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MATHEMATISCHES FORSCHUNGSINSTITUl' OBERWOLFACH

Tag u n g s b e reh t 14/1991

Gewöhnliche Differentialgleichungen
24.03. bis 30.03.1991

The conference was organized by H. Knobloch (Würzburg), J. Mawhin (Louvain­
la-Neuve), and K. Schmitt (Salt Lake City).

As on previous occasions the conference focused upon oue area of current
research interest in ODE. We had chosen

INVARIANT MANIFOLDS
and

A pplications

as the conference title, hoping to bring together many of the important con­
tributors to this exciting and extremely active area of research. The list of
names to follow and the abstracts of lectures given show that we very much
succeeded in our goal.

Forty scientists from ten different countries followed the Institute's invi­
tation tO attend the conference. There were a total of 30 lectures presented
during the week. Most of the lectures were concerned with qualitative as weIl
a.s quantitative aspects of Invariant Manifold Theory, and severaI presented
applications of this theory to specific sets of evolutionary equations which
are used as models of certain physical situations.

Seyeral of the lectures addressed the important problems of the existence
of finite dimensional dynamical systems whose flow already determines that
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of a given infinite dimensional system. Perturbation theory of invariant man­
ifolds as ~ell as "global" numerical schemes for their computation were topics
of considerable interest. Applications to control theory were also present as
were lectures on Hartman - Grobman type results and several talks on semi­
linear elliptic problems and their solution and stability structures.

In addition there was a lecture given by one of the organizers (Mawhin)
on the history of the Tagung "Gewöhnliche Differentialgleichungen" and the
important contributions which were first presented th.ere. .

Many of the lectures generated intense discussions which, after the lecture
periods, were continued, in the Oberwolfach tradition, weIl into the evening
hours.

We believe that the meeting was an excellent one, which by a large mea­
sure is also due to the outstanding service provided by the Institute's admin­
istration and staff.

The meeting was adjourned at 12:05 p.rn., on Friday, March 29, 1991.

Vortragsauszüge

•

B. Aulbach. Linearization anddeco·upling for noninvertible mappings.
The talk deals with the question whether a mapping f : B -+ B on an

arbitrary Banach space B is topologically conjugate near a fixed point to a
linear mapping. For invertible f this problem is weIl understood, however,
if f is noninvertible (e.g. as time-one map of an evolution equation) the
linearization problem has not been touched y~t in this abstarct setting. It is
demonstrated by means of examples, that oue can neither expect complete
linearization nor decoupling. Results on partiallinearization and decoupling
are presented.

P. Bates. Invariant manifolds for Cahn·Ililliard and Phase-Fields equa- •
tions.

The Cahn-Hilliard equation

(CH) { -ß(t
2
ßu +f(U~

and the Phase-Field system

2

Ut,
Bau
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with f bistable, are models for phase transitions which can be usefully viewed
as dynamical systems. In work with S. Zheng (PF) is shown to have an
inertial manifold when n = 1 or n = 2. I~ joint work with N. Alikakos and
G. Fusco (eH) is shown to have invariant manifolds of metastable states
when n = 1. Both systems have conserved quantities and even when n =
1, the common set of steady states with a given value of this quantity is
unknown. The structure of this set together with the stability of these points
is conjectured and certain aspects verified in joint work with P. Fife.

F. Battelli. Chaos and heteroclinie orbits in Nonlinear systems.
This is joint work with K. Palmer (Miami). We consider the forceq Duff·

ing equation
z" + a2 sinz = sint (1).

It is known that, for any positive integer N, there exists aN such that for
a > aN, equation (1) has at least N 21r- periodic solutions. This suggests
that, for large a, the Poincare map of (1) has a transversehomoclinic point
(or heteroclinic cycle). Rewrite (1) as:

z" +a2go(z) = f(t) (2)

and assume that z" +9o(Z) = 0 has a heteroclinic orbit. We show that, if f(t)
is T - periodic and has a simple zero, the"n, for a >> 1, equation (2) has a
bounded solution whose corresponding variational system has an exponential
dichotomy on R. As a consequence the Poincare map of (2) has a transverse
homoclinic orbit.

J. Bebe"rnes. Final time blow-up profiles for semilinear parabolic equa­
tions via center manifold theory.

Consider the semilinear parabolic equation

tLt = ~u + f(u), in Rn X (0,00),

where f(u) = eU
, or f(u) = uP, P > 1. For any initial data that is a positive

radially decreasing lower solution which causes the corresponding solution

3
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u(x, t) to blow up at (0, T) E Rn X(0, 00), we prove by using techniques from
center manifold theory that the final time blow-up profiles satisfy:

u(x, T) = -2/nlxl + Inl/nlxll + InS + 0(1), f(u) = eU
,

and
8ß2pl/nlxll ß

u(x, T) = IxI2 (1 +0(1)), J(u) = u",

where ß = ,,:1·
P. BrunowskY. The center manifold 0/ a homoclinic.
Assurne that 0 is a hyperbolic equilibrium of the differential equation

x' = f(x,p), xERn
, pERP,

admitting ahornoclinie trajeetory {h(t)}~_oo for J1. = O. Further assume
that h(t) is tangent to the eigenvectors of the leading negative (positive)
eigenvalue of D:cf(O,O) for t -. -00 (+00, respectively). Then, for the
augmented' system

X' = fex, p)
E' = 0

there exists a p + 2 dimensional locally invariant manifold eontaining the
homoclinie as weH as all trajeetories which stay in some neighborhood of the
homoelinic for all times.

J. Carr. Applications 0/ invariant mani/olds to metastable patterns.
We study the extremely slow evolution of .patterns in solutions of

•

Ut = f2U:c:c - J(u), 0 < x < 1,

subject to Neumann boundary eonditions and where for example f(u) •
u3 -u. The metastable states are charaeterised in terms of the global unstable
manifolds of equilibria. _,

W. Everitt. Nonlinear quasi-differential control systems.
(Joint work with L. Markus, Minnesota. ) The linear control system

x' = Ax + Bu, on I C R is known to be fully eontroHable on I when
A, B E Lloc(I) if A generates a quasi-differential equation of order n ~ 2
on I and B = (bra ), with brß = O· (r = 1,2, ... ,n -1; s = 1,2, ... ,m) and
E::1 Ibn.(t)1 > 0, pp tEl. This result is used to prove that the nonlinear

4
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control system x' = 1(t, x, u) is fully locally controllable at the point (0, 0, 0, )
if, when the matrices A(t), B(t) are defined by

8j 81
A(t) := -8(t, 0, 0), B(t):= -8(t, 0, 0),

- x u

A, B satisfy the above conditions for control of the linear system. Additional
conditions are required on I to ensure that soluti~ns of the differential equa­
tion x' = I(t, x, u) are evrywhere defined on the t-interval over which the
control is taking place.

B. Fiedler. An index for periodic orbits 01 time-reversible systems.
Natural homotopy invariants for time-periodic solutions of autonomous

systems can be based on the Brouwer fixed point index of the iterates of
the associated Poincare map IT. This is the underlying idea of the Fuller de­
gree. Generically, however, the fixed point indices of the iterates are either
identical or just alternate in sign. For reversible periodic orbits of reversible
systems, we present a sequence of homotopy invariants which does not suffer
from such a constraint. As a consequence, we indicate some results in anal­
ogy to Hamiltonian systems although variational structure is not known. A
particular example are Neumann boundary value problems for second order
systems

u" +g(u,u'), u ERn,

where 9 is .even with respect to u'. The results are joint werk with S. Heinze
(Heidelberg and Georgia Tech.)

D. Flockerzi. Parameter dependence 01 invariant tori.
Given a smooth system of ordinary differential equations

x' = ~[Ax +g(x, 4>, f) + ..\g(x, 4>, f)], x E Rn,

c/>' = w + ..\W + €[h(x, 4>, €) + ..\h(x, c/>, f»), 4> E rrk
,

with parameters ',\ E [0,1], and € > 0, we give conditions for the existence of
invariant tori of the fonn

with s being smooth with respect to 4> and with
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for positive constants Xi not depending uponi E (0, fo]. As the example

x' = i[-X +U eos 4>], -:>4>' = ..\w

shows, the distance between Mt ;( and Mo.€. need not be small uniformlyon
(0, eo]. We investigate in whieh precise sense the perturbations g, w, h have
to be small for Mo.( to be a uniformly elose approximation to M t ;( on (0, fo] .

.J. Gossez. Characterization 01 nonresonance fOT. some semilinear p~ri-

odic problems. .'
(Joint work with P. Omari, 1taly.) We consider the problem

{
-u" = g(u) +h(t), in [O,1r]
u(O) = u(21r), u'(O) = u'(21r),

where 9 is continuous on Rand h is bounded on [0, 21r]. 1t is assumed that
the nonlinearity 9 interferes at most with the first eigenvalue Al =°of the
associated linear problem. Preeisely: .

. g(8) -. 2G(s)
limsup-- ~ "\2, hmsup--2- < "\2,

±oo S ±oo S

•

where G is the primitive of g. We then show that a necessary and suflicient
condition for the problem to be solvable for any forcing term h is that the
function 9 be unbounded from above and from below. Jumping nonlinearities
could also be considered.

M. J olly. Dissipativity of numerical schemes.
We show that the way in which the finite differences are applied to the

nonlinear term in certain PDEs can mean the difference between dissipation
and blowup. For fixed parameter values and arbitrarily fine discretizations we
construct solutions which blow up in finite time for semi-discrete schemes. We
also show tbe existence of spurious steady states whose unstable manifolds,
in same cases, contain solutions which explode. This connection between the •
blowup phenomenon and spurious steady states is also explored for Galerkin
and nonlinear Galerkin semi-discrete approximations. Two fully discrete
finite difference schemes derived from a third order semi-discrete scheme,
shown in Foias and Titi (1990) to be dissipative, are analyzed. Both latter
schemes are shown to have astability condition whieh. is independent of the
initial data. A similar result is obtained for a fully discrete Gä.lerkin scheme.

6
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While the results are stated for the Kuramoto - Sivashinsky equation, most
naturally carry over t.o other dissipative PD,Es.

C. Jones. Tracking invariant maniJolds during the passage near a siow
maniJold.

In singular perturbation problems, one is often interested in construeting
solutions that pass near a slow manifold. For instance, an unstable manifold
of some remote critical point may be "shot" at a sl,ow manifold and the
relevant issu~ is to determine the configuration of the manifold as it emerges
from a neighborhood of the slow manifold. In joint work with N. Kopell, flows
ate induced using differential forms from the equation of variations that lead
to the "Exchange Lemlna." Fenichel 's Invariant Manifold Theorems play
a crucial role in producing a canonical form of the equation near aslow
manifold.

H. Kielhöfer. Nodai patterns oJ global biJurcation branches.
For certain classes of quasilinear elliptic problems with homogeneous

Dirichlet boundary eonditions the nodal pattern of some eigenfunctions of
the linearization at the bifurcation point is glo1;>ally preserved along pifurca­
tion branches. These patterns enjoy some specific syrrunetries. When embed­
ded into the fixed point subspaces of their symmetry (isotropy subgroups)
these branches are actually smooth curves such that secondary bifurcation is
necessarily symmetry breaking.

U. Kirchgraber. Invariant maniJolds in the numeries oJ ODEs.
This is areport on the ongoing research of D. Stoffer, K. Nipp and the

author. We eonsider some aspects of the numeries of ODEs from a qualitative
point of view, in particular in the light of invariant manifold theory (IMT).
There are three types of results. The first is concerned with the relation
between an ODE and its discretization. Consider a set of weakly coupled
harmonie oscillators admitting an attracting invariant torus. We study the
relation between the step size hand the strength f of the coupling under
the condition that the diseretized system admit a companion torus. It turns
out that most methods enforce h -+ 0 as f -+ 0; the only exceptions are
so-called linearly canonical schemes. For these methods there is no relation
between hand E! As a seeond application of IMT to numerics we show that
for a large class of step-size estimates the step size (asymptotically) becomes
independent of the previous choice of the step size. The key to this result is
the existence of a certain invariant manifold. The result means t~at many
step size estimators are actually of a simpler nature than it appears. Finally

7
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we apply IMT to design efficient algorithms for the integration of certain
FDEs and singularly perturbed ODEs. Connected with this is the design
and study of efficient algorthims to compute (low dimensional) invariant
manifolds. j

H. Knobloch. Invariant manifolds in control theory.
Part 1. Extension of standard existence theorems for invariant manifolds

(imf). The differential equation is written in the form

x' = g(t, x, y), y' = h(t, x, y), (1).

Main assumption: Dichotomy ~nd exponential gap for the variational equa­
tion along solutions. The imf. is given in terms of an equation y = S(t, x) and
is uniquely determined by the natural boundary condition ('inflowing') and
the initial condition S(O, x) = s(x). Part 2. Application: Inverse problems in
control theory. Given a solution x(t), y(t) of (1) with known initial state and
known approximation 7](t) for y(t) (plus estimate) lIy(t) -7]"(t)1! :5 17, t > o.
The auxiliary system

x' = g(t, x, y), y' = h(t, X; y) - ~(y - 7](t»,
f

satisfies all conditions imposed on (1) if the parameter f > 0 is small enough.
Aprediction - correction scheme for estimating y'(t) based on the data of the
imf. is presented.

R. Lauterbach. Forced symmetry breaking and heteroclinic cycles.
We study the dynamics near a manifold of equilibria of equivariant equa-"

tions if we perturb the symmetry. To be more precise, let x' = g(x, A) be
equivariant with respect to agroup G and suppose we perturb this equation
to x' = g(x,;\) + fh(x, A), where h is equivariant with respect ot a subgroup
K of G. Assurne that M is a normally hyperbolic manifold of equilibria of
the unperturbed equation. If M is a. single group orbit all points on this
manifold M bave tbe same isotropy type (7, let H be a subgroup of G in u.
Due to normal hyperbolicity, for sufficiently small f, there will be an invari­
ant manifold M( near M. The flow on this manifold has a. structure which
is to some extend determined by the pair (K, H). We give examples of these
flows for problems with spherical symmetries. A theorem of Schwarz on lift­
ing properties of fiows allows one to construct flows which have precisely the
features which are predicted by the general theory. Especially we observe
heteroclinic cycles.

8
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N. Lloyd. Cubic systems and conditions for" a center.
Hilbert's sixteenth problem is concemed with the number of limit cycles

of classes of systems

x' = P(x, y), y' = Q(x, y),

where P, Q are polynomials, and their possible configurations. In teeent
inve;tigations, limit eyeles which bifurcate from a eritieal point have been
considered. To maximize the number of such limit cycles, the focal values at
the critieal point (say x = 0 = y) are eomputed. These are polynomials in the
coefficients in P and Q such that there is a function V with V' = L: '72kr2k,

where r 2 = x 2 + y2. It is necessary to know the conditions under which ~he

origin is a center. Necessary and sufficient conditions for"a center are known
for various classes of systems. In this talk such conditions will be presented
for some classes of cubic systems (i.e. systems for which P and Q are of
degree three). Sufficiency is proved by sytematically searching for invariant
algebraic curves and using them to transform the· system to Hamiltonian
form. The necessity of the conditions is proved by computing the variety of
the ideal generated by the foeal values. Particular attention will be devoted
to the system

Necessary and suf6.cient conditions for a "persistent" center will he given.
Their derivation involves large scale use of computer algebra, and some of
the computing difficulties will be described.

K. Lu. Invariant manifold theory and invariant foliation theory and
structural stability fOT parabolic equations.

By using invariant manifold and foliation theory we prove that the flow
nearby hyperbolic equilibria of parabolic equations is structurally stahle.

A. Mielke. Invariant manifolds fOT variational and Hamiltonian sys­
tems.

We consider center, stahle and center-stable manifolds for an equilibrium
in a Hamiltonian system. It follows that the reduced system on the center
manifold is again a Hamiltonian system. The ßow on the (center-) stable
manifold is (co-) isotropie. Moreover, we show that in most eases the center
manifold flow of a variational (Lagrangian) problem can be described by a

9
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reduced variational problem. This leads to applications in the theory of el­
liptic v~ationalproblems on cylindrical domains, such as the. beam problem
of elastostatics. We show that all small deformations of a hyperelastic beam
(3 dirn. prismatic body) can be described by a hyperelastic rod model in a
mathematically rigorous way. ~

V. Pliss. Perturbations 01 attractors 01 differential equations.
(Joint work with G. Sell, Minnesota.) Consider tbe system

dx
dt = X(x).+ J.&Y(x), (1)

where x E Rn and X, Y E Cl(R"). Definition: An attractor K, of (1) with
1& = 0 is normally hyperbolic, if: (i) There exist constants a ~ 1, Al > 0,'\2'< .
At, and linear spaces UII(t, xo), UU(t, xo), Xo E K" dimUu = k, dimU· ~ n - k,
and if x E UII(r, xo), then 14>(t,xo)4>-l(r,xo)xl" ~ alxle--X1{t-'T), for t ~ r, and
if x E UU(r,xo), then 14>(t,xo)4>-l(r,xo)xl ~ alxle--X2 (t-'T), for t ~ r, where
4> is a fundamental matrix solution of the system

dx 8X(x(t,xo))
dt = 8x . x.

(ii) There exists an r > 0 such that for Xo E K" ther exits a k- dimensional
disk V(xo) c K, with center at Xo and radius r, locally invariant and such
that if x E '1)(xo), then the disk 1)(xo) is tangent to UU(O, xo) at x. Theorem:
Let K, be a normally hyperbolic attractor and assume that U.U(O, xo) is a
Lipschitz continuous function on 1\:,. For every f > 0 there exists a 6 > 0
such that if 0 < JJ < 6, then there exists a homeomorphism h of Je into Rn,
Ihx - X I < f and K,,,, = hK. is a normally hyperbolic attractor of (1).

R. Schaaf. Semilinear elliptic problems with supercritical growth. The
equation

.ßu + Af(u) = 0, in n eRn, u = O~ on an, (1)

can be' viewed as a pseudo steady state equation of a combustion process,
where u is temperature, A E Jl+ is the amount of unburned substance. The
question about the number of solutions of (1) and their stability properties is
then of interest for the time dependent process. In this context nonlinearities
arise which grow supercritically for u Iarge:

li (Pe + 1)F(s) 1 n +2 > 3 ( )
~~p S <, Pe = n _ 2,n - . A

10
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H tbe inequality in (A) holds for all s E R then no nontrivial solutions of
(I) exists in a stars4aped domain, a cons~uence of the Rellich - Pohozaev
identity. Even if I is sufficiently well behaved neM 0 and a positive solution
branch exists, the shape of this branch can change rather drastica.lly with
the dimension n of the domain O. A famous example for this is the result
of Joseph and Lundgren for I(u) = eU or f(u) = (1+ QU)P and n a balL
A common feature of all of these examples is that in the superlinear hut
subcritical case there always exist at least two solutions for 0 < A < X,·
one stahle and the other unstable, 0 whereas in the supercritical case, there
exists a ).* > 0, such that (1) has a unique solution for 0 < ). < ,x*, which
is stahle. We can show that this uniqueness for small ). always holds if:
(a) f(O) = 0, f'(O) > 0, n starshaped, f satisfies (A), Of (h) °f(O) >
0, n convex, f satisfies (A), f" > o~ However in the case f" > 0
we can show that (1) admits at most one stahle solution for any fixed ,x,
proving that among the multiple solutions which are present in the Joseph ­
Lundgren examples only the minimal solution is stahle.

K. Schneider. Perturbations 01 ilifferen.tial algebraic equations.
The equation (*) F(y, y', t) = 0 is said to be a differential algebraic equa­

tion (DAE) if dirn kerFy,(y,y',t) > 0, V(y,y',t) E domF. Under certain
assumptions a vector field v on some smooth manifold can be associated
with (*). Such a DAE is called a regular DAE with degree d. The lecture
addresses perturbations of autonomous DAE F(y, y', A) = 0 <;lepending on a
parameter ,x. We consider two types of perturbations. Theofirst kind can be
described by a perturbation ~f the corresponding vector field v. By this way,
bifurcations of DAE can be described by bifurcations of vector fields. The
second type of bifurcations can be characterized by singular perturbations,
that is, a bifurcation point is connected with the change of the degree of the
DAE. We give an approach to establish the bifurcation of relaxation oscilla­
tions which is based. on the splitting of an invariant manifold at tbe ~jumping

point" 'which separates astahle and an unstable part of this manifo.ld.
J. Scheurle. Constroction 0/ invariant manifolds by the deformation

methode
The construction of invariant manifolds always leads to equations owhich

have to be solved in one way or another. Usually one uses some version of
the contraction mapping principle. However, there are other possibilities,
e.g.. the deformation method wbich has certain advantages. In this ~alk, I
want to describe the hasic ideas of this method by considering jU:st the case

11
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of center unstable invariant manifolds. For details and remarks about other
types of invariant manifolds I refer to· the article by J. Marsden and myself in
SIAM J. Math. Anal. 18(1987), 1261-1274. For simplicity, we consider maps
rather than differential. equations. But everything can be done for differential
equations as weIl.

G. SeIl. Approximation dynamics and the Navier-Stokes equations.
During the last few years several researchers have developed techniques

for constructing Approximate Inertial Manifolds (AIMs) for studying the dy­
namics of nonlinear evolutionary equations

(1) u' + Au = F(u).

We' have shown that, in the case of the 2D Navier-Stokes equations, ~very

such AlM is an actual inertial manifold for a perturbed equation

°(2) u' +Au = F(u) +E(u),

where the term E is known and has a suitable norm .IlEIl which tends to zero
a.s the dimension of the AlM goes to 00. In a different direction, we give abrief
report on the University of Minnesota PhD thesis of M. Kw~, wherein he
shows that the long time dynamics of the 2D Navier-Stokes equations (with
periodic boun~ary conditions) can be described completely (and ~ith no
error) by a. finite dimensiona.l system of ordinary differential equations·. Kwak
introduces a nonlinear change of variables wmch regul~izes the nonlinear
term iQ the Navier-Stokes equations and reduces the problem to a suitable
system of reaction diffusion equations.

R. Smith. Poincare - Bendixson theory for autonomous retarded func­
tional differential equations.

For autonomous functional differential equations, expressed in feedback
control form, new stifficient conditions are discussed for the absence of chaotic
motion and the existence of at least one stahle periodic trajectory. The
results are ohtained by finding an invariant set in Banach space which is
homeomorphic to a plane set. Application to the delayed Goodwin equation
is mentioned.

D. Ulmet. Nonlinear electrical cireuits. Singularities and periodic solu­
tions.

We analyze some types of singular points that occur in nonlinear electri­
ca! circuits and their effect on the dynamies of such sy~tems. First we show

12
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that global singularities (or forced degeneracy) can be reduced to isolated
singularities, which are related to relaxation oscillations. Afterwards we ad­
dress some problems that center around the regularization techniques that
are available for the study of the isolated singular points. They are based
formallyon the addition of small parasitic inductances I and capacitors c to
the circuit N so that the augmented system N(l, c) is regular. We consider a
regularization version. which provides a gradient type function, in the sense
that the averaged equations for the action variables form a gradient system.
By an example of the coupled van der Poloscillators, we show that we can
obtain periodic solutions instead of expected invariant 2 tori for the full sys­
tem. Finally the dynamies of the original system N is essentially obtained as
the limit as I, c -+ 0 of the dynamies of N(/, c). Several questions concerning
the structural stability of N are open problems.

A. Vanderbauwhede. Center manifold theory in infinite dimensions.
We describe some joint work with G. looss (Nice) on center manifolds in

infinite dimensional systems. We first show how the existence of a pseudo
inverse for a linear operator associated with the hyper~olicpart of the equa­
tion and on aspace of exponentially weighted functions leads to the existence
and smoothness of center manifolds. In specializing to the local situation we
pay special attention to the cut-off problem usually associated with the Iocal
center manifolds ~n Banach spaces. Next we describe a set of spectral proper­
ties which imply the existence of the pseudo inverse mentinoed above; these
properties are weaker than those required for the existen~e of an analytic
semigroup, and allow for example the treatment of certain elliptic problems.
We conclude with some simple examples.

P. Volkmann. Über die Invarianz 'linearer Mannigfaltigkeiten in Ba­
nachräumen - ein Gegenbeispiel.

Es sei EI ein (abgeschlossener) Unterraum eines Banachraumes E, es ser
J : E -+ EI stetig und beschränkt, f(EI ) C EI, und es werde vorausgesetzt,
daß das Anfangswertproblem

u(O) = a, u' = J(u)

für jedes a E E eine (lokal) eindeutige Lösung '(la : [0,00) -+ E besitze.
An Hand eines Beispiels wird gezeigt, daß dann nicht notwendig a E E =>
ua(t) E E (t ~ 0) gilt.
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W. Walter. Discretization 01 a parabolic free boundary problem.

The following model occuring in models of groundwater contamination
and statistical decision theory, among others, is discussed:

1
Uxx

(P) Bu
u(t, s(t)) .

Ut + f(t,x,u,ux ), fOT 0 < t ::; T, 0 < x < s(t),
au(t, 0) - bux(t, 0) = a(t), fOT 0 < t ::; T,
ux(t, s(t)), fOT 0 < t ::; T.

Here a, b 2:: 0 with a + b = 1; the free boundary is given by x = s(t).
Basic results: (P) is a weH posed problem, i.e., existence, uniqueness plus
continuous dependence of the solution (u, s) on fand Q hold. A monotonicity
theorem (comparison principle) states röughly that if: f is made smaller and
Q Iarger, then u and s become larger. Existence is proved by applying the
Rothe method (discretization in t which leads to a problem)

Here un(x) ~ u(tn, x), t n = hn, h = ft, SUn = Un-~n-l.

H. Walther. Unstable manifolds fOT x'(t) = -/lx(t) + f(x(t - 1)).
Suppose f(O) = 0, f' < 0, and f is bounded ft:om below or from above. If

the zero solution is linearly unstable, then the global unstable set associated
with the leading pair of eigenvalues is a smooth, Lipschitz graph of dimension
2 whose boundary is a periodic orbit. Also, unstable sets of hyperbolic
periodic solutions, which are slowly oscillating, are smooth Lipschitz graphs
of dimension 2; the boundaries consist of 2 periodic orbits (one of them may
be 0).

F. Zanolin. Time maps fOT the solvability 01 nonlinear equations.
The solvability of various boundary value problems for a class of ordinary

differential equations is obtained under suitable conditions on the time maps
of associated autonomous equations. As a typical application, consider the
second order nonlinear Duffing equation x" +g(x) = p(t), with the nonlinear
term 9 sa:tisfying the asymptotic condition limlxl_oo g( x )sgnx = +00. For
the associated autonomous equation x" + g(x) = 0, we can define the fol­
lowing time maps: T+(c), [T_(c')], T(c) which are, respectively, the distance
of two cOJ?secutive zeros of a solution x(t) of the autonomous equation with
max{x(.)} = c » 0, [with min{x(.)} = c' « 0] and the minimal period
of x(.), with max{x(.)} = c » O. Then the solvability of.various BVPs
associated to the nonautonomous Duffing equation (e.g., the periodic, two

point, subharmonie, BVPs), is obtained via asymptotic conditions on the
time maps. The classical superlinear - semilinear - sublinear conditions on 9
are thus improved.

Berichterstatter: K. Schmitt
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