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' Lyapunov Exponents

UFG

27.5. bis 2.6.1990

Die Tagung fand unter der Leitung von Herrn L. Arnold (Bremen) und
Herm J.-P. Eckmann (Genf) statt. Die Schwerpunkte des Interesses waren:

Produkte zufilliger Matrizen

Lineare Schiefproduktfliisse und Kontrolifliisse
Stochastische Fliisse ‘

. Entropie und groBe Abweichungen
Unendlichdimensionale Systeme

. Intervall-Abbildungen

Numerische und asymptotische Aspekte

. Ingenieurwissenschaftliche Anwendungen

o NOL AW N

Vortragsausziige

S.T. Ariaratnam:
Lyapunov exponents in structural dynamics

The role of Lyapunov exponents in the following three problems encountered in stochastic
structural dynamics is discussed:
1) Dynamic stability of elastic structures:

Equations of motion are of the form:

q;+2Bg,+ mlzqi + §(t)w‘§; kig;=0, ij=12,.n,
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where E(t) is a stationary, zero mean stochastic process (i.e. the loading) with smoothly _

varying spectral density S(w) = 2_[ cos wt E[E(ME(t+1)]dT. B;, S(w) are small, O(e).
0
The general result for the largest Lyapunov exponent is, for n = 2:
. A A
. 172
= %(xl"')‘Q) + %(11_12) coth ( A2

“) + % K2k [S(0;+035) = S(w,—w,)], A>0
where ‘

cosha = l——{ k3,5Q0y) + k2,S(20) — 2kyok; S }
2k)oky;S

A= —[ {kl 185wy} + k%28(2m2) 4k12k218(m1+o)2)}{k1 15Qoy) + k225(2(02) + 4k12k213((1)1—(02)

st = S(wy+w,) £ S(w;—w,); A, =-B; +— S(2ml) i=1.2

For A <0, the result is obtained by suitable change of hyperbolic terms by their
trigonometric counterparts, for A=0 by suitable limiting forms. For example, if
k11 =ky =0 and S(w) is concentrated around either ®, + @, for k;;ky; >0 or

— o, for kuk21 <0,
By if By < |32

k
A==Bi,+ 12 2 —=— S(0tw,), *+ accordmg as kjoky; >0, <0, resp, (
| By if I32< i)

Stochastic pltchfork bifurcation:
This occurs in columns, flat plates etc. under axial stochastic loads; equation of motions is

q+2Bq- (‘Yo +ot®))q + 8q3, (E(t) white noise).
For v, near zero (i.e. the bifurcation point), the Lyapunov exponent of the linearized

system X + [y— o&(t)]x = 0, y=—y,— B2, obtained after the change of variable q=xePt
is : .

873

from which the shift in the bifurcation point due to stochastic local perturbation may be
obtained by setting A = 0.

Localization of wave propagation in spatially disordered structures.

In randomly disordered almost periodic structures such as long pipelines continuous over
several supports or space antennac made up of several nearly identical units, the
transmission coefficient —t,, at the nth unit from the point of origin of the wave varies as

A =0.28931 02/3[1—457886 6 y+6.10592 ¢~ 8’3¢+o[ Y )J

Itl~ €, for large n, where A is the largest Lyapunov exponent corresponding to the
random wave transfer matrix of a single unit (Fiirstenberg's theorem on product of random
matrices). The variation of the localization length 1/A with frequency in the pass bands is
evaluated for a long continuous Euler-Bernoulli beam and compared with approximated
perturbation solution for + 10 % disorder in the span length of the beam between supports.
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L. Amold, H. Crauel:

Iterated function systenls and multiplicative ergodic theory

Given a random dynamical system of affine mappings of RY whose linear part is hyperbolic. '

We prove that it has a unique invariant measure. The proof uses multiplicative ergodic theory.
The result generalizes and sheds new light on results of Barnsley and Elton on iterated function
systems.

P. Baxendale:

Behaviour of invariant measures as the Lyapunov exponent crosses zero

Suppose the process {x;:t20} in RY satisfies the stochastic differential equation

r
dx, = Vo(xpdt + 3, V;(x)dW,

i=1

where the vector fields Vo.V}....V, all fix 0. Let A be the Lyapunov exponent obtained by

linearising this s.d.e. at 0. Under suitable non-degeneracy and growth conditions onthe V;, the
process {x;: t 20}, when restricted to R4 - {0} is transient, or null recurrent, or positive
recurrent according as A >0, or A=0, or A <0.

Suppose now that the coefficients in the s.d.e. are varied in a smooth manner so that
A1 0. We give estimates on the rate at which the (unique) invariant probability measure for
{x:t20) on R4~ (0} converges to the unit mass at 0.

P. Bougerol:
Lyapunov exponents and Kalman filtering

We consider the usual linear set up
Xn = ApXpo1+Fogy X, € RY

Yy = CoXp+ 1, Y,e RY

where (G o) is a sequence of i.i.d. Gaussian random vectors and (An,Cn,Fn) is a stationary
ergodic sequence independent of ((€,,t,),ne N}, considered as known. Let

P = EXyXp) Ry Xp)*, Xp=E(X,/ Yg-Y,)
(they depend on A,.CFD.
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Let M, be the Hamiltonian matrix: [A“ i ]
TaAn(BT,Sy) A

(sn = FnF;’ Tn = C;Cn) .

These matrices are in Sp(2d,R). If the dot is the usual action of Sp(2d,R) on the set of
symmetric matrices (identified with the set of Lagrangian subspaces), then
P, =M, .. M, P,
Let ? be the set of positive symmetric definite matrices. Then
Theorem ¥ ={Me Sp(2d,R); MP < P} is a semi group acting by contractions on 9,
where P is equipped with the usual Riemannian metric.

With this theorem we prove that under weak controllability and observability assumption, there
exists a unique stationary process i’-n such that d(Pn,Fn) —0 as. VPye ?.

We show also the exponential stability of the filters and explain the relation between this and
the positivity of Lyapunov exponents of Mp,..M{, n>0.

~ P. Boxler:

Deutsche

Lyapunov exponents as a tool in stochastic bifurcation theory

In nonlinear ordinary differential equations which dépend on a parameter and which are often
used as models in physics or engineering, bifurcation phenomena are frequently encountered.
They are closely related to changes in the qualitative behavior of the system and in its stability
properties. We are interested in understanding what happens to these features in the presence of
white or real noise. A notion of a stochastic bifurcation point in terms of invariant measures is
suggested. Using Lyapunov exponents a necessary condition for such a stochastic bifurcation
can be derived. It allows to understand the possibility of a shift of the bifurcation point in the
stochastic case. The one dimensional transcritical bifurcation is examined in detail, and the
example of the saddle node bifurcation shows that noise may also destroy a bifurcation. Finally
the theory of stochastic center manifolds is outlined to provide a tool to handle higher
dimensional problems.

C. Bucher:

Sample stability of multi-degree-of-freedom systems

Within the analysis and design of structural systems the question of dynamic stability arises quite
frequently. A typical area in civil engineering is the motion stability of long-span bridges (e.g.
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. suspension type) in turbulent wind. While the equations of motion can be modeled in a linear

way without significant loss of accuracy it is quite essential that a relatively tiigh number of state
variables - describing both structural motion and fluid-structure-interaction - are retained in the
analysis.Conventional methods used frequently in engineering analysis like stochastic averaging
are less suitable for the previously mentioned cases where the interaction between different
modes of vibration plays a central role. Consequently, a new concept which generalizes the
‘classical' averaging to higher dimensions is presented and put for discussion. Numerical
examples-are provided as an additional basis for future application.

N. D. Cong:

Lyapunov exponents and central exponents of linear systems of differential
equations perturbed by small random noises

We consider the spectrum of auxiliary exponents, the Lyapunov spectrum of central exponents of
systems with weakly varying coefficients and close systems. Systems with weakly varying
coefficients are interesting because the linear systems of almost all well known examples in
theory of Lyapunov exponents, including the Perron example, are systems with weakly varying
coefficients. It is proved that a system with weakly varying coefficients has exact auxiliary
exponents which can be calculated by Cauchy matrix of the given system. Furthermore, central
exponents of a system with weakly varying coefficients under small random nondegenerate
perturbation coincide with the corresponding Lyapunov exponents with probability 1 and they
are close to the corresponding auxiliary exponents of the given system. -

P. Collet:
Large deviations for Lyapunov exponents and applications

Using a continuous field of uniformly contracted cones, the large deviations of the maximal
exponent can be discussed using a standard thermodynamic formalism. The associated pressure
function appears also in some quantitative questions. Two examples in one dimension are the
length of the graph of the nth iterate of the transformation, and the essential radius for the
Perron-Frobenius transfer operator for expanding Markov maps.In higher dimension, this theory
applies to the study of non autonomous renormalisation, where the standard critical indicies are

. replaced by Lyapunov exponents or their pressure at various temperatures according to the
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spectral nature of the noise. The pressure at inverse temperature 1 is also the dynamo rate of
some suspensions of Anosov maps on the two torus, i.e. the exponential growth rate of a
passive magnetic field transported by the suspended flow in the limit of infinite magnetic
resistivity.
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H. Crauel:

An upper bound for relative entropy

Suppose M is an invariant measure for a smooth random dynamical system
{pt,w):M>Mlte T,we Q} ona d-dimensional Riemannian manifold; T=R or Z.
Denote by p* the restriction of | to nonnegative time, i.e., to the o-algebra
¥+ =o{p(t,) | T=0). The relative entropy associated with L is :
do™ ' (Log 4 ®
o, = —J log ————————— dp(x,w). :
MxQ

+

dp,
Provided some inte_grability condition, we show that

o, <d I max {0, — x:(x,w)} du(x,0),

where )\ﬁ is the smallest Lyapunov exponent associated with p. This generalizes results of |
Baxendale (86) and Ledrappier (84). R
As a consequence, we get a criterion for ‘partial hyperbolicity": If, for n ergodic, p is-neither a

functional of the future nor of the past alone, then l;l <0< AT-

R.W.R. Darling: i
|
\

Products of infinite-dimensional random matrices related to oriented percolation

Let A; be arandom 29 x 29 matrix with entries in {0,1}. Let N S 29 be finite, and
suppose: ’ ’

A (x,x+z) =0, for z outside N

{Ay(x, x+y),y € N} has the same law for all x € Z9. .
Let =3, E[A;(0.) \
Let A},A,,... bei.i.d. random matrices. Then the Lyapunov exponent |

1 4
A= lim ~loglS (A, ADOYI

exists a.s., and

logf on {Y >0}
*) A=

—oo  ON nlsll {Y,=0}

where Y is the limit of the martingale Y, = 6™ ZY(AI,...,A,,)(O,y).
When dim(N) 2 3, then for suitable choice of the law of A, it is possible to prove that
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P(Y>0)>0. Itis conjectured that (*) gives all possible values of A, in the sense that
P(Y>0)=1- P(Q)[Yn =0}), at least when d > 3.
n=

F. Flandoli:
Stochastic flows: for stochastic PDEs of parabolic type

Some general abstract method is known to prove existence and uniqueness of solutions to co-
dimensional stochastic equations, but the problem of existence of the associated stochastic flow
is solved only in some particular case, using "ad hoc" methods. The aim of this research is to
develop an abstract method for stochastic equations of parabolic type. The method is based on
the fact that if the solution mapping is Hilbert-Schmidt in the square mean sense, then it is also
pathwise Hilbert-Schmidt. The former property can be obtained by means of regularity results,
typical of parabolic problems. One can show that this method has wide applications, to second
order parabolic equations with Dirichlet, Neumann, periodic boundary conditions, to higher
order parabolic equations, and to systems of parabolic equations. However, relatively to certain
particular problems, the "ad hoc" methods mentioned above allow greater generality and provide
more precise properties. Once the existence and regularity of the flow is established, Oseledec
type theorem can be applied.

I. Goldsheid, G. Margulis:
A condition for simplicity of the spectrum of Lyapunov exponents

It is proved that Zariski closure is "responsible"” for the description of the Lyapunov exponents of
the product of i.i.d. random matrices. Let v be the distribution of the matrices A;, and F be
the Zariski closure of the group generated by the support of v. Suppose that F is a semisimple
group (but F# SL(m,R) in general). Denote by T a maximal torusin F which splits over R.
Let t be the Lie algebra of the group 7, and W the Weyl group of F with respect to 1.
Choose some Weyl chamber Y < t with respect to the action of W on 1 andlet R bea
maximal compact subgroup of F such that g = x;(8) exp y(g) x,(g) and this decomposition is
unique for g e F; x;1(8).xx(g) € K, y(g) € Y. It follows from Oseledec's theorem that w.p.1,
there exist o(v) = lim n”! y(A A, ..A)).

Theorem If F is a semisimple group and A, are independent then 0(V) is an in interior point
of the Weyl chamber Y.
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H. Herzel:.
Estimation of Lyapunov exponents from experimental data

Wolf's method for the estimation of the maximum Lyapunov exponent is applied to various
experimental time series. The algorithm is based on monitoring the separation of nearby
trajectories in a pseudo phase space spanned by delay coordinates. Some problems of the method
are discussed which are related to effects of noise and nonuniformity of the dynamics.

The algorithm is used for the characterization of several measured time series:

— solar radiation

— climatic data (EL Nino-Southern Oscillations) ‘
— data from heterogeneous catalysis

— newborn infant cries

F. Hofbauer:

The Hausdorff dimension of an ergodic invariant measure for piecewise
monotonic maps of the interval

A map T:[0,1] - [0,1] is called piecewise monotonic, if there is a finite partiion Z of [0,1]
into intervals such that TIZ is continuous and monotone for all Z e 2. If M is a T-invariant
measure on [0,1], let hu be its entropy and Xu its Lyapunov exponent. The Hausdorff
dimension of p, denoted HD(n), is defined as the infimum of the Hausdorff dimensions
HD(X), the infinum taken over all X <[0,1] with u(X) = 1. The p-variation of a function @:
[0,1] > R is defined as

i=1

m
varP ¢ = sup{ 2|<p(xi_l) - cp(xi)lp: m21,0<xy<x; <.<xXp S 1}.

We have the following theorem: ‘
Theorem: Let T be piecewise monotonic such that varP IT'l < e for some p>0. Let p be

h
an ergodic T-invariant measure satisfying A, >0. Then HD(y) = A—“ .
i

J. HolzfuB:
Lyapunov exponents from experimental data

The spectrum of Lyapunov exponents has been calculated from a time series of an observable of
a chaotic attractor in phase space. The numerical method, consisting of the construction of a
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trajectory in phase space and of the approximation of the matrix of the linearized flow, is
investigated in detail. It is shown, that in principle all Lyapunov exponents, including negative
ones, can be extracted from the data. Furthermore a new method based on the interpolation of
the local flow by radial basis functions is introduced.

The analyzed systems include a numerical simulation of a Duffing oscillator as well as a
data set of experimentally obtained acoustic cavitation noise.

R. Johnson:
Rotation number for higher-dimensional Schrodinger operators

We introduce a notion of oscillation for the Schrédinger operator

h=-A+q(x), xe DcR"
when the dimension n is odd. Here D is a bounded domain with C™ smooth boundary, and h
is defined using Dirichlet boundary conditions. It is further assumed that h has simple spectrum
{e; 1121} with corresponding normalized eigenfunctions {yjli>1}. We define a map

E: Dx(—oo,00) = P : E(x,€) = [g(x,e), -gfl-(x,e),..., g—i(x,e)]

" where P™ = projective space of lines in R™! and g is the Green's function of h. Precisely,

Deutsche

choose yy€ D sothat y;(yg) #0 (i21), and define g(x,e) = (h—e)‘l(x,yo).
It turns out that & can be smoothly interpolated through an eigenvalue €; via &(x.e;) = [y;(x),
Vy;(x)). Let  be the volume form on [P", normalized so .[p“ o =w,/2, ©, = volume of n-
sphere. Define the oscillation

o(e) = J; &*w, Z =(2D x [ey.e]) L Dx{e}
where €; <e, is fixed. We show that
(6)) Dl;n_nw 6(e) = o x(e)

where x(e) is the integrated density of states and D ranges over a sequence of domains

increasing to [R". Thus we obtain a relation between the rotation number (the left hand side of
(1)) and the density of states analogous to the relation which holds in dimensionn=1. ~

G. Keller:
Lyapunov exponents for interval maps

For unimodal maps T: [0,1])® with negative Schwarzian derivative as e.g. Tx = ax(1-x)
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(0 <a <4) we study the Lyapunov exponent A(x):= nli_r)n” % logl(T™'(x)l. A(x) and A(x)
denote the limsup and liminf, respectively. The main result is:
Thm. (to appear in Ergod. Th. & Dynam. Syst.):
If the set {x: A(x) > 0} has positive Legesgue-measure, then T has a unique absolutely
continuous invariant probability measure p and hu(Tj >0.
Cor.: Foreach T asabove there is Ay R such that X(x) = Ay for Lebesgue-a.a. x.
Furthermore: Ay <O iff T has a stable periodic orbit

Ap>0 iff T has an invariant measure as above.

In the case Ay =0 a great variety of different types of asymptotic behaviours is possible. In
CMPh (127) F. Hofbauer and the author constructed examples of maps Tx = ax( 1—3&) with
Ar=0 and various additional properties:

n
.= . 1
Let ®(S,): = {weak accum. points of [; Z&rka }.Then
k=1 n>0

® 3T:®3,)=1(3,} where Tz=z, IT'(z) > 1.9

1+V5

. VO0<h;<hy<log 3

3T: (hy(T): ve ®(8,)} = [h},h,] for Lebesgue-a.e. x.

Y. Kifer:
Remarks on large deviations for random transformations

Employing a general theorem on large deviations together with results and methods from
Walter's paper on uniqueness of equilibrium states for some mappings which expand distances 1
derive full and relativized large deviations bounds for occupational measures of iterations of
random expanding maps which involve full and relative entropies similarly to large deviations for

dynamical systems. Relativized large deviations mean that bounds hold for almost all ® i.e.
pathwise.

W. Kliemann

The Lyapunov spectrum of control systems

Many problems in control theory, like stabilization, the existence of suitable feedback controls,
robustness concepts..., can be formulated using Lyapunov exponents, and by considering

control systems as dynamical systems. For a control system of the form x = Xo(x) + ZuX(x)
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on a smooth manifold, where X,....Xp, are smooth vector fields and

u=(y)e ¥ ={u:R - U, integrable}, U ©R™ compact and convex, we formulate the
corresponding control flow @;: UxM — UxM, @ =(8,9), with & the shifton U, ¢ the
solution of the control equation. For this flow, and the associated linearized flow T® on
UxTM and the projected flow P® on Ux[PM, we define the concepts of control sets and
chain control sets and show that these sets correspond to the maximal topologically mixing and
chain recurrent components of the flows. The chain control sets lead to a subbundle
decomposition of UxTM, which is suitable for the analysis of ergodic properties of Lyapunov
exponents and the characterization of the spectral intervals.

V.B. Kolmanovskii:
Periodic solutions of stochastic functional differential equations

Various problems related to the theory of the periodic solutions of stochastic equations with delay
are considered. First the problem is stated and basic notions and definitions of the theory are
given. Further general conditions for the existence of periodic solutions are established. The
relationship between stability and periodicity is considered and the possibility of using the second
method of Lyapunov for the proof of conditions for the existence of periodic solutions is
established. Conditions for the existence of periodic solutions of concrete systems are studied
and formulated immediately in terms of the coefficients of the considered equations. Periodic
solutions of Ito stochastic functional differential cquauons are investigated.

O. Knill:
Lyapunov exponents of S1(2,R)-cocycles

We prove, that if T is an aperiodic aiutomorphism of a probability space (X,m), the set
{Ae L°XSI2R) | 1m 0" log AT™ ' (x))...A®)I > 0 a.e.} is dense in L=(X,S1(2,R)).
n—weo .

Y. Latushkin:
Lyapunov exponents and weighted composition operators
Let T be a homeomorphism of a metric compact X. p —a Borel quasi-invariant measure on X,

a: X = L(H) - continuous, L(H) — an algebra of linear bounded operators, acting in Hilbert
space H, A(x,n) = a(T™1x)-..-a(x) — a cocycle, (S,0(x) = (dpT~1/dp)12 a(T-1x)f(T~'x)
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be an acting in L,(X,p; H) weighted composition operator. 1) The Sacker-Sell spectrum X
connects with the operator spectrum o(S,) by therule: Z={In I:¢e oSy}, S= S(&),

a: XxH — XxH: (x,v) = (ax,a(x)v). The Riesz projectors of §, are the operators of the
multiplication on continuous operator-functions, whose images define the spectral decomposition
XxH. Let now a(x),x € X, be compact operators, Erg — the set of T-ergodic invariant
measures. 2) The spectrum Z consists of the finite or countable numbers of the closed intervals
[t;,t;]. K = 1,..., (K N+1), N <o, It may be calculated over the Lyapunov exponents by

Ix = inf{kjv : k{, e [t.tl,ve Ergh, 1= sup{AJ, : h{, € [1,1,], ve Erg}. 3) The spectral
radius of weighted composition operator over the endomorphism are calculated through entropy
and Lyapunov exponents. '

Y.Le Jan:

Asymptotic curvature for isotropic Brownian flows

The law of a measure preserving isotropic Brownian flow in [RY is completely defined by a -

. spectral measure F(dp) appearing in the representation of its covariance function.

Deutsche

Lyapunov exponents and the associated fluctuation constants can be explicitly computed
from the dimension d and the 29 moment of F. .
The asymptotic law of the curvature induced by the flow can also be obtained from the 4th

moment of F. If we reverse time this quantity converges a.s. towards what should be -

interpreted as the curvature of the unstable manifold the law of which is hence explicitly
determined. Its tail depends only on the dimension d and one may wonder whether this result
extends to a rather general class of flows. -

Note this result does not really require the measure preserving property. The associated
longitudinal Laplacian should then be self adjoint with respect to the random measure K
obtained from the Lebesgue measure at infinity by the inverse flow.

F. Ledrappier, L-S. Young:

Stability of Lyapunov exponents

We consider small random perturbations of matrix cocycles over homeomorphisms of compact
metric spaces. Lyapunov exponents are shown to be stable provided that our perturbations
satisfy certain regularity conditions. In particular we require that the stationary measure is the
same in the perturbed system as in the unperturbed system. These results are applicable to
dynamical systems and stochastic flows.
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A. Leizarowitz:

Eigenvalue representations for the Lyapunov exponents of certain Markov
processes ’

An approach to the study of Lyapunov exponents of certain Markov processes is developed. Its
utility is demonstrated by an application to two-dimensional random evolution equations, which
enables the representation of p-moment Lyapunov exponents as eigenvalues of certain first order
operators on the unit sphere.

We consider the relation between the Lyapunov exponent and the p-moment Lyapunov
exponents, which was first observed and studied by Amold [1]. We use this relation to represent
the Lyapunov exponent as an additive eigenvalue of a certain operator on the unit sphere. This is
given a simple geometrical meaning for a subclass of equations which, in particular, contains the
random evolution harmonic oscillator.

X. Mao:

Lyapunov functions and Lyapunov exponents

" Although there are a lot of papers on Lyapunov exponents for stochastic differential systems,

there is few papers using Lyapunov functions for studying almost sure exponential stability for
stochastic systems and this talk closes the gap. In this paper we first use Lyapunov functions to
investigate the almost sure exponential stability for stochastic differential equation with respect to
semimartingale.The result is then extended to more general Kunita's equation so that we can use
Lyapunov functions to study the bound for stochastic flows of homomorphism.

M. Misiurewicz, C. Sim6:
Why do we see repelling periodic orbits?

Suppose that we have a map of an interval into itself, for which there exists a probabilistic
invariant measure, absolutely continuous with respect to the Lebesgue measure. When we plot a
large piece of a generic trajectory then usually we see that there is considerably less points of this
trajectory close to repelling periodic orbits of small periods. This cannot be explained by looking
at the density of the invariant measure, since this density is not smaller there than at other points.
Careful examination of the simplest model: the map x — 2x (mod.1), shows that in this case the
probability that there will be no points plotted in a neighbourhood of the fixed point of a given
size, is much higher than for any other point. Other considerations show that the size of the
expected "window" grows as the exponent at the fixed point decreases.
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S. E.A. Mohammed, M. Scheutzow:
Lyapunov exponelits of linear stochastic functional differential equations

We consider a class of linear stochastic f.d.c.'s driven by jump semimartingales Y:
o .
dx(t) = dY(t)J wRds)x(t+s) t20. : *)
- : v

In the above system, (1) is a measure-valued stationary ergodic process describing the memory
of the system. The driving noise Y is matrix-valued and has stationary (possibly ergodic)
increments. A classification of systems (*) is introduced: The singular ones which do not admit
continuous linear stochastic (semi-) flows on the Hilbert space M,: = R™ x L2([-1,0),R™), and
the regular ones that do. Within (*) we define a large class of regular systems whose stochastic
flows are a.s. compact linear on M, for times t greater than the delay r. Using this result and
Ruelle-Oseledec ergodic theorem in Hilbert space, we show that for the regular class of systems
the Lyapunov exponents

t].l_l;l; T logli(x(®), xIl X(8):= x(t+s), -r<s<0

My’
forms a discrete non-random spectrum —eo S...< Ay, ; <A <<y <oo,
An exponential dichotomy for the stochastic flow is given in the hyperbolic case ll ae oOvizl

We also give estimates on A, for some one-dimensional examples.

N.S. Namachchivaya:
Stochastic approach to small disturbance stability in power systems

This work examines the almost-sure asymptotic stability of coupled synchronous machines
encountered in electrical power systems, under the effect of fluctuations in the interconnection
system due to varying network conditions. A linearized multimachine model is assumed with one
of the machines having negligible damping weakly coupled to the other machines with positive
damping. Furthermore, the fluctuations are assumed to contain both harmonically varying and
stochastically varying components. For small intensity excitations, the physical processes are
approximated by a diffusive Markov process defined by a set of Ito equations. Results pertaining
to the asymptotic almost-sure stability are derived using the maximal Lyapunov exponent obtainet
for the Ito equations. Assumptions made for the modeling and analysis are consistent with
possible operating conditions in an electrical power system.
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K. Palmer:
The numerical computation of orbits of dynamical systems

A computed orbit of a chaotic dynamical system will typically diverge very quickly from the true
orbit with the same initial condition. However, Hammel, Yorke and Grebogi have given a
procedure which enables one to find a true orbit with slightly different initial condition which
stays near the computed orbit for a large number of iterates. Shui-Nee Chow and I use the ideas
of the shadowing lemma to give a different approach to this problem. We reduce the problem to
the choice of an appropriate right inverse for a finite dimensional linear operator. Then we use the
hyperbolicity (which need not be uniform) of the dynamical system to find a "good" (i.e. of
small norm) right inverse. -

Y. Peres, R. Kenyon:
Computing Hausdorff dimension via Lyapunov exponents

Motivated by studying tilted versions of the Minkowski measure and their Hausdorff dxmenswn
the following is proved:
Theorem: Let A(p) be the top Lyapunov exponent for an independent random product of two
2x2 positive matrices A,B, where each element of the product is A with probability p, B
with probability (1-p). Then A(p) is a real-analytic function of p which, moreover,.méy be
continued analytically to the domain {ze C: lz<1, I1-zl<1}.

This is extendable to any finite collection of matrices, with independence replaced by finite
memory markov dependence.

In a different direction, extending a result of Hawkes, we show that if A,A, are Cantor
sets on the circle [0,1) defined by admissible digits in base b, then for ae. te [0,1) with
respect to Lebesgue measure,

dim[(A; + ) N Ay] = A

log b
with A the top Lyapunov exponent for b easily specified 2x2 integer nonnegauve matrices,
taken independent with equal probabilities.

M. A. Pinsky:
Lyapunov exponents for linear systems with white noise / real noise

We consider the linear SDE X = AX + eBXF(§,) (€ >0), X € RY where the noise term may
be a centered function of an ergodic reversible Markov process on a compact space or a white
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noise with mean zero, variance 62dt. Incase A is skew symmetric, it is shown that the small
noise Lyapunov exponent A(e) of the real-noise driven system is strictly less than the small-
noise Lyapunov exponent of the corresponding white noise driven system with

62 =-2(G"IFF), G = generator of real-noise process &,, inner product w.r.t. invariant
measure of (§). Incase A is nilpotent, we obtain an expansion of A(€) in fractional powers
of the small parameter €, when the leading coefficient is the same for both white noise or real
noise. These results are applied to the damped oscillator equation y + 2By + (k+eF(E))y = 0

(B>0,k>0).
C. Pugh:

Critical sets

Given a C* proper function f: R™ — R, its critical setis cp(f) = {x € R™: (D), = 0}.
Which compact sets C< R™ are cp(f) for such an f? Equivalently, which compact subsets

of R™ are chain recurrent sets for smooth flows on R™ U oo = S™, having a sink at oo ?

(Conley-Wilson Theorem) Answers - m = 1 - "Yes" for every compact CC R. m =2 (joint

“with Alec Norton) "Yes" iff R2\C has no simply connected components. m = 3 (joint with.

Matt Grayson) "Yes" for any cellular set or finite disjoint union of cellular sets. "Yes" for the
Hopf link, unlink, or link of > 3 components. "Yes" for Antoine's Necklace. "No" for all single
knots in R3, "no" for all links of two components except Hopf & unlink (Corollary no smooth

flow on R3 U oo =83 with a sink at  has chain recurrent set consisting of two closed orbits, .

one of which is knotted. No non-degeneracy assumptions are made.)

K.-U. Schaumléffel:

A multiplicative ergodic theorem with applications to hyperbolic stochastic

partial differential equations

We present a version of an infinite-dimensional MET which applies to cocycles in a Hilbert space
X consisting of invertible operators. If, asymptotically, the cocycle has a dominating compact
part, this theorem guarantees the existence of Lyapunov exponents and an associated
decomposition of X. This theorem applies, e.g., to first order SPDE of the form

m .
dx(t,r) = (b%(r)-Vx(t,r) + cOD)x(t,r)dt + Z (biD)- Vx(t,r) + ciD)x(t,0) o dwi.
i=1
Finally, the 'asymptotic compactness' condition for this type of equations is discussed.
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L. Stoyanov:

Perturbations of smooth surfaces and geodesic flows with (some) non-zero
rotation numbers

Given a smooth compact (m-1)-dimensional submanifold M of R™, consider the geodesic
flow on T*M with respect to the standard Riemannian metric g on M, inherited from R™.
A closed geodesic ¢ on T*M is called non-degenerate if the spectrum of the Poincaré map P,
related to ¢ does not contain roots of 1. We prove that glven a closed geodesic ¢ on M there
exists an arbitrarily close to id perturbation f e E°(M,R™) so that f=id along y= T,
supp f is contained in a small neighbourhood of a point (), ¥ is a closed geodesic on
M'=f(M) and 7y is non-degenerate with respect ot the standard metricon M. There exists a
residual subset ® of Tg;,(M,R™) so that for fe R every closed geodesic on M’ = f(M) is
non-degenerate. Similar results hold, considering the space of all smooth Riemannian metrics on
M instead of Eg,(M,R™) (R. Abraham 1968, W. Klingenberg & F. Takens 1972, Anosov
1982). If m=3 and c is an elliptic closed geodesic on T*M, there exists a small perturbation
of M aldng ®,C =7, sothat y satisfies the assumptions of the Birkhoff-Lewis Fixed Point

" Theorem and therefore the closure of the periodic orbits in a neighbourhood of Yy on M has

positive measure.

" P. Thieullen:

Deutsche

Pesin's formula for the a-entropy

Let M be a compact manifold of dimension d, $: M > M a t2-transformation and m a |
Lebesgue measure preserved by ¢. In 1983 Brin and Katok found an equivalent definition of
the usual entropy of ¢.
If d(x,y) denotes the usual geodesic distance on M, for every n they define

dy(xy) = max | d@i(x).4(y))
and they proved the following theorem

hm(x,¢) = lim lim su sup —

€e->0n—>+e  n-loge

i
log m[B,(x,6)]. h;,(¢) =I h, (x,0)m(dx). i

‘When we permute these two limits we obtain the usual fractal dimension

log'm{B, (x,e)]
Tge—

In that particular case that notion of dlmenslon is too crude since it is equal to d. The idea is to
mix these two definitions into one. Define the new metric

dim(x.¢) = im_limsup = log miBy(x.0)) = lim sup
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dp(xy) = max d(¢i(x).0i(y))el® where o is a parameter > 0,

1
and n® n(%:0) = hm lim sup— o log m[Bn (x,€)]

€0Nn >+

a local definition of entropy with a parameter a. Then we can generalize Pesin's formula (77):

b (x,0) = Za.oo ro)’
where A (x)2 .. 2 ld(x) is the sequence of Lyapunov exponents. One of the interests of that
formula is that it enables us to compute the whole sequence of Lyapunov exponents without
knowing the tangent cocycle.
C.E. Wayne, J.-P. Eckmann:

Lyapunov exponents for infinite dimensional dynamical systems

Consider the random symplectic matrices

1 Q
S =
@ (ll Il+Q),

where Q is a random matrix with elements

o li-i=1
1l o if 4I1—il=1
0 otherwise .

The o i are independent, identically distributed random variables with o, i>l0. iand j are
elements of some hypercube in 29, Let 62 = var(® l) and © = mean(e; ; ) We are interested

in the limit of the largest Lyapunov exponent as the number of points, N, in the hypercube goes
to oo, Denote this exponent by A,(N). We prove

Theorem: If d2>3, and o/® is sufficiently small

Jim 2,00 = 1og(1+2md + 24/ mdsw?d? )

Forany d,c and ®, A,(N) < log{ 1+2d + 24/ md+m2d2).

The proof uses a representation of the Lyapunov exponent as a directed polymer in a random
environment and then applies methods developed by Imbrie and Spencer to treat these polymer
problems.
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W. Wedig:

Invariant measures and Lyapunov exponents of limit cycles and stochastic
systems

The paper emphasizes numerical methods in the stability analysis of dynamical systems. They are
applied to calculate periodic orbits, invariant measures and associated Lyapunov exponents. To
illustrate this basic concept, three typical examples are considered:

a) Linear oscillator with multiplicative white noise. Introducing polar coordinates, the Fokker-
Planck equation of the decoupled angle can be solved like a dynamic system by means of a
backward difference scheme.

b) Mathieu equation with harmonic coefficients. The angles of the parametric excitation and of
the polar coordinate transformation define a typical limit cycle equation and its invariant
measure. Both are evaluated to determine associated Lyapunov exponents.

¢) Van der Pol equation with periodic orbits. To obtain an invariant measure, the gebmetrical
stability concept of Poincaré is introduced. It allows to calculate associated orbital Lyapunov
exponents. ’

V. Wihstutz:

Boundedness of Lyapunov exponents for linear stochastic systems with Iarge
diffusion term

The top Lyapunov exponent of a linear system perturbed by white (or real) noise with one or
several independent noise sources is considered, i.e. the top Lyapunov exponent of

dx=A0xdt+ciAixodWi,

where Ag,A,,...,Ap, are constant dxd-matrices, wl, . wm independent Wlener processes
and © a large real parameter.
For 2x2 systems boundedness versus unboundedness of the top Lyapunov exponent Ao

G —> oo, is systematically investigated. Essehtially, boundedness holds only for skew-symmetric
matrices AgenAg.

Stabilizability of the control system x = Ax + Bu is investigated in case of rank B =r<d,

m
using large white noise feedback control u = 02 BCxo Wi by computing clig; Ag=A..
i=1
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M.P. Wojtkowski:

Systems at interacting (classical) particles with nonvanishing Lyapunov
exponents ) B

Consider a system of n point particles in the haif line q >0 with masses m,,...,m,. They
collide elastically with each other and the bottom particle collides with the floor ¢ =0. They are
all under the influence of an external potential field with the potential V(q) such that V'(q) >0
and V"(q) <O0. This system has all Lyapunov exponents different from zero if m; >... 2 m,
and not all masses are equal. This is established by the introduction of a suitable sector bundle in
the phase space. A sector C between two transversal Lagrangian subspaces L,L, of a linear
symplectic space (W,w) is defined as

C=CLL,) = (weWlw=v,+v,, ;e L, i=12, @(vy,vy) 2 0}.

For the model of falling particles L, = {dp; =0}, L, = {dh; =0}, where p;’s are momenta

2
and h; = % +m,V individual energies of the particles. The same method can be applied to gas

at hard balls where L, = (dpi =0} and L, = {dq; = 0}. But for technical reasons the

nonvanishing of only some exponents can be established rigorously in the case of arbitrary -

_ number of particles.

Deutsche

L.S. Young:

Statistical properties of certain one-dimensional maps with positive Lyapunov

exponents

We consider maps f,: [-1,1]© defined by f,(x) =1—ax? for a€ [0,2]. Conditions are given
that guarantee 1) the existence of a unique invariant probability measure | that is absolutely
continuous w.r.t. Lebesgue (this implies positive Lyapunov exponents); 2) stability of y under
small random perturbations; and 3) exponential decay of correlations for certain classes of
functions. These conditions are satisfied on a positive measure set of parameters.

Berichterstatter: L. Armold, P. Boxler
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