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Die Tagung fand unter der Leitung von L. Danzer (Dortmund) und G. C. Shephard (Norwich)
statt. Sie hatte 35 Teilnehmer, von denen 33 Vortriige hielten. Die beschriinkte Teilnehmer-

zahl bei gleichzeitig hoher Aktivitit der Teilnehmer sorgte fiir ein diskussionsreiches Tagungs- '

klima, das sich auch in zwei Problemsessions am Montag und am Donnerstag dokumentierte.

Die Vortriige behandelten vielfiltige Themen aus dem weiten Spektrum der Diskreten
Geometrie, es ergaben sich aber einige eindeutige Themenschwerpunkte. Etwa ein Drittel der
Vortriige war Packungs-, Uberdeckungs- und Pflasterungsproblemen gewidmet, wobei der
aﬁfsuebende'Problemkreis der Aperiodizitiit bei Pflasterungen mit mehreren Vortrdgen vertreten
war. Das Wechselspiel von Gruppen und Geometrie — Regularititsfragen im weitesten Sinne —
kann als iibergreifender Gesichtspunkt zu einer Reihe von Vortriigen genanht werden. Eine
weitere Gruppe von Vortriigen war mehr kombinatorischen Fragestellungen gewidmet —
Anordnungsproblemen und Anzahlproblemen. Mehrere Vortrige befassten sich mit MaB- und
Identifikationsproblemen bei konvexen Kérpern. Neben all dieser Schwerpunktbildung zeigten
cinige Einzelvortriige mit der Behandlung weniger bekannter oder manchmal fast in Vergessen-
heit geratener Themen, daB auch in solchen Bereichen wie der Dreiecksgeometrie oder der
Klassischen hyperbolischen Geometrie noch ein groBes Potential an Forschungsméglichkeiten
steckt.

Die Tagung wurde nicht zuletzt deshalb von vielen Teilnehmern als besonders fruchtbar emp-
funden, weil trotz aller Verwandtschaft der Arbeitsgebiete sehr unterschiedliche Arbeitsmetho-
den und Ideen vorgestellt wurden; dazu hat vor allem auch die Anwesenheit einiger Teilnehmer
beigetragen, die der Diskreten Geometrie im engeren Sinne nicht zuzurechnen sind.
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Vortragsausziige -

A. BEZDEK:
Cylinder packing and covering problem

The set of points whose distance from a given line does not exceed a given positive number is

called an infinite circular cylinder (cylinder in short). A subtle construction of K. Kuperberg

(88) produces a positive-densitiy packing with cylinders in which no two of them are parallel.

W. Kuperberg .and A. Bezdek (88) showed that the ratio of the portion covered by the cylinders

of a packing to the whole of the space cannot exceed “E_ Thelater two authorsalso - ‘ .
) 12 :

determined the gapradius (measured by the radius of the largest sphere lying in the gaps).

The following new results were discussed during the talk.

1. In connection with a paper of A. Heppes and L. Szab6 we prove that the largest radius r4
such that 4 cylinders of radius r4 can touch a unit sphere without overlapping each other

is 1+4/2.

S 3.
2. The cupradius of a cylinder covering (with cylinders of unit radius) is at least 1 — 2 if
not all cylinders are parallel, then it is at least 1 — L Note that the cupradius of a

2
covering is measured by the largest sphere lying in the double covered regions.

3. More than R3(4,5) cylinders cannot be arranged so that any two of them touch each |
* other.

4. Forany N there is adomain B in E? such that one can arrange N disjoint translates of
B so that they touch each other at the same point.

G. BLIND:
Packings with circles of two sizes

In the Euclidean plane we consider packings with circles of two sizes, namely with radius 1
and p (0 <p <1). The problem is to find the density D(p) of the densest such packing.

Clearly D(p) 2 £ , the density of the densest packing with congruent circles, and it is well
‘\’ 12

known that D(p) = —— for 0,743... <p < 1.
12

Our aim is to enlarge this r-interval to p, =0,645707... < p < 1, the largest possible such
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interval. We are able to do this under the condition, that the small circles are surrounded by at
most 6 circles and the large circles are surrounded by at least 6 circles, which is satisfied by
all the known examples with high density.

K. BOROCZKY:
Sphere packing in R3 .

One of the most famous problems of discrete geometry in E 3 is to find the densest packing
consisting of congruent balls. The best known bound on the largest possible density 8 is due
to C. A. Rogers (1958) who proved that the density is 8 < 0,7796355... . ) -
The best published bound is the work of J. H. Lindsey Il. He obtained that the density is

3 < 0,7784429.... Inthe talk we present an improvement, which leads to the inequality

S < 0,7783683... . ) :

J. BOKOWSKI: .
Pseudoplane arrangements of non-representable oriented matroids -

Sphere systems (= pseudoline arrangements in the rank 3 case) are among the very useful
models for investigating oriented matroids. We consider uniform pseudoplane arrangements
with n elements in the rank 4 case, and we denote its numbeij of simplicial cells by c(n). In
the representable case, we have Shannon's result ¢(n) 2 n. In the general case of arbitrary
uniform oriented matroids, the Cordovil / Las Vergnas conjecture c(n) 2 1 is still open.
Classification results of J. Richter - Gebert and the author have shown that there is just a single
case with c¢(n) <n for n=8. Starting with this example, it can be shown.that there is an
infinite class of examples with ¢(n) = n— 1. The author has a proof for the Cordovil / Las
Vergnas conjecture upto n=11.

F. BUEKENHOUT: )
A search for the small regular thin geometries of rank 3, alias "generalised
combinatorial polyhedra"

This work is a small part of a general project whose purpose is to gather data on "small geo-
metries"”, to systemise their study and to classify them. Here we deal with thin geometries I"

Ny
b -
over Coxeter diagrams o—’\y—b—hp“ and’ D:AN whose "vertex-figures" over an
Ny Ny Ny N 2 ‘ ’ y

element are polygons of a (resp. b, ¢) vertices with @,b 2 3, ¢ =2 in the first case and
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¢273 in the second. We assume that -Aut T’ is flag transitive, that T" is residually connected
and multiplicity free. Also, AutT" is supposed to act faithfully on the elements of each type.
If the number of maximal flags is at most 100, there are 14 different I and only 7 groups,
Alt(5) being represented by 4 geometries. If AutT™ is Sym(5) (resp. PSL(2,7),
PGL(2,7)) there are 10 (resp. 3 ,47) possible I'.

R. CONNELLY: _
Globally rigid symmetric tensegrities and group representations

Consider a finite configuration of points in three-space where some pairs are constrained not to .
get further apart (they have a cable between them), while some other pairs are constrained not to

get closer together (they have a strut between them). This strucutre is called a tensegrity, and it

is said to be globally rigid in three-space if all the configurations of points in three-space that

satisfy the distance constraints are congruent. '

One can often define an n-by-n symmetric matrix Q called the stress matrix, where n is the
number of poirits in the configuration. The following conditions are sufficient for global
rigidity of the tensegrity: i) The lines through the struts and cables, regarded as points in the
projective plane at infinity, do not li¢ on a single conic. ii) Regarding Q as quadratic form it
is positive semi-definite with rank n—4 . Furthermore, if the configuration has the property
that there is a finite point group of rigid symmetries that is transitive on the points and invariant
on the cables and struts, then the irreducible representations of this finite group can greatly
simplify the calculation of whether Q is positive semi-definite.

H. S. M. COXETER:
Orthogonal trees (this talk was presented by E. Schulte)

Any tree, with n edges and n+1 vertices, may be realized in Euclidean n-space so that its

edges, of any chosen lengths, are straight line-segments, mutually perpendicular. Let the edges .
emanating from a vertex P (of valency q) be PP, (v =1,...,q9), with lengths /,,. The

convex hull of such an orthogonal tree is an orthogonal simplex. Let a be the altitude of this

sim\p{ex from the vertex P , that is, the distance from P to the opposite hyperplane of the

simplex; and let a; be the altitude from an adjacent vertex Py of the tree. Then

o= (Z 4

Let o be the dihedral angle opposite to the edge PPy (of length 1)), that is, the acute angle
between the hyperplanes opposite to P and P;. Then

llzcosa = aay .
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L. DANZER:
Global consequences of local conditions on discrete structures

A naive model for the atomic structure of condensed matter (espec. crystals and quasicrystals)
can be described as follows: _
The centers of the atoms form a DELONE-set M with some parameters r, R
(e x,yeM = l-yl>2r;zeR! = 3x: xe M A lx—zI<R). The bonds are
represented by straight edges. So M becomes the vertex set V(&) of a "DELONE-graph" &.
We suppose &7 to meet also the condition _
every two vertices with distance less than 3R can be connected by a path, consisting of
less than N edges. .
The neighbourhood U(x,&) of a vertex x of & is the subgraph spanned by x and its
neighbours (i. e. the vertices adjacent to x).
Given a finite family ¥ := {U;,U,,...,U,} of protoneighbourhoods, a finite set L of

matching types and r,R,N , we consider a matching type (K, ®,A)
the species § := S(FL,r,RN) of oWy (9 € Iso(dIR))
all DELONE-graphs with parameters Ux .

r,R,N , such that every neighbourhood
is congruent to some U, and every
union of two matching neighbourhoods
is congruent to some member of L . For such species among others the following statements
are proved: '
Theorem 2: Suppose S contains a DELONE-graph &, which is weakly repetitive but not
multiregular (not permitting d linearly independent translations). Then there are .
2%o congruence classesin S .
Theorem 4: Let S := S(F.L,rR,N) and suppose:
—~ § is not empty
—  and L are minimal under the first condition
— thereare only finitely many congruence-classesin S,
then every member of S admits d linearly independent translations (is multiregular).

N. DOLBILIN:
Periodic tilings

Some finiteness theorems on space tilings are considered. The results are formulated in terms
of coronas and are based on the concept of the stable rank for a tiling.
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Theorem 1. A tiling 7 of R is periodic if T possesses a finite stable rank. Moreover, the .
index m of regularity of 7 is equal to the number m; (m = my) of different coronas of a
rank k.

Theorem 2 (a generalization of the Delone theorem). Let T be an'm-regular face-to-face tiling

T with convex tiles. For the number f of facets of an arbitrary tile of 7 holds
2.1+ (hm-1)-29,

where & < h(d) is a value depending only on the dimension d .

From theorems 1 and 2 follows

Theorem 3. For m e IN there exists a value ¢c(m,d) such that any given tiling 7 of RY is
m-regular if and only if 7 has a finite stable rank k and we have k < c(m,d) .

Theorem 4. There exists such a number #d,m) such that the number of all combinatorial
classes of m-regular face-to-face tilings of R? with convex (finite) tiles is less than #(d,m).

Some words were said about a special method to construct 3-dimensional nlmgs The method
is describing the combinatorial structure by the continuous fraction representation of some
parameter for tilings of the 3- sphere. For any finite sequence a, ..., a,€ IN one can
construct a periodic tiling of R3 with convex polytopes of the same structure well-defined by
the sequence a;, ..., a, . This implies that the structure of such tiles can be as complicate as
desired. ) ‘ )

The method may also be used for computing the Dirichlet-Voronoi (D-V-)tiling for an orbit of
screw group I' of motionsin R3. Let T = {Y) (v isascrew ‘motion given by the rotation
angle ¢ around a chosen screw axe and translational shift along it) and I'-x an orbit. Then
the strucutre of theD-V-tiling for T-x is well-defined by the representation % = [a1,ap,...].
From this it follows that the strucuture of D-V-tilings must change continuously in dependence
of ¢. Thus, there are uncountably many different structures of D-V-tilings for screw orbits

~ corresponding to a value of the angle ¢ .

J. ECKHOFF:
Graphs, boxes, f-vectors

We address the problem of finding an intrinsic characterization of the set of all f-vectors of
(i) finite simple graphs, (ii) finite families of boxes in IR? with edges parallel to the coordinate
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axes. The f-vector of a graph G is the sequence AG) = (fo,f1.f2, ... ), where f; = fi(G)
denotes the number of complete subgraphs of G having k+1 vertices. The f-vector of a
family F of boxes is the f-vector of the intersection graph G() of F. Since every graph G
is of the form G() for some family 7 in some dimension d, the two problems are
intimately connected. A solution would have important consequences in combinatorial
geometry and extremal graph theory. We introduce a new kind of “pseudopowers"” similar to
the ones used in the Kruskal-Katona theorem but based on elementary symmetric functions
rather than binomial coefficients. We believe that these pseudopowers will play a decisive role
in the characterization. As a first positive result, we establish the best possible lower bound on
S interms of f; ; ,subject to the condition f; =0, in both the graph-theoretical and the .
geometrical setting. ‘

G. FEJES TOTH:
Covering with convex bodies

For a convex body K in E let %(K) be the density of the thinnest covering with congruent
copies of K and let 9;(K) be the density of the thinnest lattice covering with K . The main
result in the talk, which is a report on joint work with W. Kuperberg, is that if d >2 then for
any strictly convex body K in E9 there is an affinity A such that 9(AK) < 9.(4K).

J. E. GOODMAN:
Finite and infinite families of lines and curves

We discuss three problems involving arrangements of lines in the plane, arrangements of
pseudolines, and spreads (i.e., continuously varying arrangements) of both lines and pseudo-
lines, in all of which the idea of extending families, or properties of families, to infinite
families, plays a central role.

The first is the conjecture of B. Griinbaum that any arrangement of pseudolines in the plane
may be extended to a spread, which we have recently proved in joint work with R, Pollack,
R. Wenger, and T. Zamfirescu. ’

The second is the conjecture of R. Aharoni, P. Duchet, and B. Wajnryb that a family of lines in
the plane which is such that any two of its members meet in the unit disk has the property. that
any sequence of projections onto its members must remain bounded. This we have proved
jointly with I. Birdny and R. Pollack.

The last is the problem: given a spread of chords on the unit disk, is it the set of bisectors of

Deutsche
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some mass distribution on the disk? The corresponding fact is easily seen to hold for a finite
arrangement of chords, and the difficulty of the problem in the infinite case seems to depend on
function-theoretic considerations. This is work in progress with I. Bérény, J. Pach, and R.
Pollack.

P. GRITZMANN:

Successive determination and verification of polytopes by their X-rays

The talk which is based on joint work with Richard Gardner deals with the problem from
computational convexity of reconstructing polytopes for which only X-ray images are known.
We consider the general case of k-dimensional X-rays of polytopes P in d-dimensional
Euclidean space E?, functions which return the k-dimensional volumes of parallel k-dimen-
sional sections. For k=1 we have the ordinary X-rays, which for our purposes can be

" identified with the Steiner symmetral of P .

We will be dealing with the three concepts of determination of a class of objects, where the
directions of the X-rays are to be specified in advance, of verification, where the directions may
be chosen depending on the subject (in order to check a given shape, for example) and of
successive determination, where one does not know the body in advance, but is allowed to
consult previous X-ray pictures in selecting the direction for the next X-ray.

We will give various results outline some applications and state some open problems.

H.-C. IM HOF:
The generalized pentagramma mirificum

The pentagramma mirificum, viewed as a cycle of orthoschemes, has a counterpart in hyper-
bolic geometry of any dimension. The truncated orthoschemes, that necessarily appear, are
also known as the fundamental polytopes of certain hyperbolic Coxeter groups.

A. IVIC WEISS: )
Polytopes constructed from projective linear groups

In recent years the term "chiral” has been used for geometric and combinatorial figures which
are symmetrical by rotation but not by reflection. The correspondence of groups and polytopes
is used to construct infinite series of chiral and regular polytopes whose facets or vertex-figures
are chiral or regular toroidal maps. In particular, the groups PSL,(Z,) are used to construct
chiral polytopes, while PSL,(Z,[i]) and PSL,(Z,[®]) are used to construct regular
polytopes.
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G. KABATYANSKI:
Packing and covering, coding theory

We provide a new construction for packing and covering in Hamming space, and prove that the
density of optimal packing and covering by unit spheres approaches 1 as the dimension of the
space tends to infinity. We also discuss the general case when the radius of the spheres is
larger than 1. Finally, we consider a similar problem of packing the Hammmg space by
certain special sets.

. - P. KLEINSCHMIDT:
Flag vectors of polytopes

For general convex polytopes there are combinatorial invafizlms which can be expressed as
linear combinations of flag-numbers and which are nonnegative. Additional linear combi-
nations are obtained using a convolution operation. Using all this information we proved
several results about face numbers of polytopes and their quotients. The results were obtained
with a computer and some of them checked by hand.

Two of the results are:

- Every rational d-polytope, d > ¢ , has a "small" 3-face with at most 500 vertices.
—  Every d-polytope, d 2 ¢, has a 3-dimensional quotient which is a simplex.

(Joint work with G. Kalai and G. Meisinger.)

D. G. LARMAN:
Maximal k-simplices in the n-cube (joint work with V. L. Klee)

. Itis well known that the vertices of the unit cube C**! = [~1,1}**! admit an orthogonal set of
vectors of cardinality n+1 if and only if the vertices of C" admit the vertices of a regular
n-simplex. Such a regular n-simplex must necessarily be the n- simplex of maximal volume in
Ct. Itis Well known that if the above situation occurs then 4 divides n+1 and it is a famous
problem of Hadamard to decide if the converse is true. It is reasonable to conjecture that a
maximal n-simplex in C” isregular only if 4 divides n+1 . This would be the case if the
maximal n-simplex necessarily has its vertices as vertices of C*. Unfortunately this is not true
for n = 2,6, 10 and perhaps whenever n = 2 mod 4. Generalising to maximal k- simpli-
cesin C", it must be that at least two of the vertices of that k-simplex are also vertices of C”
and perhaps it is true that if that k- simplex is also regular then all of its vertices are vertices of

DFG Deutsche
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C" . For triangles and tetrahedra, the maximal simplex is regular if and only if 3 divides n.
However, the maximal 4-simplex is never regularin C". Perhaps it is true that for k>3 ,a
maximal k-simplex in C” isregularifandonlyif k = 4m—1 and n = p(4m—-1),m,p
positive integers.

V. I. LEVENSTEIN:
Optimal packings on the euclidean sphere and in IR™

Let M,(C) be the maximal cardinality of a finite set of points on the Euclidean sphere "~/

the angular distance between any two of which does not exceed ¢ . An upper bound on M, (&)

is given which is attained in many cases, for example it follows that Ms(ug) = 240 and

My(g) = 196560, which gives contact numbers for n=8 and n =24 . The following
bound on the highest density 8, for packings of equal spheres in IR” is also obtained:

(S8 .

" e ey

Here j(v) is the smallest positive zero of the Bessel function J,(z). This bound is better than
the known bound of Rogers for sufficiently large n (n297).

=2,3,..

H. MARTINIL:
Extremal and exposed symmetrizations of convex bodies

A Steiner symmetrization of a convex body K < E¥ at the hyperplane H is said to be extremal
if it has at most two extreme points outside H or if it is a cylinder normal to H. A Schwarz
symmetrization of KX atthe line L has this property if all its extreme points outside L forma
(d-2)-sphere or if it is a cylinder. Additionally, such symmetrizations are called exposed if
they are given in directions of extremal cross-sectional measures (as thickness or diameter) of
K . Discrete methods are sufficient to investigate how large the direction sets of extremal and
exposed symmetrizations for convex bodies can be and which classes of convex bodies can be
characterized in that way.

P. MCMULLEN:
Higher toroidal polytopes

An abstract regular polytope whose underlying point-set can be identified with a torus of some

Deutsche
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dimension is called a toroid.- One whose facet and vertex-figure are both spheres or toroids
(with at least one of the latter) is called toroidal. In this talk, recent work (with Egon Schulte)
on classifying the regular toroidal polytopes of rank at least 5 is described. In most cases, the
questions of existence and finiteness can be settled. Among the techniques employed are -
twisting arguments, as well as reduction of the problem to those concerning toroids of lower
rank, and direct approaches. Some related polytopes are also discussed.

B. MONSON (with A. Ivic Weiss):
Regular maps constructed from linear groups

For m 22, the group L(m) of 2x2 matrices over Z,,, with determinants *1 is genemfed by

L _|o1 ] 1o}
°Tlrof " Tl 2T o)

Now choose any subgroup H with {xI} ¢ H ¢ Centre(L(m)). Then L(m);y with the
generators 71 is a C-group yielding, for m>2 aregular map of type {3,ni}_ , and for m =2
the triangle {3} . (This generalizes constructions in McMullen's 'Regular Polyhedra Related
to Projective Linear Groups', Discrete Mathematics, in press.)

We have determined ways in which one such map can cover another, and the way in whicha
map decomposes as a blend of simpler maps. In all this, the prime factorization of m plays the

"key role. In some cases our structural results enable a simple descnpnon of the correspondmg

automorphism groups.

We also describe a 'realization’ for the maps based on the ‘plane’ %2, .

J. PACH:
Remarks on a paper of Danzer and Griinbaum

Some 30 years ago Tur4n discovered a beautiful connection between packing problems and -
questions about the distribution of distances determined by a finite set of points in space.
Given a compact domain D ¢ IR?, let ¢, be the maximum number such that there are
Pis---Pr€ D with Ip;—pl>c, (Vi#)). Then

Cr =C3= ... = ckl > ckl*l = .. = Ck; > ck2+l =...-0.
He proved that, for any set of n pointsin D, the minimum number of pairs determining a

distance 2 ¢y, is ~ kl (;) This result has various applications in potential theory, for

embeddability of graphs etc.
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Let g(n) (and g*(n)) denote the minimum number of distinct distances (resp. distinct vectors)
determined by n points in the plane in general position (no 3 ona line, no 4 on a circle).

It follows from a 30 years old construction of Danzer and Griinbaum that

g(n) < g*(n) < n'°e3/1082  'We improve this result to g(n) < g*(n) < n e"\/ logn

and we show that it follows from some deep results in additive number theory that

R
lim O N
n—yeo n

We say that a set of n points in IR is generic, if all the (;) distances determined by them are

distinct. A theorem of Avis, Erdés and Pach states that; for any fixed &, almost all k- element
subsets of any n-element set in the plane are generic (as n—> o). This result remains true
for slowly increasing values of k (more precisely, if k =o(n!/")). However, the situation
radically changes in higher dimensions. Let g;(k) =g denote the largest number with the
property that almost all £ - element subsets of any - element setin IR? are generic (as

n—»e<). We can determine exactly all values of g4k) (< (’;)) for d>3.

R. POLLACK:
Arrangements of lines in space

We discuss some problems relating to arrangements of lines in IR3 . They involve "weaving
patterns” of lines, i.e., the over/under patterns of projections of lines onto suitable planes.

We ﬁrst survey some results that are joint with J. Pach and E. Welzl where we discuss the
realizability of certain bipartite perfect weaving patterns and the non-realizability of perfect
weaving patterns of more than 4 lines, as well as the nonrealizability of a 4x 4 perfect
bipartite weaving pattern. ' »

This last nonrealizability result is the basis for showing that the maximum number, {n) , of
elementary cycles in a bipartite weaving of n lines satisfies ¢; n%? < fin) < ¢, n3/2 .
Though we have been unable to obtain any non-trivial bounds on the number of cycles in an
arbitrary weaving pattern, we are able to show that in a family of n lines there are at most
cn™ points that are incident to at least three noncollinear lines of the family. These results on
counting cycles are joint with B. Chazelle, H. Edelsbrunner, L. J. Guibas, R. Seidel,

M. Sharir and J. Snoeyink.
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J. F. RIGBY:
Two cubic curves connected with a triangle

The study of ‘triangle centres' is largely concemed with particular points: the orthocentre,
incentre, Gergonne and Nagel points, Brocard points, and other points of a more exotic nature.
One of the few general results is Kiepert's theorem.

Here we present further general theorems. Let P and Q be points in the plane of a triangle
ABC . The feet of the perpendiculars from P to the sides of the triangle form the pedal triangle
of P, and the lines QA, OB, QC meet BC,CA, AB in three points forming the cevian
triangle of Q. if the pedal triangle of P is also a cevian triangle, P is a pedal point. If the
cevian triangle of Q is also a pedal triangle, Q is a cevian point. Notable pedal points are the
circumcentre, orthocentre and incentre; notable cevian points are the centroid, orthocentre,
Gergonne point and Nagel point. The pedal points and the cevian points lie on two cubic
curves through A, B, C and have many interesting collinearity properties.

J. RUSH:
Dense lattice packings of certain convex centrally symmetric shapes

By applying construction A of Leech and Sloane to nonbinary error-correcting codes, one
obtains surprisingly dense lattice packings. Sometimes the density exceeds 2-"*°(") as
assured by the Minkowski-Hlawka bound.

P. SCHMITT:
An aperiodic prototile in space

A set of prototiles in IR? is called aperiodic if it does not admit a periodic tiling. (A tiling is
called periodic if among its symmetries there are translations in d linearly independent
directions.) An example of such an aperiodic set of prototiles is the well-known pair (in the
plane) found by Penrose. It is not known if there is an aperiodic prototile, i.e. a single prototile
that forms an aperiodic set.

The purpose of this talk is to present a construction which shows the following: In space (and
therefore in higher dimensions, too) aperiodic prototiles do exist. More precisely, there are
prototiles which are spacefillers and for which every tiling of space consists of congruent plane
layers that are rotated with respect to each other by an angle irrational to 7, and which
therefore cannot be periodic. The prototiles can be chosen to be polytopes.
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J. J. SEIDEL:
Distance matrices and Lorentz space

1. A distance matrix G is a symmetric matrix with zero diagonal and positive entries
elsewhere. Suggested by questions on metric embeddability, we assume G to have signature
+1 079 _4_ Then G is the Gram matrix of vectors gg, g, ..., g, on the light cone K

of Lorentz space IR1“. Write x = Z &igi»and D for the positive diagonal matrices. Then
DGD has the following members:

2. NEGATIVETYPE G has gg, g, ...,8, € FNK* for F//E F#E E aEuchdean

hyperplane. Then Eé, = 0 for er and =1 for x € F. The sphere F MK has centre
mlE,meF.

3. REGULAR G has constant row sums and centre m =" Z 8j /(,,.,.1) Existence from
Sinkhorn's theorem. :

01 )
4. CAYLEY-MENGER G has shape [ 1B ] , where the entries of B are the squared

distances of n vectors in Euclidean (d-1)-space.

5. INTEGRAL G generates a discrete lattice L = (go, ..., g, )z if G is hypermetric (that
is,if FNK isaholein LNF). Then LNE = (8i—g&; Yz is an even Euclidean lattice,
and g;—m are minimal vectors in a coset of L N E in its dual.

6. LN E is aROOT LATTICE if (g;, 8) = 1 isaconnected relation. The Euclidean root
lattices, and the minimal vectors in their cosets are well-known. This produces the integral
connected hypermetric distance matrices, cf. Terwilliger-Deza, Graphs and Combinatorics 3
(1987), 193-198.

M. SENECHAL:
The quasicrystal problem

This talk is a survey of the present status of the development of a geometric model for
quasicrystal structures. Quasicrystals are crystals whose diffraction diagrams show bright
spots but noncrystallographic symmetry. A suitable model would be a discrete, relatively dense
point setin E” which can be reconstructed from its local neighbourhoods and whose Fourier
transform has a discrete component. The vertex sets of projected tilings (such as the Penrose
tilings) are the most popular model today. They satisfy the first and third criteria but
(apparently) not the second; in any case this class of point sets may be insufficiently general.
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G. C. SHEPHARD:
Pick's theorem

The traditional form of Pick's theorem (G. Pick 1899) concerns simple lattice polygons P, that )

is, polygons whose vertices are points of the unit lattice L , and whose edges form a simple
circuit, that is, have no intersections except at their vertices. Then the area A(P) = i + %b -1

where i is the number of lattice points in P and b is the number of lattice points on the
boundary of P.

In this lecture a generalisation of the theorem will be given, that applieé to the most geneml.
lattice polygons, in which edges may intersect at relatively interior points, or even overlap, and
vertices may coincide. The basic idea is that such a polygon P and any point x € L we can |
define an index i(P,x). (The definition is too long to include here.) Then the areaof P is
givenby A(P) = ;’. i(P,x) —r(P) where the summation is over all the points of L and r(P)
is the rotation number of P . For the definition of area and also for the proof of the theorem it -
is essential that the polygon be oriented. Details will appear shortly in Amer. Math. Monthly
This work was done pointly with B. Griinbaum. :

-H. TVERBERG:

When do three sides or diagonals (prolonged) of a regular n-gon have a
common point? :

The talk will deal with the problem of deciding all the non-trivial occurrences of the phenome- .
non of the title. "Non-trivial” means that the common point is not a vertex. Let 1 and 2,3
and 4,5 and 6 denote the n' th roots of unity, which determine the three lines in question.
Then the concurrence is expressed by the equation (12 terms)

123+ 124 + ... + 561 + 562 — (125 + 126 + ... +564) = 0.
We shall give an idea of the general theory of such equations (vanishing of a sum of roots of
unity) as developed by H. B. Mann (Mathematika 1965). We shall then sketch some situations
arising when we go back from the algebraic solutions to see whether they correspond to
geometric ones.

P.S. After the talk, J. F. Rigby informed us that the problem had been solved by him (sgc
Geom. Ded. 9 (1980) 207-238).

Forschungsgemeinschaft

o




16

G. WEGNER:
Maximal packings

A maximal packing in the usual sense is a packing &G of congruent copies of a convex body C
such that for each member of G the number of neighbours is as large as possible, i.e. the
number is given by the Newton number N(C) of C. I generalize this notion in two ways by
weakening the assumption of congruence: I call a packing G locally maximal iff it is not
possible to rearrange the neighbourhood of any member C of G in such a way that a further
convex body D congruent to one of the neighbours of C may be attachedto C. And & is
called globally maximal iff the same is true for D being congruent to any member of G .

I present here some results concerning maximglity of packings and ﬁlings in the plane,
especially I investigate tilings consisting of regular polygons (including the archimedian tilings)
for maximality.

J. M. WILLS:
Intrinsic volumes and minimal determinants

) In euclidean d-space E9,d>2,let K be a convex body and L alattice with detL >0 .
Furtherlet V;, i=0,1,...,d denote the intrinsic volumes, G(K,L) = card (K ML) and
D{L) = min { |detL;] | L; i-dim. sublatticeof L },i=1,...,d, Dy(L) = 1. Then

v 2 \d1V, . VK

BZ(LIIS)! _2 (‘1—3_) _dJ@Dd-l @ < 6&D < i 5%
For small d or special L or special K there are improvements by various authors (e.g. Pick,
Blichfeldt, Davenport, Hadwiger et al.). ‘

II) For 0-symmetric X and Minkowski's successive minima A; holds

2 ) V&) -
m 5 s ll(K,L)...k,(K.L)D‘(L) o di=1,...,d
, j409] i1 odi YK - _
@ Aj(K,L) ...l,,(K.,L‘) O S it 2 DAL) i=0,1,...,d-1
B Ma&ZH . AKZYVEK) s 24 VK) i=0,1,...,d-1 (Henk)

(1) and (3) are tight, (2) only for i=0 and 1. (Conjecture: 1 instead of i!)
A consequence of (3): V(%?L,-H K) < V,-(ik,-ﬂ K) i=0,1,..,d-1

' Berichterstatter: G. Wegner
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