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In recent yean a num~er .of fundamental ideas and methods of mathematical physics has
penetrated through psychological barriere between phyBics.and topology. Ii1 knot theory this
development was initiated by V. R. F. Jones who used von Neumann aJgebras to construct a
new polynomial invariant of knota &Ud links in the 3-dimensionalsphere 53. Jones' discovery
gave impetus to an enormous development in knot theory, 3-dimensionaJ topology and related
domains. This development was the main subject of the meeting.

Since 1984 when Jones introduced bis polynomial,-the main line of attack was the explanation
_ of the nature of this polynomial and its generalization, say, to links in other 3-manifolds. Ta
• the moment of writing, several different points of view on the Jones polynomial have been

" developed basing on various teehniques coming from algebra and matbematical pbysics. Here
is a. abort but impressive list of theories more or less directly involved in the subject: theory of

.quantum groups, conformal field theory in dimension 2, representation theory of symmetrie ­
groups and Hecke algebras, theory of exactly solvable models of statistica1 mechanics ete.

The" Arbeitsgemeinschaft considered four different though related lines of study forming the
main body of the theory:

I. The firstand most algebraic approach stems directly from the original paper by Jones.
It involves Temperley-Lieb algebras, Hecke algebras and their natural modifications due to
Birman-Wenzl. The core of thiB approach is the theory of braid groups and their linear
representations.
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11. The second approach is concerned with Witten's ideas, relating the Jones polynomial to
conformal field theories in dimension 2 ~d Chern-Simons invariants. From the topological
viewpoint, tbe important a.chievement of Witfen i~ the inclusion of tbe Jones polynomial in
a more general picture of topological quantum field theories.

111. This approach is based on models in statistical mecbanics and tbe theory of quantum
groups. Astate surn model for the Jones polynomial was introduced by Kauffman. More
general vertex models associated with R-matrices lead to other related poynomials. This
line is crowned with a cODstruction of the topological quantum field theory in dimension 3
extending the Jones polynomial (as predicted by Witten).

IV. The last approach uses another kind of state surn models producing topological invanants
of knots and 3-manifolds. These are the so--called face models and simplicial models based
on quantum 6j-symbols associated with quantum grOUp8.

Furthermore, the Arbeitsgemeinschaft considered various aspects of the subject which either •
have drawn considerable attention in the recent time or seem to be good starting points for
further research. Of course, quite a number of interesting problems were left outside tbe
schedule.

Abstracts of the talks

Serge Ochanine
The J ones Polynomial

This introductory talk presented the original construction of the Jones polynomial via von
Neumann algebras. Main topics:
(1) Links and Braids, the Alexander-Markov reduction.
(2) Von Neumann algebras, III factors, Jones' index theorem.
(3) Temperley-Lieb algebras and the trace invariant.

Uwe Kaiser
Hecke Algebras and the HOMFLY Polynomial

One can consider a certain class of finite dimensional (quadratic) group representations of •
braid groups factors through algebra representations of classical Hecke algebras Hn(q) =
KBn/(ul- (q -l)u; - q), where KEn is the group algebra of the braid group Bn , K is a
field, q E K 'and Bn is generated by UI, ... Un-I; (ul- (q - l)ui - q) is the two-sided ideal
generated by the indicated elements for all 1 :5 i :5 n - 1. Ocneanu proved for each z E K
the existence of normed trace functions tr : Hn(q) -+ K which are compatible witb the
inclusions Hn(q) ~ Hn+1(q) and satisfy tr(xu:J. = ztr(z) for z E Hn(q). Thus,. by Markov's
theorem, there are maps Rn ~ K = C(q, zh/~,.w = 1 - q +z which induce a function on
the set of the isotopy classes of links in 83 • A change of variables leads to the HOMFLY
polynomial taking values in the Laurent ring 7l [1:1: I , m:l:1] which turns out to be tbe universal
linear skein invariant.
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Wolfgang Müller .
Modular Functors and Conformal Field Theories (CFT)

..,' at time
t = T, outgoing

'Y at time
t = 0, incomin~

One important motivation for studying CFTs in physics comes from string theory where one
considers strings (something ~ SI) moving in some background manifold M. Whereas a
point particle moving in M sweeps out a curve, astring evoluting in time sweeps out same
Riemann surface E

From the physical point of view, it is highly plausible that physics should not depend on
.athe parametrisation of the string b~t only on tbe conformal structure of E. So, thinking
.of the corresponding quantum mechanical theory, we define a OFT as a functor from the

category C (defined below) to the category of Hilbert spaces. The objects of C a.re the 1­
dimensional compact manifolds' Si and a morphism from So to SI is a Riemann surface E
with oE = So U SI- H 'Hs denotes the Hilbert ·space that is attached to a I-manifold S,
we postulate that 1f.Sous1 = 1f.So ® 1i.s1 •. Furthermore, let E be a surface with exactly two
boundary circles so that we have an operator TE : 1tSo -+ 'H.St and let E be E/(So =~ 81 )

then Tt = traceTE. From these axioms we get that the partition function Zr of the theory
is modular invariant. By a similar construction hut attaching to each boundary circle a
representation of sorne fixed goup G, one obtains the modular functor.

Maxim Kontsevich
Topological Quantum Field Theories (TQFT)

One defines TQFT as folIows: Let Cd be the category whose objects are the d-dimensional
oriented closed manifolds and whose morphisms are the (d+ l)-dimensional bordisms. Then,
a TQFT in (d + 1) dimensions ia a ~-functor from Cd to the category of finite-dimensional
vector spaces.
Same examples (and counterexamples) coming from physics were considered: the non-linear
u-model, Witten-Jones theory, Floer-Donaldson theory.
Finally, the equivaience of notions of Witten's (2+1)-dimensional TQFT and the modular

rnctor coming from CFT was" pr~ented.

A. Szücs
.Kauffman's State Model for the Jones Polynomial

First part: Tbe Kauffman bracket in knot theory.
(1) Reidemeister moves.
(2) Kauffman bracket (K) and its state model.
(3) f[K](A) = (K) . (_A)-3w(K) is the Jones polynomial if A = t-t.
Application: Tait 's conjecture is true, namely, for any two simple altemating links the
numbers of crossings are equal.
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Second part: The Kauffman bracket in graph theory and statistical mechanies.
Here, we have shown that the Kauffman· bracket, the dichromatic polynomial ~f a graph,
and the partition function of the Pott 's model are essentially the same.

Jaap Kalkman

Jones-Witten Theory «2+1)-dimensional Topological
Quantum Field Theory (TQFT»

Also called Chern-Simons (CS) theory, since it is hased on the es functional given by
CSk(A) = f; 1M Tr(AdA + iA[A, A)), where k E 7L and A E nl(M)~g, tbe spare of
connections on the bundle M x G (M a 3-manifold, G a compact Lie group).
The talk was divided in two parts: In the first part, some evidence was presented that the
partition function of the CS-theory, Z = JA VAexp(iCS~(A», gives topologica.l invariants • . .
of 3-manifolds. This was done using a stationary phase approximation (k ~ (0). In the
second part, it was shown that one can obtain the Jones polynomial by calculating ZL =
J.A 'DA WL(A) exp(iCSA:(A» , where the Wilson-Ioop WL(A) is the trace of the holonomy
a.long a link L. The computation was done using ~urgery properties of TQFTs and additional
data from conformal field theories (WZW-models).

Alan Durfee
The Kauffman Polynomial and Birman-"Wenzl Algebras

The Jones polynomial V(t) of an oriented link ca.n be defined in terms of the Kauffman
bracket, an invariant of regular isotopy classes of unoriented link diagrams. The Kauffman
polynomial K (1, m) is a two-variable generalization of V (t) which is similarly defined in terms
of a two-variable generalization A of the bracket polynomial. The Kauffman polynomial is
different !rom the HOMFLY polynomial P(l, m), anothet two-variable generalization of V(t).
For instance, K is almost independent of the orientation of tbe link.
Just as P(l, m) can be defined in terms of a trace on the Hecke algebra, so can K(l, m) be
defined as a trace on an algebra constructed by Birman and Wenzl.

Dirk Siersma
Peter Schauenburg •
Categories of Tangles and Their Linear Representations

Tangles are loeal versions of links. They form a category which can be modified attacmng
certain additional structures (orientation, framing) to the tangles. R-matrices produce linear
representations of these categories, i.e. covariant functors in the category of vector spa.ces.
For links, this construction yields invariants generalizing the Jones polynomial without hav­
ing to use tbe Alexander-Markov reduction. There are also relations with the HOMFLY and
Kauffman polynomial. .

The linear representations of the categories of tangles can be understood and CODstructed
via ribbon quasitriangular Hopf algebras. The latter are algebras whose categories of rep­
resentations have the same properties as the categories of tangles. Thus, functors from the
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.,- categories of tangles (oriented ~d ~coloured') inta the categories of representations of a
ribbon quasitiangular Ropf algebra A can be constructed in a very natural way: The ten­
sor product of tangles is mapped to the tensor product of representations, the braiding of
tangles is mapped to tbe braiding of A-modules (induced by the comultiplication and by
the quasitriangular structure on A, respectively), turning of tbe projection of some tangle
correspondS to taking the dual of a representation (defined via the antipode of A). The
notion of a ribbon Hopf algebra. can be defined to &Inend same deficiencies of the natural
dual representation.

Johannes Huebschmann
Poisson Brackets on Representation Spaces and. Quantization

~t 11' be the fundamental group of a closed surface S and· let G be a Lie group. In a
series of papers Goldman introduced and examined certain symplectic structures on the
representatioD spare Rep(1r ,G) = Horn('Ir , G)/ G, the G-action on Hom(11' ,G) coming from
conjugation in G. These symplectic structures give rise to Poisson structures on a suitable
amooth submanifold of Rep(7T, G). Goldman also introduced certain Lie algebras.of closed
curves together with homomorphisms of Lie algebras into a Poisson algebra of the kind just
mentioned.
Turaev introduced a structure of a non-commutative algebra on certain skein modules defined
over S xl, and he showed that these skein aJgebras fumjsh a quantization of the Lie-Poisson
algebras over the Goldman Lie algebras mentioned before, "in a suitable sense. In this way a
rigorous notation of quantization of Wilson loop observables in Chem-Simons gauge theory
over S x I is obtained.

Maxim Kontsevich
Higher Associativiy, Higher Invariants and Cohomology
of ~he Moduli Space of Curves

Invariants of manifolds are functioDS from the set of manifolds to 80me field K. Higher
00

invariants are proposed to be elements of EB H2fl(B Diff(X),K) where X is a manifold.
n=O

Usual invariants are just O-components of higher invariants. It ia possible 10 describe a
.achinery which gives higber invariants for the case of oriented surfaces with boundaries.

Let A be any finite-dimensional as80ciative algebra with a non-degenerate scalar product
( ., . ) such that (xy, z) = (x, yz). Then, it is possible to define BOrne invariant of surfaces
with boundaries in the following way: Any such surface can be cut into pieces looking like
a ribboned three-star. This defines a way 10 convolute the tensor of structure constants
of A and the scalar product. There ia some homotopy analogue, to associative algebras,
the ~called Aoo-algebras. Tbe main statement ia that homotopy analogs of the notion of
associative algebras with scalar product produce elements of the eohomology of the moduli ­
space of curves with marked points.
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Christian Kassel
The Yang-Baxter- Equation·and Quantum Groups

In this talk examples of R-matrices, i.e. solutions of the Yang-Baxter equation, were given.
All these examples arise from representations of certain Hopf algebras A together with a
specific R E ISO(A 0 A). These Hopf algebras introduced by Drinfeld are called quasi­
triangular Hopf algebras.
Tbe case of the quantized universal enveloping algebra Uq(sl(2)) of 81(2) was presented in
same detail, a~ong with its representation theory, and its universal R-matrix which can
be obtained by Drinfeld's double construction (where a quasi-triangular Hopf algebra ia
associated to any Hopf algebra).

Tammo tom Dieck
Quantum Invariants of Three-manifolds

The talk was areport on the work of Reshetikhin and Turaev. The invanants a.re constructed
via the following scheme:
(1) An oriented, connected, closed 3-manifold M can be constructed by Dehn-surgery on
framed links in 8 3 • The Kirby moves tell under which conditions two framed links give the
same manifold.
(2) The representation theory of a suitable quasi-triangular Hopf algebra yields a functor F
from the category of ribbon tangles to the category of vector spa.ces.
(3) Under suitable additional conditions and by applying the functor F to the framed links
in 53, the invariant of the manifold is constructed. Tbe problem is whether tbis invariant is
invariant under Kirby moves.
(4) The additional conditions under (3) lead to the notion of a modular Hopf.algebra. Specific
modular Hopf algebras are constructed from the quantum group Uq (81(2) by specializing
the generic parameter q to a root of unity.
The .main intention of this work is to relate representation theory of quantum groups to

. geometry of 3-manifolds, links in 3-manifolds and topological quantum field theories.

•

x

G. Masbaum

A Construction of 3-Manifold Invariants from the Kauffman
Bracket •

Reshetikhin and Turaev have constructed new non-trivial invariants from any modular Hopf
algebra (such algebras CM be constructed from any classical Lie algebra). Recently, Lick­
orish has shown how to express these invariants, in the special case of SU(2), in terms of
Kauffman's one variable bracket

+ A-' ) ( j L u 0 = (- Al. - A-
1JL

More precisely, if M3 is obtained by surgery on a bounded link L in SS then the invariants
can be expressed as linear combinations of Kauffman brackets of cablings of L where A is a
primitive root of unity of order divisible by 4.
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~'The talk presented recent work of C. Blanchet, N. Habegger, P. Vogel and the speaker
who further developped Lickorish's approach. It was discussed how to find al1 those linear
combinations of braekets of cablings which yield 3-manifold invariants. It was ShOWD that A
can also be a primitive lOot of unity of any even order, yielding new non-trivial invariante.
However, no other evaluations are possible within this approach. (The invariants at roots of
order == 2 modulo 4 should correspond, in some sense, to quantum SO(3). ) The proof uses
only Kirby ea.lculus and elementary linear algebra hut no representation theory of quantum
groups or Temperley-Lieb algebras. Moreover, this approach gives an example of the explicit
geometrie meaning of colors and Verlinde algebra.s.

Johan van de Leur
Quantum 6j-Symbols

_he representation theory of Uq(sl(2» (quant~ sl(2» is discussed.For the finite dim~­
sional irreducible representations Vi t 0 :$ j E ~'llt a complete orthonormal basis is given.
The decomposition of tensor products of two such irreducible representations yields a direct
sum of irreducible ones. The q-analogs of the Clehsch-Gordan coef6.cients (CGe) are de­
scribed. These CGCs, the u~versalR-matrix as well as all sorts of relations between them
are presented in sorne graphical notation.
Decomposing tensor products of three irreducible representations in t.wo düferent ways into
irreducible components, (V;1 ~V.i2)®Via and V;1 ®(Vb ~Via), gives two complete orthonor-

.mal bases in Vii 0 V,h ® ViI. The matrix elements connecting these bases are the q-analogs
of the 6j-symbols which were presented graphically introducing the so-~ed shadow world.
At the end of the talk, it was shown that any graphical configuration which describes relations
between cacs and R-matrices can be transformed into the shadow world. So, any identity
between cacs and R-matrices gives an identity between 6j-symbols.

Günther Harder
The 'I\Iraev-Viro-Invariant of a Three Di~ensionalManifold

Using the q-6j-symbol 'furaev and Viro attach an invariant to any three dimensional manifold
M without (ar with triangulated) boundary. The invariant depends on the choice of an
integer r ~ 3 and a choice of a 2r-th root of unity qo such that q = q~ is a primitive r-th
~t ofunity. . .
~ any triangulation of M one defines admissible colourings

; : {edges} -+ I ={0, ~, ... , r ; 2} .
To each such colouring one defines a number

IM~r== w-
Cl TI W~(E) • TI. IT'>I

EE{edga} TE{ teUahedra}

where the Wi are certain weights and

{ li' mi nk}IT~ f = weight factor
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and where {~ ~ :} is the q'-6j-symbol built from the colours of the tetrahedra.

The theorem of Turaev-Viro says that this number is an invariant of M. The praof depends
on the weH known identities ain~ng the q-6j-symbols.

Jens Hoppe
The Tetrahedron Equation and Zamolodchikov's Solution

Starting with a quick passage from Newtonian mechanics to n-particle states of a relativistic
quantum field theory, the 'fang-Baxter equation was reviewed as a consistency condition
for the S-matrix factorization in a {l+l)-dimensional relativistic quantum .field theory. In
analogy, the tetrahedron equatioDs arise as consistency conditions in the (2+1)-dimensional
sca.ttering theory of 'straight strings'. The (very large) number of independent functions e
appearing in these functional equations can be substantially reduced by an appropriate .
ansatz, due to Zamolodchikov. Following tl;le proof of Baxter - involving a variety of non-
trivial observations, and spherical trigonometry - this particular ansatz can be shown to lead
to an explicit solution. The general d-simplex equations were shortly mentioned.

(P.S. Will membrane theories be related to invariants of 3-manifolds 1)

Berichterstatter: Michael Flohr, Michael Terhoeven, Raimund Varnhagen
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