
--:"~

0:/-1-
~.. "
<~

I '

Math. forschungsinstitut
Oberwolfach

E201012

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 13/1991

• Elementare und Analytische Zahlentheorie

17.03. - 23.03.1991

This conference on "Elementary and Analytic Number Theory" was organized by
Prof. Dr. H.-E. Richert (DIrn), Prof. Dr. W. Schwarz (Frankfurt) and Prof. Dr.
E. Wirsing (DIrn).
It was attended by 43 participants, and in 39 high leveled and wen prepared lectures,
the most recent results were communicated from research areas as:

•

algebraic linear recurrences, arithmetical functions, character sums, coo­
tinued fractioDs, Dirichlet series, the divisor function (in arithm. progr.),
divisor problems, exponential sums, Goldbach numbers, moments of the
Riemann Zeta-function, multiplicative functions, quadratic forms, Waring's
problem and others..

F~rther details can be found in the abstracts of the lectures.
On the background of the uniquely stimulating atmosphere of the Institute we" all
had a great time of learning and exchanging ideas. The organizers express their
thanks to the Land Baden-Württemberg, the Director of the Institute, Prof. Barner
and his staff for providing this enjoyable environment:

                                   
                                                                                                       ©



2

Abstracts

Pairs of quadratic forms modulo one

This is joint work with J. Brüdern. Let Ql and Q2 be quadratic forms with real
coefficients. We consider the problem of finding .-\>0 for which:
Given N> C(S,E) there is ~~71·, 0 < II!I ~ N satisfying

max(IIQIU!)II, IIQ2<W1I) < N->'~.

A...',i:I'" ;/'

The equivalent problem with a single quadratic form was first considered by Danicic .
and subsequently by Schinzd, Schlickewei and Schmidt and then by Baker and e;
Harman. A further sharpening is due to Heath-Brown fonowing new bounds for
least solutions of quadratic congruences. This work is helpful for evaluating .-\ only
for s~ 6. We use Schmidt's lattice method to get (e. g.) .-\(2) = t. Dur results
improve all previous work for s ~2.

R. C. Baker. Egham. Surrey.

Diagonal equations in p-adic fields

Given integer coefficients Gij we consider the following system over Qp:

o
(I)

o

.Theorem (Atkinson, Briidem, Cook). Let s> 2rA: and p> ?+2. Then (1)
has a non-trivial solution in Qp.
This result is best possible with respect to s, and settles a special case of a recent
conjecture by T. Wooley. Some applications to integer solutions 01 (I) are also
mentioned.

J. Brüdern. Göttingen.

Positive integers for which O(n) = k

Let IIp (n) be the exponent of the prime p in the factorization oI n, Sex, k) =
={n~x: n(n)=k}, N(x,k)thenumberofelementsofS{x,k), y=x/?! and
Q(l) = llogl-..\ + i. It is supposed here that 2l1oglog% ~ k ~ log~/log2J

l fixed ~ (I , ~). A theorem stated in the last meeting and proved at the conference
in honour of Paul Bateman in 1989 shows that, if y -+ 00, then the distribution 01
the numbers (1I2(n) - (k-2 log log y»/.J2 log log y (I) on S{x,k) converges to
the normal distribution of Gauss. Now we give the following
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Theorem.

_1_ E w(n)
N(x,k) n c: S(z,k)

k - 2log1ogy + a + 0 (loglog'y)I/2Iog- 2 Q(.\)y),

2 log log y + b + 0 (log log yP/21Qg-2Q(.\) Y) ,

as x ---+ 00,

•

•

a = 2 ( 1 + log 2 - I - E {log (1 - ~) + ~2})' b = 1 - a - 4 E (:2).
1'>2 P l' 1'>2 I' p

I can also obtain formulas for tbe moments of order q of the numbers ( 1) on S(x, k).

H. Defange. Orsay.

Multiplicative functions on arithmetic progressions (with application to
correlations of multiplicative functions and sums of additive functions)

Let tbe complex-valued multiplicative function 9 satisfy Ig(n) I ~ 1 for all n f IN .
A survey of aseries of papers concerning such functions was given (I-VI). A typical
result (from paper VI): Given c>O, x~2,

1 x - ~ t-e

E g(n) - cp(D) E g(n) ~ l,O(D) (lOgx) ,
n<x n<x

n =r mod D (n t 15) = 1

uniformly for (r, D) = 1, all D :5 Q save possibly for the multiples of a Do > 1. If
°<ß < 1, then this result is uniform (i. e. there is the same exceptional Do,. if at all)
for N (J ~ x ~ N. As a consequence, a proof of the estimate

1r(x;D,r) = lp(D)logx { 1 + O(O~~)t-.) }
with the s~me uniformities and Q :5 Nß-eo , holds for primes. The novelty is that
the proof does not use estimates for the density or non-existence of zeros of L-serles
in the half-plane Re(s) :51.
As an application (via the correlation of multiplicative functions):
Let fj be real additive functions, ßj(x) > 0, -+ 00, and for y > 0, ßj(XY)/ßj(x) -+ 1
as x -+ 00. Then

v (no t f;(ajn + bj ) - Qj(x) < z) ~ F(z),
% 'j=1 ßj(x) -

for a suitable O'j(x) where aj > 0, a1b2 :F a2bl, iff there are constants B j so' that
independent random variables X p distributed according to '

X1'

with probability l/p,

with probability l/p,

with probability 1 - 2/p,
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satisfy p(EXp - ,(x) ~ z) =>
p<x

4

F(z}, for a suitably chosen ,(x).

~ '::;: (.l;')!.
P. D. T. 'A. Elliott, Boulder.

The divisor function over arithmetic progressions

This paper - in collaboration with H. Iwaniec with an appendix by N. Katz - deals
with the problem of evaluating the sum

D-r(x; q, a) E ren) (a, q) = 1, T the divisor function, by
n~z,n=amod q

D-r(x; q) = cp(q) L; r(n).
n~z,(n,q)=l

We prove the following .'
Theorem 1. Let r be squarefree with (a, r) = 1, r ~ X

3
/
8 we have

E 1D-r(x;rs,a) - CP(~6) D.,.(x;rs) 1 <:I! r-
l

xl-I!.
6< r- 1 /'lz(1-6c)/2

- (",ar)==l

This theorem gives an approximation of D-r(x; rs), for a special type of averaging,
when rs is around the critical value X 2/3 . We require the

Theorem 2. 'Let S(m,n;q) be theKloostermansum E e(mu±Av). Let
uv:=l modq q

r be squarefree with (a, r) = 1 and A, f GJ. Then we have

E 1 E..\,S(a,l;rs) 1
2

<: (r- I
/

4 +rl
/

4S-l
/

2 + SL- I
) LS2r l +t:EIAd2.

6~S,(",r)=1 I~L

The proof of Theorem 2 is based on an upper bound for an exponential SUffi of
dimension five. Such a surn is treated by very deep techniques of algebraic geometry.

E. Fouvry. Orsay.

Same estimates far character sums

We state two theorems frorn joint work with H. Iwaniec and very brießy sketch the
ideas behind the proofs.

Theorem 1. For sequences Gk, PI, k~K, i$L, let

S· ,= 'P(q)-1 EIE 0k x(k) E PI xCi) E x(m) 1
2

•
Xmodq k I m<M
x~xo -

We have

S· <: E IO:k 12E IßI12 M {I +q-3/4(K + L)1/4(KL)5/4 + q-l(KL)1/4} qt:.
k I

•
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Tbe proof depends on nothing more complicated tban the Poisson summation for­
mula. By adding on estimates for Kloosterman sU:ms it can be easily sbarpened. By
choosing Qk = X(k), Pi = X(l) we gei the following

Corollary. For X a non-principal character mod q and M > qfi+~ we have

E x(m) <: Ml-6(~).

m~M

This improves th~ Polya-Vinogradov range without using advanced tools.
Tbe second theorem deals with sums S = Lac.A LbfB x(a + b) where X has prime
modulus p and Ac [M,M+A] has cardinality lAI, 8 c [N,N+B] has cardina­
lity )81. As the theorem is complicated we state two corollaries.

Corollary 1. Let lAI = 181, A <: pl/2. Then lAI > p*+~ ~ S « IAIIB) p-6.

(Note: In case M =N = 0, *: can be replaced by fo.)

Corollary 2. Let p~ ::s; B::S; A, pt+~::s; AB ::S;p. Then 3 6{€) >0 such that VA, B
contained in intervals of length A, Band such that lAI> Ap-6, 181 > Bp-6, we

have S « IAIIBI p-6 .

J. B. Friedlander, Scarborough. Ontario.

whereN(x) = C x2 + O(E(x))

Squarefree val lies of binary forms of degree six

A paper to appear in the· Quart. J. Math. (Oxlord) Sero will eontain the following
result: Suppose k 2: 2. Let f( a, b) denote an integral binary form (homogeneous
in two variables) ~ith non-zero discriminant, of degree d, and containing non-zero
terms in a d and beI. Suppose f(a, b) has no non-trivial k-th power divisors, and that
its irreducible factors bave degrees not exceeding D. Let N(x) denote the number
of pairs _of integers a, b with 1 ::s; a; b ~ x, for whieh f (a, b) is k-free. Then, for a
certain C = Cf > 0,

i.

ii.

E(x)

E(x)

x 2 10g-1/ 3x

x2 log-1x

if k = 2, D $ 6

if D $ 2k + 1

We discuss tbe case k = 6 and f irreducible, describing an improvement noticed by
K. Ramsay at Harvard which leads to an improved estimate E(x) = x log-1/2X

in i.

G. Greaves, Cardiff.
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On consecutive k-th power residues

A. Brauer showed in 1928 that for any given positive integers k ~ 2, l ~ 2 and every
sufficiently large prime p there exists a positive integer n such that n, n+ 1, ... , n+
i-I are k-th power residues modulo p. Let A(k, l,p) denote the least such n and set
A(k,l) = limsupp_oo A(k, l,p). In the 1960's a number of authors have investigated
A(k, l) for small values of k and l, partly with aid of computers. In particular, it
has been shown that A(k, 2) < 00 for 2 ~ k ~ 7, and it had been conjectured that
A(k,2) is finite for all k~2. In Monaths. Math. 102 (1986), I proved the conjecture
in the case k f IP and recently extended the a:rgument to all k ~ 2 ..

A. Hildebrand, Urbana ..

~emarks on exponential sums

Bombieri and Iwaniec's method: Ann. Seuola Norm. Sup. Pisa Cl. Sei. (4), 13 (1986)
for estimating general exponential sums Ln e (f(n» rests on a localpolynomial
approximation f{m+x) ~ f(m) + ~x + ~x2 + p.x3, where a, b, q are in-.
tegers, and the residual coefficients K, JL are real and suitably bounded. We must
choose the parameters of the method to be sure that the -Fourier transforms of these
polynomials are usually distinct. We can now calculate how the approximations are
related for nearby values of m, and use this information to relax the constraints
on the parameters. This leads to slightly sharper bounds for exponential sums. As

applications ((~+i t) = O(t89/570+t:) as t --+ 00, and the error terms in the

circle problem ~nd the Dirichlet divisor problem are 0 (x 23/73 + t:). There is same

hope of a further improvement, but only in the fifth decimal place.

M. N. Huxley, Cardiff.

•

Elementary proofs of Halcisz's theorem

In this talk we present a paper of Daboussi and Indlekofer, which is dedicated to
the memory of Prof. Th. Schneider ~nd will appear in the Math. Z. The aim of this •
paper is to give two new and elementary proofs of the following .
Theorem of G. Halasz: Let f: lN --+ C be multiplicative and I f I~ 1. Then there
exist constants Cf €, ao f JR. and a slowly oscillating function L(u) with IL(u) I = 1
so that, as x -+ 00

X-I E J(n) = CX
iao L(log x) + 0(1) . (1)

n~:z:

The common and main idea of both proofs is to show that the means ; f; a{w) dw (2)
tend to a limit a as x -+ 00, when a(w) = e-wi E f(n) I. In the first proof we

n~eUl

                                   
                                                                                                       ©



7

deduee from this the relation

K.-H. Indlekofer, Paderborn .

On the error term for the fourth moment of the Riemann Zeta-function

This is joint work with Y. Motohashi on

(3)as (7--+1+(OOO a 2 (w) e-2w (u-l) dw er' + o( 1 )Jo 2 (0'-1) 0'-1

which leads to the asymptotic formula (1). Concerning the second praof we ob·
serve that a(w) is slowly oscillating and thus fulfills a Tauberian condition for the
summability method (2). This allows us to prove the existenee of the limit lim a(w)
(which equals a), and again via (3) we deduce the asymptotic formula (i~oo

•
where P4(Y) is a suitable polynomial in Y of degree four with leading eoeffieient
2 ;2 .We use Motohashi 's formula for

(0 < ß ~ T/logT)

and some of his reeent results on speetral mean values of Maass wave form L­
functions to prove

O( T 3/ 2 ),

E 2(T)

foT E~( t) dt

O( TI/ 2 ),

O( T9/41og C
2 T)

•
with effectively computable Cl, C2 > o. We also slightly improve the well-known
result of H. Iwaniee (Sem. Theorie des Nombres, Bordeaux 1979/80) on sums of
integrals of 1( t +i t) 14 over short intervals, by replacing Te by log-powers.

A. Ivic, Beograd .

The Weyl - van der Corput method for exponential sums involving the
divisor function

The elassical ·Weyl- van der Corput method in the theory of ordinary exponential
sums consists of two procedures: the Weyl shift and the transformation of exponen­
tial sums by harmonie analysis and the saddle point method. Let d(n) be the usual
divisor funetion and eonsider the exponential sum E d(n) e (f(n)), where
f is a sufficiently smooth funetion. N'5,n'5,N'

                                   
                                                                                                       ©



8

The Weyl shift leads to sums E d(n)d(n+k)e(f(n+k) - f(n));
N~n~N' .

so the problem is reduced to sums of the type S E d(n) d(n +k) e (f(n)).
N~n~N'

This can be transformed in two ways:

i. by using an identity of N. V. Kuznetsov for sums of the type f d(n) d(n +k) w( -r ),
n=1

ii. via the sum function Dk(x) = E d(n) d(n +k).
n~%

The latter possibility is considered in some detail. A function analogous to (lI:(s),

(lI:(s) = Ed(n) d(n + k) n-· . can be constructed in terms of non-holomorphic
n=1

Eisensteins' series as shown by L. A. Tahtadjan and A. I. Vinogradov in 1984,
and this function, say (;(s) plays the role of (k{S) in Perron's formula for DII:(x),
On the other hand, (Z (s) can be represented in terms of the hyperbolic Laplacian
L, = _y2 (::'2 + :;2)' by using its spectral resolution. Combining these facts, one
may express S (or a smoothed variant) in terms of the discrete spectrum of J:" the
contribution of the continuous spectrum being less significant. Applied to Dirichlet

polynomials E d(n) n-!-it, N x t, these argu~ents lead to an analogue
N~n~N'

of arecent formula due to Y. Motohashi for the mean value

j I(( t + i T + i t) 1
4

e-( t/a )2 d t .
-00

M. Jutila, Turku.

On zeros of certain Dirichlet series

Theorems are proved on the estimates from below of the number of zeros lying on the
critical line for certain D.irichlet series, in particular, for the Davenport-Heilbronn
function and zeta-function of Epstein. The proof essentially uses the fact that the
.Dirichlet series under consideration are divisible by same Euler products.

A. A. Karacuba, Moscow.

On arithmetical functions

Let the set of primes P be subdivided into disjoint classes Po, Pb ... , Pd, where
Po contains only finitely many elements. Let A = {I, ... , d} and A· be the set
of words over A, that is A· = {o = i1 •.• ill:: iv fA}. Let -X(o) = k denote the
length of 0, and At = { 0 : 0 fA· , A(0) = t }, A o = {A}, A the empty ward. Let
H: P -. Ao UA 1 defined by H(p)=A if PfPo, H(p)=i if pfPi . For nflN

•

•
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•

having the prime decomposition n = p~l. 0 op~r (PI<. o. < Pr) we define H(n)
H(P1).o.H(pr), thus H: lN -+ A·. For nflN, QfA* let Uo(n) be the number of
occurency of 0 in H(n), that is Uo(n) = #{ef A·: H(n) ={011} 0 Let u(n) be the
largest t such that each i fA t occurs as a subword in H(n), io eo H(n) = {a7] can
be solved, and let L, k be the k-fold iterate~ of log x .

Theorem 1. Assurne that L ~. = q(i) log (-;) +O(~) ~s y <x --. 00
y~p~ZtJ)(p, ogy

holds for 1~ i ~ d. Let Q(a) = q(i 1 )· 0 0 q(i k ) for a = i 1 0 o. i" and with C2(a) an
explicitly calculable positive constant, Ta(n) = c;l(a) .c;1/2(Ua(n) - Q(a).c 2).
Then for 'every fixed 00, .•• , ah f A·

Let from now on Pj = {p : P == i i mod D }, Po = {p : P ID }, where f 1 < 0 • 0 < fd,

d = cp(D) are the reduced residue classes mod D, and let p(n), P(n) be the smallest,
largest prime factors of n respo

as x --. 00, and

Theorem 2. Assurne that y = y(x) --. 00 such that y" < L,3. For every n f :IN
we write n = An1, where P(A) :5 y and p(nd > Y or nl = 1. Then there exists
6 = 6(x) -+ 0 such that uniformly as 1 :5 A:5 L,2, I(A(a) - .c2).c;1/21 < 1/8 with
K(x) = [(C 3 - .c... ) log-ld], for every O'fA* we have

#{n= Anl:5 x :H(n1)=a} 1
# {n =An1 :5 x: w(nl) =A(a)} --+ d).(a)

X-I # {n :5 x: u(n) "# K (x) or K (x) + I} --+ 0 0

I. Katai. Budapest.

•
Estimates in the general divisor problem

Let d (a ; n) denote the number of representations of n f IN in the form n~l n~2 0 0 • n;p
= n, a = (al' ... ,ap ), a., ... ,apflN with a1~o •• ~ap (p~2). It is well-known t~at

D(a;x) =" E d(a;n) = H(a;x) + 6(a;x), wherethemaintermisgiven
n~z

We are interestedH(a;x) =by
l' l' .
E rr ( ~) x1/ a

,
i=l ;=1 a.

i~i

in estimations of the remainder 6(a; x) without or with weak conditions on
a1,··., apo A trivial estimation is ß(a; x) -< X(p-1)/A p , Al' = al.+ a2 + ... + apo

By means of the theory of estimati~g multiple exponential sums we
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proved the following theorems:

Theorem 1. ~ß(a; x) < z 01+ p logPz .

This is the only non-trivial result without any c<?nditions on al, ... , ap • The next
theorem is an improvement of Theorem 1 with weak conditions.
Theorem 2. Let p ~ 3 and let (k, I) be any exponent pair. Then

k+l+p-2
6(a;x) -< z(k+l)OI+Ap logPz .

This estimation holds under the conditions . (1) (2k +1) (a2 +a3) ~ 2(k+1+1)al, .

(2.1) if laI ~ ka2 then (k +1+ l)al ~ k(a2 +a3) or (2.2) if laI ~ ka2 then
(1- k)(2k+ l)a3 $ (21-2k-l)(k+l+l)al + (2k(k-l+l) + l)a2.

E. Krätze!, Jena.

The radius of convergence of power product expansions

Let I(z) be a complex function analytic in some neighbourhood of the origin with
1(0) = 1. It is known that I(z) admits a unique 'po:wer product' expansion of the
form I(z) = n~=I(1 + bnzn

) convergent in a suitably small neighbourhood of
the origin. In joint work with A. Knopfmacher the following result ~as obtained in­
1990: The radius of convergence of the above power product expansion is at least

(sup{.~: neIN})-t, where log/(z)=L~=l~Zn. Thisbound)singeneral

best possible.
l. lucht, Clausthal.

•

Abstract harmonie analysis and arithmetical functions

In "Generalized multiplicative functions" Acta Arith. 32 (1977), §5.3 I. Rusza con­
siders group valued additive arithmetical functions and sets the following problem:
"Can one formulate and proye tbe analogues of the well-known global limit theo-
rems for ,additive arithmetical functions with values in a group Gwhich is not only •
IR, 11 or a discrete group?" A complete solution to this question has been pr~vided

when the group G is a loca.lly compact abelian metrizable group. (So, this result
contains the cases of G = lR, 11 or a discrete group.) The method leads also to tbe
following

Theorem. H G is a locally compact abelian group, and 1 is an additive arith­
metical function with values in G, satisfying limn_ oo{I(n + 1) - 1(n )} = 0, then
there exists a continuous homomorphism r.p: m. -+ G such that 1(n) = cp (log n) for
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n f IN . The case G = m. is due to P. Erdös, G = rr to E. Wirsing, and the extension
to a metrical compactly generated locally compact group was considered by Daroczy .
and Kitai.

J.-l. Mauclaire. Paris.

Some explicit continued fractions in the field of formal power series

This is joint work with J. P. Allouche, A. J. VaTI der Poorten.
Let K be an arbitrary field and let K«X-l» be the field of formal power series
over K. Then f = f(X) eK«X-I» can be expanded in a. continued fraction f = .
(eo(X), Cl(X), C2(X), ...] where Cj(X) are polynomials and j ~ 1 => deg Cj(X) ;::: 1.

Theorem. Suppose K has characteristic O. Let f = ii (1 + X-k
n

) where k~2
n=O

is a given integer.

1. If k = 2, f = (1 - X-1)-1 (Euler).

ii. If k = 3, degcj(X) = 1 tor all j ~ 1.

iii. If k ;::: 5 is odd, lim.inf degcj(X) = 1, limsup degcj(X) = +00.
1 j

iv. If k ~ 4 is even, then c;(X) can be explicitIy computed:
kn-l n-l .

C2n+2(X) XT:1 fT(Xk ' +l),,=0
k n _2k n - I ±1 n-l '.

C2n+l(X) = X k-l (Xkß-2kn-l - 1) n (X k' + 1)-1
,=0

50 that n~ deg en(X) +00.
M. Mendes France. Talence.

Distribution of small powers of a primitive root

Let 9 be a primitive root modulo the prime p. Put N = {g': 1 ~ i ~ N }. Supp05e
that O<nl<n2< ... <nN<p are'the elements of N in increasing order. We consider
two questions:

1. For which N is it true that the discrepancy of N is o(N) (i. e. N is approx­
imately uniformly distributed).

2. For which N is it true that n,+l - n, = GeN) for :> N values of i.

We conjecture that N has both properties if N > pe. We prove that N has the
first property if pl/flogp is large, and that N has the second property if N ~ p3/4 .

It seems that this latter exponent may be reduced, perhaps to f, but probably
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not as far as i t using known techniques. Question 2 was raised by M. Tompa
(Computer Sei., U. of Washington) in eonnection with the running time of the
quieksort algorithm.

H. l. Montgomery, Ann Arbor.

Kuznetsov's paper on the eig~th power moment of the Riemann Zeta­
function

This is a largely expanded version of rny letter to Prof. N. V. Kuznetsov which 1
mailed on Jan. 9th, 1991. There 1 asked hirn to elarify some dubious points which 1
had found in his important paper (T. I. F. R. Studies in Math. 12 (1989),57-117) •.
[1]. 1 have not reeeived his response yet, perhaps because of the chaotic situation
allegedly prevailing his country.
It should be stated explicitly that 1 have the opinion that [1] has not yielded
anything definitive on the resolution of the eighth power moment problem. 1 doubt
the validity of the formula (5.1) of [1] whieh is the rore of Kuznetsov's argument.
Nevertheless his ideas are very interesting and deserved.of much discussions.

Y. Motohashi, Tokyo.

An upper bound for the first eigenvalue of the noneuclidean Laplacian
for r(q) and r o(q)

Theorem. Let r = r(q) or ro{q), q squarefree. There exists an absolute

1 475
positive constant A such that for q~A: ..\1 :5 -4 + -I2 •

og q

The result follows from the Selberg trace formula with t~t function for each q

h(t) = cos 2
( k t L) sin6

( ct L)
[ 1 - t 2 ( 2:L )2] L 4 t 4

where ~ = 0.822 and L
k

logq

(2 + c) (2k + 6c)B
for B>l.

C. J. Mozzochi, Princeton. •
Polynomial mappings

A survey was given on new and old results concerning polynornial mappings with
particular emphasis on the existence and length of possible eycles. H f = x n + ...

                                   
                                                                                                       ©



I
I

•

13

is a polynomial with integral coefficients in an algebraic number field ]( of degree
N, then it has been shown that the cycles of f lyiilg in K cannot have their length
larger than B(N), where B(N) is an explicitly given constant. In particular we have

B(I) = 2 and B(2) = 6.
W. Narkiewicl, Wrodaw.

On the number of n ~ x which have more than log x divisors

The results of this talk are contained in two papers: "Grandes deviations pour cer­
taines fonctions arithmetiques" (Balazard, Pomerance, Tenenbaum, Nicolas) which
will appear in 1991 in J. Number Theory and "Sur les entiers n ~ x dont le nombre
de diviseurs est superieur a. log x" (Delt~glise,Nicolas) which is submitted to the Sem.
de Theorie des Nombres de Bordeaux.
Let T ( n) be the number of divisors of n. Let us define

S~(x) #{n~x: T(n) ~ (logx)~log2} if A> 1 and

S~(x) = #{ n 5: x: T(n) 5: (log x)"log2} if A< 1.

In the first paper it is proved that

s,,(x) = P~ll H- H(A) K( {A log log x}) M(x, A) (1 + o((log log X)-l) )

where M(x, A) = X (logx)-Alog~+~-l (log log X)-1/2 , H(A) is the entire function

H(A) = r(}+l) n(1 - 1.) ~ (1 +.! ), {t} is the fractional part of t; K is a I-periodic
p p p

function: K(9) = .x 8 EX(d)h(d, A)d-1 .x (1-8+1ogT(d)/log2] , h(d, A) = TI (1 +. ~ )-1 ,
d=l pld

X is the multiplicative function X(p) = 1 and X(pk) = 0 for k ~ 2 and [t] is the
integral part of t.

In the second paper, it is proved that for 1< A~ 2, we have

and sup K(6) = K(l_).
8

Finally, for A = Ao = 1/ log 2~ we find that

1
. S~o(x)
IffiSUP M( \) = 1.148 ...
%_00 x, ""0

and 1· . f S"o(X)
ImIn M( \) = 0.938 ....
%-00 x, ""0

J.-l. Nicolas, Villeurbanne.
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Goldbach numbers in short intervals

Let r(n) = E A(h) A(k), u(n) = n (1 - (P':l)2) n (1 + P~l) and L = log N.
h+k=n pln pln

It is weIl known that Hardy-Littlewood's conjecture r(2n) "-J 2n a(2n) (1)

bolds for almost all even integers up to N. We deal here with similar problems for
short intervals.
Theorem 1 (joint with J. Pintz). Let H ~ Nt+ e • Then for any A > 0

L 1r(2n) - 2n'u(2n) 1
2

«A,e H N 2L-A
.

N$2n$N+H

Theorem 2 (joint with J. Pintz). Let H ~ ,NiG+e • Then for a~l but O(H L-A)
even integers 2n f [N,N +H] we have r(2n) > o.
Theorem 3 (joint with J. Kaczorowski and J. Pintz). Assume GRH. For all
hut O(H1

/
2L3+e) even integers 2n f [N, N +H] we have that (1) holds.

We remark that Theorem 3 is non-trivial as soon as H > L 6+e .

A. PerelJi, Genova.

•

Continued fractions of formal power series

The uncountably many transcendental binary 'decimals' 2 L ±2-2h all have con­
tinued fraction expansions requiring the partial quotients 1 or 2 only. One sees this
by noting that the formal power series X E X-2 h

has the 'folded' continued fraction

[1 ,X, -~,-X,-~,X ,X, -X,-~,X,-X, -X,X ,X ,X, -X, -~, ... ]

with the signs reflecting the creases in a sheet of paper repeatedly folded in half and
the marked entries reflecting the signs (thus requiring change if the sign is negative).
However, ,the point is that all folded sequences have alternating signs at the entries
in tbe odd-numbered places. Hence specialising one always has 2 2: ±2-2h =
[1 ,2, a, -2, b, 2, C, -2, d, ... ], a, b, c ... = ±2. On eliminating the improper -2 •
entries one obtains [1,2, a-l, 2, 1r1, 2,0-1,2, ] and noting that [ ,2, -3,2, ...]
= [... ,1 , 1, 1 , 1 , ... ] and [ ... , 1 , 1 , -3, 2, ] = [... 2, 1 , 1 , 1 , ] the result
folIows. This is joint work with J. Shallit (Waterloo).

A. J. van der Poorten, North Ryde.
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On Renyi's formula on arithmetical semigroups

A free commutative semigroup G with identity generated by a countable set is called
arithmetical if in addition there exists a real-valued norm mapping I . I on G such
that i.) lab I = Ial . IbI Va, b f G ii.) the tota:1 number N a(x) of elements
n t: G of norm In I ~ x is finite for each real x. The ar~thmetical semigroup is
said to satisfy Axiom A if there exist positive constants A, 6, f1 (0:51] < 6) such that

Na(x) = A x 6 + O(x") as x -+ 00 .

Theorem 1. Let G be an arithmetical semigroup satisfying Axiom A, and let
k t: lN be such that k TJ < 6. Then for the set Q k~a of k-free integers in G we have

Qk.a(X) E 1 A x 6 (ä l (k6) + R(x),
ncQIt G

In l:5'x

where the estimate Mc{x) E JLG{n» o(x6 ) yields
ncG

Inl:5 x

R(x) = o(x 6/ k )

and the estimate Mc(x) = O(x 6 Iog-a x) \I a > O. implies

R(x) = O(x6/ k log-a x) Va>O.

(1)

(2)

Theorem 2. Let G be an arithmetical semigroup satisfying Axiom A for which
2 TJ < 6". Then for every q ~ 1 the estimate (1) irnplies

Aq,G{x) = E
ncG,lnl:5 x

O(n)-w(n) = q

whereas (2) implies

S. Porubsky, Bratislava.

Character sums in algebraic number fields

Let K be an algebraic number field of degree [K: QJ = n = rl +2r2 (in the standard
notation), d its discriminant, r = TI+r2-1, q ~ K an integral ideal and X a character
for numbers mod q. Moreover, let Xl,.'.' X n > 0 and (0'1' ... ' O'n) f IRrt X Qj 2

r
2 be

such that Xp+ r 2 = X p , 0p+r2 = ap for p = Tl +1, ... , r +1 . Then the following
result of P6lya-Vinogradov type holds:

E X(v)
1~(p)+O'pl:5 Xp
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Here, the surn is over all integers v f K with conjugates subject to Iv(p) + et p I ~ X p ,

P = 1, ... , n, 8(x) = 1 or 0 according as X i~ principal or not, and X = Xl ..• X n 2: 2.
The o-constant depends only on the field.
This irnproves on previous results of Lee (1979), Hinz (1983) and Söhne (1990).

u. Rausch. Clausthal.

On the distribution in the arithmetic progressions of reducible quadratic
polynomials

We are concerned with the problem of the distribution in arithmetic progressions •
of the sequence A = {n (n + 2) 11 ~ n ~ x} for moduli beyond tbe trivial level of
distribution X l-~. We are able to treat the case of moduli which are the product of
two primes. We show that

L ;q Sr L
q-Qtr-R l<n<z

q,r (p n(n+2)~O(qr)
(q,r)=l

{ 2x [ X ] }L ;Sr -+2-
q-Q,r-R q qr qr

q,r elP
(q,r)=l

provided Q3/2 R1/ 2 ~ Xl-2~, QR « xt-2~, R « XI-2~.

This means that QR can reach the level xt-~. We remark that, whilst for irreducible

quadratic-polynomials we have on average L: 1 X g(qr) also for
n<x t n 2 +1 ::O(qr) qr

qr > 2 (Iwaniec, 1978), in the reducible case we have on average L: 1
n<z,n(n+2)::O(qr)

g(qr) g(qr)
f"'oJ x-- forqr<xl-~ and x-

2
--for qr>x (q,rflP).

qr qr
The estimate of the error term is performed using Poisson formula and Weil estimate
for Kloosterman sums.

S. Salerno, Salerno.

Prime divisors of binomial coefficients

We prove the following results which answer several questions raised by P. Erdös: •

Theorem 1. Let 0< c. <1, a f lN. Then for sufficiently large m and 0 ~ k :5 m with
Im - 2kl < ml-~, there is aprime p > t m Q~l satisfying pO I (';:).

Theorem 2. Let 0< c ~ 1, a ~ 2. If Id I« n1/0 log-(I+~)n, then

log So(n, d) = Ca n l
/
o + o(n1/0 log-2n),

where S: (n ,d) is the largest a-th power dividing (2 nn± d) and
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Ca = 21
/

0 (t)a-l E {(21:
1
_1 P/o - (!kp/a} .

k=l

This generalizes a result of Sarközy from 1985; a=2, d=:=O.

Theorem 3.
E ~ - (1-log2) logn.

p~ntPre:)

Further results concerning generalized coefficients (e. g. q-multinomial coefficients)
may be obtained by our method, which is based upon a new exponential surn esti­
mate.

J. Sander, Hannover.

Differenc~s between values of quadratic forms

An elementary proof was given for the following
Theorem. Let f be a primitive quadratic form in any number of variables.
Then every integer n ~ 2 mod 4 is a difference of two values of f.

A. Schinzel. Warszawa.

Multiplicities of algebraic linear recurrences

We studied equations .
k

E PI(~)~f = 0
1=1

(1)

in variables ~ = (Xl, ... ,Zn) f zn. Here the P, are polynomials with coefficients in
a number field K and gf = o:~l .•. o:i:, with a'ä f K*. We obtain uniform upper
bounds for the number of solutions of (1). This is achieved by applying my p-adic
generalization of W. M. Schrnidt's quantitative Subspace Theorem. E. g. in the case
n = 1 we get the following
Theorem. Suppose that al, ... , 0:1: f K* are such that for i # j Oi/Clj is not a
root of unity. Then the equation

I:
L p,(m) o:i = 0 (2)
1=1

has not more than
240(1: S) !d!

(4 (w +d) d!) (w + d)6 solutions m f Z.

Here d = [K: Q], fJ = max deg P" and w is the number of prime ideal divisors in
I

the decomposition of the fractional ideals (a I) in K.
The general case n> 1 was treated in recent joint work with W. M. Schmidt.

H. P. Schlickewei. Ulm.
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Anzahl direkter Faktoren abelscher Gruppen

Sei t*(G) die Anzahl der Zerlegungen der endlichen abstrakten abelschen Gruppe
G in zwei 'teilerfremde' direkte Faktoren, H(x) die Residuensumme von S-1 x'·
.n~1 (2«2k -1)s) (2ks) in der Halbebene Re(s) > t und ß(x) das Restglied
in L#G<r t*(G) = H(x) + ß(x). Ferner sei ~o(x) das Restglied des korres­
pondiere;den Teilerproblems Lnln:znlSzl = Ho(x) + ßo(x), worin Ho(x) die
Residuensumme von S-l X"(2(s) (s) in der rechten Halbebene bezeich~et. Es
genügt, ßo(x) abzuschätzen, da bekanntlich ß(x)« x9 1ogt9 x aus ßo{x) <: x9 10gd x
folgt, sofern 8> t ist.

Bisherige Resultate: Cohen (1960) (J = t, Krätzel (1988) (J = "* = 0.379 ... , a
Menzer(1991) 0=*=0.378.... •
In meinem Vortrag zeige ich 0 = ~ = 0.375. Der Beweis läuft - nach geeigneten Vor­
bereitungen - auf die Abschätzung einer Exponentialsumme hinaus. Dazu "benutze
ich lediglich den einfachsten Satz der van der Corput- Methode, um die Wirksamkeit
dieser Vorbereitungen deutlich zu machen.
Mit mäßigem Mehraufwand wird man 0 = -h = 0.357 ... erreichen können. Die
Grenze der Methode dürfte bei 0 = *' = 0.354 ... liegen.

P. G. Schmidt, Marburg.

On integers coprime to half the primes

This talk is on recent progress in some joint work with B. J. Birch. We have obtained
the following results:
Theorem 1. Given R f lN and real constants a r (r = 0, 1, ... , R), there exists
a sequence (e(n)) of signs such that, for all sufliciently large N

for r = 0, 1, ... , R ,

where Co > 0 is a constant and Pn denotes the n-th prime.

Theorem 2. Given k, R t: IN (k ~ R) and c t: lR, there exists a set of primes ~ e
such that, for all sufficiently large x,

#{m5x: plm => pfP} - #{m:5x: plm => Pt. P}

= CX (logx)-k-l/2 + O(x (logx)-R-5-1/2)

for some 5 > o. In particular, this holds when c =o.
(1)
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Theorem 1 answers a question raised during the Symposium for K. F. Roth held
at Imperial College, London, in 1985. The proof is elementary hut very delicate.
Theorem 2 provides an answer to a question of P. Erdös, who asked how small one

could make the left side of (1) if one was free to choose the set p of primes. The
proof of Theorem 2 uses a modification of Theorem 1 and analytic methods.

E. J. Scourfierd. Egham. Surrey.

On the Japanese remainder theorem

Let Qi, Pi f Z+, i = 1,2, Q = gcd (Qb Q2), P = gcd (Pb P2), Q~ = Qi/Q. With J.
Pitman and J. Simpson we give a new proof for the following
Theorem of Morikawa. There exist ßI and ß2 such that the two generalized
arithmetic progressions {[~ n + ßi] , n =1,2, ... } i = 1,2 are disjoint, iff there
exist positive integers x, y such that .

(1)

We get x, y explicitely and this puts some more light ~n condition (1). Tbe proof
is based on the three distance theorem for ({na}) sequences.
With E. Fried we generalize this theorem for groups. We prove the following
Theorem. Let 0 be abelian, ~ an order on G, ~ apreorder on G. Let I~

denote an interval in ~. We call an u' = L(u; I) a lower neighbour of u in I~, if
i.) u, U' f I, ii.) u' < u, iii.) x < u, X f I~ implies x ~ u'. We call G discrete,
if u' = L(u; I) exists for every I~ and U f I~ .
Let G = (G,~, ~) be a discrete abelian group. Then for' any I~ x - x' for x fl
has at most three different values. Moreover, if it takes exactly three, then {x - x': x f I}
= {a, b, a +b} with some a, b. We also have some characterisations for {x - x' },
an'd some structural theorems for archimedian resp. nonarchimedian orders.

v. T. 50s, Budapest.

e Effective estimates ror mean values or complex multiplicative runctions

The talk was devoted to present the following theorem, to appear in the Math. Proc.
Cambridge Philos. Soc., in a joint work with R. R. Hall.
For given 0:s6<1, O:SCP<1r, let &(6,<,0) denote the class ofmultiplicative functions g

such that Ig(n) I ~ 1for all n and Im (e-icpg(p)) 2 ~ 62 (1 - Re(e-icp g(p))2) for

all prime p. Furthermore, for ze~, put W(z):= eicp(Re(e-icpz) + i61m(e-icpz)).
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Theorem. . The equation

l-K

G. Tenenbaum, Nancy.

has a unique solution K = K(8,r.p) > 0. Uniformly for 9 fE(8,r.p) we have

L g(n) 4:: xexp( - K L 1 - Re(g(p))) .
n~x p~x P

Moreover, this is sharp: given (8, r.p) f [0,1) x [0, 'Ir] and x ~ 3 there exists a function
gfE(ö,Cp) such that

i. E I-Re (g(p)) --+ +00 -
p<x P •

ii. I. E g(n) I ~ cx exp( - K .L l-Re(g(p)))
n~x p<x p

where c is a positive absolute constant. Two particularly interesting values of K
are K(O,O) = 0,32867 ... (which corresponds to real valued functions g) and
maxK(8,r.p) = K(0,1r/2) = 1 - 2-/1r. The proof rests upon Montgomery's effec­
tive approach to Halasz mean value theorem.

Waring's problem

An account was given of the consequences of the new ideas of Wooley as applied to
. Waring's problem and the Vinogradov mean value theorem. With regard to Waring's

problem, let, as usual, G(k) denote the smallest s such that every sufliciently large
natural number is the SUffi of at most 8 k-th powers. Then Wooley has recently
shown that limsup G(k)/(k log k) :5 1, and for small k Vaughan and Wooley have
shown that G(5):5 17, G(6) :5 24, G(7) ~ 33, G(8):5 42, G(9):5 51,
G(IO):5 59, G(11):5 67, G(12):5 75, G(13):5 83, G(14):5 91, G(15):5 99.
Let J.tk(P) denote the number of solutions of the system

Xl +

x~ +

+ x, Yl + + y,

with 1:5 Xi, Yi:5 P. Then Wooley has shown that 3 ko such that Vk ~ ko we have

Jrtk(P) <rtk
p2rk - k(k+l)/2 + '1(rtk) where

2 ( 2 2)r for 1:5 r :5 80< k log k 1 - k + klog k
'1(r, k)

:5 81og3k (1- t)r-,o for r> So
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"and So = [1 + k log k - k log log k ] .
R. C. Vaughan, Princeton.

On the divisor problem

I propose an approximation to the divisor problem by Riesz' logarithmie means;
that is, let" be a non-negative real number and form the Riesz mean

Hte(x) + 6,,(x) where"

_"_ (Z ß(t) logte-I( ~) t- I dt ,
logte X 11 t

thus generalizing the divisor problem, which corresponds to the ease K. =o.
I have proved that 6 IC (x) -«: x t+e holds true for a11 "2: A3

0 = 0.11818 and this
can even be ·improved. .
The praof is based on the evaluation of the integral 2~i Je (2(S) X"8- 1C

-
1ds upon

a path C - which does not encircle the origin. This leads to the formula

The main error term arises as a trigonometrie sum to whieh we apply van der
Corput 's metbod for exponential sums. Moreover, using two dimensional exponen­
tial sums leads to the even better result ,,~0.1129 . . . . Generalizing the above
technique, one can obtain f. e. for the divisor problem in arithmetical progressions,
tbe cirele problem the conjeeture on ßo(X) , that is O(xt+e

) , for "2: 0.1129 ...

and for Ramanujan's T-funetion the eo~jecture on 6 0 (x), that is O(x1f+e
), for

"2:0.11818, where 6 0(x) = E Jen) - H(x).
n:Sx

On a special class of rational functions

Let K be a field of characteristie zero. A rational function / e K(x) shall be ealled
'special' if all residues of fand t vanish. The trivial examples are c (x-XO)n, c:f:. 0,
n e Z, n =F ±1. No other polynomials are special. G. Szekeres gave the example
f ~ (x3 +1)2 x-2 = x4 + 2x +x-2

, where /-1 = -!(z3~1)'.

Theorem. Let k, leINo- Apairofeoprimeandsquarefreepolynomials p, qeK(x]
with degp =k, deg q = l such that (-;-)2 is special exists iff {k, l} = {i(i~l) , i(i;l) }

with i f lNo.
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In fact there are polynomials PifK[X) with degpi = i(i;I), i = -1,0,1, ... , such
that all Pi are squarefree, (Pi-1, Pi) = 1 and (~)2 special. These Pi can be con­

structed recursively by Pi+1:= Pi-1 I p? pi!1' where the constant of integration
ronst avoid certain exceptiQnal values, that woul4 produce common zeros for Pi+1
and Pi.

E. Wirsing, Ulm.

Goldbach-Vinogradov's theorem in short intervals

Goldbach-Vinogradov's theorem states that every large odd integer is a SUffi of
three primes. Since 1950's, several mathematicians have studied the problem of e
representing any large odd integer N in the following form

with U as small as possible. Assuming GRH about L-functions, it can be shown,
that (1) is solvable for every large odd integer N if U= Nt+e • In 1989, Pan C.-d.
and Pan C.-b. proved, by purely analytic means, that U = N 2/ 31og CN, c> 0 a.iJ.
absolute constant, is permissible. Following the idea: of Pan, I obtained a further
improvement on their result, namely

Theorem. If U = N5/81og CN, c> 0 a suitable positive constant, then (1) is
solvable for every large odd integer N. Moreover, the number of soluti~ns of (1) is

T(N, U) = 3 u(N) U2 log-3N + O(U 2 Iog-4 N)

u(N) = TI (1- (!1)2)· rr (1- (!1)3) > t, if 2JN.
plN p plN P

.Recently, Jia C.-h. further showed by sieve methods, that (1) is solvable if U = .
Nt+e . Since sieve methods are applied, no asymptotic formula for the number of
solutions is gi~en.

T. Zhan, Freiburg.

Reported by: U. Vorhauer, Ulm.
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