
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 23/1990

Lyapunov Exponents

27. S. bis 2. 6. 1990

Die Tagung fand unter der Leitung von Herrn L. Arnold (Bremen) und

Herrn J.-P. Eckmann (Genf) statt Die Schwerpunkte des Interesses waren:

1. Produkte zufälliger Matrizen

2. Lineare Schiefproduktflüsse und Kontrollflüsse
3. Stochastische Flüsse
4. Entropie und große Abweichungen

5. Unendlichdimensionale Systeme

6. Intervall-Abbildungen

7. Numerische und asymptotische Aspekte

8. Ingeniemwissenschaftliche Anwendungen

Vo~tragsauszüge

S.T. Ariaratnam:

Lyapunov exponents in structural dynamics

Tbe role of Lyapunov exponents in the following three problems encountered in stochastic
structural dynamies is discussed:

1) ~c stability of elastic stroetures:

Equations of motion are of the form:

q"-+ 2Ä..q". + (j).2q_+ ):(t)oo- ~ k--q- =0, iJ' = 1,2,...,0,
1 1-'1 1 1 1 ";) 1 j IJ J
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where ~(t) is a stationary, zero mean stochastic process (Le. the loading) with smoothly._

varying spectral density Sero) =2t~cos O>t E[~(t)~(t+'t)]d't. ßi • sero) are small. Q(e).

The general result for the largest Lyapunov exponent is, for n =2:

Ä = ~(Äl+Ä.:l) + ~ (Ä1":'Ä.:l) coth (Ä~~~2 a ) + Tk12k21[S(Clll+~) - S(ro.-~)]. l\ > 0

where

cosha = I 1 +{k~tS(2rol) + k~2S(20):l) - 2k12k21S-} I
2klZkZlS ~

A = :4 [ {kr1S(2OOI) + ki2S (2OO2) - 4kI2k21S (OOI+OO2)}{kr1S(2OOI) + ki2S(2OO2) + 4k12k 21S(~I-002)}T'

kfi
S± = S(OOI+00Z) ±S(00 I --<02); A· = -13· +.- 8(20)-) i = 1,2.I I 8 I ,

For tJ. < 0, the result is obtained by suitable change of hyperbolic terms by their

trigonometric counterparts, for f!. =0 by suitable limiting forms. For example, if

k ll = k22 = 0 and S(oo) is concentrated around either 001 + COz for k 1ZkZ1 > 0 or

1001 - ~I for klZkzl < 0,

IklZk211 . . (131 if ßl < ß2J
A =- ß1,Z + --8- S(OOt±roz), ± accordlng as k12k21 > 0, < 0, resp., '. .

ß2 If ß2< ßl
2) Stochastic pitehfork bifurcation:

This occurs in columns, flat plates etc. under axial stochastic loads; equanon of motions is

Ci + 2ßq - (10 + cr~(t»q + Bq3, (~(t) white noise).

For Yo near zero (Le. the bifurcation point), the Lyapunov exponent of the linearized

system x+ [y- (J~(t)]x = 0, Y= ~o- 132, obtained after the change ofvariable q =xe-f3t

is

Ä = 0.28931 u2/3[ 1 - 4..57886 u-4f3 y+ 6.10592 u-
8f3 i + 0( u~(3)l •

from which the shift in the bifurcation point due to stochastic local perturbation may be

obtained by setting A. =0.
3) Localization of wave propagation in spatially disordered sttuctures.

In randomly disordered almost periodic structures such as long pipelines continuous over

several supports or space antennae made up of several nearly identical units, the

transmission coefficient -'tn at the nth unit from the point of origin of the wave varies as

l'tl - e-Aß, for large n, where A is the largest Lyapunov exponent corresponding to the
random wave transfer matrix of a single unit (Fürstenbergts theorem on product of random

matrices). The variation of the localization length JA with frequency in the pass bands is

evaluated for a long continuous Euler-Bemoulli beam and compared with approximated

perturbation solution for ± 10 % disorder in the span length of the beam between supports.
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L. Amold, H. Crauel:

Iterated function systems and multiplicative ergodie tbeory

Given a random dynamical sy~tem of affine mappings of [Rd whose linear pan is hyperbolic.

We prove that it has a unique invariant measure. Tbe proof uses multiplicative ergodie theory.

Tbe result generalizes and sheds new light on results of Barnsley and Elton on iterated function

systems.

P. Baxendale:

Bebaviour of invariant measures as the Lyapunov exponent crosses zero

Suppose the process {"t: t ~ o} in lAd satisfies the stochastic differential equation
r

~ = Vo(xt)dt + L Vi(Xt)d~
i=1

where the vector fields Vo,V1,... ,Vr all fIX O. Let Ä. be the Lyapunov exponent obtained by'

linearising this s.de. at O. Under suitable non-degeneracy and growth conditions ~n the Vi' the

process {"t: t ~ 01, when restricted to lAd - {Ol is transient, or null recurrent, or positive

recurrent according as Ä. > 0, or A = 0, or A < O.
Suppose now that the coefficients in the s.de. are varied in a smooth manner so that

Ä. ! O. We give estimates on the rate at which the (unique) invariant probability measure for

{"t: t ~ O} on IRd - {O} converges to the unit mass at O.

3

P. Bougerol:

• Lyapunov exponents and Kaiman fiUering

We consider the usuallinear set up

{

Xn = AnXn-l + FnEn,

y n = CnXn + 'tu,

where (En,'tn) is a sequence of LLd. Gaussian random vectors and (Ao'Cn,Fn) is a stationary

ergodie sequence independent of {(En;tn), neIN}, considered as known. Let

Po = IE(Xn-Xn) (Xn-Xn)*, Xn =IE(Xn I Yo,···,yn)

(they depend on An,Cn~n).
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Let ~ be the Hamiltonian matrix: (An S:~:-l)
TnAn(I+TnSn) An .

(Sn =Fn~' Tn =C:CD)·

These matrices are in Sp(2d,IR). If the dot is the usual action of Sp(2d,IR) on the set of
symmetric mattices (identified with the set ofLagrangian subspaces), then

PD =~ ... MrPo'
Let ~ be the set of positive symmetric definite matrices. Then •

Theorem X, = (M E Sp(2d,IR); Ms> c "} is a semi group acting by contractions on ",

where s> is equipped with the usual Riemannian metric.

With this theorem we prove that under weak controllability ap.d obselVability assumption, there

exists a unique statio~ary process PD such that d(PD'PD) --+ 0 a.s. \;f Po E ".

We show also the eXJX>oential stability of the filters and explain the relation between this and
the positivity ofLyapunov exponents of Mn...M!, n ~ O.

P. Boxler:

Lyapunov exponents as a tool in stochastic bifurcation theory

In nonlinear ordinary differential equations which depend on a parameter and which are often
used as models in physics or engineering, bifurcation phenomena are frequently encountered.
They are closely related to chapges in the qualitative behavior of the system and in its stability
properties. We are interested in understanding what happens to these features in the presence of
white or real noise. A notion of a stochastic bifurcation point in terms of invariant measures is
suggested. Using Lyapunov exponents a necessary condition for such a stochastic bifurcation
can be derived. It allows to understand the possibility of a shift of the bifurcation point in th~

stochastic case. The one dimensional transcritical bifurcation is examined in detail, and the .:
example of the saddle node bifurcation shows that noise may also destroy a bifurcation. Finally
the theory of stochastic center manifolds is outlined to provide a tool to handle higher
dimensional problems.

C. Bucher:

Sampie stability or multi.degree-of.freedom systems

Within the analysis and design of Strllctural systems the question of dynamic stability arises quite
frequently. A typical area in civil engineering is the motion stability of lang-span bridges (e.g.
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suspension type) in turbulent wind. While the equations of motion can be ~odeled in a linear

way without significant loss of accuracy it is quite essential that a relatively high number of state

variables - describing hath str'Uctural motion and fluid-structure-interaction - are retained in the

analysis.Conventional methods used frequently in engineering analysis like stochastic averaging
are less suitable for the previously mentioned cases where the interaction between different

modes of vibration plays a eentral mle. Consequent~y,a new eoncept which generalizes the
telassiealt averaging to higher dimensions is presented and put for discussion. NU,merical

examples'are provided as an additional basis for future applieation.

e N.D.Cong:

Lyapunov exponents and central exponents of linear systems of differential
equations perturbed by small random noises

We consider the spectrum of auxiliary exponents, the Lyapunov spectrum of central exponents of
systems with weakly varying coefficients and elose systems. Systems ~th wealdy varying

coefficients are interesting because the linear systems of almost all weIl known examples in
theory of Lyapunov exponents, including the Perron example, are systems with weakly varying

coefficients. It iso proved that a system with weakly varying coefficients has exact auxiliary

exponents which can be caleulated by Cauchy matrix of the given system. Furthennore, central
exponents of a system with weakly varying eoefficients under small random nondegenerate

perturbation coincide with the corresponding Lyapunov exponents with probability 1 and they

are close to the corresponding auxiliary exponents of the given system.

P. CoDet:

Large deviations for Lyapunov exponents and applications

5

e Using a continuous field of unifonnly contracted cones, the large deviations of the maximal

exponent can be discussed using a standard thennodynamic fonnalism. The associated pressure

funetion appears also in same quantitative questions. Two examples in one dimension are the

length.of the graph of the nth iterate of the transfonnation, and the essential radius for the
Perron-Frobenius transfer operator for expanding Markov maps.In higher dimension, this theory
applies to the study of non autonomous renormalisation, where the standard critical indicies are

. replaced by Lyapunov exponents OT their pressure at various temperatures according to the
spectral nature of the noise. Tbe pressure at inverse temperature 1 is also the dynamo rate of

some suspensions of Anosov maps on the two torus, Le. the exponential growth rate of a

passive magnetic field transported by the suspended flow in the limit of infinite magnetie
resistivity.
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H. CraueI:

An upper bound ror relative entropy

Suppose ~ is an invariant rnea~ure for a smooth random dynamical system

{cp(t,ro) : M ~Mit E T, ro E n} on a d-dimensional Riemannian manifold; T = IR or Z.

Denote by ~+ the restriction of Jl to nonnegative time, i.e., to the a-aIgebra

~+ = a{ <p('t,·) I 't ~ O}. The relative entropy associated with ~ is

1
dcp-l{l,ro)~ ro

(l~ = - log 1 dJl{X,ro).
Mx!} d~~

Provided some integrability condition, we show that

U
ll
~ dJm~{O, - A.~(x,(J)} d~(x,ro),

where ",J.1 is the smallest Lyapunov exponent associated with Jl. This generalizes results of
d

Baxendale (86) and Ledrappier (84).

As a consequence, we get a criterion for 'partial hyperbolicity': If, for Jl ergodie, Jl is ·neither a

functional of the future nor of the pas! alone, then A.~ < 0 < A.~.

R.W.R. Darling:

Products or infinite-dimensional random matrices related to oriented percolation

Let Al be a random Zd x Zd matrix witb entries in {O,l}. Let N ~ Zd be finite, and

suppose:

Al(x,x+z) = 0, for z outside N

{A I ( x, x+y), yEN} has the same law for all x E Zd.

Let a = Ly IE[AI(O,y)].

Let A I ,A2,... be i.i.d. random matrices. Then the Lyapunov exponent

1 .
'" == lim - logIlLy(AI,... ,An)(O,y)1I

n~n

exists 8.S., and

•

•
(*)

where Y is the limit of tbe martingale Yn == a-n Ly(AI,...,An)(O,y).

When dim(N) ~ 3, then for suitable choice of the law of Al it is possible to prove that
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P{Y"> 0) > O. It is conjectured that (*) gives all possible values of A., in the sense that

P{Y > 0) =1- P(n'J>fYn = Oll, at least when d ~ 3.

F. Flandoli:

Stochastic nows· lor stochastic PDEs 01 parabolic type

Some general abstract method is known to prove existence and uniqueness of solutions to 00­

dimensional stochastic equations, but the problem of existence of the associated stochastic flow

is solved only in some particular case, using "ad hocH methods. The aim of this research is to

develop an abstract method for stochastic equations of parabolic type. The method is based on

the fact that if the solution mapping is Hilbert-Schmidt in the square mean sense, then it is also

pathwise Hilben-Schmidt. The former property c~ be obtained by n.teans of regularity results,

typical of parabolic problems. One ean show that this method has wide applications, to second

order parabolic equations with Dirichlet, Neumann, periodic boundary ct?nditions, to higher

order parabolic equations, and to systems of parabolic equations. However, relatively to certain

particular problems, the "ad hoc" methods mentioned above allow greater generality and provide

more precise properties. Once the existence and regularity of the flow is established, Oseledec

type theorem can be applied.

I. Goldsheid, G. Margulis:

A condition ror simplicity 01 the spectrum or Lyapunov exponents

It is proved that zariski closure is "responsible" fOT the description ofthe Lyapunov exponents of

the product of Li.d. random matrices. Let v be the distribution of the matrices Ai' and F be

the Zariski closure of the group generated by the support of v. Suppose that F is a semisimple

group (but F ~ SL(m,lR) in general). Denote by 't a maximal torus in F which splits over IR.
Let t be the Lie algebra of the group 't, and W the Weyl group of F with respect to 't.

Choose some Weyl chamber Y c t with respect to the action of W ·on t and let R be a

maximal compact subgroup of F such thai g =K1(g) exp y(g) K2(g) and this decomposition is

unique for gE F; lC1(g),K2(g) E K, y(g) E Y. It follows from Oseledec's theorem that w.p.l,

there exist a(v) = lim n-I y(~An-l ...Al). .
n~

Theorem If F is a semisimple group and An are independent then a(v) is an in interior point

ofthe Weyl chamber Y.

7
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H. HerzeI:.

Estimation of Lyapunov exponents from experimental data

Wolfs method for the estimation of the maximum Lyapunov exponent is applied to various

experimental time series. Tbe algorithm is based on monitoring the separation of nearby

trajectories in a pseudo phase space spanned by delay coordinates. Some problems of the method

are discussed which are related to effects of noise and nonunifonnity of the dynamies.

Tbe algorithm is used for the characterization of several measured time seri~s:

- solar radiation

- climatic data (EL Nino-Southem Oscillations)

- data from heterogeneous catalysis

- newborn infant cries

F. Hofbauer:

The Hausdorft dimension or an ergodie in·variant measure ror piecewise
monotonie maps of the interval

•

A map T: [0,1] ~ [0,1] is called piecewise monotonie, if there is a fmite partition Z of [0,1]

into intervals such that' Tlz is continuous and monotone for all Z E Z. If ~ is aT-invariant

measure on [0,1], let bJl be its entropy and All its Lyapunov exponent. The Hausdorff

dimension of tJ., denoted HD(J!), is defined as the infimum of tbe Hausdorff dimensions

HD(X), the infinum taken over aU Xc [0,1] with ~(X) =1. Tbe p-variation of a function cp:
[0,1] --+ IR is defmed as

varP <p = SUP{~ I<P(xi-l) - <p(Xj) IP: m ~ I, 0 ~ Xo< xl <...< Xm ~ 1).
1=1

We have the following theorem: •

Theorem: Let T be piecewise monotonie sueh that varP IT'I < 00 for some p > O. Let Jl be
h

an ergodic T-invariant measure satisfying ~ > O. Then HD(J..1.) = A~ .
J.1

J. Rolzfu8:

Lyapunov exponents trom experimental data

Tbe spectrurn of Lyapunov exponents has been caleulated from a time series of an observable of

a chaotic attractor in phase spaee. Tbe numerical method, consisting of the construction of a
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trajectory in phase space and of the approximation of the matrix of the linearized flow, is

investigated in detail. It is shown, that in principle all Lyapunov exponents, including negative

ones, ean be extraeted from the data. Funhennore a new method based on the interpolation of

the local flow by radial basis functions is introduced.

Tbe analyzed systems include a numerieal simulation of a Duffing oscillator as well as a

data set of experimentally obtained acoustic cavitation noise.

R. Johnson:

Rotation number ror higher-dimensional Schrödinger operators

We inttoduce a notion of oscillation for the Schrödinger operator

h = - A + q(x), x E D C lAß

when the dimension n is odd. Here D is a bounded domain with COO smooth boundary, and h

is defmed using Dirichlet boundary conditions. It is further assumed that h has simple spectrum

{ei I i ~ 1} with corresponding normalized eigenfunctions {'Vi I i ~ I}. We define a map

1;: Ox(-oo.oo) ~ !pD :I;(x.e) = [ g(x.e). ::1 (x.e)•...• ::0 (x.e>]

. where (pn = projeetive space of lines in (Ro+l and g is the Green's funetion of h. Precisely,

ehoose Yo E D so that 'Vi(YO> ':# 0 (i ~ I), and define g(x,e) =(h-e)-l(x,yO>.

It tums out that l; can be smoothly interpolated through an eigenvalue ei via ;(x,ei) = ['Vi(X)'

V'Vi(X)]. Let 0) be the volume fann on (pD, normalized so r 0) = roj2, ron = volume of n-Jpn
sphere. Define the oscillation

CI(e) =J1: 1;*0>. 1: =(20 x [eo.e)) u Ox{e}

where eo < e l is fixed. We show that

(1) ID~ e(e) =COnK(e)

where K(e) is the integrated density of states and Dranges over a sequence of domains

increasing to lAß. Thus we obtain a ~lation between tbe rotation number (tbe left hand side of

(1» and the density of states analogous to the relation which holds in dimension n = 1.

G. Keller:

Lyapunov exponents ror interval maps

FOT unimodal maps T: [O,l]!:"J with negative Schwarzian derivative as e.g. Tx = ax(l-x)

9

                                   
                                                                                                       ©



•

•

10

1 -
(0 < a S 4) we study the Lyapunov exponent A(X):= lim - logl(Tn)'(x)1. A(X) and A(X)

n~n

denote the limsup and liminf, respectively. The main result is:

Thm. (ta appear in Ergod. Tb. & Dynam. Syst.):

If the set (x: rex) > O} has positive Legesgue-measure, then T has a unique absolutely

continuous invariant probability me~ure J.l and h~(Tj > o.
Cor.: For each T as above there is A.r e IR such that r<x) = A.r for Lebesgue-a.a. x.

Furthennore: Ä..r < 0 iff T has a stable periodie orbit

Ä.r > 0 iff T has an invariant measure as above. e
In the case A.r = 0 a great variety of different types of asymptotic behaviours is possible. In

CMPh (l21) F. Hofbauer and the author constructed examples of maps Tx =ax( I-x) with

Atr =0 and various additional properties:

Let li>r<~x):={ weak accum. points of (* t &rkxJ }.Tben
k=l n>O

3 T : ro,.(~x) = {~z} where Tz = z, ITt(z)1 > 1.9

l+VS
V O:s; h1 < h2 < log -2- 3 T : (hv(T) : v e ro,.(5x)} =[h1,h2l fQr Lebesgue-a.e. x.

Y. Kifer:

Remarks on Jarge deviations for random transformations

Employing a general theorem on large deviations together with results aod methods from

Walterts paper on uniqueness of equilibrium states for some mappings which expand distances"I

derive full and relativized large deviations bounds for occupational measures of iterations of

random expanding maps which involve full and relative entropies similarly to large deviations for •

dynamical systems. Relativized large deviations mean that bounds hold for almost all 0) i.e.

pathwise.

w. Kliemann

The Lyapunov spectrum of contro' systems

Many problems in control theory, like stabilization, the existence of suitable feedback controls,

robustness concepts... t can be fonnulated using Lyapunov exponents, and by considering

control systems as dynamical systems. For a control system of the form x =Xo(x) + LUiXi(x)
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on a smooth manifold, where Xv,...,Xm .are smooth v'ector fields and

u = (Uj) E tL = tu: IR --+ U, integrable}, U c IRm compaet and convex, we formulate the

corresponding control flow <I>t: tLxM --+ tLxM, cI> =(8,<p), with 8 the shift on tL, q> the

solution of the control equation. For this flow, and the associated linearized flow T<1> on

11 xTM and the projected flow· I? <1> on tJ, xl? M, we define the concepts of control sets aod
chain control sets and show that these sets correspond to the maximal topologically mixing and

chain recurrent components of the flows. Tbe chain control sets lead to a subbundle

decomposition of tLxTM, which is suitable for the analysis of ergcxlic properties of Lyapunov

exponents and the eharacterization of the spectral intervals.

V.B. Kolmanovskii:

Periodic solutions of stochastic functional differential equations

Various problems related to the theory of the periodic solutions of stochastic equations with delay

are considered. First the problem is stated and basie nations and definitions of the theory are

given. Further general conditions for the existence of perioelic solutions are established. The
relationship between stability and periodicity is considered and the possibility of using the second
method of Lyapunov for the proof of conditions for the existence of periodie solutions is

established. Conditions for the existence of periodic solutions of coocrete systems are studied
aod fonnulated immediately in terms of the coefficieots of the considered equations. Periodic

solutions of Ito stoehastic functional differential equations are investigated.

o. Knill:

Lyapunov exponents of SI(2,1R )-cocycles

We prove, that if T is an aperiodic automorphism of a probability space (X,m), the set

{ AeLoo<X,SI(2,1R» In~ n-1 log IIA('f'I-1
(x»•.•A(x)1I > 0 a.e.} is dense in Loo(X,SI(2,1R».

Y. Latushkin:

Lyapunov exponents and weighted co~position operators

Let T be a homeomorphism of a metric compact X. p - aBoreI quasi-invariant measure on X,

a: X -+ L(H) - continuous, L(H) - an algebra of linear bounded operators, acting in Hilben

space H, A(x,n) =a(Tß-lx)· ... ·a(x) - a cocycle, (SaO(x) =(dpl1 / dp)l/l a(llx)f(llx)

11
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be an aeting in ~(X,P; H) weighted composition operator. I) Tbe Sacker-Sell spectrum L

connects with the operator specttum cr(Sa) by the ruIe: L = (In I~I: ~ E a(Sa)}' S = S(eX),

a: XxH --+ XxH: (x,v) --+ (ax,a(x)v). Tbe Riesz proj~tors of Sa are the operators of the

multiplication on continuous operator-functions, whose images define the spectral decomposition

XxH. Let now a(x), x E X, be compact operators, Erg - the set of T-ergodic invariant

measures. 2) The spectrum 1: consists of the finite or countable numbers of the closed intervals

[~t~], Je = 1,..., « N+I), N S 00. It may be calculated over the Lyapunov exponents by

r~ =inf{Ät : At E [~,~~], V E Erg}, r~ = sup{At : At E '[~~,~~], V E Erg}. 3) Tbe spectral

radius of weighted composition operator over the endomorphism are calculated through entropy •
and Lyapunov exponents.

Y.Lelan:

Asymptotie eurvature tor isotropie Brownian flows

Tbe law of a measure preserving isotropie Brownian flow in (Rd is completely defined by a

. spectra1 measure F(dp) appearing in the representation ~fits covariance function.

Lyapunov exponents and the associated fluctuation constants ean be explicitly computed

from the dimension d and the 2d moment of F.
The asymptotie law of the curvature induced by the flow can also be obtained from the 4th

moment of F. If we reverse' time this quantity converges a.s. towards what should be .
interpreted as the curvature of the unstable manifold the law of which is henee explicitly

determined. Its tail depends only on the dimension d and one may wonder whether this result
extends to a rather general class of flows..

Note this result does not really require the measure preserving property. Tbe associated

longitudinal Laplacian should then be self adjoint with respect to the random meas~e Jloj
obtained from the Lebesgue measure at infmity by the inverse flow.

F. Ledrappier, L-S. Young:

Stability of Lyapunov exponents

We eonsider small random perturbations of matrix cocycles over homeomorphisms of eompact

metrie spaces. Lyapunov exponents are shown to be stable provided that our perturbations

satisfy cenain regularity conditions. In particular we require that the stationary measure is the

same in the penurbed system as in the unpenurbed system. These results are applicable to

dynamical systems and stochastic flows.
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A. Leizarowitz:

Eigenvalue representations for the Lyapunov exponents of certain Markov
processes

~ approach to the study of Lyapunov exponents of certain Markov processes is developed. 115
utility is demonstrated by an application to twcrdimensional random evolution equations, which

enables the iepresentation ofp-moment Lyapunov exponents as eigenvalues of cenain first order

operators on the unit sphere.

We con~ider the relation between the Lyapunov exPonent and the p-moment Lyapunov

exponents, which was first observed and studied by Amold [1]. We use this relation to represent

the Lyapunov exponent as an additive eigenvalue of a certain operator on the unit sphere. This is

given a simple geometrical meaning for a subclass of equations which, in panicular, contains the

random evolution harmonie oscillator.

X.Mao:

Lyapunov functions and Lyapunov exponents

. Although there are a -lot of papers on Lyapunov exponents for stochastic differential systems,

there is few papers using Lyapunov funetions for studying almost sure exponential stability for

stochastic systems and this talk ~loses the gap. In this paper we ftrst use Lyapunov functions to

investigate the almost sure exponential stability ror stoehastic differential equation with respect 10

semimartingale.The result is then extended to more general Kunitats equation so that we can use

Lyapunov fußctions to study the bound for stoehastic flows of homomorphism.

M. Misiurewicz, C. Sim6:

Why do we see repelling periodic orbits?

Suppose that we have a map of an interval into itself, for which there exists a probabilistic

invariant measme, absolutely continuous with respect to the Lebesgue measure. When we plot a

large piece of a generic trajectory then usually we see that there is considerably less points of this

trajectory elose to repelling periodie orbits of small pericxls. This cannot be explained by looking
8t the density of the invariant measure, since this density is not smaller there than at other points.

Careful examination of the simplest model: the map x --+ 2x (modI), sh~ws that in this case the

probability that there will be 00 points plotted in a neighbourhood of the fIXed point of a given

size, is much higher than for any other point. Other considerations show that the size of the

expected "windowtt grows as the exponent at the fixed point decreases.

13
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S. E.A. Mohammed, M. Scheutzow:

Lyapunov exponents of Ii.oear stochastic functional differential equations

We consider a class of linear stochastic f.d.e.'s driven by jump semimartingales Y:
o '.

dx(t) = dY(t)Jl1(t)(ds)x(t+s) I ~ o. (*)
-r

In the above system, Jl(t) is a meas~re-valued stationary ergodic process describing the memory

of the system. The driving noise Y is matrix-valued and has stationary (possibly ergodic)

increments. A classification of systems (*) is introduced: The singular ones which do not adptit •

conttnuous linear stochastic (semi-) flows on the Hilben space M2: = IRD x n.2([-r,O),IRß), and

the regular ones that da. Within (*) we define a large class of regular systems whose stochastic

flows are a.s. compact linear on M2 for times t greater than the delay r. Using this result and

Ruelle-Oseledec ergodie theorem in Hilben space, we show that for the regular class of systems

the Lyapunov exponents

1im 1.. logll(x(t), xt)II
M

_, xt(s):= x(t+s), -r < s < 0
t~ t ..~

forms a discrete non-random spectrum -00 S...< A.i+l < A.i <...< A.1 < 00.

An exponential dichotomy for the stochastic flow is given in the hyperoolic case ~ *0 \;j i ~ 1.

We also give estimates on Al for some one-dimensional examples.

N.S. Namachchivaya:

Stochastic approach to small disturba~ce stability in power systems

This work examines the almost-sure asymptotic stability of coupled synchronous machines

encountered in electrical power systems, under the effect of fluctuations in the interconnection

system due 10 varying network conditions. A linearized multimachine model is assumed with one

of the machines having negligible damping weakly coupled to the other machines with positive

damping. Furthennore, the fluctuations are assumed to contain both hannonically varying and

stochastically varying components. For small intensity excitations, the physical processes are

approximated by a diffusive Markov process defined by a set of Ito equations. Results pertaining

to the asymptotic almost-sure stability are derived using the maximal Lyapunov exponent obtainet

fOT the Ito equations. Assumptions made for the modeling aod analysis are consistent with

possible operating conditioos in an electrical power system.

•
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dim[(A) + t) (')~] = IO~ b

with A the top Lyapunov exponent for b easily specified 2x2 integer nonnegative matrices,

laken independent with equal probabilities.

•

•

K. Palmer:

The Dumerical computation of orbits of dynamical systems

A computed orbit of a chaotic dynamical system will typically diverge very quickly from the true

orbit with the same initial condition. However, Hammel, Yorke and Grebogi have given a

procedure which enables one to find a true orbit with slightly different initial condition which

stays near the computed orbit for a large number of iterates. Shui-Nee Chow and I use the ideas

of the shadowing lemma to give a different approach to this problem. We reduce the problem to

the choice of an appropriate right inverse for a finite dimensional linear operator. Then we use the

hyperbolicity (whieh need not be uniform) of the dynamical system to fmd a ttgood" (i.e. of

small nonn) right inverse.

Y. Peres, R. Kenyon:

Computing Hausdorff dimension via Lyapunov exponents

Motivated by studying tilted versions of the Minkowski measure and their Hausdorff dimension,

the following is proved:

Theorem: Let A(P) be the top Lyapunov exponent for an independent random product of two

2x2 positive mattices A,B, where each element of the product is A with probability p, B

with probability (l-p). Then Ä(p) is a real-analytic function of p which, moreover,.may be

continued analyticaIly to the domain {z E a:: Izl< 1, Il-zl< I}.
This is extendable to any fmite collection of matrices, with independence replaced by fmite

memory markov dependence.

In a different direction, extending a result of Hawkes, we show that if A1~2 are Cantor

sets on the circle [0,1) defined by admissible digits in base b, then for a.e. t E [0,1) with

respect to Lebesgue measure,

M. A. Pinsky:

Lyapunov exponents for linear systems with white noise I real noise

We consider the linear SDE X =AX + EBXF(~t) (E > 0), X E lAd where the noise term may

be a centered funetion of an ergodie reversible Markov process on a compact space or a white

15
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noise with mean zero, variance o2dt. In case A is skew symmetric, it is shown that the small

noise Lyapunov exponent A.(E) of the real-noise driven system is strictly less than the small­

noise Lyapunov exponentofthe corresponding white noise driven system with

0 2 =-2(Q-lp,F), G = generator of real-noise process. ~t' inner product w.r.t. invariant

measure of (~J. In case A is nilpotent, we obtain an expansion of A.(E) in fractional powers

of the small parameter E, when the leading coefficient is the same forboth white noise or real

noise. These results are applied to the damped oscillator equation y+ 2py + (k+EF(~t»Y =0

(ß > 0, k > 0).

•C. Pugh:

Critical sets

Given a COO proper function f: IR m -+ IR, its criticaJ set is ep(f) = {x E IR m : (DOx = O}.

Which compact sets Ce IRm are cp(f) for such an f? Equivalently, which compact subsets

of IRm are chain recurrent sets for smooth flows on IRm u 00 = sm, having a sink at oo?

(Conley-Wilson Theorem) Answers - m =1 - t1Yestt for every compact C c IR. m =2 Goint

. with Alec Norton) "Yes" iff 1R2 \ C has no simply connected components. m = 3 Goint with.

Matt Grayson) "Yes" for any cellular set or finite disjoint union of celltI1ar sets. "Yes" for the

Hopf link, unlink, or link of ~ 3 components. nYes" for Antoine's Necklace. "No" for all single

knots in 1R3, "no" for all links of two components except Hopf & uolink (Corollary 00 smooth

flow on 1R3 u 00 = S3 with a sink at 00 has chain recurrent set coosisting of two closed orbits, .

one of which is knotted. No non-degeneracy assumptions are made.)

K.-U. Schaumlöffel:

. A multiplicative ergodie theorem with applications to hyperbolic stochastic •
partial differential equations

We present aversion of an infinite-dimensional MET which applies to cocycles in a Hilben space

X consisting of invertible operators. If, asymptotically, the cocycle has a dominating compact

part, this theorem guarantees the existence of Lyapunov exponents and an associated

decomposition of X. This theorem applies, e.g., to ftrSt order SPDE of the fonn
m .

dx(t,r) = (bO(r)-Vx(t,r) + cO(r)x(t,r»dt + L (1Ji(r). Vx(t,r) + ci(r)x(t,r» 0 dwi .

i==l
Finally, the 'asymptotic compactness' condition for this type of equations is discussed.
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L. Stoyanov:

Perturbations of smooth surfaces and geodesJc flows with (some) non-zero
rotation Dumbers

Given a smooth compact (m-l)-dimensional submanifold M of IRm, consider the geodesie

flow on ~M with respect to the standard Riemannian metric g on M, inherited from IR m.
A closed geodesic c on ~M is called non-degenerare if~e spectrum of the Poincare map Pe
related 10 c does not contain roots of 1. We prove that given a closed geodesic c on M there

exists an arbittarily elose to id perturbation f E tOO(M,1Rm) so that f =id alon'g "( =1t
O

C ,

supp f is contained in a small neighbourhood of a point 'Y<to), "( is a elosed geodesic on

MI = f{M) and "( is non-degenemte with respect ot the standard metricoo M. There exists a

residual subset :2 of tclnb<M,lRm) so that for fE :2 every closed geodesic 00 M' = f(M) is

non-degenerate. Similar results hold, considerlng the space of all smooth Riemannian metrics on

M instead of e;inb(M,lRm) (R. Abraham 1968, W. Klingenberg & F. Takens 1972, Anosov

1982). If m = 3 and e is an elliptic elosed geodesie on T*M, there exists a small penurbation

of M alO?g 1tOC ='Y, so that y satis~es the assumptions of the Birkhoff-Lewis Fixed Point

Theorem and therefore the closure of the periodie orbits in a neighbourhood of "( on M has
positive measure.

P. Thieullen:

Pesin's formuls for the a-entropy

Let M be a compact manifold of dimension d, ,: M --+ M a t 2-transformation and m a

Lebesgue measme preserved by q>. In 1983 Brin and Katok found an equivalent definition of

the usual entropy of ,.

H d(x,y) denotes the usual geodesic distance on M, for every n they defme

.~(x,y) = OS:-l d(,i(x)"i(y»

and they proved the following theorem

hm(x,<Jl) = ]im lim sup - -1
1
- log m[Bn(x,E)J. hm(cf» =f hm(x,<Jl)m(dx).

2-+0 n --+ + 00 n- ogE
When we permüte these two limits we obtain the usual fractal dimension

"-1 log"m[Bo(x,E»
dimF<x,q») = lim lim SUD -1- log m[Bo(X,E)] =lim SUD -----I---

0--++00 2 -+ er n- ogE 2 -+ er og E

In that particular case that notion of dimension is too emde since it is equal to d. Tbe idea is to
mix these two definitions into one. Define the new metric

17
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and

r1 (x.,y) = rpax I d(~(x),tPi(y»eia where a is a parameter> 0,
~ OSlSn-

1
hQ(x,tP) = Iim lim sup - - log m[B~(x,E)]

m E-+0 n -+ + 00 n

a local defInition of entropy with a parameter a. Then we can generalize Pesin's fonnula (77):
d

h:<x,cp) = L(Ai(X) + ~)+
i=l

where Al(x) ~ ... ~ Ad(x) is the sequence of Lyapunov exponents. One of the interests of that

formula is that it enables us to compute the whole sequence of Lyapunov exponents without

knowing the tangent cocycle. •

C.E. Wayne, J.-P. Eckmann:

Lyapunov exponents for infinite dimensional dynamical systems

Consider the random symplectic matrices

S(oo) = (n Q)
. n n+Q ,

where Q is a random matrix with elements

~.-1

o
if

otherwise .

The Olii. are independent, identically distributed random variables with ooi1. > O. i and 1. are
elements of some hypercube in Zd. Let 0 2 = var(ClJil.) and m = mean(ClJil.)' We are interested •

in the limit ofthe largest Lyapunov exponent as the numberofpoints, NI in the hypercube goes

to 00. Denote this exponent by Al(N). We prove

Theorem: H d ~ 3, and olm is sufficiently small

N~ "'t(N) =log(1+2md + 2-/md+m
2
d

2
),

For any d,o and m, "'1(N) ~ log(1+2md + 2-/r-m-d-+m-2-d-2).

The proof uses a representation of the Lyapunov exponent as a directed polymer in a random

environment and then applies methods developed by Imbrie and Spencer to treat these polymer

problems.
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w. Wedig:

Invariant measures aod Lyapunov exponeots of limit cycles aod stocbastic
systems

The paper emphasizes numerlc31 methods in the stability analysis ofdynamical systems. They are
applied to calcuIate periodie orbits, invariant measures and associated Lyapunov exponents. To
illustrate this basic concept, three typical examples are considered:

a) Linear oscillator with multiplicative white noise. Introducing polar coordinates, the Fokker­

Planck equation of the decoupled angle can be solved like adynamie system by means of a
backward difference scheme.

b) ~thieu equation with harmonie coefficients. The angles of the parnmetric excitation and of
the polar coordinate transformation define a typicallimit cycle equation and its invariant
measure. Both are evaluated 10 determine associated Lyapunov exponents.

c) Van der Pol equation with periodic orbits. Ta obtain an invariant ~easure, the geÖmetrical
stability concept ofPoincare is introduced. It allows 10 calculate associated orbital Lyapunov
exponents.

V. Wthstutz:

Boundedness of Lyapuoov exponeots for linear stocbastic systems witb large
diffusion term

Tbe top Lyapunov exponent of a linear system perturbed by white (or real) noise with one or
several independent noise sources is considered, i.e. the top Lyapunov ~xponentof

m

dx = Aoxdt + (J L ~x 0 dWi,

i=le where Ao.At.···.Am are constant dxd-matrices. Wt•...•wm independent Wiener processes

and (J a large real parameter.

For 2x2 systems boundedness versus unboundedness of the top Lyapunov exponent Ä(J'
. -

(J -+ 00, is systematically investigated. Essentially, boundedness holds ooly for skew-symmettic
matrices Al'...~.

Stabilizability of the control system x=Ax + Bu is investigated in case of rank B = r < d,
m

using large white noise feedback control u =(JL BCjx 0 wi by computing (J~ Ä(J = "'00·
i=l

19
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M.P. Wojtkowski:

Systems at interacting (classical) particles with nonvanishing Lyapunov
exponents

Consider a system of n point p~cles in the half line q ~ 0 with masses ml ,...,~. They

collide elastically with each other and the bonorn particle collides with the floor q = O. Theyare

all under tbe influence of an external potential field with the potential V(q) such that V'(q) > 0
and V"(q) < O. This system has all Lyapunov exponents ,different from zero if mt 2: •.. 2:~

and not all masses are equal. This is established by the introduction of a suitable seetor bundle in ~
the phase space. A sector C between two transversal Lagrangian subspaces LI,Lz of a linear _

symplectic space (W,co) is defined as

.C =C(LI'~) = (w eW I w =VI + v2' Vi e Li' i = 1,2, co(vI,v2) 2: O}.
For the model of falling panieies LI ={dPi =O}, Lz = {dhi =O}, where Pils are rnomenta

2

and h; = :~. + 1:1\V individual energies of the panicles. The same method can !Je applied to gas
1

at hard balls where LI = {dPi =O} and ~ = {dqi = O}. But for technical reaso~s the

nonvanishing of only some exponents can be established rigorously in the case of arbitrary ,

number of particles.

L.S. Young:

Statistical properties of certain one-dimensional maps with positive Lyapunov
exponents

We consider maps fa: [-I,I]b defined by fa(X) = 1- ax2 for a e [0,2]. Conditions are given

that guarantee 1) the existence of a unique invariant probability measure J.1 that is absolutely

continuous w.!.t. Lebesgue (this implies positive Lyapunov exponents); 2) stability of J..l under •
small random perturbations; and 3) exponential decay of correlations for certain classes of

functions. These conditions are satisfiedon a positive measure set of parameters.

Berichterstatter: L. Amold, P. Boxler
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