding geometries for O-k-O-d_ 0 is considered. These EpG's

fall into certain types, and we discuss the problem and give same examples and

~haraeterizationtheorems for the case of dual linear spaces and of generalised quadrangles in

particular. All known extended dual projective geometries, affine geometries are listed. All

known extended generalised quadrangles are (1) extensions of grids (a large and difficult

dass), (2) extensions of grids (unique), (3) have order (2,t) (ten examples exactly), (4) have

order (3,9), (4,2), (9,3) or (3,3) or (5) have order (q-1,q +1), with q a prime-power q2:5. These

results are due to many authoI:s.
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J.D. KEY:

Steiner systems and Hadamard matrices

A construction of Shrikande and Singhi (1963), and Goethals and Seidel (1970) produces

Hadamard matrices of size 4kZx4k2 from Steiner designs with param;ters 2-(ZkZ-k,k,1). If the .

Steiner design is resolvable then the Hadamard matrix can be taken to be of constant row

sumo If Dis aSteiner Z-(Zk2-k,k,1) design, Ta Hadamard 3-(4kZ,ZkZ,k2-1) design and S a

symmetric. (4kZ,2kZ± k,kZ±k) design, where T and S are derived from 0 in this way, then, if

pik and is a prime, dimCp(T) =dim'1>(D)-dim('1>(D)nCp(D/) + 1 (where Cp(D) denotes

the row space over GF(p) of an incidence matix for D) and for p=Z, dimCz(S)=dimzC(T)+.­

An infinite class of designs D that have these parameters are given by the oval designs of Bose

and Shrikande (1960). All known cases have k=Zll for some ß. For m=2, CZ(T)=RM(l,4),

the finite order Reed-Muller code, but for m =3, CZ(T) has dimension 13, and is thus not

RM(1,6). For a regular oval in a desarguesian plane of order Zm we conjectur~ that

dimCz(T) = Zm-1m + 1.

P. LANDROCK:

Codes and group algebras

A number of classicallinear codes turn out to admit a very natural algebraic structure on the

vector space in such a way that they become (right) ide.als. These algebras are a11 group

algebras. This is a classical result for the Reed-Muller codes, but we have sho\:Vn how tbis can

be used to obtain a new decoding algorithm.

Likewise the Golay codes G 12 and G24 are (right) ideals in the ternary twisted gr:oup algebra

over A4 and the binary group algebra over I:4'

Finally we mention a result that states that the Slepianproblem of group codes for the e
Gaussian channel is equivalent to finding certain primitive idempotents in the group algebra.

(Joint work with O. Manz)

M.LECLERC:

Network security: An implementation of the McEliece cryptosystem

McEliece proposed an asymmetrie cryptosystem based on Goppa codes. An efficient software

implementation}s described. It was found that th!s system's performance is far better than the

one of others like RSA or Discrete Exponentiation.
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H. LENZ:

In memoriam RICHARD RADO (April 28, 1906 • December 23, 1989)

The main dates of his life and some of his mathematical achievements were sketched.

Life: Youth in Berlin. Studies of Mathematics in Göttingen and Berlin. Dissertation "Studien

zur Kombinatorikfl (adviser I. Schur) 1931. Habilation became impossible after Hitler came to

power. Emigration to England 1933. ~arriage in the same year. 1935 British PhD (adviser

G.H. Hardy) in Cambridge. From 1934-1983 joint work with Paul Erdös. 1936 Assistant

lecturer at the Univeisity of Sheffield. 1947 King's College London. 1954 Full Professor at the

University of Reading. 1971 retired. 1972 Senior Berwick Prize. 1978 Fellow of the Roy~l

Society. Honorary doctor Berlin 1981, Waterloo 1986. 1983 serious car accident. 1984 Book

on Combinatorial set theory together with Erdös, Hajnal and Mate. 1986 last ofabout 115

mathematical papers.

Some of his best known results were sketched (Dissertation, Contributions to Ramsey theory,

Rado's selection theorem, contributions to matroid theory).

V.I. LEVENSHTEIN:

Perfect deletion correcting codes and ordered Steiner systems

We consider a new kind of combinatorial designs, which are connected with the perfect codes

capable of correcting adeletion of letters. Let a k-set be a set of k elements of a fixed

alphabet A(v) ={O,..,v-l}, v~2, and a k-multiset be a collection of k-elements of A(v), which

can be identical. We denate the set of all k-sets (k-multisets) by Pk(v) (P~v) resp.). A

subset S of Pk(v) (S of P~v» is called aSteiner system and denoted by S(t,k,v) (S* (t,k,v)

resp.), if every t-set (t-multiset) belongs to exactly one element of S. Let A~v) be the set of

all words of length k aver the alphabet A(v) and Ak(v) be the subset of A~v) which

contains a11 words with different letters. The subset T of Ak(v) (T of Ak<v» is called an

ordered Steiner system and denoted by T(t,k,v) (T* (t,k,v) resp.), if every word of At(v)

(Ä~v) resp.) is a subsequence of exactly one word of T. In particular, it was proved that

there is a partition of Pt(v) into v Steiner systems S*(k-1,k,v), there is a partition of

A~2) into k+ 1 ordered Steiner systems T*(k-1,k,2), there is a partition of Ak(k) into k

systems T(k-l,k,k), and for even v there are systems T(3,4,v) and T(3,4,v).
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S.L.MA:

Reversible difference sets and relative difTerence sets

A subset D of a group G is called reversible if O(-1) ={d-11 d € D} =D, Le. -1 is a multiplier

fixing D. I shall talk ,!bout the case when D is a difference set or relative difference set.

Examples and necessary conditions will be given.

R.e. MULLIN:

Calculation in finite fields

Calculation with normal bases for GF(2n) over GF(2) has the advantage that in the .

coordinate representation of the field relative to such a basis, squaring is represented bya

cyclic shift. In addition, there is some advantage to be gained from the fact that the n bilinear

fOT":lS giving the coefficients of a'b in terms of the coordinate vectors for a and b in normal

basis representation are related by cyclic shifts, too. The straight-forward irnplementation of

circuitry to evaluate such a quadratic form lacks a feature known as regularity in VLSI

implementation. An alternate method of performing the calculations, which leads to a regular

implementation will be dicussed.

A. NEUMAIER:

Completely regular codes

A new approach to completely regular codes giving a very elementary praof of Lloyd's

theorem and a proof of the nonexistence of perfect binary codes of minimum distance > 3 e
without using Krawtchouk polynomials.

U.OTT:

Rank of {O,l}-matrices

In the study of graphs, codes and finite geometries {O,l}-matrices play an important role.

Using the terminolagy of finite geometry we may regard a {O,l}-matrix as the incidence

matrix of a finiJ.e geometry consisting ofv points, b lines and m flags: G =(r1,r2J ). The only

known result abaut the dass of projective planes is
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Theorem (Bruen, Ott): Let M be the incidence matrix of a projective plane of order n. Then

\ve have rankk(M)~nfil+ 1.

The central point in the course of the argument is the following. Sufficient information

concerning the dimension of a certain module - the so-called Steinberg module of the

geometry - is enough to produce a good estimate for the rank. More recently the following

results have been established.

Theorem (Hillebrandt): Let M be the incidence matrix of a (connected) semilinear space.
Theo rank(M)~(m-v-b + 1)~.

Theorem (Hillebrandt): Let M be the incidence matrix of a linear space. For any line .a let

T(a) denote the set of lines x with anx =4>. Then (rank(M»2~(v-1al )( lai-I) + I: (I x 1-1).
x€T(a)

O.PFAFF:

On the classification of the 2-transitive affine 2-designs

A 2-transitive permutation group has a unique minimal normal subgroup which is either

elementary abelian or simple by Burnside (1911). We are able to prove that the unique

Hadamard 3-design on 12 points and AG2(3,2) are the affine 2-designs with a 2-transitive

automorphism group which has a simple normal subgroup. Thus we have to consider the case

of an elementary abelian normal subgroup for the classification of the 2-transitive affine 2­

designs. This case is not completely solved yet, but we can describe the remaining affine 2­

designs \vhich might have a 2-transitive automorphism group precisely by means of spreads.

Nevertheless we are able to prove that a 3-transitive affine 3-design is either an affine space

AG(2,q) or the Hadamard 3-design on 12 points. This shows ,the correctness of Norman's

conjecture (1968).

v. PLESS:

Orphans of the first order Reed-Muller codes

If C is a code, an orphan is a coset which is not a descendant. Orphans arise naturally in the

investigation of the covering radius. We characterize cosets which are orphans, and then

prove the existence of a family of orphans of the first order Reed-Muller codes R(l,m). For m

less than or equal to 5 all orphans of R(l,m) are identified.
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We investigate a new method of combining two codes which we call the outer producL First

order Reed-Muller codes are outer products of a number of copies of the full binary space of

length 2. We apply our results to obtain cosets of the Reed-Muller codes which are orphans.

This work is based on the follöwing two papers. "Orphans of the First Order Reed-Muller

Codes" by R.A. Brualdi and V. Pless, to appear in Trans. of the IEEE on Information Theory

and "Structure of Orphans of the First Order Reed-Muller Codes" by R.A. Brualdi, N. Cai and

V 0 Pless, preprint.

A. POTT:

On quasiregular collineation groups of finite planes •
Case (d) in the classification of Dembowski and Piper on quasiregular collineation groups of

finite planes corresponds to an affine difference set of order n. If the underlying group r is

abelian, we prove that the Sylow 2-subgroup of r is cyclic, lending support to the conjecture:

All abelian affine difference sets live in cyclic groups. We furt her show that the multiplier

group of the associated affine difference set of order n has a unique involution, namely n.

Same improvements of a result of Hoffman on the fixed structure of the given plane by a

multiplier are also obtained.

R.L. ROT":

Mappings of sets of painvise orthogonal orthomorphisms

When ° and J.1. are permutations of the finite group (G, +), a and J.L are said to be orthogonal

if the function x-+xo -xJ.L is also apermutation of G. The Latin square associated with ° is give~

by Lo(x,y) =xo-y and a.l.J.L iff La.l.LJ.Lo We denote by N'(G) the maximum size of a set of •

pairwise orthogonal permutations of Gwhich can be assumed to contain idG and ~ther

permutations, all fixing 0G' Such a permutation, fixing 0G and orthogonal to idG , is called an

orthomorphism of G. Orthomorphisms of C6EBC2, C I5, and C6EB~ have been used

to set the current "world records" for N(12), N(15), and N(24) (namely 5, 4, and 4 resp.) where

N(n) denotes the maximum size of a set of pairwise orthogonal Latin squares of order n. The

"record" for ~ = 15 was set by considering only inverse preserving orthomorphisms which

comprise less than the 1200th part of the total number, 2.424.195, of orthomorphisins of CIS'

In joint work with R.M. Wilson, the entire set of orthomorphisms was exhaustively examined

and (unfortunatly) the value N'(CIS) =4 was determined. However, techniques were

developed which \vill be useful in the study of N'(G) for IGI €{20,21,24}. These techniques

inc1ude the construction of mappings which partition the collection of rn-sets of pairwise
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orthogonal orthomorphisms inta relative.ly few equivalenee classes; and only one member

from eaeh dass need be tested for extendability to a set of m + I pairwise orthogonal

orthomorphisms.

J.J. SEIDEL:

Designs in eucli~ean space

Analogs to ordinary designs t-(v,k~) are the spherieal t-designs on the unit sphere S in

euclidean Rd. Reeently this last nation was generalized to a measure of strength t in R d. On

the other hand, optimal designs have been developed sinee the late fifties by Kiefer and

others, bath experimentally (finite) and abstract (as a measure). We develop the theory of

these nations in the setting of polynomials of degree ::;V2t in Rd and their inner products.

(Joint \vork with A. Neumaier)

M.A. SHOKROLLAHI:

Minimum distance ofelliptic codes

Following Goppa's construction of linear codes on algebraic curves we take elliptic' curves

over finite fields and construet geometrie Goppa codes. These codes are "almost-MDSII, that is

if n,k,d denote the block length, the dimension and the minimal distance of these codes, then

d = ~-k or d = n-k +1. Three types of elliptic codes are considered and it is shown that in the

majority of cases these codes are not MDS, hence d =n·k. It is shown that th~ MDS-eodes

derived from these constructions are of Reed-Solomon type.

J. SIMONIS:

A short proof of the Der'sarte-MacWilliams inequalities

n
(Based on an idea of C. de Vroedt) The Delsarte-MaeWilliams inequalities. L Kk(i)Ai(c)~O

1=0
for k =O, ..,n are derived by first proving the k =1 ease by means of a "Plotkin·type" argument,

and then applying this inequality to the code Ck of length (r) obtained by taking all sums of

k columns of a codeword list of the original code C.
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E. SPENCE:

Some new regular two-graphs

In [1] the authors give all known regular two-graphs on n:C;;SO vertiees and eonjeeture that in

tbe ease n = 36 the list eontaining 91 is eomplete. This turns out not to be the ease as a further

136 have been found using an incomplete baek-traeking seareh. A characterization of a large

number of these regular two-graphs is given in terms of one of them.

[1] F.C. Bussemaker, R.A. Mathon, JJ. Seidel, Tables of two-graphs, Report Teehn. Univ., •

Eindhoven 79-Wsk-OS, (1979), 99.

A. TIETÄVÄINEN:

Covering radius

Reeently a number of bounds have been obtained for the covering radius of a code with given

length and cardinality. In this talk we show that - perhaps surprisingly - the eovering radius of

a code depends heavily on its dual distance. We eonsider an arbitrary finite Abelian group

alphabet though in tbe applieations the alphabet is very often GF(2).

V.D. TONCHEV:

Quasi symmetrie designs and codes

The four 2-(64,28,12) designs with the symmetrie differenee prop~rty are eharaeterized as thf'
- .

only designs with the given parameters and minimal rank over GF(2). These designs give non-

isomorphie quasi-symmetrie 2-(36,16,12) and 2-(28,12,11) designs as residual and derived

designs. Tbe binary codes of the quasi- symmetrie 2-(28,12,11) designs provide four

inequivalent self-orthogonal doubly-even (28,7,12) codes. This gives a negative answer to the

question for the uniqueness of the code of the Hermitian unital of order 3. (Joint work with

D. Jungnickel)
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S.A. VANSTONE:

Codes trom Graphs

In this lecture we make several observations about the code obtained from the cycle space of

a graph. Most notably we give an algorithm based on combinatorial optimization for decoding

such codes. We examine the code arising from the complete graph and its relationship to the

Hamming codes. Finally, same remarks about codes derivable from K6 are given.

Berichterstatter: O. Pfaff
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