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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e reh t 17/1991

Brauer Groups and Representation Theory of Finite Groups

14.4. bis 20.4.1991

Die Tagung fand unter der Leitung von H. Opolka (Braunschweig), F. Van Oystaeyen
(Wilrijk) und W. Scharlau (Münster) statt.

In zahlreichen Diskussionen und in 31 Vorträgen beschäftigte sich die Tagung
vornehmlich mit linearen und projektiven Darstellungen endlicher Gruppen, einfachen
Algebren und Azumaya - Algebren, Brauergruppen von Körpern, Ringen und Va­
rietäten, Galoiskohomologie sowie mit Zusammenhängen zwischen diesen Themen und
mit Anwendungen auf Probleme der algebraischen Zahlentheorie und der algebraischen
Geometrie.
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Vortragsauszüge

E. ALJADEFF:

On the semisimplicity of cr.ossed products and cohomology of groups

If K is a field of charK = p > 0 and r is a finite group with p 1·lrl, then the group
ring is not semisimple. If r acts on K via a group G namely t : r --+ G c Aut(K) and
H is the kernel of this action then the skew group ring Ktr is not semisimple iff p I IH I.
Assuming this is the case, we consider the question whether there exists a E H2(r, K~)
such that the crossed product is semisimple. '.

A necessary condition is: a p-Sylow subgroup of H intersects trivially B' (the
commutator subgroup). We construct such 2-cocycles for the nontrivial action case
H = 7lp , G = 7lp - 1 •

R. BOLTJE:

On canonical and explicit Brauer induction

Let G be a finite group and R(G) its character ring. Then, for an arbitrary finite
dimensional (cG-module V,

v = I: (-l)lalind~V(H,rp)E R(G)

(J' = (K,t/J) < ... < (H,cp)
modG

is an explicit version of Brauer's induction theorem. Here the surn runs over G-orbits
of chains of pairs (U,J1) where U ::; G and J1 E Hom(U, (C*) with the obvious partial
order. V(H,rp) := {v E V I hv = ~(h)v for all h E H} is the rp-homogeneous component
of resZV, hence also a ~G-module. The above formula is natural in the following sense:

Let R+ (G) be the free abelian group on the G-orbits (H, cp)G of p~irs (H, cp) and let

bG : I4(G) -+ R(G) be given by (H, rp)G .-+ indg<p. As for R(G) we have induction and
retriction maps between R+(G) and ~(H) whenever H ~ G. Then the above formula
comes from a splitting map aG : R(G) -+ ~(G) for ba (bGaG =id) which commutes
with restriction. Another splitting map äG : <Q ®71 R(G) ~ ~ ®71 R+(G) with rational
coefficients is given, which commutes with restrietion and induction.
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D. BURNS:

On the module structure of units in number fields

We discuss certain integral representations of a finite group G naturally define<;l
when G is realized as the Galois group of a finite extension of number fields FIE. In
particular we considered certain S-unit groups of F.

The techniques of investigation are due to Fröhlich and proceed via his construction
of an integral regulator (ereIle (1989); see also Proceedings of 1989 Durham Symposium
on "L-functions in Arithmetic"). In case Gabelian, by using the known validity of
the Strong Stark Conjecture (a. la Tate) in case E = <Q or quadratic imagina.ry one
obtains new structure results. In case E = <Q Fröhlich showed how explicit results
then followed from the known validity of the Gra.s Conjecture in this case. In case E
quadratic inlaginary similar results can be obtained by means of the recent techniques
of Kolyvagin (and Rubin) using ';Euler systems".

S. CAENEPEEL :

The Brauer-Long group of a Hopf algebra

Let R be a commutative ring, and H a finitely generated, projectiv, coolll1utative
and cocommutative Hopf algebra. Long has introduced a Brauer group BD(R, H)
classifying equivalence classes of H-Azumaya algebras (these are R-algebras A with a
H-action and H-coaction satisfying the following isomorphism: AtiÄ ~ EndR(A) and
ÄtiA ~ EndR(A)OPP). BD(R, H) may be described as follows:
1) Let BD(R,H) = UsBD(SIR,H). Then

BDs (R, H) = H1(R, G(H* ® .)) x H1(R, G(H ® .)) x H2 (R, Gm)tor"

2) We have an exact sequence

1~ BDs(R, H) -+ BD(R, H) .!!, AutHop/(H ® H*).

The image of ß is an orthogonal subgroup of AutHopJ(H ® H*). Dur theory allows us
to compute some explicit examples. In particular, we have that
BD(Z[v'2], Z[V2]/(x2

- V2x)) ~ D8 •

F. DEMEYER:

The Brauer group of toric varieties n

. A fan is a combinatorial object in IRn which consists of a union of cones such that
all the faces of a cone and the intersection of any two cones in the fan are in the
fan. To each fan ß can be associated a "toric" variety X = TNemb(ß). A support
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function on ß is a function defined on the points of IRn which· are in cones in ß
and is linear on each cone in ·ß. Let SF(6.) be the group of support funetions on ß.
Topologize ß by letting the open sets be the subfans. Define a sheaf l, on ß by letting
.c(6') = SF(ß') for eaeh ß' open in ß. We conjecture: If K is the function field of X
then H~t(K/X, Gm) ~ :A:1(6, .c). .

B. FEIN:

Finite groups and relative Brauer groups

In this talk we discuss some recent joint work with David Saltmanand Murray
Schacher concerning the nontriviality of certain Brauer groups. Let K be an arbitrary
field, let L be a finite separable extension of K, and let x be transcendental over
K. We prove that the relative Brauer group, Br(L(x)/K(x)), is infinite. Although
this statement may seem rather innocuous, we also show that this is equivalent to
tbe following purely group-theoretie statement: if 11 is a subgroup of a finite group
g, 1i # g, then there is an element in g of prime power order having no conjugates in
11. The only known proofs of this result make essential use of the elassification of the
finite simple groups.

B. T. FORD:

The Brauer group of toric varieties I

(Joint witb F. DeMeyer.) If Xis anormal torie variety defined over an algebraically
closed field of eharacteristic zero and the singular loeus of X has eodimension at most
2, then we give a reasonably complete description of the cohomological Brauer group
ofX..

E. FORMANEK:

The group determinant

Let G = {9h ... ,9n'} be a finite group, and let {Xgp ••• ,Xgn } be commuting variables
indexed by G. The group determinant is

Kenneth W. Johnson asked whether the group determinant determines the group.
Following a suggestion of H.-J Hoehnke, David Sibley and I showed that this was the
case. Later, Johnson and Hoehnke showed that the coefficients of X~-2 and X~-3 in
Da are enough to determine tbe group, and stilllater Richard Mansfield produced a
completly elementary proof of their result.
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J. GRÄTER :

Extensions of valuation rings in cent,ra! simple algebras

•

Let Q be a central simple algebra with center F. An order B (i.e. a prime PI-ring B
with quotient ring Q) is called Dubrovin-valuation ring if there exists a maximal ideal
M of B' such that for all q E Q\B there exist ht, ~ E B such that b1q, q~ E B\M.
It turns out that M = J(B). A main result concerning D-valuation rings is that each
valuation ring V of F has such an extension to Q (Dubrovin). Now, D-valuation rings
BI, ... , Bn have the intersection property (IP) if BI n ... n Bn is a Bezout order in Q.
It is shown that each valuation ring V of F can be extended to a Bezout order R of
Q that is integralover V. This order is unique up to inner automorphisms of Q and
is the intersection of n v extensions of V. This number nv depends only on V and is
called the extension number of V. Furthermore, [Q : F] = JB . eB' (nv)~' pd where JB
is the residue degree, eB the ramification index, p = charV/J(V), and d E lN U {O},
where B denotes an extension of V to Q.

D. HAlLE:

Clifford algebras and relative Brauer groups

If J(u, v) is a binary form of degree none can form the Clifford algebra CI of f given
by CI = F{x,y}/I where F{x,y} is the free algebra and I is the ideal generated by
the elements (o:x + ßy)n - f( 0:, ß) for all 0:, ß E F. In particular if J is a nondegenerate
binary cubic form this algebra is Azumaya of rank nine over its center and its center
is the affine ~ing of the elliptic curve y3 = X 3

- 27D where D is the discriminant
of f. The simple homomorphic images of CI with center F are then in one-to-one
correspondence with the F-rational points on this elliptic curve and in fact one obtains
a homomorphism from E(F), the group of F-rational points, to Br(F), the Brauer
group of F. We examine this map and its generalizations to forms of higher degree.

I. HAMBELTON:

• Cancellation of lattices and hyperbolic forms over orders

In joint work with M. Kreck, we obtain cancellation theorems for certain modules
over R-orders in separable F -algebras, where R is a Dedekind ring with quotient field
F. If L is an A-lattice, and e : A ~ B is a surjective ring homomorphism of R-orders,
we say that L has (A - B) free rank ~ 1 at a prime pER if L(p) EB Erp) has a direct
summand A(p) for some r ~ o.
Theorem 1. Let L be an A-lattice and M = LEB A. If there ezists e : A ~ B such
that L has (A - B) free rank ~ 1 at at all but finitely many primes, and GL2 (A) acts
transitivelyon unimodular elements in Btf) B, then for any A-Iattice N which is"locally
a direct summand of Mn (some n), M EB N ~ M' EB N => M ~ M'.
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If B = 0, this implies the Bass ca:ncellation theorem. For quadratic forms there is
the analogons notion of "(A - B) hyperbolic rank ~ 1" at a prime pER if M(p) 1.
H(B(p» contains H(A(p».
Theorem 2. Let V be a (;\, A)- quadratic module over a ring with form parameter
(A, A), and 'set (M, [h]) = V 1. H(A). Suppose that there exists e.: A ~ B such
that V has (A -·B) hyperbolic rank ~ 1 at all but finitely many primes. /f U2 (A)
acts transitivelyon the set of unimodular elements in H (B EB B) of fixed length, then
M .L H(Ar)~M' .L H(Ar) => M ~ M'.

F. JONAS

The conductor of the character field

Let G be a finite group and D : G -+ GL(n, <C) an irreducible linear representation
with character x. Define M(D) = {m E IN I D is realizable in(Q(em)}. We are looking
for properties of M(D), for example is it true that
(*) m,m' E M(D) => gcd(m,m') E M(D)?

One can show that (*) holds if and only if f E M(D), where f is the conductor of
the character field CQ(X). .

If n is an odd prime, it follows by theorems of Schur and Solomon that J E M(D), .
i.e. in this case M(D) = fJN. (For n = 2 the Schur index mk(X) = 1 if A E k, i.e.
Icm(4,J) E M(V).)

B. KAHN

The degree of a division algebra over a Ci-field

•

A classical theorem asserts that any division algebra over aglobai field has d~gree

equal to its exponent. This is conjectured to hold for C2-fields, 'where Ci is Lang's
diophantine condition, but so far it is known only. when the exponent has the form
24 3b (Artin-Tate, Yanchersky). We relax this property as follows:

Definition. Let F be a field and n 2:: 1. We say that·F has property Brn if central •
simple algebras over F of exponent dividing n have bounded index (the bound depending
on n and F).

Conjecture. If F is a Ci-field, then F has property Brn for any n '2:: 1.

The field tD(x, y) is C2 hut this conjecture does not seem to be known even for
n = 5! The aim of the talk was to prove the following theorem:

Theorem. Let F be a field with finite tl-invariant. Then F has property Br2e for a.ny
e ~ 1.

The u-invariant of a field F is the least integer u(F) such that any quadratic form
over F in u(F) + 1 variables represents 0: if F is Ci, then u(F) ~ 2i . The proof
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uses the Merkurjev-Suslin theorem, a lemma of Merkurjev on quadratic forms and the
permanence of finiteness of u(F) under finite extensions (Ehnan-Lam).

I. KERSTEN

Generic splitting of reductive algebraic groups

(Joint work with U. Rehman.) Let G be a reductive linear algebraic group over a
field k. Then a field F ::> k is called a splitting field of G, if GF is a Chevalley F-group.
A splitting field F of G is called generic, if every splitting field of G is a specialization

.of F. We construct a generic splitting field of CL semisimple connected group Gwhich .
_ generalizes known results of Witt, Amitsur, Roquette, Knebusch, Petterson, and oth­

ers. In many cases this generic splitting field is the function field of a projective .variety
G/ P with a suitable parabolic subgroup P of G. HG is a k-torus then G has a generic
splitting field being finite and separable over k.

F. LORENZ

On the Schur multiplier of fields

For a field K with absolute Galois group GK = Gal(CjK) the group Sr(K)
H 2(GK, ~*) = H2 (GK, ~/71.) is called the Schur multiplier of K. In an obvious way'
Sr(K) is connected with projective representations and corresp,onding field theoretical
and arithmetical questions. There is also a connection with the BraueJ;' grorip Br(K) =
H2(GK,C*) of K: Assuming P,n E K, we conclude from the exact seqenee X(GK ) -+

Br(K)n -+ Sr(K)n -+ 1 that the following are equivalent:
(i) Sr(K)n = 1, (ii) Each element of Br(K)n ean be represented by a cyelotomic algebra
of the special type (E, (7, (), where ( E J'n.

For aglobaI field K the Schur multiplier of K is trivial (by a theorem of Tate,
which aetually can be conceived as a basic fact of the "theory of norm iesidues", which
started with A. Schalz in 1940), so we get an interesting result concerning the Brauer

.group of agIobaI field; it is related to - but different from - the "Brauer-Hasse-Noether
_Hauptsatz der Algebrentheorie".

Therefore there seems to ~e some good reasons to study the Schur multiplier also of
other types of fields. For instanee it follows from the (elementary algebraie) theory of
Tsen that the rational function fields C(X) and R(X) in one variable over an algebraie
or real closed field have trivial Schur multiplier. The ~ame is true for the power series
fields C«X» and R(X». Next we study the more difficult ease of a rational function
field K = ko(X) over agIobaI (or Ioeal) field of characteristie 0." Here we find Sr(K) ~
EBo H1(Go ,p,*), where a runs through the conjugacy elasses of the a E Co, Go is tlie
absolute Galois group of ko(a) and p,* denotes the Tate twist [J/7L( -1) of the group
p,' of roots of unity. So, for an arbitrary global (or loeal) field one is lead to. st.udy
the groups Hl(GK, p,*). It contains the groups HI(r, p,) - with r = Gal(k(p,)/k) - a.s
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a subgroup (and from this we also see that Sr(ko, X) is not trivial). There is also
same connection between H1(GK , p*) and the Schur group of K since the latter can be
diseribed as the image of Ii2(r,j.t) in H2(r, k(p*)).

We coDelude with the observation, that the above funetion field K = ko(X) satisfies
a simple Global-Local-Principle, namely Sr(K) ~ $p Sr{Kp ). Hut the proof for this is
done only by way of a kind of direct inspection as above, and it remains open whether
the statement remains valid also in the non rational case.

L. LEBRUYN

Rational identities of generic division algebras

A short proof is presented of the fundamental results of Bergman on rational iden­
tities. As a eorollary the following extension of the clas.sical p.i. result is obtained: if
(a + l)m < n and if z is a rational identity for UD(n) of "inver~ion dep.th"~ athen z
(ar oneof its subexpressions) holds in UD(m) too.

P. MAMMONE

.On the tensor product of division algebras

. In arecent work, Tignol and Wadsworth ronstructed finite dimensional division
algebras D 1 , D 2 over a field F such that D1 ® D 2 is not a division algebra but D 1

and D2 have no common subfield properly containing F. However Saltman observed
that the division algebras constructed by Tignol and Wadsworth satisfy the property
that D t ® Di is a division algebra. So, Saltman,'s observation raised the following new
tenso~ product question: H index(D1 ®Di) <indexD1·indexD2 for alll :5 n :5 exp(D2 )

theIl: da D1 and D2 have necessarily a common subfield?
We make some observations on the symmetry of the new tensor produet hypothesis

and give two families of negative answers to the question.

R. MASSY:

Numerical decompositions of cohomology classes

Let K be a field, K its separable closure and OK = Gal(K/K). Assurne that K
contains a primitive vth root of unity (l/, with v invertible in K. For a E K X

, let
(a) E Hl(nK ,71/v71) be the map defined by w(a1/l/)/a1/ V = (!Cl)(W) for w E 0K. ·It
follows from work of Merkur'ev and Suslin that any f E H2(nK , 7l/v71) ~ Brl/(K) can
be expressed as a sum:

'.

•
(*)
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•

•

where (a, b) = (a) U(b) and U : H1(OK, 7l.11I71.) x H1(OK, 7l.11I71.) --+ H2(OK, 7l.11I71.) is
the cup-product.

We consider the question of obtaining a decomposition (*) when K is replaced by
a finite Galois extension E of K. Take for EIK an ahelian p-extension (p any prime).
Then it may.be necessary to add a supplementary tenn to the sum (*). This term is
induced by only one element ao of K and defined via another cup-product. When the
elements ai, b; (i = 1, ... , n) are linearly independent in the Kummer group of EIK,
we prove that there are only three kinds of new decompositions (*), and we get the
following property:
Every class f E H2(Gal(EIK),71.III71.) is of one, and only of one, of these three kinds.

P. MORANDI:

Maximal orders over valuation rings

In the talk we discuss maximal orders over valuation rings in central simple alge­
bras. The case of maximal orders over discrete valuation rings is classical and wen
known. We are particularly interested in maximal orders that are either Bezout or
semihereditary. By using results of Gräter we see that a maximal order R is Bezout
iff R is an intersection of Dubrovin valuation rings satisfying the intersection property.
Thus there is an unique up to isomorphism Bezout maximal order over a valuation ring
.V in any central simple algebra. .

For semihereditary orders, taking into account the classification of hereditary orders
over a DVR we are ahle to construct a class of block matrix orders which are semihered­
itary maximal orders. For V a valuation ring with value group 7l.n

, any semihereditary
maximal order is of this block matrix form.

Using defective field extensions we give a third construction of maximal orders. For
S =M2(F) we see any maximal order is one of these three types.

P. NELIS:

Schur and projective Schur groups over number rings

Notation: K a number field, R its ring of integers, Rs localization of R.
The talk considered a conjecture by Riehm. Let

S(Rs) ="{[A] E Br(Rs) : 3G, finite group ,3 epimorphism 'Ir : <QG -+ A}.

S(Rs ) is a subgroup of Br(Rs ), called the Schur group. The diagram:

S(Rs) C-..-- S(K)

r r
Br(Rs) C-..-- Br(K)
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shows that S(Rs) ~ Br(Rs) n S(KY.
Conjecture (Riehm, 1989): S(Rs) = Br(Rs) n S(K).

We explained the proof of this equality in the case R = Rs, i.e. for number rings.
The proof makes use of the representation theory of GL2 (lFp) and of a method of
combining elements in S(R) and S(R') to obtain an element in S(R"), where R, R', R"
are number rings of three different fields K, K', K".

G. PAZDERSKI:

On the number of irreducible representations of an algebra

Following Brauer's approach in counting the irreducible representations of a finite e
group over·a splitting field we give a formula for the number of irreducible represen-
tations of an algebra over an arbitrary field. As an application to the group rings the
known Berman-Witt result is obtained.

E. PEYRE:

Unramified cohomology in degree 2 or 3 and rationality p~oblems

Let k be an algebraically closed field of characteristic 0 and K a function field
over k. I note P(K) tbe set of discrete valuation rings A ,such that k c A· C K and
Fr(A) = K.

H:rr(K,J.t~j)= n ker(oA: Hi(K,J.t~j) -+ Hi-l(lKA,JL~j))
AEP(K)

where OA is the residue map associated to A.
By a proposition of Colliot-Thelene and Ojanguren, if K is. stably rational over

k (this means that there exist indeterminates Vi, ... ,Vm and Tl' .. " 1; such that
K(Vi, . .. ,Vm ) ~ k(T}, . .. ,T,) over k), then H~(K,J.t~i) == {O}.

Let V be a finite F p - vector space for an odd prime number p and q, : V* -+

Hl(K,pp) amorphism. This induces a map qJ : (Aj V)* -+ Hj(K,p:i). Let Si C Ai V •
be the:: orthogonal of its kernel. Let sL = (u 1\ v, U E V, v E Ai - 1 V). Then.
(Si / S~ec)* ~ H!r(K, JL:i ).

If V and S3 C 1\3V are given, with S -=F Sdec, we may, using arecent result of
Suslin, construct in some cases a unirational field K and a map V· -+ Hl(K, JLp) such
that (kerq,3).L is the chosen S. The field K is therefore not stably rational.
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M. REGAUER:

Weak solvability of embedding problems defined by the second Stiefel­
Whitney class

Let GI: = Gal(klk) be the Galois group of an algebraie elosure of a number field
k and G the Galois group of a finite normal extension Klk. H rc denotes the regular
representation of G, we ean define the second Stiefel-Whitney elass ea := W2 (re) of rc
as an element in H2 ( G, 7l./271.).

The corresponding central embedding problem E = (G, 7l./27L., ec) is called weakly
solvable if infgl:(ea) becomes trivial for some i E lN under the map H2 (GI:' 7l12Z) ~
H2 ( GI:, 7l12i71) which is indueed by the natural map 7l./271 ~ 7l./2i71.. The minimal i
such that E is wea.k1y solvable is called the index of E. This is a finite number which"
will be ee;timated.

Therefor the problem is firstly redueed to a 2-Sylow subgroup of G and secondly
to Ioeal fields. An important role plays tbe formula of Serre which relates infgl: (eG) to
the Hasse invariant of the traee form trK/I:(x2

) of Klk.
An upper bound of the index of E is r + 2, where 2r is the largest order of the

2-power roots oI unity in the completitions of k with respect to the ramified places of
K / k. But there are many cases in which this index, is less than r +2.

c. RIEHM:

Complements to some theorems of A. Fröhlich

In his paper in ereIle, vol. 360, Fröhlich gave several formulas inv~lving' invariants of
orthogonal representations of finite and profinite groups. In addition he gave analogues
of some of them in the ease of projective representations.

In this lecture I outlined proofs for the "missing" formulas in the projeetive case.
In fact one of them ean be done more generally for a representatiQn in a category with
direct sums relative to "admissible systems" oI morphisms.

The result is that the K-objeets CorL/KX6 and (indX)ind6 are isomorphie, where
LIK is a finite separable extension, s : ß -+ AutX is a representation oI the subgroup
ß = Gal (Ksep / L) oI finite index in r = Gal (KsepI K), and the subseripts s· and ind s
represent twisting by sand ind s interpreted as l-eocycles.

The other formula, in the ca.se oI projective representations, gives the Brauer class
PN2 [inds] in terms of PN2 [s] and the discriminant of LIK (in Fröhlich's notation).

J. RITTER:

On two integrality properties of group representations

1. It is weIl known that each absolut~ly' irreducible charaeter X oI a finite Group
G is the trace of a representation T : (j -+ GLn«Q«(», where n = X(I) an"d ( is a
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root of unity of order expG. It is known that T can in fact be chosen to take values
already in GLn (71[(]), provided that G is solvable. By means of an example one sees
that in general <Q(() is the minimal splitting field for X enjoying tbe stated integrality
property. The result comes from joint work with G. Cliff and A. Weiss.

2. A. Fröhlich, in connection with his definitions 'of regulators and resolvents in
Galois module structure theory, has asked whether there exist Galois-stable lattices
M on irreducible FG-modules V, where F is a splitting field for V, which is Galois
over the character field belonging to V; Galois-stability meaning that M and MiT are
G-isomorphic lattices.

From joint work with A. Weiss the following theorem is presented, which not only
gives the answer to Fröhlich's question, but also provides uniquely defined resolvents
and regulators in the non-commutative situation. .

Theorem. 11 A is a centml simple K -algebm split by F, a finite Galois extension .01 •
K, then to each maximal OK-order A in A there exists'a unique Galois-stable maximal
OF-order in A ® F eontaining A, provided that the local Schur indices 0/ A divide the
loeal ramifieation indices 0/ FIK.

The main tool of the proof is the coneept of generalized erossed produet orders.

D. SALTMAN:

A little result about generic division algebras

Let UD( F, n, r) be the generic division algebra over F of degree n in r variables. If
AIF is central simple, let BS'(A) be the Brauer-Severi variety..

The main theorem is that K = Z(UD ®z (A ®F K)O) is rational over F where Z
is the center of UD and Z(C) is the function field of BS(C). We use to give three
applications.

First, that there exists Z ~ L.with LIF rational and Br(Z) -+ Br(L) is injeetive.
, Second, if n = ab for (a, b) = 1 then Z (F, n, r-) is stably isomorphie to

Z(F, G, r')Z(F, b, r"). This faet was first proved by Schofield.
Third, that if F is Hilbertian, f E Z[x] irreducible, and AIF central simple of

degree n, then there exists <p : C -+ F realizing A (0 ~ Z, BIC Azumaya, C smooth,
BZ = UD, B ®q, F ~ A) such that </>(/(x» is irreducible. •M. SCHACHER:

Subfields of division rings

We discuss joint work with Fein and Saltman eoneerning the following problem:
Suppose LIFis a finite dimensional separable extension of fields, and

We ask:
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•

•

1) Is Ln a maximal subfield of a. division ring central over Fn, some n 1
2) Same as in 1) without maximality.
3) What is the minimum n-1
The answer in 1) is yes when LIF is Galois. T~is makes the answer to 2) yes

also. 1) is false for general non-Galois LIF. Let G =Gal(LIF) when LIF is Galois.
Methods of permutation modules, using the induction theorem of Moody, accomplish
1) in a large number of variables. Methods using corestriciion require fewer variables.

Let r = maximum cyclic length among Sylow subgroups of G. Then r variables
suffice for 3). H F is a number field, r -1 variables suffice. As a coDsequence, if Sylow
subgroups of G are metacyclic and F is a number field, then the construction can be
accomplished over F(t) .

V. SNAITH:

Conductors in the non...seperable case

This is ä. report on joint work with R. Boltje and G. M. Cram. Let LIK be a finite
Galois extension of cOrnplete, discrete valuation fields with group G(LIK).

When LIf< - residue extension - is seperable we have the Artin conductor f K :

R{Go(LIK» -+ 7l. fK is inflative, n~.fixed and inductive in dimension zero (up to a
.factor fLIK).

It is a problem of J .P. Serre to extend fK to the general case. Using Explicit Brauer
Induction we do this with the exception of inductivity. We reduce inductivity to cases
when G(LIK) = GI = 7l./pn or 7l./p x 7l./pn and give infinitely many examples where
our conductor is inductive in the same sense as is Ix.

J~ SONN:

Brauer groups and embedding problems over function fields

Let K be a field, K).., ~ E A,. a family of extension fields of K. H

is injective, then for certain important types of embedding problems over K, a solution
exists if and only if a solution exists for the induced embedding problems over K).. for
all ~ E A.

The classical example of this injectivity is K a number field and A the set.of aß
places of K. .

Similary, the Faddeev-Auslander-Brumer Theorem gives a second example with
K = Ko(t) a rational function field over a field Ko (but "keep away" from char(Ko»),
A the set of all places of K trivial on K o. -

A third example is given by the following theorem:

13
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Let k be aglobaI field, p a prime =I- char(k), A the set of primes of k. Then

Br(k(t» --t II Br(kv(t»
vEA

is injective.

J.P. TIGNOL:

Linkage of division algebras over Laurent series fields

Joint work with Bill Jacob. A field F is e~led p-linked for som~ prime number p i~ •
for every Brauer elass Q E Br(F)p the followiIig equation holds: exp(a) = ind(a).

By an easy argument of Albert, this condition is equivalent to the following: . if
D 1 , D 2 are division algebras of degree p, D1 ~ D 2 is either 1 or similar to a division
algebra of degree p. Using the Witt exaet sequence for the Brauer group of a field of
Laurent series, it is easy to see that, when ehar(k) =F p, the field k«t» is p-linked iff
every division algebra of exponent p over k is split by every eyclic extension of degree
p of k.

This condition holds in partieular when k is a Ioeal field (of char "=F p). Using
induction on the height of division algebras of degree p over Wp«x»«y», it is shown
that this field is p-linked.

For p = 2, this yields a counterexample to a theorem of Ar!, which claims that the
u-invariant of a 2-linked field of eharacteristic 2 is at most 4.

T. YAMADA:

The formula of Schur index over the 2-adic field

Theorem 1. Let k :> (Q2' Let B = (ß, k(e)/k) be a cyclotomic algebm over k. Let
ß(q,T) E ((), where {() is the 2-part 01 the group 01 the roofs 01 unity in k.

11 n < 2, then B ,..., k. .
Assume that n ~ 2. Ij the inertia group I 01 k(e)/k does not contain t such that

(' = (-1, then B ,..., k. Suppose that t E I. Then ß(t, t) = ±I, and I = (t) X (T), •
('T' = (52.),.

Let '7 be a Frobenius automorphism and (" = (5~. Let ß(r,'7) = (B, ß(t,,,) = (",
ß(7], T) ß('7, t)

;~:';~ = (C, h = {2a + (52' -l)b +(51' - 1)c}/2n
•

Then hEll., and invB == h/2 + [k : (Q2]· S/2 (mod 1), S = 0 if ß(t, t) == I, S = 1 il
ß(t, t) = -1.

Theorem 2.. Suppose that the residue class degree 1 01 k(e)/k is odd. Then there
exists a Frobenius automorphism 1] 01 k(e)/k, such that (" = (. Furthermore, 21h and
so invB == [k : (Q2] . S/2 (mod 1).

14
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Proposition 3. Suppose that 211 and there exists ,., 0/ k(e)/k such that ('1 = (.
Then there exists B = (P, k(e»/k) such that h/2 ~ 0 (mod 1), and so
invB == l + [k : (Q2] . 6/2 (mod 1).

Berichterstatter: F. Jonas und M. Regauer
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