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Die Tagung wurde von V. Dlab (Ottawa) und C.M. Ringel
(Bielefeld) organisiert. Es wurde allgemein begrüßt, daß zum ersten
Mal seit 1986 wieder eine Oberwolfach-Tagung zu diesem Thema
stattfand. Eine Vielzahl Mathematiker auch benachbarter Gebiete
hatte ihr Interesse an einer solchen Tagung bekundet, so daß die
Einladungsliste drastisch beschränkt werden mußte. Dennoch nah­
men mehr Mathematiker als eigentlich absehbar an der Tagung teil,
da es .nur ganz wenige Absagen gab.

Die sehr arbeitsintensive, aber trotzdem gelöste Atmosphare
wurde sehr gelobt (nicht immer war ~s bei früheren Tagungen span­
nungsfrei gewesen). Das Programm konzentrierte sich auf die wich­
tigsten Themen und es gab jeweils längere Pausen, um Gesprächs-"
und Kontaktmöglichkeiten zu schaffen. Davon wurde reger Ge­
brauch gemacht. Neben den Vorträgen, die unten dokumentiert
sind, gab es vielfältige informelle Berichte in den Mittagspausen
und auch am Abend.

Im Mittelpunkt der Tagung standen neben den neuerlichen Ent­
wicklungen der eigentlichen Darstellungstheorie von Aigebren ihre
Anwendungen in Lie-Theorie und Singularitätentheorie; berichtet
wurde vor allem über den Einsatz homologischer, algebraisch-geo­
metrischer und kombinatorischer Methoden.
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Vortragsauszüge

M. Auslander: Cotilting modules: Real and Imaginary
A method of using relative bomological algebra for constructing

cotilting modules will be discussed.

V.J. Bekkert: Representations of quivers with relations
Tbe tarne and finite growth criterions for trees witb relations are

givene Furthermore the tarne criterion for vector space categories
and the tarne criterion for quivers with zero-relations.

K. Bongartz: On degenerations and extensions of finite
dimensional modules

(1) We derive a cancellation theorem for degenerations of mod­
ules and apply it to characterize orbit closures of modules living on
preprojective components.

(2) We show that any minimal degeneration of modules over a
representation-directed algebra comes from a short exact sequence.
The same holds true for Kronecker-modules.

(3) We construct lots of exact sequences using degenerations.
In particular, we prove that any indecomposable non-simple over a
tarne concealed algebra is an extension of an indecomposable and
a simple.

J.F. Carlson: Periods for periodic modules
We brießy describe some recent work with David Benson on the

periods of periodic modules. Among other things we prove that
for any number n tbere exists a finite 2-group such that for any
field K of characteristic 2 there exists a periodic KG-module whose
period is larger than n. A theorem of R.C. Andrews permits us to
restrict our attention to extra special groups. Here the theorem is
proved by tbe computation of tbe varieties of certain modules. The
varieties are obtained from a calculation of the partial inflations
of tbe spectral sequence associated to the central subgroup. These
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computations may be of independent interest. The results in the
odd characteristic case are incomplete.

C. Cibils: The syzygy quiver of a monomial algebra
Let A = kQ / < Z > be a monomial algebra. The set of vertices

0 0 of the syzygy quiver 0 is the set of non-zero paths of Q. There
is an arrow in n from a to ß if

1) ß and Cl are composable
2) ßa contains only one subpath , of Z and (JQ = <;E.

Theorem a) The homological dimension hd(A) is finite Hf n
has no cycles. In that case hd(A) is one plus the maximallength of
a path of n starting at an arrow.

b) Let N be tbe maximallength of a directed path of n starting
at an arrow. The injective dimension of a f.g. A-module is either
infinite or bounded abovc by N + 1.

Part a) lies on an explicit description of the minimal projective
resolutions of the simple modules which avoids coverings.

Part b) is proved following Igusa-Zacharia's pro~f of the finiti­
stic conjecture for monomial algebras. The bound N + 1 improves
the bound dimk radA previously obtained. 2-nilpotent algebras are
good examples of this imp"royement.

w. Crawley-Boevey: Characters for modules or finite
endolength

The endolength of a module M over an associative ring R with
1 is the length of M over its endomorphism ring. In this lecture
we presented a sort of character theory for the modules of finite
endolength.

As motivation we recalled the fact that' a fini te dimensional
algebra over an algebraica1ly closed field has tarne representation
type if and ooly if the endomorphism ring of every indecomposable
module of finite endolength is a P.I. ring.

We say that a function X (rom the set of finitely presented right
R-modules is a character if it is additive on direct sums and if
X(Z) :5 X(Y) :5 X(X) + X(Z) whenever X -+ Y -+ Z -+ 0 is
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a right exact sequence. This is adapted from Schofield's notion
of a Sylvester rank function. We say that a non-zero cbaracter is
irreducible if it cannot be written as a non-trivial BUffi of characters.

We sketched part of the proof (whieb uses tbe functor category)
of the following theorem

Theorem (1) The assignment M 1-+ XM where
XM(X) = LengthEndRCM)(X @R M) induces a bijection between
tbe isomorphism classes of finite endolength indecomposable left
R-modules and the irreducible characters.

(2) Every character is a sum of irreducibles.
(3) The irreducible characters are independent over Z.

E. Dieterich: Tarne curve singularities with large con­
ductor

Let (e,O) be an affine-algebraic curve singularity over an ~­

gebraically closed field. We study tbe category cmA of Cohen­
Macaulay A-modules over its compiete Ioeal ring A = Oc,o. Our
main interest is to "solve its classification problem" , i.e. to produce
a complete and irredundant system of representatives f~r the .set
Is(indA) of isomorphism classes of indecomposable Coben-Macaulay
A-modules.

Tbe "representa:tion-finite" curve singularities (these are curve
singularities (C,O) such that Is(indA) is finite) are known and their
classification problems are solved. On the other hand, very li­
ttle was known so far about "tarne" curve singularities (these are
representation-infinite curve singularities (C, 0) whose classification
problem admits a solution by means of finitely many one-parameter
families of indecomposable Cohen-Macaulay A:"modules, in each
rank). However, for curve singularities whose conductor is "Iarge"
(in the sense that it contains tbe radical squared of its normaliza­
tion), there is now a complete description of those which are tarne,
together with solutions of their respective classification problems.
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P. Dräxler: Decomposing points of tarne algebras
Let A = k[ß]1 I be a finite dimensional algebra over an alge­

braieally elosed field k. Fix a point S of .6 ~d denote by e(s) the
induced idempotent of A. Denote by p. the indecomposable projec­
tive A-module belonging to sand by K, the subcategory of A-mod
induced byall indecomposable modules V satisfying HomA (P., V) :F
o= HornA(P., TÄV). Assume dimk End(P.) = 1.

We use the sign il for the subspace category of the vectorspace
eategory (K., HomA(P., -» and prove that the fiber surn functor
F. : Ü -+ A-mod is dense if Fac P, has ooly finitely many indecom­
posable objects. Moreover F, preserves wildness and also tameness
under ,sorne additional assurnptions.

Dur results above show that one can üse iI for the study of A­
mod provided il can be computed. This is actually possible if s
is a so-called decomposing point. Such points are defined. by the
property that the support of each indecomposable module over the
factor algebra AIAe(s)A does not contain simultanously predeces­
sors and successors of s in ~. We denote by A' respectively A. the
subalgebra of A given by all points which are not pred.ecessors re­
spectively successors of s in ß. With these notations we prove that
for decomposing points the vectorspace category (K" HOffiA(P., -»
can be explicitely construeted from the module categories A'-mod
and A,-mod which are easily accessible in many case8. .

We give several examples of algebras for which our·methode can
be used to prove their tameness.

Yu.A. Drozd: Open subcategories and Cohen.Macaulay
modules

Let!! be aboes, :r c Rep(!!) a full sul>category elosed under
isomorphie copies, direet sums and summands. Call.1 open if for
any vector dimension 4 the subset .1 n Repd(g) is Zariski open in
the set of representations RePd(!l) of dimension 4. For open sub­
categories of representations offree triangular bocses the tarne/wild
dichotomy is proved.

This notion is applied to Cohen-Macaulay modules over semi­
prime Cohen-Macaulay algebras over K(JXI), K an algebraically
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closed field. Namely, for each such algebra A an open subcategory
X is constructed classifying Cohen Macaulay A-modules. As a COD­

sequence, the tarne/wild dichotomy for Cohen-Macaulay modules
is obtained.

J. Feldvoss: The module type of some classes of a1gebras
In my talk I consider the problem of determining the restricted

Lie algebras of finite (resp. tarne) module type. I give a complete
solution of the first problem over arbitrary fields and 01 the se­
cond problem over algebraically closed fields of characteristic p >
2. Moreover, I indicate some problems for more general classes of
~gebras w hieh perhaps could be used to solve the case p = 2 and
to get rid of the assumption of the base field.

G.-M. Greuel: On tarne and wild curve singularities
(Report on results with Y.A. Drozd, A. Kotlov, A. Schap­
pert)

The following results show that there is a really surprising coin­
eidence between the classification of singularities by internal prop­
erties on one side and by max. (CM-)Cohen-Macaulay modules on
the other side.

1st result: Let R be tbe complete Ioeal ring of a redueed plane
curve sing11larity, then:

(i) R is of finite C M -type<=> R is elliptic

(ii) R is of tarne CM-type <=> R is parabolic

(iii) par(R, 1) = 1 <=> R is strictly unimodal

The elliptic resp. parabolic resp. strictly unimodal singulari­
ties are the most basic classes in Amold'5 classification. Elliptic
resp. parabolic refers to tbe associated quadratic form on the Mil­
Dor fibre. Tbe elliptic ones are just the "simple" or A - D - E­
singularities, the parabolic curve singularities are

E7 = T244 =:= x4 + y5 + ax2y2 a2 =f:. 4
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Es = T236 = X
3 + y6 + ax2

y 2 4a3 + 27 =1= o.
(i) resp. (iii) resp. (ii) "<:=" was previously known and due to

Greuel/Knörrer resp. Schappert resp. Dieterich and Kahn. (par(R, n)
clenotes the max. dimension of a family of pairwise non isomorphie
CM-R-modules of rank n).

2nd result: Let R be as before but no necessarily plane. Then
R is GM-tarne => par(R, A) = 1 *> R dominates a strictly

unimodal plane curve singularity.

J.Y. Guo: Isomorphisms of Hall algebras
In the talk we sketch the proofs of the following theorems:
Theorem 1 Let R, R' be representation directed, connected

finite algebras (over fields k and k', respectively).-- The following
conditions are equivalent

(1) H(R) ~ H(R').
(2) k ~ k' and TR ~ TR, and they have the same symmetriza­

tions
(3) There is a bijection q : Si -+ U(Si) of simple R modules to

the simple [f. modules such that EndRSi ~ EndR,q(Si) =: Fa (a.s
finite fields), and Extk{Si, Sj) ~ Extk,(u(Si), q{Sj», as Ei modules
and as F; modules, for t = 1,2 and all i,j where H(R) is the Hall
algebra of the algebra A and TR the Auslander-Reiten quiver of R.

Theorem 2 Let R, R' he finitary rings satisfying the following
conditions

(a) Extk(Si' Si) = 0 for a11 finite simple R modules Si.
(h) If Exth(Si' Sj) =1= 0, then Exth(Sj, Si) = 0 for simple all

finite R modules Si and Sj.
(c) R is connected and there are simple R-modules Si, Sj such

that .
dimEndRSi Extk(Si' Sj) = 1 or dirn Extk(Si' Sj)EDdRSj = l.

Then H (R) ~ H (R') implies that there is a bijection q : Si -+

O'(Si) such that EndR8 i ~ ~ndR,O'(Si) =; Fi and Extk{Si, Sj) ~
Extk,(O'(Si) ,0'(8;» as Ei modules and as Fj modules, for all simple
R modules Si and Si.
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D. Happel: Generalized Nakayama Conjecture ror alge­
bras with J21+1 = 0 and AIJ' representation-finite

This is areport on some joint work with Peter Dräxler.
Let A "be a finite-dimensional algebra over some field k. Let

us denote the Jacobson radical of A by J. We consider finitely
generated left A-modules.

The generalized Nakayama conjecture says that in a minimal
projective resolution of the injective cogenerator AD(AA) each in­
decomposable projective A-module occurs as a direct sununand, or
equivalently that for each simple A-module AS there is an integer
i ~ 0 such that Ext~(AD(AA),A S) # o.

Theorem The generalized Nakayama conjectures holds for al­
gebras A'with J2/+1 = 0 and AIJ' representation-finite.

Observe that an algebra A with J3 = 0 satisfies the assumptions
of the theorem. In case 1= 2 it is very easy to construct examples
of algebras A with AIJ2 representation-finite.

A.V. J akovlev: Torsion-free abelian groups of finite rank
and theory of representations

For every prime p and for p = 0 we construct a category M p

containing the category M of a11 torsion-free abelian groups of fi­
nite rank.The category M p for p prime is typical for representation
theory: the Krull-Schmidt theorem holds in this category, and the
problem of classification of indecomposable objects is equivalent to
the classica12-matrices problem (and so this problem is wild). The
category Mo is more complicated. '

We say, that two groups of M belong to the same genus, if they
become isomorphie in a11 categories Mp • A one-by-one correspon­
dence between genae of groups of M and veetors of positive cones
of certain finite-dimensionallattices is established. This correspon­
dence preserves indecomposability aild direct sums.
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B. Keller: Aremark on tilting and DG algebras
Differential graded algebras provide an alternative approach to

the problems which J. Ricka.rd has solved in his papers
[1] Morita theory for derived categories, J. London Math. Soc.

39,1989,
[2] Derived equivalences as derived functors, preprint.
Let k be a corn. ring, A and B k-projective k-algebras , and T

a tilting complex [1] over A such 'that B ~ End1)bA(T). Then T·
is a. iJ - A-bimodule where B = END (T) is the difl'. graded alg.
with iJn = OPEZ HomA(TP, TP+n). We show how one can modify
T to obtain a B - A-bimodule complex X (note that B = HOB =
EndK(A)(T» such that BK and X A have projective components and
XA is homotopy-equivalent to T.

o. Kerner: Regular stones 'and height one modules over
wild hereditary algebras .

Let A be a finite dimensional wild hereditary algebra over some
algebrai~ally closed field k. An indecomposable module X is called
stone, if Ext(X, X) = o.

Theorem 1 If A is wild hereditary there exists only finitely
many non sincere regular components containing stones of quasi­
length bigger than one.

A regular module X is called height one module, if X is not tbe
middle term of a short exact sequence 0 -+ U -+ X -+ 'V ~ 0 with
U, V-:/:-O and regular.

Theorem 2,If A has a height one module with selfextensions,
then there do not exists sincere regular components containing
stOßes of quasil~ngth bigger than one.

"Normally" wild hereditary algebras have height one modules
with selfextensions. But there exist (infinitely many) wild heredi­
tary algebras sucl;l that: (a) All height one modules are stones, (b)
there exist only finitely many r-orbits.of height one modules.
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H. Krause: On apolynomial bound ror endomorphism
rings over some tarne a1gebras

Let p be a polynomial. A k-algebra E is called polynomial
bounded by p, if for any factor.algebra E' with dim,(rad/ratPE') ~
2 and radnE' = 0 dirn, E' ~ p(n) holds.

Let Q = (Qo, Qt) be a quiver. For each word w inQ there is
canonically defined a module M(w) over the path algebra kQ.

Theorem Let M(w) be the module corresponding to a word
w in Q: Then EndkQ(M(w» is polynomial bounded by p(n) =
2n2 - 2n + 1. '

Corollary Let A be astring algebra and M be an' indecom­
posable A-module of the first -kind. Then EndA(M) is polynomial
bounded by p(n) = 2n2

- 2n + 1.
This result leads to the following conjecture:

There exists a polynomial p such that a fine dirn. k-algebra is of
tarne representation type iff EndA(M) is polynomial bounded. by p
for every indecomposable A-module of finite dil1l:ension.

H. Lenzing: Frobenius numbers, distinguished compo­
nents and growth reciprocity

The talk reports on joint work with J.A. de la Pefia and deals
witb the representation theory of a wild canonical algebra A of
weight type p = (pi, ... , Pe) ~nd the correSponding wild hereditary
star algebra Ao obtained by deletion ofa suitable vertex of A.

All hut one of the indecornposable projective A-modules lie in
the preprojective component of A, tbe component of the remaining
one is the distinguished component 1) of A. 1) agrees on a T- -cone
with a regular component Vo of Ao, the distinguished component
of~. - .

The Hilbert-Poincare series PA of A (resp~ p~ of Ao ) measures
the growth of the Auslander-Reiten translation TA, which is linear,
and TAo which is exponential. They are related by the reclprocity
law PAo = TI(1 - PA) and further to tbe Coxeter polynomials t/J~

and tPAo by the rule PAo = tPA/tPAo. In particular this allows to
derive the formula

10

•

                                   
                                                                                                       ©



•
[

. t 1 _ 'TPi - 1 ] t 1 _ TPi

1/11.0 = (T +. 1) - TE 1 - 1'1'; .g 1 - T .

Among other items it is further shown that the set of inte­
gers n such that Hom(M, TÄM) i= 0 holds for each indecompos­
ahle A-module M of positive rank form a numerical semigroup,
whose Frobenius number n = o(p) is the largest integer such that
Hom(M, TÄM) = 0 shows up. It is shown that always a(p) ~ 43
(also for the hereditary star algebra Ao) and by associatiag Dynkin
labels Dn , E6 , E7 , Es the wild canonica1 (resp. hereditary star) alge­
bras are partitioned into four groups, with the maximal quasi-length
of e~ceptional modules bounded by tbe numbers 1,2,3,5 resp. and
equality attained in tbe case of the canonical algebras.

s.-x. Liu: Isomorphism problems for tensor a1gebras
over valued graphs ..

Let E be a valued graph with a modulation (D, M). We denote
by T(E) = T(E, D, M) the tensor algebra over E. First we prove
the following isomorphism theorem:

Theorem 1 Let E and E' be two valued graphs. If T(E) ~
T(E'), then E ~_ E'.

In partieular, we have
Theorem 2 Let ß and t1' be two quiv~rs and F a field. H their

path algebras F(ß),F(ß') are isomorphie, then ß ~ ß'.
Next we consider tensor produets of path algebras' and we have
Theorem 3 Let ß, ß' and F as in Th.2. Then
1. F(ß) and F(ß') are prime algebras <=> F{ß) (i!Jp F(A') is

prime,
2. F(ß) and F(ß') are semi-primitive algebras <=> F(d) ®F

F(6') is semi-primitive.
< 3. F(Ll) and F(ß') are right noetherian algebras <=> F(ß) ~F
F(ß') is right noetherian.
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-M.P. Malliavin: Lie group representations
My talk was concerned with a paper in prep~ation of A. Guichar­

det who connects the socalIed admissible algebras to ~missiblecat­
egories. Admissible algebras (resp. categories) are special cases of
Gabri~l's pseudocompact rings (resp. length categories) [Po Gabriel:
Indecomposable representations II, Symposia Mathematicia XI, In­
dam 1973]. As a result of this, we gave the quiver founded by Y.
Gaiffard associated to the admissible category of Harish-Chandra
modules with trivial infinitesimal character and trivial central char­
acter for Spin(n, 1).

H. Meltzer: On tilting modules over the truncated sym­
metrie algebra

This is areport on a joint work with L. Dnger
In this talk we study tilting modules over the wild algebra A =.

kQ / 1 where Q is the quiver

and I is the ideal generated by all XiXj - XjXi. We classify the
tilting modules M = Mo ffi MI ffi M 2 having the property that the
endomorphism rings of all Mi are the ground field' k. These tilting
modules will be called exceptional. .

Our result uses the classsification of the exceptional tripies of co­
herent sheaves over p2 by Rudakov. Recall that a tripie (Eo, EI, E2 )

of sheaves (respectively modules) is called exceptional if End(Ej) =
k, ExtT(Ej , Ej ) = 0 for 0 :::; i,j ~ 2, r > 0 and Hom(Ei , Ej ) = 0
for j > i. The classification of these exceptional tripIes is strongly
related to the solutions of the diophantic equation X 2 +y2 +Z2- =
3XYZ, called the Markov equation. It is known that its solu­
tions can be obtained from the trivial solution (1,1,1) by two stan­
dard transformations which allow us to associate with the set of
all solütions an infinite tree of valency 3, the so-called Markov
t~ee. Rudakov showed that all exceptional tripies can be con­
structed from the tripel (0,0(1),0(2)) by two operations called

12

•

                                   
                                                                                                       ©



left and fight mutations corresponding to the standard transforma­
tions mentioned above.

We consider A as the endomorphism algebra of the tilting sheaf
T = 0 ffi 0(1) EI) 0(2). Then the functor Hom(T,·) ': COhp2 --+

modA induces an equivalence of the derived categories
D b(COhP2) --+ D b(modA). In the talk we show in which way all
exceptional tilting modules can be constructed from the projective
A-modules using' "mutations" 'and the Auslander·Reiten transla·
tion in D b(modA). We obtain a countable number of infinite trees
sirrtilar to the Markov tree.

An important role in the proof is played by the fact that for two
modules M and N with End(M) = k = End(N) and Exti(M, M) =
o = Exti(N, N) for i#-O we have complete information about
Hom(M, N) and Exti(M, N) by purely numerical data correspond­
ing to the slopes associated to vector bundles.

G.O~ .Michler: On deformations of modulargroup alge­
bras '

Let (F, R, S) be a splitting p-modular system for the finite group
G. Let X be an indeterminate, 'A = R[[X]J, P = 1rA, and Ap the
localization orA at P. Then Ap/PAp = F«Xy), Ap andS«X))'
is also a splitting p-modular system for G: Most of the known
examples of semisimple'deformatio~s(F«X)),.*) of the modular
group 'algebra FG are liftable. In particular, each p":block B of
FG with cyclic defect group t5(B) has a semisimple liftable defor·
mation (B ®F F«X))'-*). The main, result of this lecture asserts
that FG has a semisimple liftable deformation if and only if the
group ring RG has adeformation (ApG, *) which is a maximal Ap­
order in the semisimple group algebra S«X))G. It follows that
the decomposition ma.t~ix of the semisimple liftable deformation
(F«X)), *) equals the ordinary decomposition matrix of G with
respect to (FG, RG, SG).
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J.A. de la Peiia: Tarne algebras with a sincere directing
module

Let A be a finite dimensional, basic and connected algebra over
an algebraically closed field k.

An indecomposable A-module X in said to be directing if X
does not belong to a cycle X = Xo A. Xi -+ ... ~ Xn = X of non
zero non isomorphisms with Xi indecomposable, 1 ~ i.~ R. Tbe
module X is sincere if HOffiA(P, X) t: 0 for every 0 ~ P projective.

Aigebras with a sincere. directing module were classified in the
representation-finite sit uation, they are relevant in the polynomial
growth tarne situation.

Theorem Let A be a tarne algebra with a sincere directing
module. Then

a) A is domestic in at most 2 parameters (PA ~ 2)
b) If p.A = 1, then A is a (00- )enlargement of a domestic (co-)

tubular algebra.
c) If PA = 2, then A is the glueing of two domestic one para-

metric algebras. .

Now, let A be a tarne algebra with ci. sincere directing module
and assume that PA = 2. Then A is. a tilted algebra, say of type ß.
We get the following

Proposition a) H ß' in not ~ tree, then A (or AOP) is of tbe
furrn .

Ä:~: -':.:': -')
~~ .

b) If ß is a tree, then L\ has at most 5 terminal points. H ß
has 5 terminal vertices, then A (or AOP) is of tbe form

•.••.••d·~ •..•.•

.~ -- -- -~ - -----~." ~:» /'
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J. Richard: Derived categories of blocks of symmetrie
groups

According to conjectures oe Michel Broue, there are manl' situ­
ations in modular representations theory where two related blocks
of related group algebras should have equivalent derived categories.
In all cases where these conjectures were previously known to be
true, the proof is unsatisfactory in that it follows from a complete.
knowledge of the algebra structure of the blocks. I shall discuss the
case of blocks of symmetrie groups, where many equivalences of de­
rived categories occur, and wherefor tbe .first time there. is a proof
that does not use a complete description of tbe algebra structure.

Ch. Riedtmann: Lie algebras generated by indecompos-
ables . .

Given a finite dimensional associative C-algebra A having only
finitely many indecomposable modules, there is a Lie algebra struc­
ture on the free Z-module generated by the indecomposables. For
A = CQ, where Q is a Dynkin diagram An, Dn, E6 , Er or Es, this
Lie algebra is the positive part oe a Z form of the simple Lie algebra
associated with Q.

A. Schofield: Representations of a1gebras and a path to
Lie algebras . .

Given an arbit.~ary f. d. associative C-algebra, A, we associate
a Lie algebra, L+(A), to' its representation theory. In tbe case of
A = CQ, tbe Lie algebra is tbe positive part o.f the Kac-Moody Lie
algebra associated -10 Q.

D. Simson: Matrix problems, coverings and Cohen­
Macaulay modules

Theorem 1 (Kasjan, Simson) Let I be a finite pose~ having ex­
actly two maximal elements *, + and let K be a field. The quadratic
form
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is weakly nonnegative 1ft" the posets *v := {j E I; j < *} and +v do
not contain (1,1,1,1,1), (1,1,1,2), (2,2,3), (1,3,4), (N,5), (1,2,6) and
I does not contain certain 41 critical posets with two maximal ele­
ments. If the category mod.pKI of socle projective representations
of I is of tarne type then q/ is weakly nonnegative. Tbe converse is
proved for ~-free poset~ of finite growtb.

Theorem 2 (Lenzing, Simson) Let A be a tiled K[[t]]-order
of index s 2::: 1. Tben tbere is a Z-graded K[t]-algebra SA, and
an infinite poset JA such that BA ~ A and tbe Auslander-Reiten
completion funetor i : CMZ(SA) -+ CM(SA) between the cate­
gories of Cohen-Macaulay modules is equivalent to a covering fune­
tor F : JA - sp -+ latt(A) of Roggenkamp-Wiedemann type.

An application to curve singularities of finite lattice type will
be discussed.

A generalization of Theorem 2 for nontiled orders~ will be in­
dicated in a connection witb Theorem 1, representations of bipar­
tite posets and soele projective representations of assoeiated bound
quivers.

A. Skowronski: Aigebras 'or polynomial growth
Let k be an algebraically closed field and A "be a finite dimen­

sional k-algebra. Then A is of polynomial growtb if there exists a
natural number m such that· tbe indecomposable finite dimensional
A-modules occur, in each dimension d, in a finite number of dis-..
crete and.. at most d"' one-:parameter families: Moreover,A is called
standard· if there exists ~ Galois covering R -+ R/G = A with R
simply eonnected. Here, by a simply eonnected k-category we mean
a locally bounded k-category R such that: (a) R is Sehurian and
Ä-free;

(b) the quiver of R is connected, interval-finite and without
oriented cycles;

(c) HtR = O.
Applying the Galois covering techniques developed several years

ago by Dowbor and the speaker we"sball give a criterion for polyno­
mial growth of standard algebras and descnbe tbe indecomposable
finite dimensional modules over such algebras.
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s.o. Smale: Short chains and short cycles
Let A be an artin R-algebra. An indecomposable f.g A-module

Cis
i) said to be the middle of a short chain if there exists an in­

decomposable module" X with HOffiA(X, C) =F 0 =F Hom(C, DTrX),
and

ii) said to belong to ä short cycle if there exists an indecompos­
able A module X and / : X ~ C and 9 : C ~ X with / ~ 0 =F 9
and both f and 9 nonisomorphisms. With tbis notion we prove tbe
following

Theorem Let M and N be indecomposable A-modules having
tbe same composition factors.

a) H"M does not belong to any short cycle then M ~ N
b) H M is not tbe middle of any short chain and N is not on" an

A:-sectional chain, then M ~ N
c) If A is of finite representation type and M is not the middle

of a short chain, then M ~ N.

L. Unger:" A family of non-selfextending generic bricks
This is areport on sorne joint work with Dieter Happel.
Let A be a finite-dimensional, hereditary k-algebra over an alge­

braically closed field k. An A-module Q is called a brick if EndQ is
a division ring. An infinite-dimensional A-module is called generic
if it is of finite length over its endomorphism ring. "

It is knOWD that A has indecomposable generic modules if and
ooly if A is not representation-finite. .

Dur considerations were motivated by the following result 01
Ringel:

Theorem A tarne algebra has up to isomorphism a unique OOD­
selfextending geoeric brick.

In the talk tbe following questions will be considered:
LI A is wild, do there exist modules with the same properties?
If yes, is there a 'canonical' way to construct them?

17 "

                                   
                                                                                                       ©



Qo

To attack these questions we consider the algebra lC.: 080
Qr

which for r > 1 is wild, and construet one non-selfextending generie
brick explicitely.

For r > 1· we give an algorithm how to construet from this
module an infinite family of modules. having the sarne properties.
This is then used to show the following theorem:

Theorem For a wild finite-dimensional, hereditary k-algebra
A there exists an infinite family of pairwise non-isomorphie DOD­

selfextending generie bricks.

P. Webb: The Structure of Mackey FUnctors
I will survey sorne key points in recent work of J. Thevenaz and

myself in whieh we develop a theory oI Mackey funetors as t:ep­
resentations of a certain quiver with relations, or equivalently as
representatlons of an algebra Vle eall the "Mackey algebra". We
proceed by considering simples, projeetives ete., and it turns out
that a developinent which paralIeis the usual development oI group
representation theory is possible. I will emphasize the theorem
whieh eharae~erizes when the Mackey algebra has finite representa­
tion type.

D.J. Woodcock: The relationship between cohomology
and combinatorics in the Schur algebras ror GLn and its
parabolic subgroups.

G a reduetive group over an algebraically elosed field k, B a
Borel subgroup. Kempf's vanishing theorem can be stated in tbe
form:

If ~ is a dominant weight the simple rational B-moduleofweight
~ is Ind~-acyclic.

It is a corollary tbat if V, W are finite dimensional rational G­
modules then Ext~(V,W) = Ext~(V, W) Vi ~ o.

I am studying analogous questions with tbe categories of ra­
tional G ~ B-modules replaced by the categories of modules for
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Schur algehras for G = GLn and B :5 G a Borel suhgroup. The
methods used are combinatorie: The modules I eonsider have bases
parametrized by various types of tableaux.

Ch. Xi: Symmetrie algebras as endomorphism rings of
large projective modules over quasi-hereditary algebras .

In tbis talk the following theorem is proved:
Theorem 1 Let A be a basic, eonnected algebra. Then tbe

following are equivalent:
(1) A is symmetrie, and there is an indeeomposable module M

such that EndA(AA EB M) is quasi-hereditary.
(2) A is isomorphie to the trivial extension of aserial algebra

with radical square zero and finite global dimension.
As a consequence of the above theorem we have
Theorem 2 Let SK(n, r) be a Schur algebra with n ~ r. As­

sume that the field K has a prime eharacteristic p. Then SK( n, r)
is of finite type if and ooly if r < 21'.

K. Yamagata: Construetion of algebras with large global
dimensions

E. Green gave an example of a family of finite dimensional alge­
bras An (n ~ 0), over an algebraically closed field, with exactly two
isomorphism classes of simple modules and having global dimensio~
n. The algebra Ao in the family-is a semi-simple algebra witb two
simple modules and An is obtained by adding one arrow and zero­
relations to tbe quiver of An - t • The aim of my talk is to generalize
the construction to arbitrary algebras. More precisely, for an alge­
bra A we shall construet .a family of algebras An(n ~ 0, Ao = A)
having the same number of simple modules as the number of simple
A-modules, so that the global dimension of An is greater than that
of An - 1 provided that the global dimension of A is finite, and the
Cartan determinants of all An are the same" as that of A. Although
our construction depends on the decomposition of A and tbe order
of decomposition factors, the global dimension of every An is deter­
mined by the number n and the number of decomposition factors
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provided that the ring A is semi-simple or hereditary.

B. Zimmermann Huisgen: Homological domino effec~s

and the first finitistic dimension conjecture
We refute the first finitistic dimension conjecture. This conjec­

t ure asserted tbat fin dirn A = Fin dirn A for every fini te dimensional
algebra A, where fin dirn A is the suprernurn of tbe projective dimen­
sions of those finitely generated left A-modules which have finite
projective dimension, and Fin dirn A is the analogous supremum
obtained on waiving the restriction 'finitely generated'. The class
of examples we present rests on a theory that provides thorough un­
derstanding of both finitistie dimensions for a certain elass of finite
dimensional algebras. This theory allows us not only to construct
algebras A with (findirnA,FindimA) = (n,n + 1) for ea.ch n ~ 2,
but also to exhibit a variety of other homological frills.

The examples are eounterbalaneed by positive insights, e.g. con­
cerning tbe question of when the two finitistie dimensions do coin­
eide. Moreover, the positively graded modules over certain graded
algebras are shown to be rather manageable from a homological
point of view in that they are no more difficult to handle than
finitely generated modules; this is in sharp contrast to the behavior
of the Z-graded modules in general. .

Berichterstatterin: Luise Unger
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