
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 18/1991

Numerical Linear Algebra

21.4. bis 27.4.1991

The conference w~ organized by Gene H. Golub (Stanford), Wilhe1m Niethammer
(Karlsruhe), Richard S. Varga (Kent); 46 individuals from 12 countries attended.
The following ~OpiC8 were emphasized: Iterative solution of nonsymmetrie systems

.of linear equations: Theory, implementation and applications. The 40 contrihutions
offered a broad view-in many different directions.

One major topic was the improvement of Lanczos' method for nonsymmetrie sy­
stems of linear equations, e.g., the detection and explanation of hreakdowns and
strategies to overcome them. Several talks considered the use of more classical CG­
type variants and the design of eflicient preconditioners for solving nonsy~metric

problems maing in the approximation of partial differential equations arising in fluid
dYJ:lamics and advection-dispersion problems.

In addition, the convergence properties of polynomial iteration schemes were analy­
-zed in a couple of contexts e.g. for optimality and adaptive improvement. Classical
. iterative schemes like SOR and ADI were reexamined by several attendees, and
included the studyof applications to convection diffusion equations .and Markov
chaiDB.

The spectrum of talks emphasized hoth, theoretical investigations, e.g. the study
of ihe stability of highly optimized iterative methods, as well as questions of more
practical concern such as the eflicient implementation of iterative solvers on parallel
computers.

As a result of the wide variety of related topics discussed and the good mixture of
experts from theory and applications, the intimate atmosphere of the conference led
to many fruitful discussions and initiated forthcoming joint projects.
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Abstracts

S.F. ASHBY:

(Co-author: M.B. GUTKNECHT)

A matrix analysis of conjugate gradient a!gorithms •

Conjugate gradient methods are powerful techniques for solving the large sparse
linear systems that arise in many scientific and engineering applications. To imple-
ment a CG method, one must specify an algorithm, that is, a sequence of arithmetic
operations. Three eommonly used ca algorithms are Orthodir, Orthomin, and
Orthores. Orthodir is the most robust, and is guaranteed to eonverge for any non-
singular A. Orthomin and Orthores are more familiar, but less robust: they may
"stall" under eertaineonditions. In this talk we introduce a matrix formulation
and use it t~ explore the relationships between the three algorithms. We first show
that Orthodir directly computes a Hessenberg matrix HIc at step k. Orthores also
computes aBessenberg matrix WIc , which in general differs from HIc in the las~

column, but eoincides with H Ic at eonvergenee. Orthomin, on the other hand, es-
sentially eomputes a ULand LU faetorization of H 1c and W., respectively. We will
interpret the breakdown of Orthomin and Orthores in terms of these underlying ma-
trix factorizations. Onee the breakdown eonditions are understo~d, we ean devise
new algorithms that avoid these pitfalls. A eonnection to Lanczos is also 4iseussed.
Finally, -we eonsider the special eRse of B-normal(l) matnces, for which efficient
three-term .CG algorithms exist.

o. AXELSSON: e'
(Co-author: P. VASSILEVSKI)

Construction of variable-step preconditioners
for inner-outer iteration methods

The generalized eonjugate gradient method was recently applied for the ease of
variable-step preeonditioners, which is in general a nonlinear mapping, and its con­
vergence was analysed.

In a number of practical applieations thete arise naturally linear algebraic pro­
blems with matrices A partioned in.a twO-by-two block form A = (~J)1Ij=1 .. For
such matrices, a general framework for the eonstruetion of variable-step precondi-
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tionen utilizing inexact solvers are studied. A particular instance is the use of a
conjugate gradient method to compute inner iterations for the first matrix block All

and for the Schur complement matrix S = A22 - A21 Aiil A 12 •

.The disadvantage with tbis method is that the action of Au is required two or
more times during each. outer iteration. These actions must be sufficiently accurate,
otherwise the rate of convergence can be tao slow or even divetg~nce can OCCUl. .

In the present paper a modified·version of the algorithm is presented wh~re only
one accurate action is required per step in addiiion to an action required only for
the computations of the length of a steepest descent step, which can therefore be
less accurate. The efficacy of this metbod will be evident in p&rticular for problems
arising in domain decomposition methods.

R. BEAUWENS:

Ordered graphs and numericallinear algebra

We wish, by tbis talk, to encourage the deve10pment of matrix graph concepts that
characterize in one or another sense 8parse matrices and their ordering (and that ..
are, therefore, not invariant under permutation). We shall give both simple and
more sophisticated examples. .

As an application of the simple concepts, we shall show that they lead to an ele­
mentary and straightforward justification of George and Liu's sy1nbolic factorization
algorithm.

As an applicationöf the more elaborate concepts, we shall indicate how they might
lead U8 to a "new family of .dynamic approximate LU-factorization algorithms where
the graphs of the triangular factors would he modified during the factorization pro-'
cess. Such "graph" perturbations would be associated with off-diagonal perturba­
tions (together with diagonal ones). The eriterion for controlling their introduction
would be to Choose them so as to (sufficiently) increase. the degree of "S/P consi­
steney" of the upper triangular factor. (NB. By comparison, the presently developed
dynamic approximate LU-factorization algorithm uses only diagonal perturbations
and controls their introduction by choosing them so as to - sufficiently - increa~e

the diagonal dominance of the upper triangular factor).

Earlyexperiments ... and difliculties will be described.
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C. BREZINSKI:

Avoiding breakdown and near-breakdown in Lanczos method

In Lanczos method, a breakdown occurs when a scalar product in the denomina~or

of a. coefficient of some recurrence relation is zero. This is due to the non-existence
of some orthogonal polynomial. Avoiding breakdown thus consists in jumping over
these non-existing polynomials and computing only those which exist. Thus we
obtain a breakdown-free algorithm called the MRZ (method of recursive zoom). If
a scalar product in adenominator is small in absolute value then a near-breakdown
occurs. It can be avoided similarly and the corresponding algorithm was called the
BSMRZ. Similar techniques can be used in the Conjugate Gradient Squared (CGS)
algorithm. Nume~cal results showing the effectiveness of these algorithms were
given.

T.F. CHAN:

'.

The interface probing technique in domain decomposition

The interface probing technique is an algehraic technique for constructing interface
preconditioners in domain decomposition algorithms. The ba.sic technique is to
approximate interface matrices by matnces having a specified sparsity pattern. The
cODstruction involves only matrix vector products, and thus the interface matrix
need not be kno"m explicitly. A special fe~ture is that the approximations adapt
to the variations in the coefficients of the equations and the aspect ratios of the
8ubdomains.

This preconditioner can then be used in conjunction with many standard iterative •
methods, such as conjugate gradient methods.

~ this talk, we summanze some old results and also present some new ones, hoth
algebraic and analytic, about the interface probing technique and its applications to
interface operators. Comparisons Me made with some optimal preconditioners such
a.s the GoIub-Mayer preconditioner.
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M. EIERMANN:

(Co-authors: H. DANIELS and A. PETERS)

Symmetrie verSUB non-symmetrie ca methods
for solving the advection-dispersion equation

We compare two solution strategies based on different time integration sehemes
applied to the advection-dispersion equation. The first strategy is based on the
classieal Crank-Nieoison scheme and leads to a non-symmetrie system of linear
equations which is solved by the eonjugate gradient squared (CGS) method or its
variant CGStab. The seeond strategy - introduced reeently by Leismann and Frind
(1989) - places the advective component of the equation at the old time level and
'compensates for the resulting errors by introducing an artificial diffusion term. The
scheme of Leismann and Frind yields a symmetrie positive definite system which
can be solved by the classieal eonjugate gradient (CGHS) methode

Our aim is to present neither CG-like methods nor discretiza.tion procedures,but
rather to estimate the performance of different ~ombinations of algorithms. For the
one-dimensionalmodel problem, we show that the Leismann-Frind/CGHS approach
outperforms Crank-Nicolson/CGS with respect to eomputational work and storage
requirements. These theoretical results are illustrated by an e:ffieiency comparison
on an IBM 3090 VF for a 3-D groundwater conta.mination problem.

H. ELMAN:

Ordering effects and acceleration for line iterative methods
applied to non-self-adjoint problems

We present the results of a theoretical and empirical study of iterative methods for
eyclically reduced linear systems arising from diserete conveetion-diffusion problems.
Analytic results show the methods to be eft"eetive for a wide elass of non-self-adjoint
problems. In this talk, we foeus on the eft"ects of ordering and aeeeieration on per­
formance. In partieular, we show that red-black line-ordered relaxation operators
are less sensitive to direetion of How than naturally-ordered operators, and the red­
black operators tend to reduce the error in a pair of neighboring (red and black)
lines at each iteration. The addition of aeceleration strategies such as GMRES or
BiCGSTAB typically enhanees convergence speed, although there are problems for
which restarted GMRES is actually slower than stationary methods.
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B. FISCHER:

Polynomial iteration methods for indefinite symmetrie linear systems

We present a Chebyshev-like algorithm for solving sparse symmetrie indefinite sy­
stems of linear equations. Let E be the union of two disjoint intervals containing
the spectrum of the eoefficient matrix but not the origin. The scheme is based on . •
(explicitly knownj polynomials p that satisfy a certain optimality eondition on E. '
The resulting algorithm shares many properties with the one for positive definite
matriees.

In order to compute the set E dynamically we combine the polynomial iteration
method with MINRES, which leads to a hybrid type algorithm. It turns out that the
optimal polynomials p are also useful to study the convergence behavior ~fMINRES.

Furthermore we show that the p determine optimum polynomial preconditioners
for minimal residual methods. Finally, we indieate that the considered methods
(may) also work for nonhermitian matrices.

We demonstrate the effectiveness (or nonefFectiveness) of the schemes in a variety
of numerical experiments.

R. FREUND:

(Co-author: N.M. NACHTIGAL)

QMR: a quasi-minimal residual method for non-Hermitian linear systems

The biconjugate gradient (BOG) method is the "natural" generalization of the das­
sieal conjugate gradient algorithm for Hermitian positive definite matriees to general
non-Hermitian linear systems. Unfortunately, the original BOG algorithm is suscep~

tible to p08sible breakdowns and numerical instabilities. In tbis talk, we present a
novel BCG-like approach, the quasi-minimal residual (QMR) method, which'over­
comes the problems of BCG. An implementation of QMR based on a look-ahead
version of the nonsymmetrie Lanczos algorithm is proposed. It is shown how BCG
iterates can be recovered stably from the QMR process. Some further properties of
the QMR approach are given and an error bound is presented. Finally, numeri~al

experiments are reported.

. 6
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A. FROMMER:

A eoneept of generalized diagonal dominanee for nonlinear funetions with
applieations to nonlinear iterative methods

The class of generalized diagonally dominant matrices eontains such interesting
subclasses as O-diagonally dominant, strietly diagonally dominant and M-matriees.

Here we eonsider nonlinear functions on Rn and derive a coneept of nonlinear
generalized diagonal dominanee which reduces to the usua! one in ease of an affine
funetion. As·in the linear case, important subclasses are given by strict1y or weakly
n-diagonally dominant functions and eertain M-funetions. As an applieation of
our eoncept whe show how one can easily - and in a uniform manner - derive
convergence results on global convergenee of nonlinear SOR-like iterations such as
asynchronaus or (nonlinearl SOR-multisplitting iterations.

A. GREENBAUM:

Fast solution of Laplaee's equation in multiply connected domains

Recent advances in numerical methods have made the use of integral equations far
more attractive for solving many of the problems of mathematical physics. Although
integral equation formulations result in dense linear systems, the matriees have
highly clustered eigenvalues and are very amenable to solution by iterative methods.
The dense matrix need never be formed and the product of the n by n matrix, arising
from a suitable integral operator, with an arbitrary vect"or can be computed in time
O(n), using the fast multipole method.

We diSCU88 the use of an integral equation formulation, together with iterative
linear system solvers and the fast multipole method, to solve Laplace's equation on
multiply eonnected domains. The approach requires the solution of a single system
of linear equations for the unknown density values and the unknown circulations.
A preconditioner is introduced, and the GMRES method is shown to be espeeially
effeetive for such problems.
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M.H. GUTKNECHT:

Squared Lanczos methods and produet methods

For solving large sparse non-Hermitian linear systems we consider Krylov spaee
methods where the nth residual polynomial is the product of the nth residual po-
lynomials Pn of the Lanczos biconjugate gradient method (BiCG) and a second .•.
polynomial Tn of the same degree. One such method is Sonneve1d's CGS, where
Tn := Pn, another one is van der Vorst's BiCGStab, where Tn is a product of linear
factors which are successive1y determined by a one-dimensional minimization. We'
&Bsume that Tn satisfies a three-term recurrence relation and present in particular
an extension of BiCGStab in which T" is built up from quadratic faetors determined
by a two-dimensioJ;lalminimization. When applied to a·real system Az = b, T" may
have conjugate complex zeros and may thus effectively help to damp the residuals.
First numerical experiments are very promising. .

M. HANKE:

Iterative methods for ill-conditioned linear systems

Give~ the linear system Az = b, where .Ä is nonsymmetrie, HAll ~ 1, we consider
the Richardson iterative method for the normal equations,

ZJf = ZJe-1 + A*(b - AZk - 1 ), Zo = 0, k = 1,2, ....

We present a convergenee analysis which is based on stipulations on the smoothn­
ess of the exact solution rather than on the speetrum of A. This is leading to new
error bounds wbich become sharp as the condition number of A tends to infinity:

. consequently, tbis kind of analysis is well suited for the study of ill-conditioned •
problems.

The concept may be generalized to arbitrary semiiterative methods. In this ease,
the asymptotic speed of eonvergence becomes almost optimal if certain two-step
methods introduced by Stiefel and Brakhage are used to accelerate Richardson's
iteration.

As a matter of faet, the solution of an ill-eonditioned linear system is raiher sen­
sitive to perturbations in the right hand side data. We will show that seDlÜterative
methods may be used to compute stable approximations which are superior in many
cases to those of Tikhonov's regularization method with respect to both, efficiency
and &ccur&cy.
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u. LANGER:

Iterative 801vers for the biha.rmonic equation

The paper is devoted to the numerical solution of the first biharmonic bound~ry

value problem'. d 2u{z)
u(z} = 8u(z}/8n

fez), z E {} C R 2

0, Z E 80 } (1)

•

in some plane, bounded domain O. One of the most simple discretization methods
is the variational finite difference technique proposed by V.G. Korneev (1971) and
leading to 5-points :finite differenee schemes with nodal parameters approximating
the unknown funetion and its first (or mixed seeond) derivatives at the noda! points.
There are several fast direct methods for solving such schemes in reetangular domains
under appropriate boundary eonditions. These fast direct methods ean be utilized
within the method of fictitious components and within the domain deeomposition
method in order to construet efficient and highly parallelizableiterative methods for
solving (1) in more complicated domains such as arising in technical applications.

X. LI:

An adaptive method fOl solving nonsymmetrie linear systems
involving application of SCPACK

An adaptive method for solving la.rge systems of Ieallinear equations z = Tit +cis
deve10ped with the aid of SCPACK. The results nom function theory, a.pproximation
theory, and conformal mapping theOry are used to construct nearly asymptotically
optimal semiiterative methods (AOSIMs). GMRES methods are used for eigenvalue
estimates of T and for a guess zoo A polygon n is initialized and updated later. The
algorithm uses SCPACK to find numerically the conformal mapping t/J !rom the
exterior to the unit disk onto the exteriol to O. Then, LINPACK and MINPACK
are applied to solve the weighted nonlinear least squares problem with small amount
of unknowns, say less than 10, to get a rational approximation r to ,p in the l2-norm.
A better SIM W.I.t. {} can be constructed !rom r and is performed. The plocedure is
repeated several times. After a near AOSIM is found, iterates will give the solution
of the system.
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v. MEHRMANN:

Numerical methods for unsymmetric block structured matrices'arising
in fluid fiow computations

We discuss block matrices of the fonn M = [~;], where every ~; is a k x k
matrix, ~i has positive real eigenvalues and At; has nonpositive real eigenvalues. . .'
These matrices are natural block-generalizations of Z-matrices and M -matrices·.
Matrices öf this type arise in the numerical solution of Euler equations in fl~d fiow
computations. We give conditions for the convergence of block iterative methods
like block Jacobior block SOR and also study tbe spectrum of such matrices in
general.

G. MEURANT:

Iterative methods for solving complex linear systems

We are interested in solving the large linear systems

Az =b,

A being a matrix. with complex entries, that arise from discretization of Maxwell
equations. Additionally, we would like to consider the problem when we have many
right hand sides

i = l, ... ,m.

We introduce a general fr~ework for solving these problems.

Let H be adefinite complex matrix and let T(r) = (r, Hr) be a functional from •
eR to R+, (.,.) being the usua! complex scalar product. T is strictly convex and has'
an unique minimum in r = o. We construct a basis {f1J, ... , dk} orthogonal in the
scalar product defined by the Hermitian matrix N = ABHA and we minimize T on
zo+ < J.O, ..• , die > where ZO E en is the starting vector. We also introduce a matrix
K to relate the gradient of the functional gle and cli~ections die. By proper choices
of Hand K most of the well known methods are recovered, e.g. CG, Orthomin,
BiCG.

To solve the problem with many right hand .sides, we choose one system and start
building a basis with this system and minimizing r(ri) = (ri, Hri) for the other
systems, ri = bi - Azi . When the basis system has converged, we switch to another

10
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system to eonstruet the basis. It ean be shown that the new direetion ean be chosen
such that the orthogonality properties are preserved.

We give some numerieal examples on simple model problems showing how these
different iterative methods eompare.

A. MEYER:

Parallel rea1ization of CG-like methods for non-symmetrie lalge sparse
FE-systems for loeal memory/message passing parallel architeetures

For symmetrie partial differential finite element equations a very natural parallel rea­
lization of the preeonditioned eonjugate gradient method (PCGM) is obtained !rom
subdividing the doma.in into non-overlapping subdoma.ins Mong finite element bo­
undaries. On a loeal memory parallel environment minimal data transfer is achieved
(per step of PCGM) from a special veetor distribution over the proeessors following
the finite element splitting of the stiffness matrix K. The same ean be found of some
variants of CG-like algorithms in the non-symmetrie ease, if the inner produet is
defined appropriately. We demonstrate that an inner produet < z, y >= yTpz with
P = KTC-1K has some advantages from praetieal snd theoretieäl points of view,
where the hierarchieal preconditioning C was used.

N. NACHTIGAL:

(Co-authors: R. FREUND and M.B. GUTKNECHT)

An implementation cf the look-ahead Lanezos algorithm
for non-Hermitian matriees

The nonsymmetrie Lanczos method ean be used to eompute eigenvalues of large
sparse non-Hermitian matriees or to salve la.rge sparse non-Hermitia.n linear sy­
stems. However, the original Lanezos algorithm is suseeptible to possible break­
downs and potential instabilities. We present an implementation of a look-ahead
version of the Lanezos algorithm which overcomes these problems by skipping over
those steps in which a breakdown or near-breakdown would oeeur in the standard
process. The proposed algorithm can handle look-ahead steps of any length and
requires the same number of matrix-veetor products and inner pr~ducts·&s the

11
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standard Lanczos process without look-ahead.

M.NEUMANN:

(Co-author: L. ELSNER)

Monotonie sequenees and rates of eonvergenee cf asynchronized
iterative methods

We shaJ1 consider comparing the rate of convergence of two asynchronized parallel
iteration schemes for solving monotone systems. The two iteration schemes differ in
that one always computes the eurrent approximation !rom a more recent iteration
than the other. In general relying on more reeent approximations does not lead to
faster convergenee, but when tbis process does not undergo a certain slowdown, it
can always be counted to have a more favorable convergence rate.

Our analysis ia based on constructing and comparing monotonie sequences in a
bigher dimensionalspace in which the original iterations take place.

O. NEVANLINNA:

. .'

Ho~ fast can iterations eonverge?

As of today we understand well what makes eg to converge fast, but general under­
standing of how to precondition nonsymmetrie problems to allow fast acceleration is
largely missing. In tbis talk a general framework is outlined which aims to provide
tools for tbis. We write OUf problem as a fixed point problem for a. bounded linear •
operator L in a Banach space X:

z = Lz+b.

Traditionally we have looked at the spectral radius of L, say p(L) but already for sel­
fadjoint operators in (finite dimensional) Hilbert spaces the acceleration properties
of cg have heen discussed in other terms. We do it all here in terms of the spectrum
u(L) by associating to it the optimal reduction factor '7(L) which is a nonnegative
CODstant. Also, to a given polynomial sequence, associated with an aceeleration
procedure, we associate a generating operator which has a similar relation to '7(L)

12
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as the resolvent operator has to pell. We demonstrate how tbis generating opera­
tor codes the speed of convergence nom the fastest to the slowest including finite
termination, superlinear, linear an.d sublinear convergence.

W. NIETHAMMER:

Remarks on scheduling of iterative methods related to SOR

It is weIl known that Jacobi iterative methods for linear systems of equations are
parallelized in a natural way whereas tbis does not hold for Gauss-Seidel and SOR
methods. In [Niet~ammer,Numer. Math. 56, 247-256 (1989)], using a columnwise
procedure, a scheduling of SOR is presented wbich is - for dense matrices - sui­
ted for parallelization nearly &8 weIl as Jacobi's methode For banded matrices the
algorithm proposed possesses asymptotically maximal speed up. In tbis talk it is
examined how tbis implementation can be used in iterative methods related to SORe
For Kaczmarz's and de la Garza's method tbis algorithm is not efficient, but it can
be applied in the computation of the stationary distribution of a finite homogeneous
Markov chain. The implementation proposed is especially appropriate for the ite­
rative solution of linear complementarity problems, for serial as weIl as for parallel
computation.

D.P. O'LEARY:

(Co-authors: p.e. HANSEN and G.W. STEWART)

Regularizing conjugate gradient iterations for solving
discrete ill-posed problems . -

This work concems the use of iterative methods of the conjugate gradient (Krylov
subspace) family for solving discretizations of ill-posed problems. Out of a large
family of mathematically equivalent conjugate gradient methods, we choose to con­
centrate on LSQR. We analyze and demonstrate the inherent regularization pro­
perties of LSQR by theory and examples, present a stopping criterion based on
the "L-curve", and investigate conditions under wbich additional regularization is
necessary.

13
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M.L. OVERTON :

(Co-author: G.H. GOLUB )

The convergence of inexact Chebyshev and Richardson methods

The Chebyshev and second-order Richardson methods are classic~iterativeschemes •
for solving linear systems. We consider the··convergence analysis of these methods
when each step of the iteration is camed out inexactly. This has many applications,
since a preconditioned iteration requires, at each step, the solution of a linear system
which may be solved inexactly using an "inner" iteration. We derive an error bound
wich applies to the general nonsymmetric inexact Chebyshev iteration. We show
how this simplifi~ slightly in the case of a symmetric or skew-symmetric iteration,
and we consider hoth the cases of underestimating or overestimating th~ spectrum.
We show that in the symmetric case, it is actually advantageous to underestimate the
spectrum when the spectral radius and the degree of inexactness are hoth large. This
is not true in the case of the skew-symmetric iteration. We show how similar results
apply to the Richardson iteration. Finally, we descrihe numerical experiments which.
illustrate the results and suggest that the Chebyshev and.Richardson method, with
reasonable parameter choices, may be more e:ft"ective than the conjugate gradient
method in the presence of inexactness.

W. QUECK:

The convergence rate of the Arrow-Hurwicz algorithm for a
nonlinear mixed finite element problem

The nonlinear system A(u) +Bp = /, BTu = 9 to determine u E Rn and pERm •
can he solved by the preconditioned Arrow-Hurwicz algorithm

where J and C are some symmetric and positive definite preconditioners that satisfy
the spectral equivalence estimates
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The Flechet-derivative A'(U) of Ais supposed to be symmetrie and positive definite.
The final estimate of the error z· = (u· - 'U, 'I' - p)T after k iteration steps has the
fonn IIz·11 :5 p·llzoll, where the convergenee rate p ean be estimated by p :5 per +~c.
In the ease of an optimal choiee of the parameters T and w the essential part p~ of p
is given by p~ = (1-Copt(Al/A2)2pl/P2)oo5, ~ ean be chosen sufficiently small. Hwe
ean choose such preeonditioners J and C such that the ratios >"1/>"2 and 1'1/JJ.2 are 0

independent of the diseretization parameter h then the Arrow-Hurwiez algorithm is
asymptotieally optimal with respeet to the operation count.

L. REICHEL:

(Co-author: C. JAGELS )

The isometrie Arnoldi proeess

The Amoldi proeess ean be applied to eompute a few eigenvalues and eigenvectors of
a large non-Hermitian matrix, as weil as to the iterative ~olution of non-Hermitian
linear systems of equations. When the matrix is Hermitian the Arnolcli proeess
simplifies to the Lanczos process. If the matrix is unitary then the iso~etricArnolcli
proeess is obtained. We present a new implementation of the isometrie Amoldi
proeess that requires fewer arithmetic operations and less computer storage than the
Amoldi process when applied to a general matrix. This implementation is applied
to the iterative solution of.linear systems of equations.

T. RUSTEN:

Preeonditioned iterative methods for saddle point problems

A preeonclitioned iterative method for indefinite linear systems corresponding to
saddle point problems of the form

Mz + By b
BTz c,

is suggested. Here M E Rnxn is symmetrie and positive definite, B E R nxm with
m :5 n and B has full rank; i.e., rankB == m. The block strueture of the systems
are utilized in order to design effeetive preconditioners, while the governing iter~tive .

15
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method is a standard minimum residual method. The method is applied to systems
which anse from discretizations of Stokes problem and mixed formulations of second
order elliptic problems.

·e
P.E. SAYLOR:

(Co-authors: S.F. ASHBY, S. LEE, L. PETZOLD and R. SKEEL)

Initial value problems and iterative meihods

Initial value problems yie1d linear algebraic equations at each time step. The error
due to apredictor approximation to the solution is shown to be such that the
Chebyshev method ia appropriate. A matrix-free formulation is assumed. Various
teclmical difficulties arise for which a hybrid version (Elman-Saad-Saylor) of the
Manteuffel algorithm is .weIl suited. The adaptive feature of the Manteuffel algorithm
ia also applicable to the Newton iteration in the nonlinear case.

A. SIDI:

Recent developments in convergence acceleration methods for
veetor sequences and applications to linear ud nonlinear systems

In many problems of science and engineering, one is confronted with the task of 801­
ving very large seale systems oflinear or nonlinear equations. Such systems arise, for
example, from discretization of continuum problems. One common way of solution
involves the use of iterative teclmiques. In many cases of intere8t, however, these •
iechniques suffer from slow convergence rates and hence tend to become expensive
timewise. Recently, aeceleration (or extrapolation) methods have been used in con-
junction with iterative iechniques in order to enhance the convergenee properties
of the latter. In ibis talk, we reviewbriefty some of the extrapolation methods.
We mention same results pertaining to their convergence and stability properties
and mention different ways in which they ean be implemented. We point out to
their connection with known Krylov subspace methods. Finally, we show examples
of applications to linear a8 weIl as nonlinear systems, inc1uding some that anse in
computional fluid mecbanics problems.
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G. STARKE:

fjeld ot values and the ADI method {or non-normal matrices

The convergence of an iterative m·ethod ia usually measured either by the spectral
radius or by a matrix norm of the iteration operator. However, for non-normal ma­
trices, each one of these approaches has its drawbacks. The first one only describes
the asymptotic rate of convergence, the second usually produces esti~ateswhich are
much too pessimistic. Recently, M. Eiermann suggested to use the field of values
to judge the performance of an iterative method. This will be substantiated in this .
paper by upper bounds fot the error reduction in the ADI method based on the field
of values.

Numerical experiments, obtained for a model problem of discretized non-self­
adjoint elliptic boundary value problems, show that these estimates for the error
reduction in the ADI method - applied to the corresponding symmetrized linear

. system - are useful for an apriori prediction of the convergence behavior. Moreover,
the results suggest the use of the fie1d of values a8 a basis for the calculation of the
optimal ADI parameters if H and V are highly non-normal.

W.J." STEWART:

Queueing networks and p--cyclic Markov chains

Queueing network models are introduced and it is shown how p-cyclic Markov chains
ean be obtained from eertain types oi queueing models. The block SOR method fot
the computation of the steady-state distribution of finite Markov chains that possess
~eyclic infinitesimal generators is considered. It is shown that convergence, in a
sense more general than the usual, may be obtained, even if the SOR iteration"
matrix violates the usua! conditions for semiconvetgence. Necessaty and sufficient
conditions for convergence in this, extended, sense are derived. They are then
applied in the ~ase where the pth power of the associated Jacobi matrix of the system
to be 80lved possesses only nonnegative eigenvalues. Exact convergence intervals and
the optinialw values are derived for this case. In addition to the "usual" optimal w in
the interval (I, -p_), other w values, that yield convergence in the extended sense,

p-I
are found to achieve the same, optimal, convergence rate. Numerical tests indicate
that small perturbations of w araund the optimal value affect the convergenc~factor
much less, if these newly introduced optimal w values are used.
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D.B. SZYLD:

Two-stage methods

We diseuss the eonvergenee theory of two-stage methods. These are methods for the
solution of Az = b, where A = M - N and the usual (outer) step MZIc+l = Nz1c +b
is in turn solved iteratively, say using a splitting M = F - G. e·

We dis~uss in partieular block iterative me.thods and make some comparisons
with multisplitting methods. We compare asymptotic rates of convergence and we
present numerical experiments on parallel computers.

In ~ddition, we discuss two-stage semiiterative methods, that is, semiiterative
methods in which the (outer) step is in turn solved iteratively.

L.N. TREFETHEN:

Spectra and pseudospectra of eonvection-diffusion operators

Convection-diffusion operators are canonicaI examples of non-self-adjoint 'opera­
tors; in numericallinear algebra their discretizations are popular test problems for
SOR, CGN, GMRES, cas, QMR, BICGSTAB, etc.. To be specifie, consider the
operator

11,(0) = u(L) = 0

acting on a suitable submanifold of L 2 [O, L] (1/, L > 0). The 'spectrum of L is a
discrete subset of the negative real &Xis, but the e-pseudospectra - the subsets of
C with lI(z1 - .c)-lll ~ e-l - approximate the region bounded by the parabola
Rez = -i(1mz)2.

It follows that for many practieal purposes, L behaves as if its spectrum fills a
parabola. This has consequences for iterative methods - for example, to directio­
nality effects in Gauss-Seidel and SOR sweeps, where then importance of sweeping
in the physically correct direction is explained by the very different pseudospectra
in the two cases.

18
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P.S. VASSILEVSKI:

(Co-author: o. AXELSSON)

Multilevel and domain decomposition methods

A recursive way of constructing variabl~step of, in general, nonlinear multilevel
preconditioners for selfadjoint and coercive second order elliptic problems, discreti- .
zed by th,e finite element method is proposed. The preconditioners satisfy certain
coercivity and boundedness properties wbich allow them to be used in generalized
conjugate gradient, GCG type iterative methods. The preeonditioner is eonstructed
reeursively from the coarsest to finer and finer levels. Each preconditioning step re­
quires only block-diagonalsolvers at all levels except at every 1:0, ko ~ 1, level where
we perform a suflicient number v, v ~ 1, of GCG-type variable-step iterations that­
involve the use again of a variable-step preconditioning for that level. .

It turns out that for any sufficiently large ko and, asymptotieal1y, for 11 sufficiently
large, but not too large, the method has both an optimal rate of convergence and an
optimal order of computational complexity, both for two and three space dimensional
problem domains.

The method requires no parameter estimates and the convergence results do not
depend on the regularity of the elliptic problem. .

H. VAN DER VORST:

Bi-CGSTAB: .background and some observations

cas is an often faster converging variant of Bi-CG. It 's erratic cODvergence behavior,
however, is notorious. We will show that cas might eonverge, in the sense that the
updated residual has a small norm, hut that the finally obtained approximation to
the solution may have little cr no signifieance. This problem in CGS ean in g~neral

not simply be repaired be replacing the updated residual by the real residual in the
iteration proeedure.

In another variant of Bi-CG, named Bi-CGSTAB, the eonvergence ~ehayior is
observed to be much more smoother and, as an unexpected bonus, Bi-CGSTAB
often also outperforms cas with respect to the required amount of computational
work.

Tho.ugh tbis looks quite promising, there are also some strange effects. in Bi­
CGSTAB in the presence of rounding errors. In the presentation we will briefly
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diseuS8 how Bi-CGSTAB and CGS are related with Bi-CG (which helps to explain
some of the observed effeets) and we will give some numerieal examples whieh show
the efi'ects of rounding errors to t~e iteration process for Bi-CGSTAB.

M. WHEELER:

Modeling adveetion-diffusion-reaetion problems

We diseuss finite element and finite differenee methods for approximating transport­
dominated parabolic partial differential equations. We emphasize operator splitting
techniques in whieh first order terms are treated explieitly in time and diffusion im­
plicitly. For the diserete system this approach leads to a symmetrie positive definite
system of algebraie equations. In Out presentation we describe both theoretical and

. computational results performed on the INTEL RX.

G. WITTUM:

A new dass of fast solvers for large systems of equations

We present a new dass of fast solvers based on a special sequenee of incomplete
decompositions, the so-called frequence-filtering deeompositions. The correspon­
ding smoothing correction method is based on the multi-grid idea, i.e. successively
filtering out certain frequencies !rom the error, without using coarse grids. Thus
there are no basic problems with robustness as in multi-grid. The corresponding
method has an asymptotie eomplexity of O(nlogn), on grids of intermediate size, •
however, it is quite efficient ~d competes quite weIl with multi-grid.

After presenting the algorithms we give a convergenee proo! and finally several
examples on the performance of the new method applied to linear and non-linear
equations.

H. WOZNIAKOWSKY:

Optimality results cf the solution cf large linear systems

Consider a large linear system Az = b, where A E Fand b is an n x 1 vector. Here F
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•
is a class of n x n nonsingular matrices which represents apriori information about
A. We also assume that we can compute Ay, ATz for any n x 1 vectors y and z.

We address the following problem: What is the minimal number of matrix vector
multiplications needed t~ compute z = z(A, b) such that

IIAz - bll :5 Ellbll, VA E F, Vb.

Here 11 . 11 stands for the 2-norm and E E [0,1).

The &nswer to our problem depends, obviously, on the dass F. Assume that F .
is orthogonaJIy invariant, i.e., A E F => QTAQ E F for any n x n orthogon:al Q.
Then using the reeent results of NeIDirovsky (1990, 1991), to be published in J. of
Complexity, one can show that:

1° Symmetrie ease, i.e., A E F => A = AT.
Krylov information is optimal as long as the needed number of steps
:5 1/2(n - 3).

2° Nonsymmetric ease. Let
F = {A : 11 AfI-lspect«AT A)1/2) C X eR},

where X is compaet. Then Krylov information is optimal within
a factor of 2.

Krylov information for the symmetrie case is given by b, Ab, . .. , A"b, and for the
nonsymmetrie case by b,AT Ab, ... , (AT A)"b.

Although it may happen that the optimal algorithm using Krylov information is
hard (or even impossible) to implement, one can show that the classical MINRES
algorithm is optimal to within one (additive) step.

We also mention known results on rounding error analysis without and with itera­
tive refinement. The talk is ended by presenting two open problems on the minimal
number of inner products andlinear funetionals needed to compute the approximate
solution.

A.YU. YEREMIN:

Incomplete BSSOR preconditionings for solving unsymmetric linear systems

Let A = L + D + U be a nonsingular positive definite matrix and Land U are its
strictly lower and upper block triangular parts, while D is the block diagonal. We
consider the so cal1ed incomplete BSSOR (IBSSOR) preconditionings based on using
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instead of exact direct solvers for D incomplete triangular splittings D = DLDu+Q.
It is shown that the multiplication of the IBSSOR preconditioned matrix requires
nz(L) + nz(U) + 2(nz(DL) +nz(Du » +nz(Q), where nz(X) stands for the number
of nonzeros of a matrix X. We also derive estimates of the deterioration of quality
when passing from, BSSOR to the corresponding IBSSOR preconditioning.

D.M. YOUNG:

(Co-authors: P.O. FREDERICKSON and B. VONA)

Multilevel methods for solving large sparse linear systems resulting fro~

the use of discretization methods for solving partial differential equations

The numerical solution of a partial differential equation by finite difference methods
frequently leads to the problem of solving a large system of linear algebraic equa­
tions where the coefficient matrix, A, is sparse. Iterative methods are often used
to solve such a system. A typical iterative procedure involves the use of a polyno­
mial acceleration procedure to speed up the convergence of a basic iterative method,
such as the J acobi method or the incomplete Cholesky method.. Frequently-used
polynomial acceleration procedures include Chebyshev acceleration and conjugate
gradient acceleration. In this talk we describe how improved iterative procedures
can often be constructed by the use of special preconditioners. Examples of such
preconditioners include: the use of a five-point difference equation 80S a preconditio­
ner for a nine--point equation; the use of a skewed five-point difference equation as a
preconditioner for the regular five-point equation; and ~ two-Ievel paraUel multigrid
procedure developed by Frederickson and McBryan for solving difIerence equations
in one and two dimensions. To accelerate the convergence special polynomials can be
used which are related to the special preconditioners and which can be constructed
analytically or numerically to have certain optimization properties.

Berichterstatter: M. Hanke
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