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. MATHEMArrISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 21/1991

Nonlinear Evolution Equations

12.5. bis 18.5.1991

•

Die Tagung fand unter der Leitung von Herrn S. Klainerman (Princeton)
und Herrn M. Struwe (Zürich) statt. Die Teilnehmer kamen aus der Bun­
desrepublik Deutschland, den USA, der Sovjetunion, Australieo, Japan
und anderen Ländern und vertraten einen breiten Tliemenkreis aus dem
Gebiet der nichtlinearen Evolutionsgleichungen. Schwerpunkte stellten
unter anderem Regularitätssätze für semi-lineare Wellengleichungen,
Evolution von Hyperftächen ~nter dem mittleren-Krümmungs-Fluss und
Probleme der allgemeinen Relativitätstheorie dar.

Die Ergebnisse" wurden in interessanter und verständlicher Weise vor­
getragen. Sicherlich gaben auch die fruchtbaren Diskussionen vielerlei
Anregungen.
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Vortragsauszüge

Curvature Evolution of Hypersurfaces and Selfsimilarity

Gerhard Huisken, ANU, Canberra

Let F(·, t) : Mn ~ Rn+l be a smooth family of hypersurface immer­
sions such that

(*)•Here 11 is the unit normal to the hypersurface Mt = F(·, t)(Mn) and f is
a smooth homogeneous, symmetrie function of the principal curvatures
K,i. The flow (*) is parabolic and admits at least shorttime solutions
nnder natural assumptions provided 3!:; > o. Typical examples are the
mean curvature H = K,l +...+K,n, the Ganss curvature K = Itl "2 ••• "n
and the harmonie mean curvature H_ 1 =(/(,1 1+ ... + ,,;;1)-1.
It is demonstrated that in many cases solutions of (*) approach self­
similar solutions, either in finite time near a singularity, or in infinite
time. Various examples are discussed and a classifieation of selfsimilar
contracting solutions is given for the mean curvature fiow, Le. f = H.

Asymptotic Orbital Stability on Nonlinear Dispersive Systems

Michael I. Weinstein, Ann Arbor

I shall discuss work in progress on asymptotic orbital stability and scat-"
tering for a class of nonlinear Schrödinger systems which supports (non­
linear) bound states and dispersive solutions. These are nonintegrable
Hamiltonian systems whose dynamies are characterized by interactioe
for a1l times among bound states and dispersive radiation. The System
is studied using a decomposition of the solution, whose bound state part
is modeled by "collective coordinates" or modulation of symmetries.
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On the Nature oE Singularities of General Relativity

Deinetrios Christodoulou

This is a survey of my work on the Einstein equations in the spherically
symmetrie case with a scalar wave field as the material ~odet The main
results are the following: The maximal clus of wave funetions for which
the initial value problem is well posed are the lunetions whose derivatives
are of bounded variation. The domain of auter communications U is
defined to be the union of all future null geodesic cones with vertices at
the center of symmetry which are complete and whose cross sectional
area tends to 00. Fot each such cone we can define the Bondi mass M.
If the initial total variation is small then there is a global solution, U
is complete and the final Bondi mass MI = o. On the other hand, if
there is, on the initial future cone, an annular region bounded by two
spheres such that the mass contained in the region bears to the radius
of the outer sphere a ratio which is large in comparison to the ratio of
the radii minus 1, then a trapped sphere forms in the future whose mass
is bounded bom below in terms of the two initial radii. (For a trapped
sphere S the outer component of the boundaIY of the future of 5 is
contracting at S). Mt > 0 and U has a boundary H, the event horizon,
a complete future null geodesie cone whose cross sectional area tends
to 161rMl. The trapped region T, defined to be union of a1l trapped
spheres, is a future set whose past boundary A, the apparent horizon,
is asymptotic to Hand contains DO incoming null segments. The future
boundary of T is the singular boundary B minus its center Bo. This is
the union of alI spheres of zero radius and positive masse B \Bo is strictly
spacelike. The curvature blows up at B\Bo at least as fast as (radius)-3.
FinallYt alI initial data except those in an exceptional set E, contained
in a hypersurface in the space of funetions of bounded variation, lead
either to a eomplete solution or to a strietly spacelike singular boundary
preceded by a trapped region (Cosmic censorship). However, € contains
an infinite dimensional set of initial data which lead "to the formation in
the future of singular points contained in U and lying at the center of
symmetry (naked singularities).
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Flow of CODvex Hypersurfaces by Functions of Curvature

Ben Andrews, Canberra

This work generalizes the results on mean curvature flow of convex hy­
persurfaces to flows by other curvature functions in a large class. I will
also discuss recent developments in Harnack inequalities for these llows,
and some applications in geometry.

Blow Up ror Semilinear Parabolic Equations

Pavol Quittner, Bratislava •

We study stationary solutions and asymptotic behavioUI of solutions of
the following two problems:
Problem (PI):

1I,t = ilu - (Vulq + AU"
u = 0

u(z,O) = uo(z) ~ 0

Ut
8u
an

u(z, 0)
Problem (P2):

ilu - AUP

uq

= uo(z) ?: 0

in (} x (0, T)
on an x (O,T)
zEO

in n x (0, T)
on an x (O,T)
zEO

Hete {1 is a bounded domain in Rn, p and q > 1, A > O. If e.g. N = 1,
then the blow up (in finite time in LOO-norm) of solutions of (PI) Ol

(P2) may occur iff p ::; 2q - 1 (and A < q if p = 2q - 1) or p > q (and
A is sufficiently large if q ~ #fr), respectively. The results for (PI) were
obtained jointly with M. Chipot and M. Fila, the blow up results for
(P2) are new only in the case p > q > !f:r.

Hölder Estima"tes ror Quasilinear Doubly Degenerate Parabolic
Equations

A. V. Ivanov, Leningrad

We consider quasilinear degenerate parabolic equations of the type

8u a·
-8 - -8a'(z, t, u, Vu) + b(z, t, u, Vu) = 0

t Zi

4
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in a cylinder QT = {} X (0, T], {} C Rn, n ~ 1, where the functions
ai(z, t, u,p) a~d b(z, t, u,p) satisfy Caratheodory conditions and some
growth conditions. The typical example is the equation of nonnewtonian
polytropic filtration

We proved
1. Inner and boundary Hölder estimates for positive weak solutions

independent of their infimums.
2. Existence of nonnegative Hölder continuous in QT weak solutions

of the Cauchy-Dirichlet problem.

Existence or Global Small Solutions in Nonlinear Thermoelas­
ticity

Reinhard Racke, Bonn

First we characterize same typical existence respectively blow-up results
for nonlinear wave equations in bounded and unbounded domains. Then
the nonlinear hyperbolic-parabolic coupled system of thermoelasicity is
considered.

1. The three-dimensional Cauchy problem is reviewed.
2. Results for one-dimensional models are presented, mainly on the

existence of global smooth solutions for small data.

The Cauchy Problem ror Semilinear Hyperbolic Equations

e· Lev Kapitanskü, Leningrad

The existence and uniqueness of global weak solutions to the Cauchy
problem for a semilinear hyperbolic second-order (pseudo) differential
equation with the critical Sobolev exponent (in particular, the equation
Ucc - du + luI4/(n-2)u = 0, t E Rl, Z ERn, n 2:: 3) is proved. The proof
is based on certain new estimates for the solutions ci! the corresponding
linear problems, which generalize in several directions the weIl known
estimates of Strichartz, Brenner and Ginibre and Velo.
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Some Remarks on the Regularity properties of the equivariant
wave map in 2 + 1 dimensions

Manoussos G. Grillakis, College Park

The wave map equations consist of a system of equations of the form

O i + r i ( )80 ;8 k 0 . - 111, jk U 11, 011, = ,~- ,... ,n. (1)

•

Here u: R x Rn -+ (Mn, hij) is a map flom the Hat Minkowski
space-time to an n-dimensional Riemannian manifold M equipped with
ametrie hij , and r~l:(u) are the Christoffel symbols on M. The space.
R x R'l is equipped with the standard metric .,.,a/3 = diag(-1, 1, ... , 1)
and aa = ~, aa = 17aßa/3 while 0 = aaaa is the D' Alembertian.
Equations (1) d'escribe the evolution of waves on the manifold M, and
are "critical" if n = 2. Assuming that n = 2 and that the map is
equivariant, i.e. it satisfies a certain symmetry, one can prove that the
solutions cf (1) are regular for al1 time provided that the metric satisfies
a certain restrietion. It is an interesting open problem to understand
the behaviour of (1) when n = 2. If one assumes that M has negative
curvature the solutions should be regular, it is not clear what happens
if M has positive eurvature, for example M = S2 the two dimensional
sphere.

Degenerate Semilinear Parabolic Equations

Andreas Stabel, Salt Lake City

On a smooth bounded domain (1 in RN and on a given time interval
I = [0, T+] we eonsider the equation .

Ut - div(agradu) + bgradu = f(u)

with Dirichlet, Neumann or mixed boundary conditions. For a subset S
of (} we require

If g,(z) is the smallest eigenvalue of the symmetrie matrix a, then we
have the essential assumption g,-l E Lq(O) for some q > 1.
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If 8/(8) ::; c(l + 82) and Ulc=o E W 2 ,2(O) n LOO(fi) and suPP(ulc=o) ce
0\5 then there is a unique solution U of the problem with

'I.' E Lip(l, L2 (n» n C i (!, H~(n» .

H~ is the weighted Sobolev space with the norm lIulI~l
c.

(aVu, Vu).

On a Construction of Morse Flows for a Variational Functional
.• of the Harmonie Map Type

Norio Kikuchi, Keio University, Yokohama

We try to construct Morse ß.ows for the variational functional

•

in the Sobolev space H 1 (O, R M ), M ~ 1, where {} is a bounded smooth
domain in Euclidian space Rtn, m ~ 2, and· the coefficients A':j, 1 ::;
a, ß :s; m, 1 :s; i, j :s; M, are bounded smooth functions satisfying
Legendre-Hadamard condition. We adopt the following methode Let
T be a given positive number and '1.'0 E H 1 (O, R M ) be a given initial
mapping. For a positive integer N sufficiently large, we put h = TIN.
Starting from uo, we inductively construct two sequences of mappings U n

and functionals Fn , n = 1,2, ... , N, as folIows: Fot each n, 1 :$ n :s; N,
we define a functional In by

and fix Un as a minimizer of Fn in the space Uo +HJ(O, RM). We notice
that {Un}l<n<N is an approximate Morse :ftow. We have an estimate,
independent <rl" N, of "CaccioppoIi's type" for {-un}.

7
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for t =0, Uo E C~(R3)

for t = 0,1.'1 E C~(R3)

For time-discrete linear parabolic equations related to the functionals
F 'B' 1 :5 n :5 N, it is stated that the following estimates are valid:

1. Hölder estimate of Ladyzhenskaya-Ural'ceva's type.
2. Harnack inequality of Morse's type (by M. Misawa).
3. Campanato estimate for vector case.

Global SolutioDS of N onlinear Wave Equations

Hans Lindblad, Prineeton

We are concerned with conditions on G such that the Cauchy problem •
3

8;1.'- L8~iu G(u,u',u")
i=l

1.' = EUO

Ut EUl

G(O) =G'(O) = 0

has global 0 00 solutions u for small E > o. It is weIl known that the
"null condition" of Klainerman implies global existence. However, we
conjecture that this should be true also if G contains terms of the form

We prove this conjecture in the radially symmetrie case.

The Initial Value ProbleDl rar Self-Gravitating Fluid Bodies

Alan Rendall, Garehing

I will discuss what is known eoncerning the initial value problem for a •
self-gravitating fiuid body and in particular the question of loeal in time
existence in the ease of aperfeet fiuid described by the Ewer equations..
In the ease of Newtonian gravitation there is an existence result due
to Makino and I have generalized this to the eorresponding situation
within the framework of general relativity. An intersting intermediate
ease, that ofpost-Newtonian gravitation, will also be mentioned together
with possible applications to the rigorous justification of approximation
techniques in general relativity.
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Global Existence and .A.symptotic8 of Solutions of the
Robinson-Trautman (2d-Calabi) Equation

Piotr Chrusciel, Canberra

To every equation of the Robinson-Trautman (RT) equation

8gi ; 1
8u = 12mdgR gij, m =constant

where 9i; is a u-dependent family of Riemannian metries on a smooth,
eompact, eonneeted, orientable two dimensional manifold M 2

, one ean
associate a vacuum solution of Einstein equations deseribing a space­
time, with a Sehwarzschildlike event horizon when m > 0 and M 2 = 52.
Global emtence of solutions of (*) ean be established for H 4 initial
data. A rather preeise asymptotic expansion as U -+ 00 of solutions
of (*) is .needed in order to understand smoothness of the space-time

. metric across the event horizon 1f,+. In a joint work by this authoI and
D. Singleton such an expansion has heen shown to hold, which leads to
the result that fOI generic RT space-times which start flom "sufficiently
small" initial data DO extensions of 0 123 differentiability across the event
honzon 1f, enst, vacuum 01 otherwise. It is believed that the "small
data" restrietion is unnecessary.

Global Classical Solutions of Semilinear Wave Equations

.Hartmut. Pecher, Wuppertal

Consider Cauchy. problems of the type

Utt - Llu+ f(u) = 0
u(z,O) = tp(z)

Ut(z,O) = ,p(z)
where the data cp and 1/J are not assumed to satisfy a smallness condition.
If the energy funetional is definite and the data have finite energy the
enstence of global weak solutions is weIl known. Ir one wants to have
more regularity, further restrietions were necessary to establish such re­
sults. In the ease of C 2-solutions f had to fulfill a growth condition at
±oo, namely f(u) f'OtJ lulp -

1u as u -+ ±oo, where p< :!~, and moreover

n :5 9. If n = 3, p = :!~ could be included . I am now able to show

9
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that in the case n = 3 also nonlinearities which only fulfill a "one-sided"
condition are allowed. 1 has to be of the class c2,a(R), and 1/(8)1 :5 K
as a -+ +00, and /(8) ~ -K Va E R, where K is an arbitrary real con­
stant. For a more restricted class of nonlinearities such as f( u) = 0 for
u ~ 0 and f( u) = lulP fOI U < ~ and p > 2 arbitrary, a densely defined
scattering operator in energy space exists that belongs to the pair cf
equations Utt - dU+ f(u) =0 and U~t - ßUo = o.

Regularity of the Flow defined by Quasi-linear Hyperbolic
EquatioDS and Applications to Qualitative Properties of the.
Flow

Berhert Koch, Heidelberg

The local behaviour of a flow near an equilibrium should be described
by some kind of Taylor expansion. Bifurcation theorems' establish such
results in rather general situations-for differentiable :Bows.
An example is given, which shows that the :ßow generated by a hyper­
bolle equation is not differentiable. This flow has same differentiability
properties if one considers a sc8J.e of spaces. This allows to prove a Bopf
bifurcation theorem.

Evolution and Self-Organization Laws in Complex Systems

Sergey P. Kurdyumov, Moscow

New ideas and mathematical methods for the studying different non­
linear open systems and general classes of nonlinear differential equa­
tions are given. It is shown that properties of localization of different
nonstationary dissipative processes in a nonlinear medium such as non­
linear heat conductivity and combustion are the most general ones and •
playan important role in the understanding "laws of evolution" and the
structure of the attractors of nonlinear systems. The idea of so called
"eigenfunctions" cf nonlinear systems which are the only asymptotieally
stahle trajectories is considered. It is shown that in many cases above
"eigenfunctions" are some explicit solutions which are invariant under
Lie or Lie-Bäcklund transformations or so ealled approximate self-similar
solutions. The elass of nonlinear heat equations with source of energy of
the form ut =ßtP(u) + Q(u) is discussed in detail.

10
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Regularity' of Scattering Operators ror Nonlinear Klein Gordon
EquatioDS

Philip Brenner, Göteborg

In this talk we discuss mapping properties of the scattering operator

where u± are solutions of the linear Klein-Gordon equation

(KG)

such that they asymptotically are approachedby the solution U of the
equation

(NLKG)

•

as t --+ ±oo. The main result is the following theorem.

Theorem: Let n ~. 3 and let f(u) = lulp-1u where 1+ ~ < p< 1+ ~~2.

Then S maps H' x H,-l into H' x H,-l for 1 :5 s ::; 2 and

lIu(t) - U±(t)IlH. ---+ 0, t ~ ±oo.

Derivative Nonlinear Schrödinger Systems

Horst Lange, Köln

We consider some examples of nonlinear Schrödinger equations which
contain derivatives of the wave funetion in the nonlinear part, and diseuss
the difficulties coming from that fact. The examples are e.g.
Problem (PI):

. . I 12~ 'Ut =- Uzz + ~ Q 11, z 'U •

Problem (P2):

11

                                   
                                                                                                       ©



Problem (P3):

i Ut -Uxz + 'Y4Ju 'U

8</J
tPu = oz Iy=o

tPzz + </Jyy 0
tPyly=o 61ul;

tPyIY=-l = 0
u(:c + 1, t) u(:t, t).

Here a, ß and 'Y are real numbers. The Problems (PI) and (P3) come
flom the theory of deep water waves (Dysthe's NLS), whereas (P2) de-
scribes the thickness and velocity of a thin layer of a superßuid film •
(also appears in Heisenberg ferromagnets). We discuss global existence
and uniqueness results for weak finite energy solutions of various ini-
tial boundary value problems for (PI), (P2) and (P3) which are quite
different in each case.

Sharp Estimates of Blow-Up ror Degenerate Parabolic Equa­
tion with Gradient-like Diffusion Source

Sergey A. Posashkov, Moskow

The Cauchy problem for quasilinear parabolic equation with source

Ut Ao(u) := V· (IVulD'Vu) + uß for t > 0, :c E Rn
u(O,:z:) = uo(:z:~;::: 0 :z: in RN

Vuo E C(R )
sUPUo < 00 ,

where u > 0 and ß > u+ 1 are fixed constants, is considered. U nbounded
blow-up solutions u = u(t,:t) ~ 0 to the above problem existing on a
finite time interval (0, Ta) such that

limsupu(t,O) =+00 , t --+ Tö < +00

is investigated. The main results are to prove estimates of u(t,:c) near
finite blow-up time t = TÜ . For solution u = u(t, r), r = l:tl > 0
under some hypotheses on uo(r) ~ 0 the following upper estimate in
(O,To) x {r > O}

u(t r) < (ß - (0" + 1) ( 0" )~) - l-iti:1) . r- ti-i!4-1)
'- U + 2 O'(N + 1) + 2

12
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zE(O,oo)
t>O

and the following lower estimate for small r > 0

u(Tü,r):= liminfu(t,r) 2: Cl r- tl-i:;1) , Cl = Cl«(j,ß,N)
e-.T;

are proved.

Global Solutions of the Dirichlet Problem in One-Dimensional
Nonlinear Thermoelastieity

S. Jiang, Bonn

We consider the following initial boundary value problem for the equa­
tions of one-dimensional nonlinear thermoelasticity

'Ut - Vz = 0
Ve - U z = 0

1)2
(e+T)t-(CT1)z+Qz = 0

vl80 = 8180 0
u(O) = 11,0, v(O) vo, 8(0) =80

u is the displacement gradient, v the velocity and (J the temperature
difference. (j:= u(u, 8) = 8Yb:,8) is the stress and ,pe 'U, 8) the HeImholtz
free energy, q := q(8:) is the heat flux, e := e(u, 8) = .,p( 'U, 8) - (8 +
To) 81Pt,8) the initial energy and To the reference temperature.
Under the usual assumptions on 1/J and q (such that the above system
is hyperbolic-parabolic) we prove a global existence theorem for smooth
small initial data by the L 2 energy method.

• Almost Periodic A ttraetors for a Class of Reaction-DifFusion
EquatioDS on RN

Pierre-A. Vuillermot, Max-Planck-Institut für Mathematik, Bonn

Our talk was devoted to the presentation of some recent results concern­
ing the long-time behaviour of classical solutions to certain parabolic
partial differential equations which occur in population genetics. We
showed how to construct almost-periodic attractors for those equations,

13
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and how to prove their uniform Liapounov stability by devising an ap- ..
propriate center-manifold theory for nonlinear and non autonomous evo­
lution equations on Sobolev spaces

Transitions in Convective Turbulence

Peter Constantin, Chicago

We offer an estimate of the average area of isotherms in eonveetive tur­
bulence as a possible signature of the observed transitions. Theestima.
predicts roughening above an inner scale. As this scale passes througW
the significant scales established in the medium (size of the domain, size
of the mixing layer ete.) the signal ehanges qualitatively.

Weak and Strong Solutions of the Navier-Stokes Equations

Wolf von Wahl, Bayreuth

We eonsider the Navier-Stokes equations

0tU - Vdtt + uVu + V1r = f
Vu = 0

ulan = 0
u(O,~) = tto(z)

over a cylindrical domain [0, +00) x {l, where {} mostly is a smooth,
bounded domain of R3. First we eliminate the pressure ?r by applying
the projection onto the divergence-free part of LP(O). Then a loeal (in
time) strong solution of the problem is constructed. Beside tbis solution
there is a global weak solution of the problem. The eonnection between
local strang and global weak solutions is discussed via Serrin's uniquenes~
theorem. Finally the regularity of weak solutions is studied. _

14
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(1)•

Die Herren B. Chow und F. John waren leider verhindert an der Tagung
teilzunehmen; sie haben jedoch ebenfalls Vortragszusammenfassungen
geschickt, die wir nachstehend abdrucken.

The Ricci Flow on Surfaces and 2-0rbifolds

Bennett Chow, New York

The Ricci llow is the nonlinear parabolic equation obtained by deform­
ing a Riemannian metric in the direction of its Ricci tensor. In light of
ThuIston's Geometrization Conjeeture and the Calabi conjecture, it is of
special interest to consider the Ricei fiow on 3-dimensional Riemannian
manifolds and n-dimensional Kähler manifolds, respectively. The study
of the Ricci fiow on surfaces and 2-orbifolds is necessary in analyzing the
singularities which develop under the Ricci fiow on 3-dimensional Rie­
mannian ~anifolds. Moreover, surfaces are I-dimensional' Kähler man­
ifolds. Thus, one hopes that the techniques on surfaces will generalize
to Kähler manifolds. By the work of Richard Hamilton, Lang-Fang Wu
and the speaker, there is a relatively complete understanding of the Ricci
fiow on surfaces. In particular, one has a new proof of the uniformization
theorem and a generalization to orbifolds.

Lifespan of Finite Amplitude Waves in an Isotropie Homoge­
neous Hyperelastic Material

Fritz John, New York

Let u = u(t, z) = u(t, Zl, Z2, Z3) denote the displacement vector, and
1),' = (~) the J acobian matrix. The equations of motion are hyperbolic
and of the form

8
2
u _ '"" ~,(') 8

2
u

- LJc U •8t2 az~8z,
~,'

Here the matrices er, (1.1,') have as elements the second derivatives of the
energy function W(u'). In our case W(u/) is asymmetrie function ofthe
eigenvalues of the strain matrix t(u' + 1.1," +u"u'). The initial conditions
are

8u
u=/(z), 8t =g(z) for t=O

15
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with /, gin C(R3
). We first show the "almost global" existence ofwaves

arising from "small" initial disturbanees. Let 6 be the supremum of the
L 2-norms of all derivatives of fand 9 of order ~ 15. There exist then
two positive constants 60 and A depending only on the choice of the
function W(u'), such that the solution u(t, z) of (1) and (2) ensts for

(3)

provided 6 < 60 • For a finer analysis of the solution we assume that the
initial data (2) have the form

(4)

with Fand G fixed in Co(R3) and a positive scalar parameter €. We
investigate "the solution u = u(t, 2:, E) for small E. We write (1J as a
first order system for the vector U with the 12 components ~, ~ for
i, k = 1,2,3:

au =LB;(u') au
8t. fJz j

3

(5)

We write z = re with r = 1:1:1, eE 52. We introduce the characteristic
matrix of the linearized equations

(6)

We have 12 eigenvalues Aa and corresponding eigenvectors 1]0 for the
constant matrix B. if 0 < C2 < Cl denote the speeds of transverse and
longitudinal waves in the linear theory, then A = 0 is an eigenvalue of
multiplicity 6, A = ±C2 have multiplicity 2, and A = ±CI have multiplic-
ity 1. e
The key is the expansion

(7)

It turns out that Wo = O(~) as long as (A a + f)-l is bounded. The
bulk of the transverse waves is concentrated near the cone r = C2 t , and
that of the longitudinal waves near the cone r = Cl t. Surprisingly the

16
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...

transverse waves da not blow up before the longitudinal ones, due to the
special nature of the function W(u'). Blow-up of the longitudinal waves
does not occur before a time eA

/ f
• Here A depends on the choice of F,

G and W. More precisely A depends on the values for large t of the
solution of the linear equation

with initial values (4), and on the first derivatives of the c"" (u') for
u' =o.

Berichterstatter: N. Hungerbühler
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