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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g S b e reh t 22/1990

The Schrödinger Equation and its Classical Counterparts

20.5~ bis 26.5.1990

The meeting was organized by Volker Enss (Aachen). 43 participants from 11
countries discussed recent progress in the analysis of Schrödinger operators. Spe­
cial emphasis was given to analogies as well as differences'between the properties
of classical and the corresponding quantum mechanical systems.

The limiting behaviour of Schrödinger operators under the change of various
parameters was treated in detail, in particular the serniclassical analysis. In ad­
dition to Planck's constant h a variety of other quantities could play the role
of a small parameter. The properties of eigenfunctions - both square-integr'~ble

and improper - have been investigated as weIl a.s estimates on the position and
distribution of eigenvalues. Anotber major topic was scattering theory where the
attention was centered on one hand on r~onances and on the other hand on
N-body systems, in particular asymptotic completeness. In addition, some more
general mathematical investigations were initiated' by related problems.

Furtber details can be found in the abstracts of the 28 lectures. We regret that
it is impossible to include the equally valuable discussions.

The participants and tbe organizer are grateful for tbe hospitality at the Institute
and for tbe support of its director, Professor Barner. Tbis provided the stimula­
ting environment for research and exchange of ideas.

Abstracts

Mark Ashbaugh

Proo/ 0/ the Payne-Polya- Weinberyer Conjecture

In 1955 Payne, P6lya, and Weinberger proved )..2/)... < 3 for the ratio of the
first two eigenvalues of any homogeneous membrane problem, - 6 u = ).. u on a
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bounded domain n C JR2 with Dirichlet boundary conditions, and conjectured
that >"2/>"1 :5 >"2/ >"1 Idisk ~ 2.539 is tbe optimal bound of this form. This and
its higher dimensional analogu~ were recently proved by Rafael Benguria and
the speaker. In general form, the proof follows a scheme introduced by Chiti
(who obtained the bound 2.586 in 1983) but uses ratios of Be3sel functions a.s
trial functions in the variational characterization of the gap >"2 - >"1 rather than
simply the radial variable r. This improvement allows us to obtain the sharp
constant. The proof starts from the Rayleigh-Rit~ inequality for >"2 and uses'
spherical rearrangements and an inequality of Chiti (1982) to produce achain of
inequalities culminating in the optimal bound. The bound is attained if and only
if n is a disk (ball, for IEr). Various technical results concerning Bessel functions
and their zeros are key elements of the proof.

Volker Bach

Ionization Energies 0/ Bosonic Coulomb Systems

We consider atomic and molecular systems with fixed. nuclei where the electrons
are. assumed to be bosons. Then the ionization energy ia rigorously computable
in the limit of large particle numbers. It ia given in leading order by the 'ch~m­

ical potential of the corresponding Hartree model and is o(order 0(Z2) up to
accuracy of order 0(Z5/2), Z denoting the SUffi of the nuclear cha;rges. This con­
trasts with tbe fermionic case where ionization energies are expected to be 0(1)
and thus shows the importance of the Pauli Principle in the real world. More­
over, in the atomic case, we show the excess charge of this model to be given by
(0.21) . Z '+ O(Z2/3).

Jean Bellissard

2D Electrons on a Lattice in a Magnetic Field

An eleetron on a lattice in a magnetic field is Quantum mechanically described
through magnetic translations Tl, T2 which satisfy TlT2 = T2T1 e2i1ra , . er =
ib/~o where ~ is the flux through a unit cell and ~o = h/e is the ßux quantum.
er plays the role of a "Planck constant". Therefore a small field expansion ean
be obtained by semiclassical methods. The same expansion works near rational
values of er. Any Hamiltonian in the form of a polynomial in Tb T2 admits spec­
trum which looks like a fracta! set. The gap edges are continuous functions of
er, with right and left derivative at rational values of er, giving a dense set of
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cusps. Application of this calculus concerns the properties of Bux phases in high
Tc superconductors.

Vladimir Buslaev

Spectral Properties 01 the Operators Ht/J = -t/Jzz + p(x)t/J + v(cx)1/J, p is Peri-
odic .

We descrihe the spectrum in L2 (IR) and the asymptotic hehaviour of the eigen­
functions ofthe operator Ht/J = -t/Jrz +p(x)t/J +v(cx)t/J, pis periodic, as c -+ o.
In detail we consider three special cases:

A. v(~) -+ +00, ~ -+ 00; B. v({) -+ 0, { -+ 00; C. v{~l = -e.
All of them have natural applications, especially in quantum solid state physics.
The used approach is some generalization of tbe standard semi-classical approxi­
mation. The generalization introduces in the WKB-constructions new geoIIl;etri­
cal ideas. We can prove the existence of Wannier-Stark ladder of resonances for
the case C and give the whole asymptotic estimates for the resonances.

Michael Demuth

On Kato 's Class and Large Coupling Convergences in Spectral Theory 01 Schrö­
dinger Operators

We consider the asytnptotic behaviour of Schrödinger operators of the form
H(a,ß) = Ho + Vö + pU, where Ho is the Laplacian, Va is a Kato's class
potential, and U is a nonnegative potential of compact support. .

Resolvent convergence is studied in the large coupling limit, i.e.

lim (H(a, (3) - Z)-1 = (B(a,oo) - z)-1
(1-00

with respect to different operator norms. Sufficient and necessary conditions are
given for the Hilbert-Schmidt and traee-class convergence. That holds hoth for
regular resolvent values and in the limiting absorption case.

The Va has a finite Kato-norm. If Va tends to Vao with respect to this Kato-norm
it yields a further operator norm convergence of the form

n - lim (H(a,ß) - Z)-1 = (H(ao,ß) - Z)-I.
a-oo

3
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Sufficient conditions on Va are given such that this holds also in tbe limiting ab­
sorption case.

Both convergences imply for instance the corresponding asymptotics of wave and
scattei'ing matrices.

J an Derezinski

Algebraic Approach to Long-Range N-body Scattering Theory

If H is a long-range 2-body Schrödinger operator then there exist
s -limt~:!::oo eiCH g(r) e- itH • One can express differential scattering cross sections
by these limits. In the case of N-body long-range Schrödinger operators similar
asymptotic observables can be defined. They can be used in the study of scatter­
ing theory in the case when we do not know whether asymptotic completeness is
true.

Christian Gerard

MOUTTe Estimate for Dispersive Systems

Dispersive N-body Hamiltonians arise when one replaces the non relativistic ki­
netic energy for N particles Ef -~ by a general kinetic term w(Dz ) for a
real function w(e). We describe in this work a class of dispersive Hami1toni~s

which we call regular for which we prove a Mourre estimate outside a closed and
countable set of energies called thresholds which can be explicity described. The
regularity condition depends only on the kinetic term w(e) and on the family of
coincidence planes XCI which describe tbe N -particle structure of the potential
energy term. As a consequence of the Mourre estimate we establish abscence of
singular continuous spectrum and H-smootbness of {x)-·, for s bigger than 1/2,
which is a basic tool in scattering theory. We then prove some results on scatter­
ing tbeory for short-range interactions. We obtain existence of wave operators,
orthogonality of channels and asymptotic completeness of wave operators in the
two cluster region.

Giao Micheie Graf

Asymptotic Completeness for N-body Short-Range Quantum Systems

We review some standard notation for N -body Schrödinger operators. We then
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give a sketch of a geometrical proof of asymptotic completeness for an arbitrary
number of quantum particles interacting through short-range pair potentials.
This is the statement tbat for large times the quantum system is asymptotically
given .hy a superposition of hreakups into one or several independently moving
bound clusters.

A framework which allows to describe and obtain Bome of the propagation prop­
erties of the system is introduced. These properties are expressed by means of
propagation estimates. In particular we focus on an estimate showing that the
center of mass motion of clusters of particles concentrates asymptotically on clas­
sical trajectories.

Sandro Graffi

Quantization 0/ the Classical Lie Algorithm in the Bargmann Representation

This talk reports some results on tbe classicallimit obtained in collaboration with
Mirko Degli Esposti and Jan Herczynski. For any polynomial perturbation of a
system of nonresonant harmonie oscillators in d degrees of freedom it is proved,
writing the classical Hamiltonian in complex coordinates and tbe corresponding
Schrödinger operator in the Bargmann representation, tbat the classical Lie algo­
rithm yielding the canonical perturbation expansion can be "exact1y" quantized
to yield the Rayleigh-Schrödinger perturbation expansion near any quantum un­
perturbed eigenvalue. By exact quantization it is meant tbe explicit computation
of all quantum corrections to the prineipal symbol, given by the classical Lie
expansion for tbe relevant operators in perturbation tbeory. A consequence of
this result is tbe explicit construction, to any order in perturbation tbeory, of all
corrections to tbe Bohr-Sommerfeld quantization formula.

Andreas M. Hinz

Dense Point Spectrom 01 a Spherically Symmetrie Sehrödinger Operator

Schrödinger operators with spherically symmetrie potentials give rise to sorne
amazing spectral phenomena. In particular they serve aB counter examples to
a number of general opinions about the asymptotic behavior of eigensolutions.
The most surprising result is the presence of intervals of dense point spectrum
for the operator - 6. + oos(I%I). This is proved in two steps: Orthogonal sepa­
ration shows that the gapi548bhe spectrum of the one-dbqensBnül0gtttn6:sppat
are filled up in higher dimensions, while spherical decomposition yields that the
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separated one-dimensional operators, all having the same essential spectrum, can
only contribute to this filting up by eigenvalues.

Peter D. Hislop

Semiclassical Theory 0/ Stark Ladder Resonances

Joint work with J.M. Combes. We prove the existence of resonances in thc­
semiclassical regime- of small h for the Stark ladder Hamiltonian H(h, F) =
- h2 ::2 + v + F x in one dimension. The potential v is a non-constant, real
periodic potential with period T which is the restrietion to 1R of a function
analytic in a strip about IR. We consider F fixed and satisfying the bounds
o < F < IIv'lIoo. For h suffieiently small, there exists an infinite "familY of res­
onances with the same negative imaginary part and whose real parts differ by
multiples of F T. In general, the resonance width is bounded above by c e-ß ,,-1
where ß is expressible in terms of the Agmon metric and depends on F. In the
sp~ial case where the distance between resonant wells is O(F-l), we prove.·that
there is at least one resonance Zo for which the width satisfies an Oppenheimer
formula: , Im zol 5 ce-Po (Fh)-1, where Po > 0 is independent of F and h.

Maria Hoffmann-Ostenhof

Nodal Properties 0/ Solutions 0/ Schrödinger Equations

The following is joint work with Thomas Hoffmann-Ostenhof. Let q, be a· real­
valued solution of (-I:::,. + V)'11 = 0 in (l, n a domain in lR!', n ~ 3, where V is
realvalued and COO(O). Let D denote a nodal domain of q; in n, i.~. 1\111 > 0 in
D, D is connected and '11 = 0 in f) D \ f) n. It is shown that D satisfies an interior
CODe condition for points in aD\8!l. Assume that q, ~as a zero of order M in
Xo E 0, then the number of nodal domains D of \lf with Xo E aD is smaller
than or equal to the number of noda! domains of some harmonie homogeneous
polynomial of degree M. For n = Rn and q, E L2(frl) we obtain under suitable
conditions on V upper bounds to M.

6
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Werner Horn

Semi-classical construciion 0/ Approximate Eigen/unctions near the Top 0/ a
Potential BaTTier

We consider the operator P(h) = -h2~ + V(x) where V is a real analytic
function on IR, which has a potential barrier at· the origin, i.e. V(O) = 0;
V'(O) = 0; VR(O) < O. A double weil potential is a typical example of this .
situation. We construct explicit functions VN(x, E, h) which satisfy
(P(h) - E(h»VN(x, E, h) = O(hN +2 ) for x· and E sufliciently close to the
origin. This is done by reducing the problem to the task of finding solu~ions of
the equation _h2 G:rw - e2w= cw. We also show how the functions VN(x, E, h)
can be used to construct approximate eigenfunctions in L2(lR). This yields 'an
implicit condition, which can be used to find approximate eigenvalues.

Arne Jensen

Classical arid Quantum Scattering /or Stark Hamiltonians

For the ordinary Schrödinger operator H = - ß +V on L2(F) the borderline
between short range and long range potentials is given by the Coulomb potential
V(x) = ~. This potential is also the borderline in classical m~anics.

For Stark Hamiltonians the situation is different. In the quantum case it is shown
that the ordinary wave operators W± = s -limc_±oo eiCH e-iCHo do not exist for
Ho '= -l ß +E· x, E E lRn,E "I- 0 and H = Ho + -\Ixl-~, -\ E IR, ')..':F
0, 0 < i ~! (i <! if n = 1). The classical mechanics case is different: We
prove the following result: Let V E C2( IR) realvalued with bounded derivatives,
such that IV(x)1 ~ c(log(2 + Ixl))-O for sorne er > 1. Let x(t) solve Newton's
equation x(t) = -1 - V'(x(t». Assurne that the solution is not abound state as
t -+ + 00, i.e. tim SUPt_+oo (Jx(t)1 + Ix(t)1) = + 00. Then there exist e, v E IR
such that

lim Ix(t) - (_!t 2 + tv + e)1 = 0,t-+oo. 2 .

t~ Ix(t) - (-t + v)1 = O.

Thus th.e solution x(t) is asymptotic to a free solution.

The results presented are joint work with Tohru Ozawa, Nagoya Univ., Japan.
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Hitoshi Kitada

Asymptotic Completenes8 of N-body Wave Operators

A new proof of the asymptotie eompleteness of N -body wave operators was pre­
sented. Let H = Ho + V = Ho + Eo Vo(xo) be the N-body Hamiltonian.
Then tbe completeness is shown under short-range decay assumption on Vo(xo)
with sorne additional conditions. The method is based on the framework of Enss: _
We a.symptotically decompose the approximate state ~n e-itnH f for f E 1{.C(H) .,
like.

~ne-itnH f "'-J E La(tn)e-itnH f (tn --+ 00)
2~lal~N

and prove the existence of tbe strong limit

Oo! = s - lim eitHo La(t) e-itH f.
t-oo

Then one has ~n e-itnH / ""J E2~lol~N e-itnHo 0 0 /, from which follows the asymp­
totie cornpleteness. In the proof of the existence of Oo!, Sigal-Soffer's propagation
estimates for the non-threshold ease are used.

Andreas Knauf

Scattering Theory for Coulombic Potentials

Joint work with Markus Klein. We eonsider the planar scattering of a elassical
or quantum mechanical partiele by a potential witb n Coulombic (-z/r) singu­
larities.

In the classical case, a Levinson Theorem is proven. The high energy bound states
are analysed using symbolic dynamics. For n ~ 3 the time delay is infinite on a
Cantor set of asymptotic data, whereas the differential cross section "is a smooth
function. For the special case of two fixed Coulomb singularities the resonances
associated to the byperbolic collision orbit are comput~d by separation of vari­
ables and complex WKB methods.

Michael Loss

Minimization of Functionals Arising in Mathematical Physics and Geometry

This is joint work witb Eric Carlen. A new method is presented for proving sharp

8
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constants in a variety of inequalities. The method is effective in all those cases
where the functional to be minimized is conformally invariant and improves un­
der rearrangements. Examples are the Sobolev inequality, the Hardy-Littlewood­
Sobol~v inequality and Onofri's inequality to name a few.

One constructs a map consisting of a weH chosen "conformal rotation" on function
space followed by the symmetrically decreasing reairangement. Starting from any
function by it~rating this map one gets an optimizing sequence which has excel­
lent convergence properties and which drives the functional to its minimal value.

Andre Martinez

Born-Oppenheimer Expansions /or N-body Problems

Consider an N = (n + 1 +p)-body problem with Coulombic interactions, where
n + 1 is the number of nuelei and p is the number of electrons. When tbe roass
M of the nuclei tends to infinity, Born and Oppenheimer conjectured in 1927
that tbe low lying eigenelements of the Hamiltonian (after removing tbe center of
mass motion) should admit asymptotic expansion in powers of M-l/4.. We prove
this result for a finite number of eigenvalues in tbe case of the diatomic moleeule,
aB weIl a.s for the first one in the case of tbe polyatomic molecule. We also obtain
WKB-type expansions for the associated eigenfunctions. The ~ethod consists
first in reducing the problem 10 a pseudodifferential operator acting only on the
nuclei-position variables x. This can be done using an x-dependent change of the
electronic variables, wbich regularize in sorne sense the initial potential. This is
a joint work with M. Klein, R. Seiler, and X.P. Wang.

Eric Mourre

Algebroic Charocter 0/ Pseudo-Differential Calculus

I) Let A(t; .) be an associative algebra with sorne norm 11 . 11 (usually not COffi­

plete), and (D')'e{l,...,m} a family 'D of commuting derivations. It may be assumed
to be complete for a natural metric topology; we define a subalgebra .Ä such that

ZO
= E (D~a)· (D~b) . ,;

oeNn Q.

Do = (D~)'=l,...,n E 1), Q = 1, 2, z E (J'

9
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define on A new associative laws. The procedure may be iterated and has a group
property.

11) Let A(t) be a vector space equipped with two associative laws ., *. Let Lo, LI
be derivations, repectively, on A(+; .), A(+;.).

We discuss the problem of constructing a vectorial isomorphism between ker Lo
and ker L, which solves in a very special case the problem of inducing from a.
deformation of the algebra A(+; .) a deformation on a subalgebra..

Mary Beth Ruskai

Bounds on the Total Excess Charge 0/ a Stable Diatomic Moleeule

Although the fixed-nucleus approximation is useful for many purposes, it is not
very satisfactory for describing such phenomena as the breakup of a. molecule into
atomic subsystems. This talk reports sorne recent results about the existence of
bound states for Hamiltonians describing diatomic moleeules with dynamic nu­
clei, i.e., for which the nuclear motion is completely unrestricted and the kinetic
energy of the nuclei is included. It is shown that a system with N electrons
and nuclear charges ZI and Z2 cannot have abound state below the continu­
um if the nuclear charges are either too large (in which case the molecule s'plits
into two atomic subsystems) or too smalI, relative to the number of electrons.
Equival~t1y, there are constants Nmin and Nmax associated with every pair of
cbarges (Zt, Z2), such that the existence of abound state implies that N sat.~sfies

Nmin :5 N :$ Nmax • Asymptotic bounds on Nmin and Nmax are presented. The
proof indicates that differences in threshold energies play an important role in
bound state molecular problems. .

Carol Shubin Christ

An Inverse Spectral Problem

We study the inverse spectral problem for the time independent Schrödinger op­
erator H with a radial potential in x E JR:3, lxi :5 1, with Dirichlet boundary
conditions on lxi = 1. By expansion in spherical harmoniCß His unitarily equiv­
alent to an infinite direct SUffi of Sturm-Liouville operators acting on L2[O, I). We
answer the question of whether one can uniquely determine the potential given
the spectra of the first two operators in this sumo The main result is that the
intersection of the corresponding isospectral manifolds is locally compact.

10
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Marianna A. Shubov

Asymptotics 0/ the Discrete Spectrum /or a Radial Schrödinger Operator with
Nearly Coulomb Potential

Tbe radial Schrödinger equation with Coulomb potential·perturbed. on a compact
set is considered. An asymptotic fonnula for tbe discrete spectrum is obtained.
It follows from this formula tbat tbe quantum defect tends to a constant when
the principal quantum number tends to infinity. An explicit expression of this
constant througb the perturbation is obtained. The result is based on the eigen­
value selection principle proved in the previous work of the autbor.

Heinz Siedentop

A New Phase Space Localization Method with Application to the Sum 0/ Negative
Eigenvalues 0/ Schrödinger Opemtors

Joint work withR. Weikard.
A Schrödinger operator, under suitable conditions, may be decomposed as H =
-~ - cp{r) = Ln Hn ~ith Hn = 1/J~ 0 1/J~ - (r.pl/2 tPn) ® (r.pl/2 tPn).· Cboos­
ing tPn(r) = <:~p/2(r) exp{21rinJ; W(t)dt}, f P = N, P > 0, and P = :r.pl/2
yields tbe leading quasiclassical expression with sbarp estimates on the remain­
der. Applying this to - Ö - R+ PTF * Hwhere PTF is tbe minimizer of tbe
corresponding Thomas-Fermi functional (nuclear charge Z, Z electrons), yields a
simple proof of a lower bound of Scott type to tbe groundstate energy of

N Z N 1
Hz,N = E (- Ö - -) + E , N = Z,

i=1 lXii i<j=1 lXi - xjl

in Afl:l (L2(1R3 ) ~ ca), Le., inf spectrum(Hz,z) 2:: ETF{Z, Z) + I Z2 - cZ2
-

e

where ~F(Z, Z) is tbe Thomas-Fermi energy.

Israel M. Sigal

Periodie Solutions 0/ Non-Linear PDE's

Consider a linear Schrödinger or wave equation. A key feature of such an equation
is that it admits time-periodic solutions, called bound states in the Schrödinger
case and standing waves in the wave case. We show that such solutions are
generically unstable under smati non-linear perturbation for the wave equation,
and could he stahle or unstable depending on their nature for the Schrödinger

11
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equation. We study also life-times of such solutions. To this end we introduce
the notion of resonance for non-linear equations.

Avy SofFer

N -body Long Range Scattering

Asymptotic Completeness is proved for systems of 4 particles interacting with
long range potentials of the Coulomb type.

The proof requires the development of spectral and seattering theory for a elass
of N -body Hamiltonians with extra time dependent potentials added. This is
done jointly with I.M. Sigal.

Günther Stolz

Expansions in Generalized Eigen/unctions 0/ Schrödinger Operators with Singu­
lar Potentials

We prove the existence of an expansion in generalized eigenfunctions of Schrö­
dinger operators H = <t \1- b)2 + V in L2(JRv). To do this we use an expansion
theorem of BGK-type togetber with some modifications.

H tbe electromagnetic potentials are polynomially bounded (up to local singu­
larities), the generalized eigenfunctions He in a polynomially weighted Sobolev
space of second order. Using this result we get polynomial boundedness of the
generalized eigenfunctions by methods from regularity theory.

From these results we get one part of the proof of

u(H) = {A : 3u E K.L2 n W2 ,1,loc (8 > 0), Hu = AU},

which is shown under general assumptions on b and V.

X.·P. Wang

Semiclassical Resolvent Estimates 0/ N -body Schrödinger Operators and Classical
Trajectories

Let P(h) = -h2 6. +Ei<j lI;j(Zi - Xj) be an N-body operator with smooth
int~racting potentials. We denote by ~ (h) the quantum thresholds of P(h) and
by rc the classical ones of p = e2 + Ei<j ltij(Xi - Xj).

12
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We prove:

(a): For ho > 0 small, Uo<h ~ ho TQ(h) ~ TC; and

(h): The resolvent estimate

II(Fo).-· R(~ ± iO, h) (Fo)-·II ~ eh-I, h E ]O,ho]

is true for sorne s > 1/2, I~ - EI < 6, if and only if E fI TC. Here
Fo = "hex . Dz: + Dz: . %)/2.

Dmitri Yafaev

On Resonant Seattering by Perturbations Periodie in Time

Consider a quantum system described by a Hamiltonian H(t) = H1 + e V(t)
where tbe self-adjoint operator H 1 bas tbe absolutely continuous spectrum [0, (0)
and the negative eigenvalue ~1 and V(t) = V(t + 21r). For such perturbations
scattering of aplane wave of energy ~ is detennined hy a set of amplitudes
S(ft)(~,e), n E LZ, corresponding to tbe "final" energy ~ + n.

The limit of s(n)(.~,e) as e -+ 0 is studied. In the case ~ - ~1 fI LZ the amplitudes
satisfy s(n)(~,e) = O(eft ) and S(O)(~,e) is convergent to tbe scattering matrix
SI(~) for the Hamiltonian H1 • At the resonant energies ~ - ~1 = m E Zl
the perturbation theory in e becomes singular because of tbe small denominator
problem. In particular, if m = 1, S(-I)(~,e) '"'J e-1 as e -+ 0 and S(O)(~,e) has
a finite limit wbich is different from SI(~). The additional pbase shift is explained
by tbe resonant interaction between the plane wave and the bound state of BI.

Kenji Yajima

• Dime Equations with Moving Nuclei

We consider tbe Cauchy problem for the Dirac equation

i8,u = (0· D'+ mß + (t/J - Q. A»u, u 1,=.= ~o,

where (A, </» is the Lienard-Wiechert potential produced by a finite number of
nuclei Ql(t),··· ,QN(t} with charges Zh···, ZN. We assurne: qj E C3(JR,W);
14;(t)1 ~ Vj < 1, 1q;(t)1 :5 Qj < 00 for 1 :5 i :5 N, Vt E B; qj(t} =F qk(t) if
i =F k.

When IZjl < ~/2, i = 1,···, N, we show, by using a local pseudo-Lorentz

13
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transformation, which is the spatial part of the Lorentz transformation near each
qj(t) and which freezes the singularity of the potential, that the equation generates
a unique unitary propagator which preserves H 1(JEf), L2 (JR:3) , H-1 (J1t1).

When 1 > IZjl ~ .../3/2, we can still construct a unique propagator if Vj is .
sufficiently small, hut it preserves H 1/2, L2, Hl/2.

Berichterstatter: Christian Schmidt
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