oF

L 4

.,

Deutsche

Math, Mmgﬂnamg
Oberwaifach

E 20 IQ ZEZ

MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 19/1991

Deductive Systems

28. 04. - 04. 05. 1991

Die Tagung fand unter der Leitung von W. W. Bledsoe (Austin), G. J dger (Bern) und M. M. Richter
(Kmserslautem) statt. Im Mittelpunkt stand das grosse Gebiet der deduktiven Systeme, das heute
nicht nur in der Mathematik im Rahmen der mathematischen Logik sondern auch in der Informatik
eine wichtige Rolle spielt.

Aus beiden Gebieten waren fihrende Vertreter anwesend.

Die Teilnehmer behandelten in ihren Vortragen sowohl die mathematisch-logischen Aspekte dieses
Generalthemas als auch sahlreiche Probleme, die mehr von praktischen Fragestellungen motiviert
sind. Es wurde allgemein als besonders befruchtend empfunden, dass durch diese Tagung ein Forum
fiir den Ideenaustausch zwischen zum Teil praktisch orientierten Wissenschaftlern aus dem Bereich
des automatischen Beweisens und Logiketn, die vor allem an den mathematischen Grundiagen
dieses Gebietes int iert sind, geschaffen wurde.

Etwas mehr prazisiert, wurden Vortrége su folgenden Themen gehalten: Beweistheorie und Infor-
matik, Logikprogrammierung, automatisches Beweisen, Typentheorien, nichtmonotones Schliessen,
Komplexitiat von Beweisverfahren, modale Systeme.

Neben dem offiziellen Vortmgsprogmmm d hrere Spezialsitzungen und Diskussionen statt,
in denen Teilnehmer ihre Ergebnisse in grosserer Ausfiihrlichkeit darstellten und allgemeine Per-
spektiven erortert wurden. Gerade hier ergab sich die Mdglichkeit fiir einen fruchtbaren Gedanken-

austausch zwischen Teilnehmern, die sonst normalerweise keine Gelegenheit haben zusammen-)

zukommen.

Abstracts

Alan Bundy:

The use of proof plans to guide automatic theorem provers

A proofplanisa putational rep tation of the overall structure or outline of a proof. We will
give examples of proof plans and show how they are being used to assist the search for inductive

proofs about recursive computer programs. A large family of inductive proofs have been analysed -

and common patterns extracted and expressed in the form of tactics. A tactic is a computer
program that controls an automatic theorem prover, by applying rules of inference of its logic.
Our tactics are Prolog programs which control OYSTER, a theorem prover for type theory. The
effect of our tactics has been partially specified in a meta-logic. CLAM, an Al planning program,
is used to reason with these specifications and form a customized proof plan for each conjecture

Forschungsgemeinschaft

©@J

DFC

Deutsche

input to OYSTER. These proof plans then guide OYSTER to a proof by running their constituent
tactics.

Christoph Walther:
Discovering termination functions for algorithms computing normal forms

Proving the termination of a recursively defined algorithm usually requires a certain creativity of
the (h or automated) th prover. One method is to invent a termination function 7, such
that the 7-image of each argument in & recursive call is smaller (wrt. a given well-founded ordering)
than the r-image of the corresponding initial argument. Our working hypothesis is, that proving
termination of algorithms can be considered as a program synthesis problem, where the algorithm

is used as an incomplete and implicite specification of a termination function. Following this hy-

pothesis, we present some first ideas for a formal framework, which allows to develop systematically

. termination functions for algorithms computing normal forms: Based on the given algorithm, we

derive formal requirements, then we search for functions satisfying these requirements, and we
finally combine these functions yielding a termination function for the given algorithm. We report
on work, which has just begun and which ultimate aim is to develop a method for an automated
synthesis of termination functions for this class of algorithms.

Amy Felty:
A logic programming approach to implementing higher-order rewrite systems

Term rewriting has proven to be an important technique in theorem proving. In this talk, we ar-
gue that rewrite systems and algorithms for first- and higher-order term rewriting can be naturally
specified and implemented in a higher-order logic programming language. The logic programming
language contains an implementation of the simply-typed lambda calculus including beta-eta con-
version and higher-order unification on such terms. In addition, universal quantification in queries
and the bodies of clauses is permitted. For higher-order rewriting, we show how these operations
implemented at the meta-level provide elegant mechanisms for the object-level operations of de-
scending through terms and matching terms with rewrite templates. We also discuss tactic style
theorem proving in this environment and illustrate how term rewriting algorithms can be expressed
as tactic-style search. The examples discussed in this talk have been implemented and tested in
the logic programming language Lambda Prolog.

Helmut Schwichtenberg:
Higher order arithmetic

A system HOA of higher order arithmetic is described, which has been designed and implemented
with applications in hardware verification in mind. It is based on the — V-fragment of natural
deduction together with induction axioms; e. g. boolean induction is used to prove the stability
of atomic formulas. Hence we get classical logic in spite of the fact that we only have rules from
minimal logic. This in turn has the consequence that proofs are A-terms with recursion operators.
HOA has a fixed intended tics, with domains D? consisting of Scott’s (partial) continuous
functionals extended by some non-monotonic objects like =;: bit —+ bit — boole (where bit :=
{0, 1, undefined}). However, application Fyg is defined for continuous g only. The implementation is
in SCHEME; the special form of HOA makes it possible to implement normalization as evaluation.
However, in order to make an evaluated proof (i. e. a procedure) visible again as a A-term, we have
to “invert evaluation”. A consequence of the solution to this problem is the following Completeness
Theorem (obtained together with U. Berger): Let M be a model of typed A-calculus containing

Forschungsgemeinschaft

DF

Deutsche

all primitive recursive functions (at level 1). Then from M |= r = s we can conclude Sn+ r = 5.
This strengthens results of Friedman 1975 and Statman 1982.

Rober Stark:
The three-valued completion of logic programs

We present a new sequent calculus in which one can derive exactly those formulas which are true
in all three-valued models of the completion of a logic program. The three-valued completion of
a logic program provides a suitable declarative semantics for “Negation as Failure”, since one can
proof d and complet: of SLDNF-resolution (SLD-resolution plus negation as failure)
for a large class of logic programs.

Our sequent calculus is proof theoretically interesting, since it is very close to the sequent calculus
for classical two-valued logic. We omit sequents of the form A D A, and we add rules for the clauses
of a program and some initial equality sequents. Having this sound and complete formalization
of the three-valued completion we can give more direct proofs of some known theorems of logic
programming. The calculus shows also that the three valued logic of logic programming is not a
real three-valued logic.

If one extends the calculus by an infinite Herbrand rule one gets completeness for Herbrand models.
Thus our approach shows the difference between true in all models and true in all Herbrand models
of the completion.

John C. Shepherdson:
Lapses in logic programming: the role of standardising apart

Some of the basic results in the theory of logic programming, e. g. the mgu lemma, lifting lemma
and completeness theorem have been incorrectly stated in the standard texts. One source of error
was pointed out a few years ago, another very recently. Although these errors are elementary, and
obvious once pointed out, they are not widely known. In one sense they are unimportant because
the special cases of the theorems which are used in applications are correct. But these theorems
are so fundamental that it is possible they might be used in an intricate and sensitive argument
where the errors wold invalidate the result. And it is desirable that the results, particularly the
fundmental results, of any widely used theory should be correctly stated. In this talk I will explain
how these errors arise, and how they can be avoided by suitable ‘standardising apart’ of the program
clauses used. The significance of standardising apart for other purposes e. g. soundness, obtaining
most general answer, will also be discussed.

J. Strother Moore:
A new version of the Boyer-Moore theorem prover

The Boyer-Moore theorem prover, NQTHM, supports a first order, quantifier-free logic. The
logic permits extensions by s schematic axiomatization of “new” inductively defined objects and
the definition of total recursive functions. When viewed as a programming language, the logic
resembles pure lisp. NQTHM is impl ted in C Lisp. The system provides an automatic
theorem prover for the logic (which is perhaps best known for its heuristic use of induction) and
mechanizations of the extension principles. The theorem prover is driven from a database of
previously proved theorems. By presenting the system with an appropriately graduated sequence
of theorems the careful user can lead the system to the proofs of deep results. Among the theorems
so proved (checked ?) are Gauss’ law of quadratic reciprocity, the Church-Rosser theorem, and
Godel’s i plet. th The main application of NQTHM, however, is in the verification

Forschungsgemeinschaft

o

oF

Deutsche

of computer hardware and software. For details, see A computational Logic Handbook (Academic
Press, 1988).

We have recently undertaken the complete redevelopment of both the NQTHM logic and the
implementation. Our aim is to build a practical implementation of the system in the applicative
programming language the system supports. To achieve the requisite efficiency we have had to
change the logic. '

The new logic resembles applicative Common Lisp. It provides the data types RATIONALP
(with subtype INTEGERP), CHARACTERP, STRINGP, SYMBOLP, and CONSP. It provides
“packages” — thereby making it easier to develop disjoint systems of function and theorem names
(“theories”). Unlike NQTHM, functions need not be defined on all inputs: “guards” may be
used to restrict the domain. Functions for efficiently manipulating “property lists”, “arrays”, and
“files” are provided in a completely applicative setting. “Multiple values” and “macros” are also
supported.

All of NQTHM has been recoded in this language to support this language. Many heuristics have

" been been extended and improved, including type set, clausification, congruence based rewriting,

and linear arithmetic. New features have been added including “functional instantiation”, “en-
capsulation”, “theories”, and “books”. Unlike NQTHM, it is now possible to load incrementally
into the database the results of some other sessions. Online documentation is provided, along with
extensive error checking and NQTHM’s traditional error commentary. A “prototyping” mode per-
mits the development and testing of large systems without the burden (or blessing) of proof. All
of the new system is programmed in the logic. -

The new system is not yet ready for public distribution.

Rusty Lusk:
Parallel theorem proving

Argonne theorem proving systems through the years — AURA, LMA/JTP, OTTER — have
been characterized by efficient algorithms for computing (part of) the closure of a clause set
under the operation of any of a set of inference rules. Here we present a parallel algorithm for
closure putations and its impl tation in an OTTER-compatible theorem prover called
ROO. ROO runs on shared-memory multiprocessors and obtains linear (and often dramatically
superlinear) speedups on large problems. We give performance results on several new, interesting
problems in condensed-detachment logics, and illustrate the behavior of ROO with a graphics tool
for visualizing parallel program execution.

Johann Makowsky:
On average case complexity of resolution for flat distributions

The resolution method for checking satisfiability of propositional clauses was shown to be expo-
nential in the worst case. There are natural probability distribution an the clauses for which the
satisfiability of propositional clauses is polynomial on the average, and other natural probability
distributions for which a restricted form of resolution is exponential. In all these cases distributions
are actually families of distributions on input of fixed size n. We study families of distributions on
clauses of propositional logic af arbitrary size for which the satisfiability problem (SAT) is polyno-
mial on the average and families of distributions for which resolution is exponential in the average.
We show that there are many flat distributions for both of the cases. We also show that there are
non-flat distributions for which SAT is polynomial on the average. The last result is important as
SAT with a flat distribution is not DistNP complete, provided DEXPT # NEXPT.

Forschungsgemeinschaft

o

oF

Deutsche

Arnon Avron:
Axiomatic systems, deduction and implication

The notions of logic, deduction, axiomatic systems and implication are investigated within the
general framework of consequence relations (CRs). We distinguish between several types of CRs
and define corresponding notions of deduction and of inclusion between logics. Given an axiomatic
system, several CRs can naturally be associated with it according to these classifications. Each of
them induces its own notion of derivable and admissible rules and of inclusion between systems.
Several known systems are then identified as the minimal systems (according to some notion of
inclusion) that contain an internal implication relative to the corresponding type of CR. To the
same systems might naturally correspond other CRs as well. In the case of implicational linear
logic, for example, these CRs have clear semantical interpretations and appropriate versions of the
deduction theorem hold for them, but unlike the principal associated CR, they are not known to
be decidable.

Daniel Mey:
Investigations on a predicate calculus without contractions

The predicate calculus LS is defined. It contains no rules for contraction and no cut rule. After es-
tablishing decidability for LS and other calculi without contractions, a closer look at LS-provability
is taken by investigating a special order between formulas. An algebraic semantics and a game
theoretical interpretation of the calculus are presented. Finally, a relation between resolution and
calculi without contractions is formulated.

Gérard Huet:

Variations on the cube

Fw CoC We present Barendregt’s cube of A-calculi. C is the ordinary
Curry-Church simply typed A-calculus. The representation of re-
F P2 cursive functions over Church numerals is discussed, and the prob-
lem of type-checking the exponential motivates the introduction of
type polymorphism, leading to Girard’s system F, also known as
Reynolds’ polymorphic lambda calculus A2. The internalization of

Cw Pu product formation motivates the introduction of type operators,
by considering a copy Cw of C at tlié level of types. The union
of Cw and F leads to higher-order A-calculus Fw, due to Girard.

C P It can be seen that these systems express various dependencies:
elements depend on el ts in C, el ts depend on types in F, types depend on types in Cw.

Considering the dependency of types on el ts give dependent types, system P. Adding all
these possibilities lead to the original Calculus of Constructions CoC, due to Coquand.

The Curry-Howard isomorphism permits to interpret these functional type systems as fragments
of intuitionistic logic.

The eight systems of the cube can be uniformly presented as functional GTS over two sorts. The
notion of GTS, or generalized type system, is due to Berardi and Geuvers. It gives a parametric
presentation of type systems with a product operation over sorts axiomatized by axioms s,: 52 and
relations (sy, 83, 53), meaning “we allow product formation Ilz: A.B(z) where A is a type of sort
8; and then B(z) is a type of sort s2, obtaining type of sort s3. In functional GTS s3 = s3. Type
equality in a GTS is S-conversion. Examples of other GTS, over three sorts, are the Automath
language and Church’s higher order logic.

Forschungsgemeinschaft

.

‘IF

Deutsche

The first variation is to allow n-conversion — for instance, Edinburgh Logical Framework (LF)
is equivalent to P 4 1. Another variation is to permit sum types, and more generally inductive
types, like in Martin-Lof type theory. Adding ordered sorts allows the introduction of a cumulative
hierarchy of universes.

Woody Bledsoe: 3

Some activities of the Bledsoe-Hines group in Austin

I will discuss our STR+VE prover (briefly) which proves theorems in general inequalities, and is
complete for FOL (Hines). It is able to prove lim+ (sum of continuous functions is continuous) and

lim* (extension due to Hines), and IMV-FOL, and many others, which offer a difficult challenge
to automated theorem provers.

1 will also discuss briefly our prover caller “TOOL”. (20L), which is used to prove certain theorems)

in second order logic where simple set variables are to be instantiated. IMV-HOL is such a theorem:
Cont fA f(a) <OAf(b) >0Aa <b— Iz(a <z < bA f(z) = 0) (using the least upper bound
axiom). IMV-FOL is a first order logic version of this.

And I show how we plan to explore further into elementary real analysis with these provers and
extensions of them.

Wolfgang Bibel:
Connection Calculi

The connection method provides a general framework for the comparison and development of de-
ductive calculi. Consolution and the connection structure calculus by Eder as well as the pool
calculus by Neugebauer and Schaub are new connection calculi of this kind. These calculi also
provide a new insight into resolution; for instance, resolution turns out to be a special case of con-
solution. The specifics of many calculi, including various refinements of resolution, can uniformly
be understood as a combination of a few key features such as linear chaining, hinged loops, and
factorization. This work aims not only at a better understanding of deductive systems based on
any of these calculi but also at the enhancement of the performance of existing systems (such as
SETHEO). Beyond these features characterizing existing systems, the principle of compression and
global, higher features such as lemmas with renaming are presented as of importance for future
systems. Recent results are given for both, namely cycle unification for special classes of formulas
for the former and linear proofs for the latter.

Donald W. Loveland:
The METEOR implementations of the Model Elimination procedure

The Model Elimination (ME) proof procedure, now 25 year old, has had several recent implemen-
tations: first, the PTTP system of Stickel, and very recently, PARTHENON (Bose, Clarke et al.),
SETHO-PARTHEO (Letz, Schumann et al.) and the METEOR variants, implemented by Owen
Astrachan at Duke University. There are sequential, parallel and distributed network versions of
the METEOR program.

ME is a complete proof procedure for first-order logic using a (linear) input format, which allows
the Warren Abstract Machine concepts developed for Prolog to be used also to implement ME.
This includes parallel implementations. Although the depth-first search (using iterative deepening)
allows no retention of intermediate results, the very high inference speed provides compensation.
Using the ME depth-first strategy METEOR recently proved two of Bledsoe’s challenge problems
concerning the sum of two continuous functions, a first for general-purpose (uniform) proof pro-
cedures. We now seek to install caching and lemma use to provide METEOR with intermediate
results.

Forschungsgemeinschaft

DIF¢

Deutsche
Forschungsgemeinschaft

David A. Plaisted:
Search duplication in theorem proving

We define an abstract concept of a theorem proving search strategy and consider the kinds of
redundancies that occur. We consider only clause form refutational first-order theorem proving.
The redundancies relate to how often a given instance of a given input clause is used in the search.
We consider a number of well-known theorem proving strategies and show that they either have
exp tial redundancy or are not sensitive to the goal (theorem being proved) We also present a
recent method called clause linking, that reduces this redundancy and give experimental evidence
that it is faster than other methods on propositional and near-propositional problems. This method
is also sensitive to the theorem being proved. With a more efficient rule of inference, we can begin
to study higher level issues such as semantics.

Egon Borger:
Formal analysis of Prolog database views and their uniform implementation

A distinguishing feature of logic programming is a realization of the notion of deduction from time
dependent sets of axioms. In Prolog this is reflected by the database’s being subject to change
during the computation due to bips assert(c), retract(c) etc. The ISO WG 17 in its Nov ’90 draft
has proposed a new liberal view on dynamic code in standard Prolog — which includes immediate
and logical update view, among others. We give a formal analysis of this new ISO WG 17 DB view
and develop an abstract uniform implementation for it, which clarifies the concept and shows the
tradeoff between logic and efficiency.

Our DB model is based on Prolog algebras (introduced in Bérger, MFCS '90 and CSL ’89) and on
WAM algebras (defined in Borger and Rosenzweig, CSL ’90, to prove the correctness of Warren’s
abstract machine wrt the abstract specification of full Prolog by Prolog algebras).

This work is joint work with D. Rosenzweig/Zagreb.

Markus Marzetta:
Types and names

Like Feferman’s theories for explicit mathematics, to which they are closely related, theories of
types and names can serve to study various kinds of type theories. In computer science they can
also be used to state and prove properties of functional programs. These theories deal with a
universe of computational objects which constitutes a partial combinatory algebra and includes
the natural numbers. The objects of this universe are classified into types which are treated
extensionally. Names (explicit representations in the universe) are associated in a very uniform
way to types. We present several theories obtained by allowing various type constructions and
forms of induction and examine their proof-theoretic strength. Furthermore we consider the role
of universes, seen as collections of names of types satisfying certain closure conditions. The limes
axioms states that every (name of a) type belongs to a universe. Adding the axioms for universes
to the elementary theory of types and names gives a system of strength I'.

Stan Wainer:
Ordinal analysis for recursive definitions

Classical (Gentzen-style) proof theory gives for example the reduction

PA | Vz3ySpec(z,y) => PRA+TI(a)t Vz3ySpec(z,y)

o

oF

Deutsche

wuk }

. r
where, if k, r are the size, rank of the PA-proof then a = w"’ . Thus a bounds the “termi-
nation complexity” of the specified program, and its “computational complexity” is bounded by
the “fast-growing” function B, where Bo(n) = n + 1, Bay1(n) = Ba(Ba(n)), Ba(n) = Ba,(n).
In this talk, the logic is stripped away in order to give a direct ordinal assignment to computations
n: Nig f(n) N in Kleene’s equation calculus E. The B,’s again bound complexity, and reduction
to the corresponding “slow-growing” G+ provides an ordinal trade-off in reduction of computation
to term-rewriting. Example (Cichon): Primitive Recursion = “Recursive Path” Termination.

Bernhard Hollunder:
Inferences in KL-ONE based knowledge representation systems

We investigate algorithms for inferences in KL-ONE based knowledge representation systems. Such
systems employ two kinds of formalism: the terminological and the assertional formalism. The
terminological formalism consists of a concept language to define concepts and relations between
concepts for describing a terminology. On the other hand, the assertional formalism allows to
introduce objects, which are instances of concepts and relations of a terminology. We present
algorithms for inferences such as

o determining subsumption relations between concepts
o checking consistency of such a knowledge base
e computing the most specific concepts an object is instance of

e computing all objects that are instances of a certain concept.

Christian Horn:
Theorem proving and program synthesis in Martin-Lof type theory using Oyster2

Oyster2 is an interactive, tactic driven, backward reasoning proof editor for Martin-Lof type the-
ory. It was developed with an eye towards easy modifyability of the underlying language and logic,
so that we could try to approximate a suitable object language which combines logical simplic-
ity and strength with the expressivity and adequacy required for practical applications, but still
allows to maintain a simple and by its very nature reliable and correct system architecture. The
main goal was to perform experiments to find an appropriate level of intelligent support in the
theorem proving and program synthesis process, where we can’t achieve full automation. The use
of structural models and higher order reasoning are essential for the area of theorem proving we
are interested in.

The talk presents an overview of the development and architecture of the oyster2 system, and will
highlight the problematic points, i. e. necessary extensions of type theory and a technological model
of the proof engineering process, where I hope to get reasonable feed back during the discussions.

H. J. Ohlbach:
Deductive systems for logics with possible world semantics

Logics with possible world semantics are built on the concept of states and state transitions. The
basic logics of this kind are modal logics with the two operators O (necessarily) and o (possibly).
More application oriented are extensions like temporal logics, action logics, epistemic logics (logics
of knowledge), doxastic logics (logics of belief) etc. Most of these logics require the modal operators
to be parametrized with terms denoting actions, agents and the like.

Forschungsgemeinschaft

o0&

emphasizes the role of the parameters of the operators and their correspondences. This semantics
supports the development of new applications of the idea of possible worlds. One application is
a full first order probabilistic logic where the parameters of the modal operators are interpreted
as probability values (either real numbers or qualitative values). Another application is an action
logic with built in facilities for hierarchical planning.

In the second part I will present a method for translating formulae of these logics into first order
predicate logic such that standard predicate logic deduction methods become applicable. Moreover,
the translation method permits the transformation of the characteristics of the particular logic into
efficient theory unification and theory resolution algorithms.

Wolfgang Schonfeld:)
Backtracking and minimal tableau proofs

Let £ be a satisfiable set of formulas of fist-order logic, and ¥ a “goal” formula. A tableau proof
. for (the unsatisfiability of) £ U {7} is minimal if no application of a formula can be removed.
We show that any loop-free and connected (neighbored formulas contain a complementary pair of
literals) tableau proof is minimal. Thought not every minimal proof is connected, there are enough
connected proofs:)
Theorem: L U {7} is unsatisfiable iff there is a connected tableau proof for LU {v}. To give a
constructive proof of the only-if-part (completeness), we extend the classical tableau construction to
that of alternating tableau. They not only describe the complete search space indicating where and
how to backtrack. They also indicate a potential for intelligent backtracking avoiding permutations
of useless proof attempts. This even applies to the case of propositional logic. (For the Prolog

In the talk I will first present an augmented semantics for logics with possible world semantics which
case, it only makes sense for non-propositional formulas.)
|
|

Peter H. Schmitt:
Nonmonotonic abstract consequence operators

After a quick reminder of the first attempt to formulate axioms typical for logical consequence i |
" operators by A. Tarski, we turn to axiom systems where the monotony property X C Y =

Cn(X) C Cn(Y) is replaced by the cumulativity property X C Y C Cn(X) => Cn(X) = Cn(Y). |
Two characterization theorems are presented: One by Helmut Thiele, where Cn among others

satisfies the closure property Cn(Cn(X)) = Cn(X) and the semantic model is an abstraction of |
Reiter’s default logic. The second theorem reviewed is by Kreus, Lehmann and Magidor. The |
corresponding consequence operator Cn only operates on finite sets and adding the requirement |
that Cn be a closure operator would turn Cn into a monotonic operator. |

Peter Aczel:
The notion:“A logic”

. This notion and other informal notions are often used without being given mathematical definitions.
But in recent years the confrontation of logic with category theory and computer science has led to
new attempts to capture mathematically some of these notions, sometimes without careful attention

to their history. In my talk I will focus on the following, apparently conflicting requirements:

(i) Although any given logic will take some particular approach to syntax, the general notion of
a logic should not. .

(ii) The schematic nature of rules of infe is fund tal. The notion of a derived rule should
have a syntax free definition.

Berichterstatter: R. Stidrk

DF Deutsche
Forschungsgemeinschaft

D¢

Tagungsteilnehmer

Prof.Dr. Peter Aczel
Dept. of Computer Science
University of Manchester
Oxford Road

GB- Manchester M13 9PL

Prof.Dr. Arnon Avron
Computer Science Department
School of Mathematics

Tel Aviv University

Tel Aviv
ISRAEL

Prof.Dr. Wolfgang Bibel
Fachbereich Informatihk
Technische Hochschule Darmstadt
Alexanderstrafe

6100 Darmstadt

Prof.Dr. Woodrow W. Bledsoe
Dept. of Mathematics
University of Texas at Austin

Austin , TX 78712
usa

Prof.Dr. Egon Btirger
Dipartimento di Infarmatica
Universita di Pisa

Corso Italia, 40

1-56100 Pisa

Deutsche
Forschungsgemeinschaft

10

Prof.Dr. Alan Bundy
University of Edinburgh
Department of Al

80 South Bridge

GB- Edinburgh EH1 1HN

Prof. Dr. Marfin Davis ’ .
New Yark University N)
Courant Institute of Mathematical

. Sciences |

251 Mercer Street

New York , NY 10012
usa

Prof.Dr. Walter Felscher
Mathematisches Institut
Universitdt Tiibingen

Auf der Morgenstelle 10

7400 Tubingen 1

Amy Felty
INRIA Rocquencourt
Damaine de Voluceau

B. P. 103 ‘l’

F-78153 Le Chesnay Cedex

Dr. Larry Hines
University of Texas
1cscA

Austin , TX 78712
UsA

 OF

Bernd Hollunder

Deutsches Farschungszentrum fiir

kiinstliche Intelligenz (DFKI})
Projektgruppe WINO
Postfach 2080

6730 Kaiserslautern

Dr. Christian Horn

Fachhochschule Furtwangen
. Fachbereich Allgemeine Informatik

PF 28

7743 Furtwangen

Prof.Dr. Gerard Huet
INRIA Rocquencourt
Domaine de Voluceau
B. P. 103

F-78153 Le Chesnay Cedex

Prof.Dr. Gerhard JHger
Institut fiir Informatik
und angewandte Mathematik
Langgasstrafie 51

. CH-3012 Bern

Prof.Dr. Donald W. Loveland
Department of Computer Science
Duke University

202 North Building

Durham , NC 27706
UsA

Deutsche
Forschungsgemeinschaft

1

Dr. Ewing Lusk

Mathematics and Computer Science
Division - 221 - MCS

Argonne National Laboratory
9700 South Cass Avenue

Argonne , IL 60439-4844
usa

Prof.Dr. J.A. Makowsky
Computer Science Department
TECHNION ’
Israel Institute of Technalogy

Haifa 32000
ISRAEL

Dr. Markus Marzetta
Institut filir Informatik und
angewandte Mathematik
Universitdt Bern
Langgasstr. 51

CH-3012 Bern

Dr. Daniel Mey

- Institut fiir theoretische

Informatik
ETH-Zentrum

 CH-8092 Ziirich

Prof.Dr. Dale Miller

Dept. of Computer and Information

Science
University of Pennsylvania
200 South 33rd Street

Philadelphia , PA 19104-6389
Usa

Dr. J. Strother Moore
Computational Logic Inc.
1717 West 6th St., Suite 290

Austin , TX 78703
usa

Dr. Hans Jiirgen Ohlbach
FB Informatik, Geb. 57
Universitdt Kaiserslautern

&750 Kaiserslautern

Dr. Ross Overbeek

Mathematics and Computer Science
Division - 221 - MCS

Argonne National Laboratory
9700 South Cass Avenue

Argonne , IL 60439-4844
USA

David Plaisted

Dept. of Computer Science
University of North Carolina
352 Sitterson Hall

Chapel Hill , NC 27399-3173
USA :

Prof.Dr. Wolfram Pohlers
Institut fiir Mathematische
Logik und Grundlagenforschung
Universitdt Miinster
Einsteinstr. 62

4400 Miinster

Deutsche
Forschungsgemeinschaft

12

Prof.Dr. Michael M. Richter
Fachbereich Informatik
Universitdt Kaiserslautern
Paostfach 3049

6750 Kaiserslautern

Prof.Dr. Ulf R..Schmerl
Fakultdt flir Informatik
Universitdt der Bundeswehr Mu‘nche'n‘
Werner-Heisenberg-Weg 39

8014 Neubiberg

Prof.Dr. Peter H. Schmitt

Fakultdt f. Informatik, Institut f.
Logik,Komplexitdt u.Deduktionssyst.
Unviversitdt Karlsruhe

Postfach 6980

7500 Karlsruhe

Prof.Dr. Wolfgang Schbnfeld
IBM Deutschland GmbH

Wissenschaftliches Zentrum - IWBS
Tiergartenstrafie 13

6900 Heidelberg

Prof.Dr. Helmut Schwichtenberg
Mathematisches Institut
Universitat Minchen
Theresienstr. 39

8000 Miinchen 2

o

Prof.Dr. John C. Shepherdson
Department of Mathematics
University of Bristol
University Walk

GB- Bristol , BS8 1TW

‘ Robert Stirk
Institut fiir Informatik und
angewandte Mathematik

Universitdt Bern
Lédnggasstr. 51

CH-3012 Bern

Dr. Stan S. Wainer
School of Mathematics
University of Leeds

GB~ Leeds , LS2 9JT

Prof.Dr. Christoph Walther
Institut fir Theoretische
Informatik

. Technische Hochschule Darmstadt
Alexanderstr. 10

6100 Darmstadt

DF Deutsche
Forschungsgemeinschaft

oF

Deutsche
Forschungsgemeinschaft

| Aczel, Peter
Avron, Arnon

‘ Bibel, Wolfgang
Bledsoe, Woody
Borger, Egon
Davis, Martin
Felscher, Walter
Felty, Amy
Hines, Larry
Hollunder, Bernhard
Horn, Christian
Huet, Gérard
Jager, Gerhard

. Loveland, Donald W.
Lusk, Ewing (Rusty)
Makowsky, J. A.
Marzetta, Markus
Mey, Dani
Miller, Dale .

| Moore, J. Strother

| Plaisted, David A.

| Pohlers, Wolfram

| Richter, Michael M.

‘ Schmitt, Peter H.

‘ Schéonfeld, Wolfgang

Shepherdson, John C.

Stark, Robert F.
Wainer, Stan
Walther, Christoph

. DF Deutsche
Forschungsgemeinschaft

petera@cs.man.uk

aa@taurus.bitnet
xiiswbib@ddathd21.bitnet
bledsoe@cs.utexas.edu
boerger@dipisa.di.unipi.it
davism@cs.nyu.edu
mife001@mailserv.zdv.uni-tuebingen.de
felty@margaux.inria.fr
hines@cs.utexas.edu

- hollunde@dfki.uni-kl.de

c-horn@eis.fh-furtwangen.dbp.de
huet@margaux.inria.fr
Jjaeger@iam.unibe.ch
dwl@cs.duke.edu. .
lusk@mcs.anl.gov .
janos@cs.technion.ac.il, janos@techsel.bitnet
marzetta@iam.unibe.ch
mey@inf.ethz.ch
dale@cis.upenn.edu
moore@cli.com
plaisted@cs.unc.edu
oml02@dmswwula.bitnet
mmr@informatik.uni-kl.de
pschmitt@ira.uka.de
schfeld@dhdibm1.bitnet
John.Shepherdson@bristol.ac.uk
staerk@jam.unibe.ch
pmtbssw@uk.ac.leeds.cmsl
xiiscwal@ddathd21.bitnet

14

DF Deutsche
Forschungsgemeinschaft ©

