
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 21/1990

Abstrakte Konvexe Analysis

13.5.bis 19.5.1990

Die Veranstalter waren Heinz König (Saarbrücken) und Helmut H.

Schaefer (Tübingen). Es waren 4S-Teilnehmer anwesend, davon 20 aus dem

Ausland. Es wurden 35 Vorträge gehalten, davon 13 mit 45 Minuten und

22 mit 30 Minuten Dauer.

Die Tagung stand einerseits in der Tradition der "allgemeinen"

Tagung über "Funktionalanalysis", die vor etwa drei Jahrzehnten

von dem im Jahre 1989 verstorbenen- Gottfried Köthe begründet worden

war. Es sollte andererseits durch die Namensgebung ein entschiedener

neuer Akzent gesetzt werden-: In letzter Zeit wurde in weiten Teilen

der Analysis und in benachbarten Disziplinen deutlich, daß ein Bereich

"abstrakte konvex~ Analysis" zentralen und ordnenden Charakter annimmt.

Die Tagung sollte dazu beitragen,diese Entwicklung zu klären und zu

-fördern. So waren. im Kr'eis der Teilnehmer neben der konkreteren und

der abstrakteren konvexen Analysis und der "konventionellen" Funktional­

analysis eine Reihe von anderen Bereichen vertreten, in denen die

Konvexität eine bedeutsame Rolle spielt. Demtentsprechend zeichnete

~) sich. die Palette der Vorträge durch eine erfreuliche Breite aus

(freilich nicht auf Kosten der Ti~fe!), und es herrschte nach dem

Eindruck der Veranstalter ein Klima der besonders lebhaften Diskussion.

·Unter den "Anwendbarkeitsbereichen" der "abstrakten konvexen Analysis",

die durch mehrere Vorträge vertreten waren, seien erwähnt: die Geome­

"trie der Banachräume, positive und monotone Operatoren, Ha~bgruppen

und Evolutionssysteme, Funktionenräume und punktweise Kompaktheit,

Maßtheorie, mathematische Ökonomie.

Die Tagung konnte nach dem Eindruck der Teilnehmer zu einer im Fluß

befindlichen Entwicklung einen wertvollen Beitrag leisten. Es erscheint

hiernach geboten, in Oberwolfach immer wieder Tagungen von solchem

_"integrierenden" Charakter abzuhalten.
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R. BECKER:

CODes ID Banaeh spaces and Integral representatlon

I will develop 5 main points:

1) Cones. contained in a Banach space or its dual. which carry only localizable

conical meas ures

2) -Characterization of non-reflexive Banach spaces with the help of cones

contained in their dual

3) Embeddings of weakly complete cones. contained in a Banach space. inta a

reflexive space

4) Characterization of operators by properties involving straitening of cones

5) Some remarks concerning integral representations ( dealing with examples

in the frame of the theory of Edgar's theorem)

J. BONET:

ProJectlve tensor product of dlstlngulshed FrAchet spaces

The following question is treated : Let E and F be Frechet space·s "which are

distinguished. is the complete projective tensor product E ~1tF also distin­

guished ? The problem was alreadyconsidered by Grothendieck in t954. A

negative solution was obtained by S. Dierolf. In joint work with K.D. Bierstedt

we proved that At (A) ~1t F is distinguished if and only i~ (j) At (A) is Montel

and F is distinguished or tU) Al (A) is distiilguished and 11 ~1t Fis distinguished

<i.e. F has Heinrich's density conditionL Taskinen found a Frechet Montel

space F0 such that F0 ~1t F0 is not distinguished. On t"he other hand Bierstedt

and I proved that if E and F have the density condition and the problem of

topologies of Grothendieck is satisfied by E ~1tF . then E ~1tF also has the

density condition. Jointly with J. Taskinen we constructed a quojection F "_

such that F ~1tF does not satisfy the problem of topologies of Grothendieck.

B. eARL:'

Large proJectloDs In l~

Let E be a Banach space and L(E.E) the Banach space of all (bounded linear)

operators from E inta E. The relative projection constant A(M.E) of a subspace

M c E is defined by

'AtM.E) ;= inf { 11 Pli: P E L(E.E) projection with P(E) = M } •
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and the k-th projection co·nsta.nt Ak (E) of the Banach space E by

Ak(E):= sup {A(M.E)·: M c E. dirn M =k} .

The value Ak . roughly speaking. describes the smallest possible norm of a

projection onto a "badly" complemented k-dimensional subspace of E. We

show that the k-th projec.tion constant of an n-dimensional subspace E of l~
satisfies the estimate I •

1 s: k s: n s: N . N = 1.2..... where C ) 0 is a numerical constant. The result is

implicitely contained in a joint paper with A. Pajor : Gelfand numbers of

operators with valuesin HiJbert spaces. Inventiones Math. 94 (1988). 459 ­

504.

V. CASELLES :

ApproxlmatloDs of positive operators and contlnulty of the spectral r~dlus

We prove convergence results for the peripheral spectrum and peripheral

eigenvectors when a sequence Tn of positive operators in a Banach lattice E

approximates a positive irreducible operator T on Esuch that the spectral

radius r(T) o{ T is a Riesz point of the spectrum of T <i.e. pole of the resolvent

of T with a finite rank residuum) under some conditions on the kind of approxi­

mation of T n to T. The Banach lattice E is a weakly sequentially complete

Banach lattice. We prove it first for dual Banach lattices with order con'tinuous

norm. The step to a general weakly sequentially complete Banach lattice is

clone through interpolation theory .

Generallzed IDductlve lJmlt "topologles on Rlesz spaces

The characterization- of weakly compact subsets of LI in the Dunford-Pettis

Theorem can be used to show that the Mackey topology t(Loo.L t ) is the finest

locally. convex topology on Loo which coincides on the norm-bounded sets of

Loo with the' topology t m of convergence in measur~; t(LQ),L t ) is therefore an

example of a generalized inductive limit topo!ogy. The following quest ions

are therefore of interest : If L is a Banach function space. is there a (inest

locally convex topology .coinciding on (a) the order bounded sets (b) the norm
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bounded sets in L with t m ? If so. can its equicontinuous sets be characterized ?

Suitably ~eformulated. these quest ions can be asked in the context of Riesz

spaces. We give partial answers to these ques~ions and indicate the important

role played by the Leb~sgue dominated convergence theorem and its generali­

zations in this regard.

A. DEFANT:

Tensor products of operators between Lp ~ spaces

For k = 1.2 let T k E t.. ( Lq (~k) , Lp(Vk») . When is

Tl 0 TZ : Lq (lll) 0.1 Lq (IlZ) - Lp(\ll) 0.1 Lp(\lZ) •
. q P

co~tinuous ? Here Aq stands for the natural norm on Lq «(.1t) ~ Lq «(.12) induced

by Lq «(.11 ,Lq (1l2>). It is well-known that,. if one of the operators is positive,

then liTt ~ T 2 11 = liTt 11 IIT211. W. Beckner proved the same norm estimate if

the T k are arbitrary and t ~ q ~ p ~ 00 • For 1 ~ p < q ~ 00 one gets continuity

of T 1 ~ T 2 under the assumption that p ~ 2 ~ q. However, this is, false if

p < q ( 2 or 2 < q ( p. as observed by G. Bennett.

In the present talk several extensions, supplements and applications of these

results are given, for example : If t :!i: P < q < 2 then

sup{ liTt 0 TZ : I~ 0 dq I~ - I: 0 dp 1: 11: IITt ll ,; L IITZII ,; t} )( (l~g n)~ •

which answers a conjecture of Rosenthai and Szarek in the positive. The

results are joint work with Bernd earl.

s. DIEROLF :

Same remarks on dlatlD8uIshed space.

We present an example of a distinguished Fr~chet space whose bidual is not

distinguished. This gives a negative answer to a question of A. Grothendieck •

(1954), We achieve such examples by provi,ng the following characterization :

Proposition Let Y, X be Banach 5pace5 and f : Y • X a continuous linear map.

Then for the Fr~chet 5pace

F := { (xk)kE IN E y lN : ( f(xk »kE IN E loo(X)}

tOhe following' assertions are equivalent :

a) F 15 di5tinguished ;

b) f 15 open anto its range;

c) F i5 quasinormable ;

d) F i5 a quojection .
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Consequently. whenever Y.X are Banaeh spaces and f : Y ... X is a continuous

linear map with proper dense range. the Frechet space
IN

E := {(Xk)kE IN E Y : ( f(xk»)kE lN'e coeX)}

is distinguished. and its bidual
.. .. IN tt CD ..

E := {(Xk)kE IN E (Y) : (f (Xk)kElN EI (X )}

is not distinguished. The results are joint work with J. Bonet and C. Fernandez.

G. GODEFROY :

An appUcatloD oE Baln'. theorem"to multlpUers

In this joint work with F. Lust-Piquard. we show that the set of fixed points

of an isometrie bijection on the dual of any Banach space is stable under

weak-.-limits of weak Cauehy sequences:· the proof -relies on a Baire eategory

argument. An application is : if G is an abelian compact metrizable group ~nd

A is a subset of the dual group r such that the space '"Ac is stable under the
Radon-Nikodym projection. then any multiplier from L~ to CA is the restriction

to L~ of the eonvolution"with a function of LI.

B. GRAMSCH:

Oa the .tructure of the set of Idempotent elements In topolo81cal algebra•.

The set of idempotent elements of a top.ological algebra with an open group

of invertible ele~ents and continuous inversion is a discrete union of locally

rational homogeneous manifolds. Besides CCD(o.!.eCCn »1 0 compact 1 and the

Hörmander classes of pseudodifferential operators there are many other

Fr~chet algebras which fulfill these requirements. Porta and Recht (1987) and

Salinas (1988' introduced a covariant differentiation for the manifold p of

idempotent elements in C· - alge"bras ; along these lines they got an explieit

form for the geodesics in 'j). From the point of view of Frechet algebras of

pseudodifferential operators this gives .the possibility for a "dynamic"

definition of the geodesics which fits also submanifolds of Fr~chet algebras

where a Riemannian structure is missing. A completedescription of the

periodic geodesics in pC'Y) is given. This characterization might be new also

far finite dimensional C· - algebras. The methods provide applications of

relative inverses, homotopy theory and the Oka-principle for complex

Fre chet-Lie- groups. The results have been obtained partly in collaboration

with K. Lorentz and J. Scheiba.
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R. GRZASLEWICZ :

Extreme Dorms OD IRn

Let Nt. NOO be the "11 - and 100
_ norms on (Rn. We denote by f'J the set of all

norms N on IR n such that NOO s: N s: Nt . The aim of my talk is to present the

characterization of the "extreme points of f'J. We do this by describing the

corresponding unit balls.

J. GUILLERME :

Convergentlal space and compactlng relation

A set X will be said semi-convergential if to every point x of X is associated

a fixed family 8<x) of semi-filters on X. We introduce an ordered class of

(six) nations of "compactin"g relation at a point" between twp semi-convergen­

tial spaces. We prove that the weakest of the previous notions is sufficient

to obtain some results as "the semi-continuity of the marginal function".

Examples are explained. including the classical ··sequential convergences".

W. HACKENBROCH:

Barycentrlc decomposltlon of measure extensions

•

Given an arbitrary family llt . t E T. of probabilities on o-algebras .At on -some

fixed set n. the convex set .At of all common measure extensions of the Pt to

some o-algebra.A containing all .At is studied. As in the case of extensions· of

one measure. the extremal. points of ,Nt are described by a criterion of the

type of ··subspace densi.ty" (R.G. DouglasL If T is countable. all o-algebras

.At. and ,4. are countably generated sub-o-algebras of some o-algebra S
which makes (O,S) a Blackwell space, each II E .At admits a barycentric decom":' •

position

II = J v p(dv)
ex ,M

in the sense of v. Weizsäcker - Winklet". Assuming that. for some fixed sub-o-

algebra "'8 C tr)T,4t · all llt 1'"8 := llo agree and <.At )tE T is "'8-conditionally inde-

pendent (Le. At E .At n At =, ~ n( E~ XA
t

) =0 llo-a.e.). by

ll(nAt) =J TI( E?! XA ) dllo an additive common extension is given. whose
r-t t .

image II 0 t- 1 under the canonical measurable imbedding t of (Cl: tYT ,At) ioto

the product space (0T: 0 ,At ) is even o-additive if all but ODe of the con­
tE T

ditional expectations E~ admit regular versions. Il is generally not extremal.
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H. HUDZJK:

. .
Extreme points, expos~d points and smooth points of Or1Jcz spaces equlpped
wlth Luxemburg and Or1Jcz narms

Some criteria far extreme points.. exposed points and smooth points of the

unit sphere of Orlicz sp.ac~s (or of their subspaces of order continuous ele~

ments) equipped with Luxemburg norm as weIl as equipped with Orlicz norm

are given in terms of the generating Orlicz function.

K. JANSSEN:

Decomposltlon of polysupermedian measures

Denote by 'PS the class of measures which are polysupermedian for an at

most countable family 'P of I-parameter-semigroups of kerneis on a· nice

measurable space. Existence and "unicity" of a Choquet type integral represen­

tat ion by minimal elements is shown to hold in "PS. For the larger class of

measures which are only supermedian for each semigroup in 'P t~e corr~spon­

ding compactness properties hold but unicity fails. The partjcular example ';f

representing completely monotone measures by eigenme~sures (joint work

with H. Ben Saad (Tunis» is discussed.

J. KLUVÄNEK :

Convexlty and Integration

Given are: aspace. 0 : a family (a quasiring) .0 of subsets of 0 :". ~ family. !'J ..
of exceptional (nulD sets: a non-negative additive set function. A. on .0 such

that A(Z) = O. for every Z E .Q nl'J : a locally convex space. E. !=ontinuously

• imbedded into a Jocally convex space F: and a property. (PI. which an additive

set function. v : .Q ~ E. may or may not have (such ~s being a-additive. having

bounded variation. being A-continuous. etc.L

A function. f: n ~ F. is said to be (E.,Q.!'J.(P»-integrab)e with respect to A. jf

there exists a unique additive set function. v : .Q ~ E. with the property (P)

such that

v(X) E A(X) n C'O{f(w): w E X\Y} ,
YE!'J

for every X E .Q . By the choice of E, F, O,!'J and (P), one can obtain different

old and new classes of integrable functions (Riemann, Lebesgue, Perron.

Bochner. Pettis, ... L
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Helnz KÖNIG:

Th~ Embeddlng of Convex and Superconvex Spaces

This is joint work with Gerd Wittstock. The problem is whether and when a

convex resp.superconvex space X. I On the sense of the author's report in

"Aspects of Positivity in Functional Analysis". North Holland 1986. pp. 79-118)

can be embedded- (in the obvious sense) as a convex subset into areal vector

space resp .. as a O-convex ~ubset into a Hausdorff topological vector ~pace.

In the convex case this is possible. by a standard algebraic procedure. iff X. I

satisfies the so-called cancellation law. Thus a superconvex space X, I with

the cancellation law can be embedded as a so-called superconvex subset Y c E

into areal vector space E. defined to mean that the natural convex structure

of Y can be extended to some (and hence to a unique) superconvex structure.

One can of course assurne that Lin(Y) = E~ The main result then says that the

Minkowski functional e for conv(Y U (-Y» is a norm on E in which E is

complete. Thus Y becomes a bounded superconvex and hence o-convex subset

of the resultant Banach spaee (E.a>.

HermaDn KÖNIG:

Entropy number. and weak type p .paces

Let X be a type p spaee. By a result of B.Carl, the entropy numbers of any map

S : Ir ~ X satisfy
-1/ I 1/ I

(U ek(S) ~ c k .p loget +~) p IIS 11 (k ~ n)

and in partieular

(n E IN) .

He.r:-e 1/ p + l/p l = 1. For p < 2, it is shown that actually (1) and (2) are

equivalent: both are equivalent -to X being of weak type p. Le. the type p

inequality holding for vectors of equal norm only.

s. KREMP:

A.ahort proof of the aDgellc theorem for contlnuous fUDcttona on web.-compact
apaces

For a Hausdorff topological spaee X. let C(X) denote the space of all real­

valued continuous functions on X. endowed with the pointwise topology. In

1987 J. Orihuela established the angeHe eharacter of the space C(X) for a

wide class of topologi.eal spaees X, which he called web-compact spaces. In

•

•
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our talk we present a short proof of this result which is based on a new

character:izatlon of the web-compact spaces as stated below.

A Hausdorff topologlcal space X is web-compact If an'd only if there exists a

dense subset U of X and a semimetric d : U x U ~ [0.1] such that the followi~g

two properties are fulfiIled:

(i) Every d-convergent sequence in U is relatively countably compact in X;

(ii) U is separable with respect to the semimetric d, that is there exists a

countable subset D of U such that Öd = U.

G. LUMER :

Avera.1D. t inte.rated seml.raupst and BeneraUzed solutions for llnear
evolutioilBrY systems

X i~a Banac"h space. We consider the general evolution problem
1 .

(1) u' = Au+F(t). u(O) = f (F E Lloc ([O.+co[,X)~,

where A is a .linear operator in X, closed and such that 0 is the only solution

of "u
l

= Au, u(O) = 0" . For n ~ 1, vn is called an n-strong generalized .solution

(n-s.g.s.) of (U. and vn an (~-t)-mild generalized solution «n-t}-m.g.s.) of (1),

iff it is a classical solution of:

v~(t) = A vn(t) + (tn - 1/(n-UO f + .Fn(t), vo(O) = 0,
. t.

where Fn(t) = f «t-s)n-l/(n-1)!) F(s)ds ; "O-s.g.s." ~ "classical solution".
o

The generalized average solution of order n ~ 1 is 0n(t,f). = (n/tn ) Pn(t)f;

<'i(t.f) = Po (t)f. ,Zn := { fEX: 3 a n-s:g.s. , V n = vn(t,f), of (1) with F=O,

and u(O) = f }. For f E ~n' set Pn(t)f = v~~t.f>' Under r~ther mild a.ssumptions

on F(t) (Zn+l ~ valued). one shows that for f E Zn+l (n=0,1,2 •... ),
t.

(2) wn(t) = Pn(t)f + I Pn(t-s)F(s)ds
o

gives an n-m.g.s. of (1). One shows that Pn(t) : Zn+l ~ Zn+1' and on Zn+l
n-t k k .

Pn(t)Pn(s) = P2n(t+s) - I: (I/kU (s P2n-k(t) + t P2n-k(t») for t,s ~ O.
k=O

(which reduces for n=O to the' usual po(t)po(s) = (>o(t+s». A fuH t.heory is

developed far generalized solutions and· evolution operators Pn(t) (which

give n-times integrated semigroups when Zn+l = X, while in general Zo C Zt

c' ... C Zn C ... and all Zn may weIl be ~ XL There are many applications : to

perturbation problems, problems in age-st'ructured population dynamics,

diffusion problems with discontinuous boundary behavior (leading to very

explicit formulas in the case in which we deal with bounded domains in [R3

"very regular" in the sen.se of Lions>.

8y such methods - and with additional very recent results of this ~ind -. ODe

can on one hand deal very nicely with problems in which the solutions are' not

exponentially bounde~. and on the other hand clarify considerably the
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situation for dissipative operators by showing :

Theorem If A is dissipative (clo'sed) then either : (i) the Cauchy problem (1)

(F=O) is not solvable on any dense subset of X in whatever n-s.g.s. (j.e. no

matter how large ~ is chosen , or else : (H) A generates at worst a locally

lipschitz integrated semigroup on X (the latter if D(A) is not dense) or an

ordinary semigroup Uf D(A) is denseL

As a consequence. a ~pecial· attention is justified for locally Hpschitz

integrated semigroups. and explicit results concerning the latter are given

and applied to several of the problems mentioned above.

H. van MAAREN:

·Kakutanlls flxed point th~orem for hull spaces wlth finite exchange-number

We present the analogues of Knaster-Kuratowski-Mazurkiewiczls theorem,

Brouwer's fixed point theorem and Kakutani's fixed point theorem in ·.the

context of multiply-ordered spaces and hull-spaces with finite exchange

number. This is done by proving a Sperner-like combinatorial lemma for finite

grids in multiply-ordered spaces. We introduce the topology and convexity in

these spaces which are needed for the continuous variants of this Sperner­

like lemma, ending up with generalizations of KKM's-and Brouwer's theorem.

The Kakutani-like theorem is proved for a multivalued mapping, from a

multiply ordered space to a hull-space, satisfying some continuity-conditions'.

The crucial point in this latter theorem is the equality of the exchange number

of the hull-space and the number of orderings from the multiply ordered

space involved.

R. NAGEL:

Operator matrlcea and reactlon-dlffusloD systems

A system of reaction-diffusion equations can be written as an initial value

problem

(.) ü(t) = A u (t). u (0) = uo

on the product space L2 (O) x... x L 2 (O) and for an operator matrix ,4 = (Aij)nxn'

Aij = aij t::. + b ij (·). It is shown how our "matrix theory" for' unbounded

operator matric~s yields well-posedness for (.) and detailed information on

the qualitative behavior (positivity, stability. convergence) of the solutions.

•

•
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M. M. NEUMANN :

Appllcatlons of Convex Analysis ·to Flows In Networks

We first extend the elassieal feasibility theorem on flows in finite networks

due to Gale and Hoffman to a much broader setting of a measure theoretie

flavour. whieh allows a reasonable interpretation of flows in infinite networks.

Dur approach is based on ·the notion of abiadditive set funetion and is very

different from the classieal arguments· from combin~torics and discrete

mathematics. It turns out that these arguments can be replaced by the power­

ful machinery of convex analysis; actually o·ur main tools are a suitable version

of the Hahn-Banaeh theorem as weIl as the integration theory for submodular

set functions. Dur approach to the Gale-Hoffman type theorem is elose" in

spi~it to corresponding work of Fuehssteiner-Lusky and König-Neumann, but

the technicalities are somewhat simpler and extend to a more general context,

where the capacity constraints are given by certain submodular set functions .

. We thus obtain a generalization of a related result due to °Lawler even i~ the

classical setting of finitely many nodes and ares. We finally discuss I some

applications to dynamic flows in a standard LC»([O,T])-setting, .which incl,",:de

and improve som~ recent results on t-maximal flows due to Ügier. It appears

that the.present approach from convex analysis works under con~iderably less·

restrictive assumptions than the methods from optimal contro!. Further
applications to measure theory arid to mathematical economics can be found

in our joint book with Heinz König on convex analysis and °mathematical

economics.

D.NOLL:

Differentlabillty of Convex FUDctlon8

We discuss differentiability properties of convex functlons defined on small

sets. Here a convex set C in a Danach space E is called a small set If it

contains no (algebraic) interior points. We pose particular emphasis on

phenomena of such functions indicating that their behaviour may be quite

different from that of their finite-dimensional counterparts.

J. ORlHUELA.:

Resolutions ·of Identlty and polntwls8 compactn8sS In fUDctloD spacea .

This is joint work with W. Schachermayer and M Valdivia. We solv·e three

problems posed by Namioka showing that an Eberlein compact is characterized

by beiog a Radon-Nikodym and Corson compact. The Danach space version of

this result says the following: A Banach space E is weakly compactly generated
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if and ooly if the unit dual ball B(E·) is Corson eompaet and E is GSG. Le.

there is an Asplund space X and a cootinuous linear operator T: X ~ E with

dense range. - Our method is based on a preliminary study of Talagrand's

example of a Talagrand eompact space which is not Eberlein. together with· a

eareful study ofthe long sequenees of projeetions. P.R.I. we can eonstruct in

Banach spaces with Corson-compact unit dual ball. - This method lead us to

answer a quest ion of j.E.jayne on the existenee of seleetors for upper-semi­

continuous multivalued maps ~ : M -+ 2 E•. where M is metrie and E· is a dual

Banach space with the weak-. -topology and the RNP. The following result is

a joint wor"k with A. Pallares and G. Vera: If M is metric. E· has RNP and

B(E·) is angeHe. then any ~ as ~bove has a first Baire class selector in the

norm. If E does not have the c-property of Corson. there exists a «l without

such aseleetor. - Our results are strongly related with t.he o-fragmentability

property studied by j.E. jayne. I. Namioka and C.A. Rogers. and a reeent work

by Ghoussoub. Maurey and Sehachermayer. on selection theorems.

M. PANNENBERG :

Positive Operators on Tensor Products. whlch are the Tensor Product of thelr
Restrietions

•

A positive measure on a product space is in general not uniquely determined .

by its restrictions to each of the factors - however. if one of the marginal

distributions ·is a Dirac measure, the given measure on the produet spaeeis

neeessarily the tensor produet of its marginal distributions. The talk will

mainly be coneerned with operator versions of this simple observati?n. dealing

with positive operators' on tensor products of Banach lattices resp. Banach

algebras with involution. It turns out that e.g. a positive operator on a tensor

product of Banach lattices with quasi-interior positive elements ..~s the tensor

produet of its restrietions to the factors If one of them is a lattice homo­

morphism. In the Banaeh algebra setting one observes that a positive operator

on a tensor product of unital C·-algebras resp. unital commutative Banach •

algebras with symmetrie involution is the tensor produet of its restrietions

if one of them is a pure completely positive operator resp. a unital algebra

ho.momorphism. The results allow unified praofs of several Korovkin type

approximation theorems ..

R. R. PHELPS :

Bounded approxlmants to mODotoDe operators OD Banach spaC8S

If f is a proper eonvex lower semicontinuous real funetion on a Banach spac~ E.

then the convex. Lipschitzian everywhere defined functions

fn(x) =inf{f(y) + n IIx-yll : y E E} (x E E) have classically yielded a very useful
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approximating sequence to f. With B- denoting the closed unit ball of E-,

one has af(x)n nB- c afn(x) C nB- and {afn} converges to the subdifferential

af of f in the sense that afn(x) = af(x) n nB- for all x E dom(f). I will describe

an analogue of this latter result for an arbitrary maximal monotone operator

in place of af.

W. SCHACHERMAYER :

Jensen me.sures and plurlsubharmoDlc martlqales

The not ion of Jensen measure is a counterpart to the concept of Choquet

measure~ where the convex functions - which apply to the real case - are

replaced by plurisubharmonic functions.

The mairi theorem. obtained by Shangna~ Bu and the author (T.A.M.S. 1990)

states that Jensen measures on a complex Banach space X (or on a domain

of G: n ) may be approximated by the image of Lebesgue measure on

TI = {z E G: : Izi = t} under analytic functions F : 0: ~ X.

This allows a characterisation of the analytic Radon-Nikodym property of

a Banach space X in terms of convergence of plurisubharmonic martingales.

H. H. SCHAEPER :

On CODvex Hulla

It is shown that if A, Bare convex suhsets of a t.V.S. E, with A compact and

B bounded and closed. <then the convex hull of A U B 15 closed. If, in addition,

E 15 loc~lly convex and A (/ B, then there exists an extreme point a E de A

whlch is extreme in co (A U 8),

The precedlng Is applied to the closed unit ball W of the Interpolation space
LP(O,OO) + Loo(O.OO), which turns out to be W = co (U U V ) where

U = {f : IIfll p ~ t} and V = {g : IIglloo :S; 1}. In particular, we have deW = deU U ae V
(t ~ p ~ CD). .

G.SCHLUCHTERMANN:

Tbe Dual Macke,. Topol~U of a Banacb Space

For a Banach space X topological properties are inves~igated of the dual X­

endowed with the Mackey topology t, the topology of uniform convergence

on weakly compact subsets. With the not ion of metrizability. k-space and

countable tightness. relations to the structure of the Banach space X are

derived.
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S. SIMONS :

Minimax Theorems

In this talk we discuss some minimax theorems using the concepts of

··staircase" and ··pseudoeonnectedness·· that unify Terkelson's minimax,
theorem and König s minimax theorem.

H. G. TILLMANN :

The Need of Impatlence
(Pareto-Optlmum and Equl11brlum In Mathematlcal EcoDomlc Systems) •
We generalize results of Brown-Lewis, Econometrica 49 <1980 and Araujot

Eeonometriea S3 (985) from X = IR to general infinite dimensional Riesz

spaees. Let X be aloe. eonvex t solid Riesz spaee, Y =X'( 'to ) .its dual and to the

Mackey topology: t o =tMA (X, YL Our global commodity spaee is H = lco(X). A

topology t on lcoeX) is called regular, if the injections in : X ~ lco(X)t

X ...,. (0 .... ,OtX,O .. .) are eontinuous. t is ealled myopie, if a11 eontinuous

preferen~es are myopie (Brown-Lewis>'

Thm t: There exists a strongest regular and myopie topology tSM on lco(XL
. co' 1The dualis I (X)tSM = Ib (Y)t

the bidual is 1:( X") = {x = (x n ) : x n EXil, equieontinuous}

and tSM is the Maekey topology: tSM tMA = 'tMA Uoo(X)t 1~(Y».

If X is a reflexive loe. conv. solld- Rlesz 8pacet we have:

Thm 2: If t is a topology on lcoeX).. t oo ::::> t :> oOoo(X)t l~ (Y »._. then:

A general existence theorem for Pareto-optima exists Irf tMA = tSM :> t.

( c:> all preferenees are myopie).

Thm 3: A general existence theorem for equilibria exists Iff tMA = tSM :> t ..

Remark: Susanne Dierolf notieed, that the condition ··X (ta) barrelIed··, I had '.
in Thm.l eould be eliminated.

M. VALDIVIA :

Frt!chet spaces wlthout subspac8s isomorphie to 11

If E is a Frechet space, ,M. is the topology on E of the uniform convergence on

every bounded, closed t absolutely convex and metrizable subset of E' [o(EltE)].

The following results are proved:
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1) If E is a Freehet spaee whieh does nöt eontain a subspaee isomorphie to 11

then every elosed separable subspaee of E[flt] is eomplete.

2) If E is a separable Freehet spaee whieh does not eontain a subspaee

isomorphie to 11 . then EI [1l(EI.E
II

)] is barrelIed.

3) A Frechet space· is reflexive if and only if every Il(E'.E)-null sequence of E'

is ßCEt.E)-null and every a(EI.E)-null sequence of E
t

is aCEI.E
II

)-nulf.

J. VOIGT :

On the eODvex eompactness property for tbe strong operator topoloKY

e Let X. Y be Banach spaces.
Theorem. Let (0.(1) be a measure s~ace with (1<0' < co. Let U : 0 ~ K(X,Y)

(compact operators) be bounded and strongly measurable (j.e., UC')x measurable

for all x E X). Then the "strong integral" J U(w)d(l(w) belongs to K(X,Y).. n
This property (found by L:Weis, 1988) implies that (K(X,Y), er s)' where 7 s

denotes the strong operator topology, has tOhe convex compactness property.

Le .. the closed convex hull of any compact subset of (KCX,Y),7 s) is again

compact.

The corresponding property holds also for some other closed subspaces

of L(X.Y).

L. W AELBROECK :

Quotient bomologleal spaees

•
I speak of quotient bornological spaces. they are important in Functional

Analysis. but they are not part of the subject at present. Sev·era~ quotient

spaees are used: The hyperfunctions. the continuous germs (of class C CO
, of

distributions) near to a compact subset of a manifold. the singularities of

distributions. J.-F.Colombeau IS New Generalised Funetions are quotient

spaces. I have "quotient results": one eannot prove them without introducing

a quotient space that turns out to be "trivial".

My Th~se d'Agregation (Habilitationschrift 1960) was "quotient", but I did not

know that it is (I found the category in 1962). It is only these .10 years that I

have really developed Functional Analysis in the category q. when I learned

that Colombeau IS New Generalised Functions exist and is a "quotient" space.

Quotient Frechet spaees, a eategory of quotient locallr convex spaces probably,

but no suitable category of complete or quasi-complete locally c<?nvex spaees

exists. I shall deseribe same properties of the category q.
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D. YOST:

Reducible Polytopes and Pseudollnear mappings

A finite-dimensional compaet convex set P. symmetrie about the origin. is

reducible if there is a nonsymmetrie compaet convex Q with P = Q - Q. We

give a necessary and sufficient condition for a polytope to be reducible. and

use it to show that many polytopes. in dimension three or more. are irre­

ducible.

A function' T : X -+ Y between two Banach spaces is pseudolinear if it is

homogeneous and sat isfies the inequality

11 T (x) + T (y) - T (x+y)1I s: IIxll + lIylI - IIx+yll.

The fol.lowing two quest ions remain open. Is every pseudolinear function

bet ween .complex Banach spaces automatically linear? Is every pseudolinear

function between real Banach spaces the sum of a linear function and a

continuous function?

We indicate the relationship between these topics and M-ideals in Banach

spaces.

Berichterstatter : M. Pann8nberg .

•

•
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