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Tagungsbericht 17/1991

Brauer Groups and Representation Theory of Finite Groups

14.4. bis 20.4.1991

Die Tagung fand unter der Leitung von H. Opolka (Braunschweig), F. Van Oystaeyen
(Wilrijk) und W. Scharlau (Minster) statt.

In zahlreichen Diskussionen und in 31 Vortragen beschiftigte sich die Tagung

vornehmlich mit linearen und projektiven Darstellungen endlicher Gruppen, einfachen

" Algebren und Azumaya - Algebren, Brauergruppen von Kérpern, Ringen und Va-

rietiten, Galoiskohomologie sowie mit Zusammenhingen zwischen diesen Themen und

mit Anwendungen auf Probleme der algebraischen Zahlentheorie und der algebraischen
Geometrie.
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Vortragsausziige

E. ALJADEFF:
On the semisimplicity of crossed products and cohomology of groups

If K is a field of charK = p > 0 and T is a finite group with p |.|T'|, then the group
ring is not semisimple. If I acts on K via a group G namely ¢t : I' — G C Aut(K) and
H is the kernel of this action then the skew group ring KT is not semisimple iff p | |H|.
Assuming this is the case, we consider the question whether there exists a € H*(T, K*)
such that the crossed product is semisimple. -

A necessary condition is: a p-Sylow subgroup of H intersects tnvxally H' (the

commutator subgroup). We construct such 2-cocycles for the nontrivial action case
H = Zp, G = Zp—l-

R. BOLTIE:
On canonical and explicit Brauer induction

Let G be a finite group and R(G) its character ring. Then, for an arbitrary finite
dimensional CG-module V,

V= b (-1)lind§V#H#) € R(G)
o= (K,¥)<..<(H,)
modG

is an explicit version of Brauer’s induction theorem. Here the sum runs over G-orbits
of chains of pairs (U, ) where U < G and g € Hom(U, C*) with the obvious partial
order. VI#9) := {v € V | hv = ¢(h)v for all h € H} is the p-homogeneous component
of resGV, hence also a CG-module. The above formula is natural in the following sense:

Let R4 (G) be the free abelian group on the G-orbits (H @) of pairs (H,¢) and let
be : R4+(G) — R(G) be given by (H,p) + ind§y. As for R(G) we have induction and
retriction maps between Ry(G) and Ry (H) whenever H < G. Then the above formula
comes from a splitting map ag : R(G) = R4 (G) for bg (bgag =id) which commutes
with restriction. Another splitting map @¢ : Q ®z R(G) —» Q ®z R (G) with rational
coefficients is given, which commutes with restriction and induction.
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D. Burns:
On the module structure of units in number fields

We discuss certain integral representations of a finite group G naturally defined
when G is realized as the Galois group of a finite extension of number fields F/E. In
particular we considered certain S-unit groups of F.

The techniques of investigation are due to Frohlich and proceed via his construction
of an integral regulator (Crelle (1989); see also Proceedings of 1989 Durham Symposium
on ”"L-functions in Arithmetic”). In case G abelian, by using the known validity of
the Strong Stark Conjecture (a la Tate) in case E = Q or quadratic imaginary one

obtains new structure results. In case E = Q Frohlich showed how explicit results

then followed from the known validity of the Gras Conjecture in this case. In case E
quadratic imaginary similar results can be obtained by means of the recent techniques
of Kolyvagin (and Rubin) using ”Euler systems”.

S. CAENEPEEL :
The Brauer-Long group of a Hopf algebra

Let R be a commutative ring, and H a finitely generated, projectiv, commutative
and cocommutative Hopf algebra. Long has introduced a Brauer group BD(R, H)
classifying equivalence classes of H-Azumaya algebras (these are R-algebras A with a
H-action and H-coaction satisfying the following isomorphism: AfA = Endg(A) and
AfA = Endg(A)°*?). BD(R, H) may be described as follows:

1) Let BD(R, H) = Us BD(S/R, H). Then

BD®(R, H) = H'(R,G(H* ® .)) x HY(R,G(H ®.)) x H3(R, G')tors
2) We have an exact sequence
1 — BD®(R, H) — BD(R, H) & Auty,,;(H ® H").

The image of B is an orthogonal subgroup of Auty.,s(H ® H*). Our theory allows us
to compute some explicit examples. In particular, we have that

BD(Z[v2), Z[v2)/(z* ~ V2z)) & Ds.

F. DEMEYER:
The Brauer group of toric varieties II

. A fan is a combinatorial object in R® which consists of a union of cones such that
all the faces of a cone and the intersection of any two cones in the fan are in the
fan. To each fan A can be associated a "toric” variety X = Tyemb(A). A support
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function on A is a function defined on the points of IR® which are in cones in A
and is linear on each cone in A. Let SF(A) be the group of support functions on A.
Topologize A by letting the open sets be the subfans. Define a sheaf £ on A by letting
L(A') = SF(A") for each A’ open in A. We conjecture: If K is the function field of X
then H%,(K/X,G,) = HY(A, L).

B. FEIN:
Finite groups and relative Brauer groups

In this talk we discuss some recent joint work with David Saltman and Murray
Schacher concerning the nontriviality of certain Brauer groups. Let K be an arbitrary
field, let L be a finite separable extension of K, and let z be transcendental over
K. We prove that the relative Brauer group, Br(L(z)/K(z)), is infinite. Although
this statement may seem rather innocuous, we also show that this is equivalent to
the following purely group-theoretic statement: if  is a subgroup of a finite group
G,H # G, then there is an element in G of prime power order having no conjugates in
H. The only known proofs of this result make essential use of the classification of the
finite simple groups.

B. T. FoRD:
The Brauer group of toric varieties I

(Joint with F. DeMeyer.) If X is a normal toric variety defined over an algebraically
closed field of characteristic zero and the singular locus of X has codimension at most
2, then we give a reasonably complete description of the cohomological Brauer group
of X. -

E. FORMANEK:
The group determinant

Let G = {g1,..., 9=} be a finite group, and let {X,, ..., X,.} be commuting variables
indexed by G. The group determinant is -

Dg = det(X, ,-)-

Kenneth W. Johnson asked whether the group determinant determines the group.
Following a suggestion of H.-J Hoehnke, David Sibley and I showed that this was the
case. Later, Johnson and Hoehnke showed that the coefficients of X7~? and X3 i
D¢ are enough to determine the group, and still later Richard Mansfield produced a
completly elementary proof of their result.
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J. GRATER :
Extensions of valuation rings in central simple algebras

Let Q be a central simple algebra with center F. An order B (i.e. a prime Pl-ring B
with quotient ring @) is called Dubrovin-valuation ring if there exists a maximal ideal
M of B such that for all ¢ € Q\B there exist 4,5, € B such that b,q,qb, € B\M.
It turns out that M = J(B). A main result concerning D-valuation rings is that each
valuation ring V of F has such an extension to @ (Dubrovin). Now, D-valuation rings
By, ..., B, have the intersection property (IP) if B, N...N B, is a Bézout order in Q.
It is shown that each valuation ring V of F can be extended to a Bézout order R of
Q that is integral over V. This order is unique up to inner automorphisms of Q and
is the intersection of ny extensions of V. This number ny depends only on V and is
called the extension number of V. Furthermore, [Q : F] = fp - eg - (ny)? - p? where fp
is the residue degree, ep the ramification index, p = charV/J(V), and d € N U {0},
where B denotes an extension of V to Q.

D. HAILE :
Clifford algebras and relative Brauer groups

If f(u,v) is a binary form of degree n one can form the Clifford algebra C; of f given
by Cy = F{z,y}/I where F{z,y} is the free algebra and I is the ideal generated by
the elements (az + By)" — f(a, B) for all a, B € F. In particular if f is a nondegenerate
binary cubic form this algebra is Azumaya of rank nine over its center and its center
is the affine ring of the elliptic curve Y3 = X3 — 27D where D is the discriminant
of f. The simple homomorphic images of Cy with center F are then in one-to-one
correspondence with the F-rational points on this elliptic curve and in fact one obtains
a homomorphism from E(F), the group of F-rational points, to Br(F), the Brauer
group of F. We examine this map and its generalizations to forms of higher degree.

I. HAMBELTON:
Cancellation of lattices and hyperbolic forms over orders

In joint work with M. Kreck, we obtain cancellation theorems for certain modules

‘over R-orders in separable F-algebras, where R is a Dedekind ring with quotient field

F. If L is an A-lattice, and € : A — B is a surjective ring homomorphism of R-orders,
we say that L has (A — B) free rank > 1 at a prime p € R if L) B, has a direct
summand A, for some r > 0.

Theorem 1. Let L be an A-lattice and M = L @ A. If there ezistse : A — B such
that L has (A — B) free rank > 1 at at all but finitely many primes, and GL2(A) acts
transitively on unimodular elements in B@ B, then for any A-lattice N which is locally
a direct summand of M™ (somen) MON=ZM SN = M =M.
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If B = 0, this implies the Bass cancellation theorem. For quadratic forms there is

the analogous notion of ”(A — B) hyperbolic rank > 1” at a prime p € R if M(,) 1
H(B,) contains H(Ag).
Theorem 2. Let V be a (A, A)- quadratic module over a ring with form pammeter
(A,A), and set (M,[h]) = V L H(A). Suppose that there ezists e : A — B such
that V has (A — B) hyperbolic rank > 1 at all but finitely many primes. If Uz(A)
acts transitively on the set of unimodular elements in H(B @ B) of fized length, then
M LHA)EM'LHA™) == M= M.

F. JoNAs
The conductor of the character field

Let G be a finite group and D : G — GL(n, C) an irreducible linear representation
with character x. Define M(D) = {m € IN | D is realizable inQ({.)}. We are looking
for properties of M (D), for example is it true that
(*) m,m’' € M(D) = ged(m,m’) € M(D)?

One can show that (*) holds if and only if f € M(D), where f is the conductor of
the character field Q(x). ' '

If n is an odd prime, it follows by theorems of Schur and Solomon that f € M(D), .

i.e. in this case M(D) = fIN. (For n = 2 the Schur index my(x) =1 if V-1 €k, i.e.
lem(4, f) € M(D).)

B. KAHN
The degree of a division algebra over a C;-field

A classical theorem asserts that any division algebra over a global field has degree
equal to its exponent. This is conjectured to hold for C,-fields, where C; is Lang’s
diophantine condition, but so far it is known only when the exponent has the form
223 (Artin-Tate, Yanchersky). We relax this property as follows:

Definition. Let F be a field and n > 1. We say that -F has property Br,. if central
simple algebras over F of ezponent dividing n have bounded indez (the bound depending
onn and F).

Conjecture. If F is a C;-field, then F has property Br, for anyn > 1.
The field C(z,y) is C; but this conjecture does not seem to be known even for

n = 5! The aim of the talk was to prove the following theorem:

Theorem. Let F be a field with finite u-invariant. Then F has property Brge for any
e> 1.

The u-invariant of a field F is the least integer u(F') such that any quadratic form
over F in u(F) + 1 variables represents 0: if F is C;, then u(F) < 2. The proof
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uses the Merkurjev-Suslin theorem, a lemma of Merkurjev on quadratic forms and the
permanence of finiteness of u(F) under finite extensions (Elman-Lam).

I. KERSTEN
Generic splitting of reductive algebraic groups

(Joint work with U. Rehman.) Let G be a reductive linear algebraic group over a
field k. Then a field F D k is called a splitting field of G, if G is a Chevalley F-group.
A splitting field F of G is called generic, if every splitting field of G is a specialization

generalizes known results of Witt, Amitsur, Roquette, Knebusch, Petterson, and oth-
ers. In many cases this generic splitting field is the function field of a projective variety
G/ P with a suitable parabolic subgroup P of G. If G is a k-torus then G has a generic
splitting field being finite and separable over k.

F. LORENZ
On the Schur multiplier of fields

For a field K with absolute Galois group Gk = Gal(C/K) the group Sr(K) =

H*(Gk,C*) = H¥(Gk,Q/Z) is called the Schur multiplier of K. In an obvious way -

Sr(K) is connected with projective representations and corresponding field theoretical
and arithmetical questions. There is also a connection with the Brauer group Br(K )=
H*(Gk,C") of K: Assuming y, € K, we conclude from the exact seqence x(Gk) —
Br(K), — Sr(K). — 1 that the following are equivalent:

(i) Sr(K)n = 1, (ii) Each element of Br(K), can be represented by a cyclotomic algebra
of the special type (E,0,(), where { € u,,. .

For a global field K the Schur multiplier of K is trivial (by a theorem of Tate,
which actually can be conceived as a basic fact of the "theory of norm residues”, which
started with A. Scholz in 1940), so we get an interesting result concerning the Brauer
group of a global field; it is related to - but different from - the ” Brauer-Hasse-Noether
Hauptsatz der Algebrentheorie”.

Therefore there seems to be some good reasons to study the Schur multiplier also of
other types of fields. For instance it follows from the (elementary algebraic) theory of
Tsen that the rational function fields C(X) and R(X) in one variable over an algebraic
or real closed field have trivial Schur multiplier. The same is true for the power series
fields C((X)) and R((X)). Next we study the more difficult case of a rational function
field K = ko(X) over a global (or local) field of characteristic 0. Here we find Sr(K) &
@, H'(Ga, #7), where o runs through the conjugacy classes of the a € Gy, G, is the
absolute Galois group of ko(a) and y* denotes the Tate twist Q/Z(—1) of the group
p of roots of unity. So, for an arbitrary global (or local) field one is lead to study
the groups H'(Gk, u*). It contains the groups H'(T, u) - with [' = Gal(k(u)/k) - as
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a subgroup (and from this we also see that Sr(ko, X) is not trivial). There is also
some connection between H!(Gg, p*) and the Schur group of K since the latter can be
discribed as the image of H*(T, p) in HX(T, k(u*)).

We conclude with the observation, that the above function field K = ko(X) satisfies
a simple Global-Local-Principle, namely Sr(K) 2 @5 Sr(Kp). But the proof for this is
done only by way of a kind of direct inspection as above, and it remains open whether
the statement remains valid also in the non rational case.

L. LEBRUYN
Rational identities of generic division algebras

A short proof is presented of the fundamental results of Bergman on rational iden-
tities. As a corollary the following extension of the classical p.i. result is obtained: if
(a+1)m < n and if 2 is a rational identity for UD(n) of "inversion depth”< a then z
(or one of its subexpressions) holds in UD(m) too.

P. MAMMONE
On the tensor product of division algebras

"In a recent work, Tignol and Wadsworth constructed finite dimensional division
algebras Dy, D, over a field F such that D, ® D; is not a division algebra but D,
and D, have no common subfield properly containing F. However Saltman observed
that the division algebras constructed by Tignol and Wadsworth satisfy the property
that D, @ D7? is a division algebra. So, Saltman’s observation raised the following new
tensor product question: If index(D; ® D7°) <indexD,-indexD, forall 1 < n < exp(D;)
then do D; and D, have necessarily a common subfield?

We make some observations on the symmetry of the new tensor product hypothesis
and give two families of negative answers to the question.

R. Massy:
Numerical decompositions of cohomology classes

Let K be a field, K its separable closure and Qx = Gal(K/K). Assume that K
contains a primitive vth root of unity {,, with v invertible in K. For a € KX, let
(a) € HY(Qk,Z/vZ) be the map defined by w(a'/*)/a'/’ = () for w € Qk. - It
follows from work of Merkur’ev and Suslin that any € € H*(Qg,Z/vZ) = Br,(K) can
be expressed as a sum:

*) €= 3 (ab)
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where (a,b) = (a) U (b) and U : HY(Qxk,Z/vZ) x H'(Qk, Z[vZ) — H’(QK, Z[vZ)is
the cup-product.

We consider the question of obtaining a decomposition (*) when K is replaced by
a finite Galois extension E of K. Take for E/K an abelian p-extension (p any pnme)
Then it may.be necessary to add a supplementary term to the sum (*). This term is
induced by only one element ag of K and defined via another cup-product. When the
elements a;, b; (i = 1,...,n) are linearly independent in the Kummer group of E/K,
we prove that there are only three kinds of new decomposmons (*), and we get the
following property:
Every class ¢ € H}(Gal(E/K),Z/vZ) is of one, and only of one, of these three kinds.

P. MoRANDI:
Maximal orders over valuation rings

In the talk we discuss maximal orders over valuation rings in central simple alge-
bras. The case of maximal orders over discrete valuation rings is classical and well
known. We are particularly interested in maximal orders that are either Bézout or
semihereditary. By using results of Griter we see that a maximal order R is Bézout
iff R is an intersection of Dubrovin valuation rings satisfying the intersection property.
Thus there is an unique up to isomorphism Bézout maximal order over a valuation ring

'V in any central simple algebra.

For semihereditary orders, taking into account the classification of hereditary orders
over a DVR we are able to construct a class of block matrix orders which are semihered-
itary maximal orders. For V a valuation ring with value group Z", any semihereditary
maximal order is of this block matrix form.

Using defective field extensions we give a third construction of maximal orders. For
§ = M3(F) we see any maximal order is one of these three types.

P. NELIs:
Schur and projective Schur groups over number rings

Notation: K a number field, R its ring of integers, Rs localization of R.
The talk considered a conjecture by Riehm. Let

S(Rs) ={[A] € Br(Rs) : 3G, finite group ,3 epimorphism 7 : QG — A}.
S(Rs) is a subgroup of Br(Rs), called the Schur group. The diagram:

S(Rs) —— S(K)

Br(Rs) & Br(K)

9

Forschungsgemeinschaft

o



- DFG

shows that S(Rs) C Br(Rs) N S(K). .
Conjecture (Riehm, 1989): S(Rs) = Br(Rs) N S(K).

We explained the proof of this equality in the case R = Rg, i.e. for number rings.
The proof makes use of the representation theory of GL3(IF,) and of a method of
combining elements in S(R) and S(R') to obtain an element in S(R"), where R, R', R"
are number rings of three different fields K, K', K”.

- G. PAZDERSKI:

On the number of irreducible representations of an algebra

Following Brauer’s approach in counting the irreducible representations of a finite
group over -a splitting field we give a formula for the number of irreducible represen-
tations of an algebra over an arbitrary field. As an application to the group rings the
known Berman-Witt result is obtained.

E. PEYRE:
Unramified cohomology in degree 2 or 3 and rationality problems

Let k be an algebraically closed field of characteristic 0 and K a function field
over k. I note P(K) the set of discrete valuation rings A such that ¥ C A C K and
Fr(A)=K.

HE (K, u®) = () Ker(6a : (K, 5®7) — H-Y(IK 4, %))
A€P(K)

where 84 is the residue map associated to A.

By a proposition of Colliot-Théléene and Ojanguren, if K is.stably rational over
k (this means that there exist indeterminates Vj,...,V,, and Ti,...,T; such that
KW,..., V) 2 k(Ty,...,T)) over k), then Hi (K, u®) = {0}.

Let V be a finite IF, - vector space for an odd prime number p and ¢ : V* —
H'(K, up) a morphism. This induces a map ¢’ : (N’ V)* — Hi(K,u®’). Let S C ATV

be the orthogonal of its kernel. Let S",‘H ={uAv, u €V, ve NV). Then.

(5/Siec) = Hi(K, p?).

If V and §% C A®V are given, with S # Sy, We may, using a recent result of
Suslin, construct in some cases a unirational field K and a map V* — H*(K, u,) such
that (kerg®)! is the chosen S. The field K is therefore not stably rational.
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M. REGAUER:

Weak solvability of embedding problems defined by the second Stiefel-
Whitney class

Let Gy = Gal(k/k) be the Galois group of an algebraic closure of a number field
k and G the Galois group of a finite normal extension K/k. If rg denotes the regular
representation of G, we can define the second Stiefel-Whitney class eg 1= wy(rg) of rg
as an element in H¥(G, Z/2Z).

The correspondmg central embedding problem & = (G, Z/2Z, eg) is called weakly
solvable if infgG*(eg) becomes trivial for some i € IN under the map H2(Gy, Z/2Z) —
H?(Gy, Z/2°Z) which is induced by the natural map Z/2Z — Z/2'Z. The minimal i
such that £ is weakly solvable is called the index of £. This is a finite number which’
will be estimated.

Therefor the problem is ﬁrstly reduced to a 2-Sylow subgroup of G and secondly
to local fields. An important role plays the formula of Serre which rélates infS*(eg) to
the Hasse invariant of the trace form trgi(z?) of K/k.

An upper bound of the index of £ is r + 2, where 2" is the largest order of the
2-power roots of unity in the completitions of k& with respect to the ramified places of
K/k. But there are many cases in which this index is less than r + 2.

C. RIEHM:
Complements to some theorems of A. Frohlich

In his paper in Crelle, vol. 360, Frohlich gave several formulas involving invariants of
orthogonal representations of finite and profinite groups. In addition he gave analogues
of some of them in the case of projective representations.

In this lecture I outlined proofs for the "missing” formulas in the projective case.
In fact one of them can be done more generally for a representation in a category with
direct sums relative to "admissible systems” of morphisms.

The result is that the K-objects Corp/xX* and (indX)4* are isomorphic, where
L/K is a finite separable extension, s : A — AutX is a representation of the subgroup
A = Gal(K*®[L) of finite index in I' = Gal (K*?/K), and the subscripts s and ind s
represent twisting by s and ind s interpreted as 1-cocycles.

The other formula, in the case of projective representations, gives the Brauer class

PN,[inds] in terms of PNa[s] and the discriminant of L/K (in Frhlich’s notation).

J. RITTER:
On two integrality properties of group representations

1. It is well known that each absolutely’ irreducible character x of a finite Group
G is the trace of a representation T : G — GL,.(Q((')) where n = x(1) and ( is a
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root of unity of order expG. It is known that T can in fact be chosen to take values
already in GL,(Z[(]), provided that G is solvable. By means of an example one sees
that in general Q(() is the minimal splitting field for x enjoying the stated integrality
property. The result comes from joint work with G. Cliff and A. Weiss.

2. A. Frohlich, in connection with his definitions of regulators and resolvents in
Galois module structure theory, has asked whether there exist. Galois-stable lattices
M on irreducible FG-modules V, where F is a splitting field for V, which is Galois
over the character field belonging to V; Galois-stability meaning that M and M? are
G-isomorphic lattices.

From joint work with A. Weiss the following theorem is presented, which not only
gives the answer to Frohlich’s question, but also provides uniquely defined resolvents
and regulators in the non-commutative situation.

Theorem. If A is a central simple K -algebra split by F a finite Galois extension of
K, then to each mazimal Ok-order A in A there ezists a unique Galois-stable mazimal
Op-order in A® F containing A, provided that the local Schur indices of A divide the
local ramification indices of F/K.

The main tool of the proof is the concept of generahzed crossed product orders.

D. SALTMAN:
A little result about generic division algebras

Let UD(F,n,r) be the generic division algebra over F of degree n in r variables. If
A/F is central simple, let BS(A) be the Brauer-Severi variety. -

. The main theorem is that K = Z(UD ®z (A ®F K)°) is rational over F where Z
is the center of UD and Z(C) is the function field of BS(C). We use to give three
applications.

First, that there exists Z C L.with L/ F rational and Br(Z) — Br(L) is injective.

: Second if n = ab for (a,b) = 1 then Z(F,n,r) is stably isomorphic to
Z(F,a,r")Z(F,b,r"). This fact was first proved by Schofield.

Third, that if F' is Hilbertian, f € Z[z] irreducible, and A/F central simple of
degree n, then there exists ¢ : C — F realizing A (C € Z, B/C Azumaya, C smooth,
BZ =UD, B ®g¢ F = A) such that ¢(f(z)) is irreducible.

M. SCHACHER:
Subfields of division rings

We discuss joint work with Fein and Saltman concerning the following problem:
Suppose L/ F is a finite dimensional separable extension of fields, and

Ln = L(tl,. . .,tn), Fn = F(tl,.. . ,tﬂ).
We ask:
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Deutsche
Forschungsgemeinschaft

o®




UFG

1) Is L, a maximal subfield of a division ring central over F,, some n ?

2) Same as in 1) without maximality.

3) What is the minimum n-?

The answer in 1) is yes when L/F is Galois. This makes the answer to 2) yes
also. 1) is false for general non-Galois L/F. Let G = Gal(L/F) when L/F is Galois.
Methods of permutation modules, using the induction theorem of Moody, accomplish
1) in a large number of variables. Methods using corestriction require fewer variables.

Let r = maximum cyclic length among Sylow subgroups of G. Then r variables
suffice for 3). If F is a number field, r — 1 variables suffice. As a consequence, if Sylow
subgroups of G are metacyclic and F is a number field, then the construction can be
accomplished over F(t).

V. SNAITH:
Conductors in the non-seperable case

This is a report on joint work with R. Boltje and G. M. Cram. Let L/K be a finite
Galois extension of complete, discrete valuation fields with group G(L/K).

When L/K - residue extension - is seperable we have the Artin conductor fx :
R(Go(L/K)) = Z. fk is inflative, Qq-fixed and inductive in dimension zero (up to a

Aactor frk).

It is a problem of J. P. Serre to extend fk to the general case. Using Explicit Brauer
Induction we do this with the exception of inductivity. We reduce inductivity to cases
when G(L/K) = Gy =1Z/p" or Z/p x Z/p" and give infinitely many examples where

our conductor is inductive in the same sense as is fx.

J. SoNN:
Brauer groups and embedding problems over function fields
Let K be a field, K, A € A, a family of extension fields of K. If
K) — [IBr(K))
)

is injective, then for certain important types of embedding problems over K, a solution
exists if and only if a solution exists for the induced embedding problems over K, for
all A e A

The classical example of this injectivity is K a number field and A the set of all

places of K.

Similary, the Faddeev-Auslander-Brumer Theorem gives a second example with
K = Ky(t) a rational function field over a field K (but "keep away” from char(Ko))
A the set of all places of K trivial on K.

A third example is given by the following theorem:
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Let k be a global field, p a primé # char(k), A the set of primes of k. Then
| Br(k(t)) - I] Br(ku(t))

vEA

is injective.

J.P. TIGNOL:
Linkage of division algebras over Laurent series fields

Joint work with Bill Jacob. A field F is called p-linked for some prime number p if
for every Brauer class a € Br(F), the following equation holds: exp(a) = ind(a).

By an easy argument of Albert, this condition is equivalent to the following: . if
D,, D, are division algebras of degree p, D; ® D, is either 1 or similar to a division
algebra of degree p. Using the Witt exact sequence for the Brauer group of a field of
Laurent series, it is easy to see that, when char(k) # p, the field k((t)) is p-linked iff
every division algebra of exponent p over k is split by every cyclic extension of degree
pof k.

This condition holds in particular when k is a local field (of char # p). Using
induction on the height of division algebras of degree p over IF,((z))((y)), it is shown
that this field is p-linked. )

For p = 2, this yields a counterexample to a theorem of Arf, which claims that the
u-invariant of a 2-linked field of characteristic 2 is at most 4.

T. YAMADA:
The formula of Schur index over the 2-adic field

Theorem 1. Let k D Q,. Let B = (B,k(e)/k) be a cyclotomic algebra over k. Let
Blo,1) € (), where (() is the 2-part of the group of the roots of unity in k.

Ifn<?2, then B~k. )

Assume that n > 2. If the inertia group T of k(€)/k does not contain ¢ such that

¢t = (7Y, then B ~ k. Suppose that « € I. Then B(¢,t) = £1, and I = (&) x (1),

¢ =¢"

Let 1) be a Frobenius automorphism and (" = (*.

ﬂ(T)") a ﬁ("aﬂ) )
e g = B ¢
ZE:’:; =% h={2a+ (5" ~1)b+(5* = 1)c}/2".
Then h € Z,andinvB=h/2+[k:Q,]-6/2(mod 1), 8§ =0ifB(e,e)=1,6=1if
B(e,e) = —1.

Theorem 2. Suppose that the residue class degree f of k(e)/ k is odd. Then there
ezists a Frobenius automorphism 7 of k(e)/k, such that (" = (. F‘urthcrmore, 2|k and
s0invB = [k : Q,) - 6/2 (mod 1).
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Proposition 3. Suppose that 2|f and there ezists n of k(e)/k such that (" = (.
Then there ezists B = (B, k(e))/k) such that h/2 # 0 (mod 1), and so
invB =} +[k: Q,)-6/2 (mod 1).

Berichterstatter: F. Jonas und M. Regauer
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