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Tag u n g s b e r ich t 19/1990

Gruppentheorie

-proendliche Gruppen­

29.4. bis 5.5.1990

Die Tagung fand unter Leitung von A.Lubotzky (Jerusalem) und O.H.Kegel

(Freiburg) statt. Einige thematische Schwerpunkte waren: die Theorie der

endlich erzeugten diskreten (residuell endlichen) Gruppen und ihrer pro­

endlichen Vervollständigungen. die Struktur von pro-p-Gruppen und p-adisch­

linearen Gruppen. die Theorie der Körper unter Berücksichtigung ihrer
Galoisgruppen, und kombinatorische pro-endliche Gruppentheorie. Zu all

diesen Themenkreisen wurden in den Vorträgen die Theorien entwickelt und

die aktuellsten Forschungsergebnisse vorgestellt.· Hier wurde auch auf die

Zusammenhänge zur Modelltheorie eingegangen. Da die Zeit für die Vielzahl

der Vorträge knapp bemessen war. wurden zu den Vormittags- und

Nachmittagssitzungen noch einige abendliche Zusammenkünfte angesetzt, so

auch am Donnerstagabend, an dem offene Probleme gestellt und diskutiert
wurden.

Vortragsauszüge

Zoe Chatzidakis

·Profinlte groups with the Iwasawa Property
We study profinite groups having the Iwasawa Property (IP). using tor ~ur

study some homogeneity properties of the dual inverse system of finite

quotients of such a group. We show that every profinite group H has an IP-
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cover, which is unrque up to isomorphism over H. We also deseribe some

lifting properties of automorphism.

Ido Efrat

lifting of generators in subgroups structures.
We show that Gasehüt~' lemma on lifting of generators and other known

results of the same nature are special cases of a general theorem in the

category oft so called, 5ubgroups structures. As another special ease we
abtain: If <p:G --+ H is an epimorphism of profinite groups such that

G=<G1 ...Gn>. H=<H1 .. :Hn> and such that cp(Gj) is conjugate to Hj • i =1 ...n, e
then there exists g1, ...QnEG such that cp(GFi)=Hi.i=1 ...n. and G=<G~1 ...G~n>.

Mike Fried

Serre's lifting invariant
(Al Jacobians and rough outline of the obstructions:

Suppose that ~~1P1 is a Galois cover with group, given by Riemanrfs

existence theorem through (JE Gr where the corresponding conjugacy ·classes

are C. Consider PiCO( ~)~=PiCpk' the collection of points of pkth-power order on

the Jacobian of ~. The projective completion of this with respect to k is the

Tate module. Tp. and because of the functoriality of it all. this gives

(1) G(M~O::(~» = Tp -+ G(M~(c(x» =pGau ~ G(~(c(x».

Here M~ is the maximal abelian unramified extension of ~. This should be

contrasted with the group G(Mp/(c(~» which is the maximal unramified

extension ·of (C(~). What we are interested in is whether pG is a quotient of

G(MpllC(x», or whether pG[Pp,Pp] is a quotient of G(M~(c(x». At this stage our

reliance is on the "easiest" Frattini cover: pR --+ G • the "universal p-central ex­

tension." That is, is pR a quotient of pGau ?
(8) 1st Obstructioo: In aach of the cases there must be lifts ä of the entries of a

to the respeetive groups pG,pGau and pR with the following properties:
(2) ~ has order equal to Gi , i=1 ...r, and 01 ...or =1.

Since neither pG nor pGau have any p-power elements of finite order, this
implies that (ord(CJi ).p) =1. 1=1 ... r. If this. however, is satisfied,"we can certainly

lift them. But can we do so with the product equal to 1? This is the main topic of

the talk.
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R.I.Grigorehuk

On the growth of residually p-finite groups
Let G be a tinitely generated residually p-finite group, y(n)' be the growth

tunction ot G.

Theorem 1 ; If yen) grows slower than the tunetion e...[ii then G is virtually

nilpotent and so has a poly·n.omial growth.

The proof uses the Lazard eriterium for analyticity of pro-p-groups in terms ot

the Hilbert-Poincare senes ta.p(t) of the graded algebra

gr(G) = Ei An'A"+1
0=0

(A sFp[G] the augmentation ideal), associated w.ith the group.

Theorem 2· For any prime p there exists a finitely generated residually finite

p-group G such that an(G) - e-fii ,where
an(G) = dimF A

n'An+1
. p

are the coefficients of the series ta,p(t).

Theo Grundhöfer

Sharply transitive linear groups
GsGL(V) is a sharply transitive linear group on the vector space V if G

aets sharply transitivelyon V\{O}. Zassenhaus(1936) and Kalscheuer(1940)
have classified these groups if V is finite, or if· V= ~n and G is closed. In joint

work with eherIin, Nesin and Völklein, all groups Gare determined if V is a

finite-dimensional vector space over an algebraically closed field. If V is a

finite-dimensional veetor space over [lp , then every closed sharply transitiye

group G is of Dickson type. Le. G is contained in a one-dimensional semi­

linear group rL1D tor a suitable skew field D.

Fritz Grunewald
Some combinatorics relating to the local deflnability of E-faetors

let k be a finite field, X: k* -+ (C* , 'V: k+ -+ [* two characters with 'V

nontrivial. The gaussian sum for X ,'I' is defined a~

t(x,'1') = y x(x) 'I'(x) .
xek\toJ

I presented elementary proofs tor the Hasse-Davenport relation and other

relations between gaussian sums originating from ideas of Stepanov.

C.K.Gupta

Automorphism group of certain relatlvely-free groups
In this talk I gave abrief survey on the automorphism groups of eertain

relatively free groups. Highlight of the survey was recent joint work with Bryant,
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Levin, Mochizuki, in which, ameng ether things, I mentioned a criterium of

invertibility of certain nxn matrices over the free group ring ZF. This yields, in

particular, non-tameness of certain automorphisms of free nilpotent groups.

N.D.Gupta

Primitlvity In relatively free groups.
W E F=<X1 .... ,Xn> is primitive if w can be included in some basis of F.lf

V~F is fully invariant and if w is primitive mod V then w lifts to a primitive
-element of F if w v is primitive in F for some VE V. We extend this notion to
primitive lifting of a system Y!=(W1 •...•Wm). msn. mod V. •
Theorem (Gupta Gupta. Boman'kov) If !!'=(W1, ... ,wm) , msn-2, is primitive

mod YC+1 (F)P' then y! lifts to a primitive system of F.

Bemark: Thera is a system !!'=(W1, ... ,Wn.1) which is primitive mod YC+1(F)F"

but cannot be lifted to a primitive system of F.

Dan Haran

Cohomology theory for profinite groups with involutions
An Artin-Schreier structure is a system G=(G, G', X) ,where G is a

profinite group, G' is a subgroup of index 1 or 2, X is a boolean space on

which G acts continuously such that:
(a) the stabilizer of every XE G is a group of order 2, say Gx ={1 ,d(x)}, where

d(x)e: G';

(b) The so defined map d: X--+G is continuous.

An epimorphism of Artin-Schreier structures is the quotient map G -+ GIN ,

where N s; G' is a closed normal subgroup of G. One can define projective

Artin-Schreier structures as satisfying a certain embedding property.

We define the cohomology groups of G as the homorogygroups of the
complex C*(G,A), where . •

Cn(G,A) = { f: Gn.1x (GUX) ~ AI f continu~us} ,n= 1,2,...

with the obvious coboundary map. With this definition it is posssible to prove:

Proposition 1. An Artin-Schreier strueture is projective if and only if H"(G,A)=O..

Theorem 2 The cohomological dimension of the absolute Artin-Schreier

structure G=G(K) of a number field K is S2.

Using the cohomology we can show that following:

Theorem 3. Let G be an Artin-Screier strueture, then cdG=cdG'. In particular, G

is projective if and only if the group G' iso

The proof of this (which uses the category of profinite modules) is a~ analogue

of the following result:-
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Theorem (Serre): Let G be a torsion free pro-p-group containing an open free

subgroup. Then G is free.

Karl H.Hofmann

Free compact groups, Lie groups
For any conpaet poirited space X there is a compact group FX con­

taining X (base point = identity) such that any base point preserving
eontinuous funetion f: X~ G inta a compaet group extends to a continuous
hor:nomorphism FX~ G.

In the profinite situation, as in the abelian situation, the strueture and the

eireumstanees are fairly weil understoad. The talk gives a survey of the status

of the general situation. Whereas the profinite ease has an arithmetic and

algebraie flavor, the eonneeted ease has a topological one. Lie theory and

algebraie topology is used.

Moshe Jarden

Hilbertian fields and Free profinite groups· .
There is an interesting analogy between theorems about extensions of

Hilbertian fields and theorems about closed subgroups of the free profinite
group ~ CI) on No generators. The analogy beeomes even stronger for a

special family 01 Hilbertian fields, namely the fields K whieh are PAC and 00­

free. Reeall that K is PAC if each absolutely irreducible variety defined over K

has a K-rational point. The field is -free if its absolute Galois group G(K) is
isomorphie to ~CJ). A theorem of Roquette states that eaeh PAC co-free field K of

characteristie zero is Hilbertian.

Ta state the analogy, consider a property PG of subgroups of profinite

groups. We say that an extension N of K has the property PF if the subgroup

G(N) of G(K) has the property PG. For example, let PG be the property ~f a

subgroup H of a profinite group Gto be accessible, Le. H is th~ interseetion of

adescending sequence of closed subgroups' H such that Ho=G and Hi+1 <1 Hi.

Then .N is accessible if N= QNi , No=K and Ni+1 is a Galois extension 01 Ni.

The twjnnjng pdncjple· Consider the following two statements:
·(G) If a subgroup H of ~CJ) has theproperty PG , then H == ~CJ).

(F) 11 a separable algebraic extension N of an o>-free PAC field has the

property PF, then N is Hilbertian.
Then: 1. (G) implies (F)

2. (F) implies (G) for accessible extensions N.
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As an applieation we transfer a theorem of Haran-Jarden and a theorem of

Uchida about fields into theorems about groups:

Theorem: (a) The interseetion of two closed normal subgroups of ~CJ) none of

them is eontained in the other is isomorphie to ~CJ).

(b) Let M be a closed subgroup of ~ro whose index is divisible by two distinct
primes. Suppose that M eontains a closed subg roup N of ~CJ) such that
~roIN is pronilpotent. Then M is isomorphie to ~CJ).

* Araport on a joint work with Alexander Lubotzky.

E.I.Khukhro e
Torsion pro-p-groups.

There are two well-known conjectures:
(a) every torsion pro-p-group is.loeally finite;

(b) every torsion pro-p-group is of bounded exponent.

In 1989 E.I.Zel'manov proved (a) on the basis of the analysis of his positive

solution of the Restricted Burnside Problem for groups of all exponents pk.

(Together with J.S.~ilson's reduction - analog of Hall-Higman's reduction ­

this implies that every torsion compact group is locally finite.)

But it is still an open problem whether (b) is true. Towards its solution we prove
the following

Theorem: If a torsion compact group contains an open subset of elements of

prime order, then it is of bounded exponent and contains a subgroup of finite
index from some locally nilpotent variety.

Note that every compact group contains an open subset of elements of some
fxed order.

P.H.Krobholler

Poincare Duality groups and the Torus Theorem •
I discussed the eo~jecture that every PD3+-group is the fundamental

group of a (closed aspherical) 3-manifold. This conjecture can be reduced to
some special problems about PD3_groups by using the theorem:

Every PD3+-group G satisfying Max-c (max. on eentralizers) aets on a
trae T so that G\T is finite, each Ge == Z2, and aach pair (Gv,ster(v)) is either

an atoroidal or Seifert type PD3+-pair.

This is an algebraic analogue of the Torus Decomposition Theorem for 3­
manifolds.
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C.R.Leedham-Green

Pro-p-groups and Lie algebras
If P is a group of order pn and class c, the coclass of P is defined to be

n-c. A critical step in the classification of pro-p-groups by coclass, due to

S.McKay, M.F.Newman, W.Plesken, S.Donkin, A.Mann and myself, is proving

that pro-p-groups of finite coclass are soluble.

As a further step in this direction, we ask what just infinite, insoluble pro-p­
groups p exist with 1'Yi(P)/'Yi+1(P)1 uniformly bounded. Known exarnples are

open subgroups of Sylow pro-p-subgroups of hornogeneous serni-simple

classieal Lie groups over loeal fields (these are p-adic analytic in charaeteristic

0), and open subgroups of the Sylow pro-p subgroups of the autornorphism

group of the ring lF[[t]], where IF is a finite field of charaeteristic p. This group

has been studied by D.Johnson and I.Yo rk.

Alexander Lubotzky

On groups of polynomlai subgroup growth.
Let r be a finitely generated group, an(r) the number of subgroups of r

of index n. The following theorem is the accumulation of results of D.Segal,
A.Mann and A.Lubotzky.
Theorem· Assume r is a residually (finite-soluble) group. Then an(r) grows.

polynoially if and only if r is soluble of finite rank.

The proof uses the theory of p-adic Lie groups, algebraic and arithmetic

groups and the prime number theorem.

Angus Macintyre

P-adlc Poincare'series: unlformity in p.

P-adic integrals jlf(X)lSldxl are rational functions of p-s under very

general assumptions on definability of A and 1. This was proved by Denef

(plus van den Dries in the greatest known generality). There are applications

to nilpotent and polycyclic groups. The praof is explained, and its defeets for

getting precise information. Uniformity of rationality in p is obtained by working

in many-sorted languages.

It is suggested that results of the above type, including the underlying

elimination theory, be done directly inside p-adic analytic groups.
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Avinoam Mann

Group theoretical applications of p-adlc analytic groups.
Residually finite groups can be studied by their profinite completions.

This is particularly useful for res.-p groups, whose pro-p-completions are p­

adic analytic, because the analytic groups are linear. Using deep theorems

about finite groups, we can sometimes reduce from res-finite to res-po
Examples are:

(a) A.Lubotzky : Linearity Criterium (J.Alg.113).

(b) Residually finite groups of finite rank are virtually soluble (Lubotzky-

Mann, Math.Proc.Cambridge PhiI.Soc.,1989). •

(c) Groups with polynomial subgroup growth, described in A.Lubotzky's
talk.

(d) An alternative proof for Gromov's theorem about polynomial growth

for res.-finite groups (see also Prof. Grigorchuk's talk).

Avinoam Mann

Subgroup .growth and probability.
A profinite group G is positively finitely generated (PFG), if for some k, the

set of k-tuples that generate G has apositive measure. Free profinite groups

are not PFG (Kantor-Lubotzky), but all linitely generated pro-:nilpotent groups
are. A group in which the number of maximal subgroups of index n is

bounded by apower of n is PFG. For pro-soluble groups, and maybe 10r all
profinite groups, the inverse implication holds. It also seems possible that all

pro-soluble groups are PFG. We also remarked on an application to groups
with polynomial subgroup growth, etc.

B.H.Matzat

Profinite Hurwitzlan Braid Groups
Structure of the (Artinian and) °Hurwitzian braid groups - Structure of the

profinite completi~n of the Hurwitzian braid groups - The Hurwitzian braid

group as Galois group - Rationality criteria for intermediate fields - Rational
places of thair fields of definition.

O.V.Melnikov

Comblnatorial profinite group theory: a homological approach.
The purpose of the talk is to survey racent results on profinite groups

aeting on profinite trees. A profinite graph r is a tree if its naturally defined

augmented chain complex C(r,t) has trivial homology groups. Let a profinite

group G act on a tree r . Then C(f,1) is a short exaet sequence of t([G)) •
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modules and gives an exact sequence of Mayer-Vietoris type conneeting the
homology groups of G and the stabilizers of vertices and edges of r. The

introduetion of such nations as segments between couples of vertices and
minimal G-invariant subtrees in r permits to use geometrical intuition in the

investigation of the strueture of G. In particular a description of such groups G

without non-abelian free pro-p-groups is obtained. The results are applied to
profinite fundamental groups of graphs of groups.

Thomas Müller

Counting free subgroups of finite Index in virtually free groups.
We investigate the growth behaviour and the asymptotics of the number

of free subgroups of given finite index in a finitely generated virtually free

group G. Stallings' strueture theorem is used to represent G as fundamental

group of a finite graph of.finite groups in the sense of Bass and Serre and the

asymptotic behavior of the number of free subgroups of finite index is

described in terms of such a decomposition of G. Furthermore we consider the

question as to what kind of information on the strueture of G is contained in the

number of free subgroups of finite index and as to what extent this

combinatorial information determines the group G. Most of our main results

depend on properties of a new combinatorial strueture. an infinite triangle of

rational numbers generalizing Pascal's triangle, which is associated with

eertain valuations on a finite conneeted graph.

References:

(1) Th.Müller, Combinatorial aspeets of finitely generated virtually free groups,
to appear in : J.London Math.Soeiety.

(2)Th.Müller. A group-theoretical generalization of Pascal's triangle, submitted

to: European J. of combinatories.

Franeis Oger

Finite images, cancellation properties end elementary
equlvalence of groups.

For several elasses of groups. we eompare equivalence relations like

,this: 1) G and H have the same finite images; 2) G and H belang to the same
genus; 3) G x Z and H x Z are isomorphie; 4) G and H" are elemantarily

equivalent. We show the following results:

Theorem 1 Any finitely generated abelian-by-finite group is an elementarily .

subgroup of its profinite completion.

Corollary. Two finitely generated abelian-by-finite groups are elementarily

equivalent if and only if they have the same finite images.
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Theorem 2. If G and H are finitely generated finite by nilpotent groups, then G
and H are elementarily equivalent if and only if G x Z ar:td H x Z are

isomorphie.

W.Plesken

Remarks on finite relative coclass
(Report on work in progress with D.Holt)

Let G be a finite group and 1~K~X--+G--+1 be an extension with

K=Op(X) finite. Then coeIG(X):= # G-composition factars of K - nilpoteney class

(K) is the G-relative coclass of X. If K is the maximal pro-p-normal subgroup of

X, then cocIG(X):= lim cocl(XlNi) for a suitable chain of normal subgroups of X.

The existence of extensions of pro-p-groups by a given group G with

preseribed finite coclass is investigated. It turns out that almost all normal
subgroups of X are of the form 'Yi(K) and for suffieiently big i G aets

irredueibry on )l(K)/'YI+1 (K). If K is sol.uble it follows that X is a subdirect product

of an irredueible (even p-universal) p-adic spaee group and a finite group.

Examples show behaviour different from the p-group ease. If K is not soluble,

Chevalley groups of most simple split Lie algebras over discrete complete

valuation rings provide examples under mild assumptions on the residue class

field.

Florian Pop

Classically projective groups and pseudo-classically closed fields.
The following generalisation of results on PRC, PpC fields arid

correspondingly, real projective • p-adieally projective groups was discussed:

A. Let K be an arbitrary field. We say that K is pseudo-classically closed if

there exist finitely many classical fields Itk (k=1 ".n) sueh that: any absolute
irreducible variety V/K has K-rational points if it has regular A-rational points

for all A ~ K ,A= kk for same k.

B. Let G be an arbitrary profinite group. We say that G is classically
projective i1 there exist finitely many classical Garois groups Gk == Gltk (k=1 ...n)

and closed subspaees (lk ~Subg(G) consisting of subgroups r == <Bk such

that: any group extension of a finite group H by G : 1-+H-+F.!4G--+1 is split, ilf

all "Ioeal extensions" 1-+H~7t-1 (r)-+r~1 (re a )are split.

Theorem: A profinite group G is classically projective iff there exists a
pseudo elassically closed field K such that GK == G.

•

•
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Alexander Prestel

Fields elementarily characterized by their absolute Galois group.

Let K be a field of characteristie zero. We call K elementarily

characterized by its absolute Galois group G(K). if every field L of characteristie

zero with G(K)=G(L) and L=LUJ is elementarily equivalent to K (in the

language of fields). From the work of Tarski and reeently Pop it is known that

the loeal fields lC,(R and (!Jp are elementarily characterized by thair absolute

Galois group. The same applies to their algebraic parts (CnlD .lRniD and (Qpnlij .

We proved:

Theorem: Let K be elementarily eharaeterized by G(K). Then K is iD or IRn(Q or

some (algebraic) extension of lDpnOj for some prime p.

V.N.Remeslennikov

On matrix pro-p-groups (On Zulkov's result)
1.Representation of pro-p-groups by matrices.

Let R=Zp[[Xij(k), 1:9.j~n. k=1 ,2...)] be a pro-p-ring of formal power series

with commuting variables Xij(k) over the ring of p-adie integers.

The group Hn(p) =<Ak+(xq(k)). k=1 ,2...> in GLn(R) is called a pro-p-group of
generic nxn-matrices.

~ If p~2 then H2(P) is not free.

Corollary· If p~2 then there is a standard pro-p-identity which holds in any pro­

p-subgroup of GL2(K). where K is any prof.inite ring.

Problem· Let p=2. Is the group H2(2) free or not? This is unknown even for the

pro-2-subgroup of GL2(Z2[[tlJ} generated by matrices O~). (~~).

2. Varieties of matrix groups.

Let V be a variety of pro-p-groups. generated by H2(P). p*2. Let Vm be

the variety generated by the group H2(p.m) ( in the definition of H2(p) the ring
lp is substituted by the ring z/pmz ).

~ Any proper subvariety of V is contained in NcA or VmNcA. Here Ne
is the variety of all nilpotent pro-p-groups of nilpotency class ~ c , and A is the
variety ar all abelian pro-p-groups. .

~ Any subvariety V which does not cantain the subvariety V1 is locally
soluble.
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Luis Ribes

Almost Free Factors of Pro-p Groups
Marshall Hall has proved that if F is a free abstract group and H a

finitely ~enerated subgroup, then any basis of the free group H , can be

extended to a basis of some subgroup N of finite index in F. In other words,
N=H • K , for same subgroup K of N, where denotes the free product of H

and K.

In this paper we consider the M.Hali property in the context of pro-p

groups. First we study free pro-p groups in connection with that property, and

we prove that every (topologically) finitely generated closed subgroup H of a •

free pro-p group F of arbitrary rank, is a free factor of same open subgroup of

F, Le., there is an open subgroup U of F .such that U = HllK, where K is a

closed subgroup of U, and II denotes the free pro-p product of pro-p groups,

Le. the coproduct in the category of pro-p groups. This extends a result of

A.Lubotzky, who proved this for pro-p groups of finite rank. Dur proof isbased

on a charaeterzation of those finite subsets of a free pro-p group F, that can be

extended to a basis of F converging to 1.

Dur main result deals with pro-p products of pro-p groups, in connection

with the M.Hali property. Consider (topologically) finitely generated pro-p

groups Gi (i=1 ...n) , with the property that 10r every (topologically) finitely

generated. closed subgroup H 01 Gi, there exists an open subgroup U of Gi

such that U =H II K , for same closed subgroup K; then we show that thair

free pro-p product G = G1ll ...IlGn ,satisfies the same property. This theorem

generalizes a result of W.Herfort and the author.

J.Ritter

The Frattini subgroup of an absolute Galois graupe
This talk which reports on joint work with Moshe Jarden is about the •

Frattini subgroup 01 an absolute Galois group of a number field or a local field.
Let firstly K be local; 10r simplicity KllDp finite. Define T to be the maximal

tamely ramilied extension of K and Tp be the maximal p-elementary abelian
extension of T. The Galois group V=Gal(Tprr) is a I~ IFp[Gal(UK)]-module with

·L ranging over all finite tamely ramified extensions of K. Define j(V) to be the

intersection of all maximalsubmodules of V (the Jacobson radical) and let J

be the corresponding fi.eld.

Theorem' J is the fixed field of the Frattini subgroup of GK.

In the global situation the picture is quite different.

Theorem: The Frattini subgroup of the absolute Galois group as weil as its

maximal soluble factor of a number field is trivial.
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N.S.Romanovskii

Pro-p-groups, which have a small number of defining relations.
We say that a generalized Freiheitssatz holds in a variety n of (profinite)

groups. if tor each group G • defined in 11. by means of n generators X1, .•• ,Xn

and m defining relations 't1 •...•tm (n >m). fram these "generators we can choose
such n-m elements Xi

1
•..• Xin_m ' that these elements freely generate a free Mo-

group.

Theorem 1· A generalized Freiheitssatz holds in the class of all pro-p­

groups in each variety Ak 01 soluble pro-p-groups and in each variety Nk of

nilpotent pro-p-groups.

Theorem 2: Let F be a frae pro-p-group with a base X. re F • G =<X I r>

is a pro-p-group with one relation. Then
(1) the faetors G(i)/G(i+1) are torsion free groups il and only if there isn't any

element s from F, such that r == sP mod F(k+1), where re F(kl\F(k+1).

(2) il the latter condition is satisfied then the group algebra ZpG is a domain

and cd(G) ~ 2.

Marcus du Sautoy

"Finitely Generated Groups, p-Adlc Analytic Groups and Poincare
Series.

Let r be a group and denote by an(r) the number 01 subgroups 01 index n

in r. 11 r is finitely generated then an(r) is finite for aach n. We consider the

following Poincare series we can associate with r , 10r each prime p:

~r (s) = t a n (r) p-ns.
,p n-o P

Question 1.
Far which finitely generated graups r is ~r (s) a rational function in p-S?. .p
Segal. Grunewald and Smith praved that ~r (s) is rational if r is a finitely

.P
generated torsion-tree nilpotent graup.

Exploiting the special architectural features of pro-p groups discovered by

Lazard. together with recent logical results due to Denet and van den Dries

concerning the analytic theory of p-adic integers, we prove:

Theorem 2. Let G be a compact p-adic analytic group and denote by An(G)

the number of (open) subgroups of index n in G. Then

~G (5) = t A n (G) p-ns.
,P n=O P

is rational in p-s.
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G.Schlichting

Structure of groups and graphs.
There are two remarkable theorems concerning the structure of. locally

fin~te, connected graphs 9=(V,E) with transitive groups of automorphisms due
to V.I.Trofimov.

Thm A ('83)' There exists a transitive subgroup G of 8(9) (bounded

automorphisms) if and only if there exists a B(9)-invariant (even Aut(Cj)­
invariant) partition y of V into finite parts such that 8(9) Iy aets freely on y as

a finitely generated free abelian group of finite rank d~O.

Thm B ('84)' Yn :=(9n(x» is of polynomial growth if and only if there exists a

Aut(9)-invariant partition y of V into finite parts such that Aut(y) is finitely

generated of polynomial growth and stabilizers of points are finite.

We relate these resutts to the structure theory of tocally compact groups

with relatively compact conjugacy classes. This is dona with. the aid of
Thm C . Let H be a locally compaet group, r a compaet open subgroup and H

compaetly generated such that H=HFC-r. (HFc:={ge HI [gJH relatively compact})

Then HFC is closed, [H:HFcJ<oo and there exists a compaet-open subgroup

K:s1H.
Applicatioo' For G finitely generated virtually nilpotent, torsionfree and
G=<E>, E finite, the set {g: G--+G bij. : g(xE)=g(x)E , g(1 )=1} is finite.

D.Segal

Quick and easy analytic pro-p group~

A survey of the theory of pro-p groups of finite rank, based on the theoiy

of powerful pro-p groups due to Lubotzky and Mann. Main results: f~r a pro-p
group G,

G has finite rank <=> G is 1.g. and virtually powerful

<=> G is 1.g. and virtually uniform

.<=> (M.Lazard) G has a p-adic analytic structure

If Go is uniform, one defines an intrinsic structure of lp-Lie-algebra on Go. As

a consequence', if G has finite rank then G is abelian - by - (linear over Zp).
The approach is taken from forthcoming book "Analytjc pro-p graups" by

J.D.Dixon, A.Mann, M. du Sautoy and D.Segal.

D.Segal

Subgroup counting problems, zeta functlons and Poincare series.
Far a finitely generated group G ,define an =an(G) = #{HsG I IG:HI=n}.

•

•
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~G(s) = :Eann-S
• If G is a J-group (torsion-free. finitely generated nilpotent):

0=1

then ~G(S)= n ~G (s) where ~G (s) = ta n p-ns.
p a pnme .P .P 0=0 P

Ib.rIt ~G (s) = Fp(p·s) where Fp(x) e Ol(x).
tP

I sketched the proof. and stated a number of open problems, such as (1) how

does the rational function Fp(x) vary with the prime p? (2) What is the abscissa
of convergence of ~G(s)?

Beference' "Subgroups of finite index in the nilpotent groups", by

• F.J.Grunewald, D.Segal and G.C.Smith. Invent. Math. (1988).

Aner Shalev

Pro-p-groups and p-adic analytic groups
Becently. Zelmanov gave an affirmative solution to the longstanding

restrieted Burnside problem. I will describe some applications o·f this important

development to the theory 01 finitely generated pro-p groups and p-adic

analytic groups.

In particular it will be shown that I.g. pro-p groups which are not p-analytic

must involve arbitrary large wreath products. This gives rise to some new

characterizations of p-adic analytic groups.

Christian Siebeneicher

Witt-vectors for pro-finite Groups
Theorem' Let G be a protinite group, O(G) the set of open subgroups of G.

There exists a unique funetor WG: COol. rings ~ com.rir:Jgs such that:

• WG(A) = AQL.al = { a: O(G) ~ A Iconstant on conjugazy classes}

• WG(f)(a) =10 a tor f: A--+ B • Cl E WG(A)

• • For each UeO(G) one has a natural transformation (f)u : WG -+ identity such

that for every aeWG(A) one has:

<bu (a) = 1: I - <p (GN) a(V)CV:U)
. ~VEO(G) u

( U-SV means : U is subconjugate to V • <p (GN)=(GN)v= number of U-invariant
u

elements in the coset GN , summation is taken over conjugacy classes)

• WG(Z) == Q(G) , the Burnside - Grothendieck ring of those discrete G-spaces
X , fer which cp (X):= # XU < 00 for every Ue O(G).

u

Bernadss'

• WG = universal Witt vecters (p Witt vectors) it G is the pro-finite (pro-p)

completion of the infinite cyclic group.
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• Restriction and induction induce natural transformations, spezializing to
Frobenius and Verschiebung; Frobenius reciprocity and Mackey's formula

provide identities, wellknown for Frobenius and Verschiebung.

(A.Dress-Ch.Siebeneicher, The Burnside Ring of Profinite Groups and the Witt
Vector Construction, Adv. in Math., vol.70 (1988»

Helmut Völklein

The Inverse Galois problem and rational points on moduli spaces.
This is an account of joint work with M.Fried. For any .finite group G that •

has a self-normalizing subgroup U with () U9 =1, and for any r ~ 3 , we
geG

construct a (usually reducible) variety K = Kr(G) defined over [J , with the
following praperty:

Far any field k of characteristic 0, G is the Galois group of a regular
extensien of k(X) with r branchpoints if and only if the variety K has a k­
rational point.

Further we show that for each finite group H there is a finite greup G with

quotient H that has a subgroup U as above, and that has the tollowing
property:

For suitably large r, the space Kr(G) has an absolute irreducible
component defined over (0. This component has a point rational over P tor
any given PAC-field P of characteristic 0, henca every finite group is the
Galois group of a regular extension of P(X).

Thomas Weigel

Residual Properties of Free Groups
W.Magnus formulated the following problem: Let be X an infinite set of

finite non-abelian simple groups. Is it true that any non-abelian free group of

finite rank is residually X?

Although this is still open, there is much k~own in the ease that X contains

special elasses of finite simple groups, e.g. if X contains an infinite set of

alternating groups or of classical groups, then Fn is residually X.

Us~ng easy arguments of algebraic ge'ometry, 9.g. the Lang-Weil Theorem and

'in~ersection theery on a lew level, and the knowledge of the subgroup

structure of finite simple groups the following is preved:

Theorem· Let X be a class containing an infinite set of exceptional groups of
Lie-type not of type 282.2G2,2F4 then Fn is residually X.
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Kay Winberg

Decomposition of a pro-p group as a free pro-p product.
An analogue of Bieri's and Eckmann's theorem concerning the

decomposition of a finitely presented discrete group of cohomological

dimension 2 in a free produet of duality groups is unknown in the pro-p case.

However, 10r the Galois group Gs of the maximal p-extension ks{p) of a number

field k which is unramified outside a finite set S 01 primes of k including the
primas p and 00 one can prove:

Gs is either a duality g~oup or a free pro-p-product of decomposition groups
and a frae pro-p-group. In particular, Gs is always a free pro-p product of
duality groups.

Furthermore the proof of the following result was explained:
Let G be a free pro-p-group with an action of a finite abelian group 8 of

exponent p-1. Then G has a decomposition in a free pro-p-produet
G = * .UX ,where for each charaeter XE ~. the closed subgroups UX is

XeA

~-invariant and (uX)ab = (Gab)X .

P.A.Zalesskii

Combinatorial Theory of Profinite Groups: The Homotopical
Approach.

The concepts of Galois-covering and fundamental group of profinite
'graphs are introduced. A simply connected profinite graph is defined as a

graph with trivial fundamental group. Furthermore, the profinite variants of a

graph of groups and its fundamental group are given. We present criteria for

the representation of a profinite group G as the fundamental group of a graph

of profinite groups, in terms 01 the connectivity and the simple connectivity of a

eertain standard graph S(G). We show how these criteria can be used to

prove a Kurosh subgroup theor.em for open subgroups of Mel'nikov's a'1d
Haran's free profinite products.

Berichterstatter: Th.Weigel
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