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Die Tagung fand unter der Leitung von. L. Danzer (Donmund) und G. C. Shephard (Norwich)

statt Sie hatte 35 Teilnehmer, von denen 33 Vorträge hielten. Die beschränkte TeiInehnler-
. \

.zahl bei gleichzeitig hoher Aktivität der Teilnehmer sorgte für ein diskussionsreiches Tagungs- .

klima, das sich auch in zwei Problemsessions am Montag und am Donnerstag dokumentierte.

Die Vorträge behandelten vielfaI.tige Themen aus dem weiten Spektrum der Diskreten

Geometrie, es ergaben sich aber einige eindeutige Themenschwerpunkte. Etwa ein Drittel der

Vorträge war Packungs-, Überd~kungs- und Pflastenmgsproblemen gewidmet, wobei der

aUfstrebende"Problemkreis der Aperiodizität bei Pflasterungen mit mehreren Vorträgen vertreten

war. Das Wechselspiel von Gruppen und Geometrie - Regularitätsfragen im weitesten Sinne ­

kann als übergreifender Gesichtspunkt zu einer Reihe von Vorträgen genanilt werden.. Eine

weitere Groppe von Vortragen war mehr kombinatorischen Fragestellungen gewidmet ­

A1?-ordnungsproblemen und Anzahlproblemen. Mehrere Vorträge befassten sich mit Maß- unde Identifikationsproblemen bei konvexen Körpern. Neben all dieser Schwerpunktbildung zeigten

einige Einzelvorträge mit der Behandlung weniger bekannter oder manchmal fast in Vergessen­

heit geratener Themen, daß auch in solchen Bereichen wie der Dreiecksgeometrie oder der

klassischen hyperbolischen Geometrie noch ein großes Potential an Forschungsmöglichkeiten

steckt.

Die Tagung wurde nicht zuletzt deshalb von vielen Teilnehmern als besonders fruchtbar emp­

funden, weil trotz aller Verwand~haft der Arbeitsgebiete sehr unterschiedliche Arbeitsmetha­

den und Ideen vorgestellt wurden; dazu hat vor allem auch die Anwesenheit einiger Teilnehmer

beigetragen, die der Diskreten Geometrie im engeren Sinne nicht zuzurechnen sind.
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Vortragsauszüge

A. BEZDEK:

Cylinder packing and covering problem

The set of points whose distance from a given line does not exceed a given positive number is

called an infinite circular cylinder (cylinder in shon). A subtle construction of K. Kuperberg

(88) produces a positive-deositiy packing with cylinders in which 00 two of thern are parallel.

W. Kuperbergand A. Bezdek (88) showed that the rati: of the portion covered by the cylinders A
of a packing to the whole of the space cannot exceed -. The later two authors also .-

- ~. .

detennined the gapradius (measured by the radius of the largest sphere lying in the gaps).

The followiog new results were discussed during the talk.

1 . In connection with a paper of A. Heppes and L. Szab6 we prove that the largest radius r4

such that 4 cylinders of radius r4 can touch a unit sphere without overlapping each other

is 1 + -{2 .
{;:

2. The cupradius of a cylinder covering (with cylinders of unit radius) is at least 1 - -f if

not all cylinders are parallel, then it is at least 1 _-L. Note that the cupradius of a

V2
covering is measured by the largest sphere lying in the double covered regions..

3. More than R3(4,5) cylinders cannot be arranged so that any two ofthem touch each

other.

4. For any N there is a dom~ B in E2 such that one can arrange N disjoint translates of

B so that they touch each other at the same point.

e
G. BLIND:

Packings witb circles 01 two sizes

In the Euclidean plane we consider packings with circles of two sizes, namely with radius 1

and p (0 < p < 1). The problem is to find the density D(p) of the densest such packing.

Clearly D(P) ~ -2!-, the density ofthe densest packing with congruent circles, and it is weIl

~ .

known that D{p) =~ for 0,743 ... S P < i.
~

Our aim is to enlarge this r- interval to Po = 0,645707. .. S P < 1, the largest possible such
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interval. We are able ~ da this undet ~e condition, that the small circles are surrounded by at

most 6 circles and the large circles are surrounded by at least 6 circles, which is satisfied by

all the known examples with high density.

K. BÖRÖCZKY:

Sphere packing in R 3 •

One ofthe most famous problems of discrete geometry in E3 is to find the densest packing

consisting of congruent balls. The best known bound on the largest possible density S is due

to C. A. Rogers (1958) who proved that the density is ~ S 0,7796355....

Tbe best published bound is the work of J. H. Lindsey ß. He obtained that the density is

S ~ 0,7784429 In the talk we present an improvement, which leads to the inequality

S ~ 0,7783683 .

J. BOKOWSKI:

Pseudoplane arrangements of non.repr~entable oriente~ m~troids

Sphere systems (= pseudoline arrangements in the rank 3 case) are among the very useful

models for investigating oriented matroids. We consider unifonn pseudoplane arrangements

with n elements in the rank 4 case, and we denote itsnwn~of simplicial cells by c(n). In

the representable case, we have Shannon's result c(n) ~ n. In the' g~n~al case of arbitrary

umfann oriented matroids, the Cordovil/ Las Vergnas conjecture c(n) ~ 1 is still open.

Classification results of 1. Richter - Gebert and the author have shown that there is just a single

case with c(n) < n for n =8. Starting with this example, it can be shown·that there is an

infinite class of examples with c(n) = n -1 . The author has a prooffor the Cordovil / Las

Vergnas conjecture up to n =11 .

F. BUEKENHOUT:

A searcb for tbe small regular thin geometries of rank 3, alias "generalised

combinatorial polyhedra"

This work is a small part of a general project whose purpose is to gather data on "small geo­

metries", 10 systemise their study and to classify them. Here we deal with thin geometri~s r
NI

overCoxeterdiagrams 0 arf b~ and' N a/\b . whose "vertex-figures" overany
No 1 2 ~2 .'

element are polygons of a (resp. b , c) vertices with a, b ~ 3, c = 2 in the fll"St case and
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c ~ '3 in the second. We assume that .Aut r is flag transitive, that r is residually connected

and multiplicity free. Also, Aut r is supposed to aet faithfully on the elements of each type.

H the number of maximal flags is at most 100, there are 14 different r and only 7 groups,

Alt(5) being represented by 4 geometries. If Aut r is Sym(5) (resp. PSL(2,7),

PGL(2,7» there are 10 (resp. 3 ,47) possible r.

R. CONNELLY:

Globally rigid symmetrie tensegrities and group representations

Consider a finite configuration of points in three-space where some pairs are eonstrained not 10 •

get further apart (they have a coole between thern), while some other pairs are eonstrained not 10

get eloser together (thty have a strut between them). This strucutre is called a tensegrity, and it

is said to be globally rigid in three-space if all the eonfigurations of points in three-space that

satisfy the distance constraints are congruent.

ODe ean often define an n-by-n symmetrie matrix n called the stress matrix, where n is the

number of pomts in the configuration. The following conditions are sufficient for global

rigidity of the tensegrity; i) The lines through the struts and eables, regarded as points in the

projective plane at inflriity, do not fie on a single eonic. ii) Regarding (} as quadratie fonn it

is positive serni-definite with rank n - 4. Furthennore, if the configuration has the property

that there is a finite point group of rigid symmetries that is transitive on the points and invariant

on the cables and struts, then the irredueible representations of this fmite group can greatly

simplify the calculation of whether n is positive semi-defuiite.

H. S. M. COXETER:
Orthogonal trees (this talk was presented by E. Schulte)

Any tree, with n edges and n+1 vertices, nlaY be realized in Euclidean n-space so that its

edges, of any chosen lengths, are straight line-segments, mutually perpendicular. Let the edges

emanating from avertex P (of valency q) be PPv (v = 1, ... , q), with lengths Iv' The

convex hull of such an orthogonal tree is an orthogonal simplex. Let a be the altitude of this

simplex from the vertex P, that is, th~ distance from P to the opposite hyperplane of the
~'-

simplex; and let albe the altitude from an adjacent vertex PI of the tree. Then

q 2
a = (V~l Iv-2) .

Let a be the dihedral angle opposite to the edge PP1 (of length 11), that is, the acute angle

between the hyperplanes opposite to P and PI' Theo

/ 1
2 cos a = aal .

•
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L. DANZER:

Global consequences of local conditions on discrete structures

A naive model for the atomic strueture of condensed matter (espec. crystals and quasicrystals)

can be described as follows:

The centers of the atoms fonn a DELONE-set M with seme parameters r, R

(i.e. x,y E M => lx-yl > 2r ; Z E IRd => 3 x: XE M A lx-zl SR). The bonds are
represented by straight edges. So M becomes the vertex set V~ of a ttDELONE-graph 11 q.
We suppose g to meet also the condition

every two vertices with distance less than 3R can be connected by a path, consisting of

less than N edges.

Tbe neighbourhood U(X,9) of avertex x of 9 is the subgraph spanned by x and its

neighboms (i. e. the vertices adjacent 10 x).

Given a finite family CJ := tUt, U2 , ••. , Ur} ofprotoneighbourhoods, a finite set L of

rnatehing types and r, R ,N ,we consider

tbe s pecies S := S(fJ,L,r,RJ{) of

an DELONE-graphs with parameters

T, R ,N , such that every neighbourhood

is congroent to some UK and every

union of two rnatching neighbourhoods

is congruent 10 some member of L. For such species among others the following statements

are proved:

Theorem 2: Suppose S contains a DELONE-graph g, which is weakly repetitive but not

multiregular (not permitting d linearly independent translations). Then there are .

2Mo congruence classes in S .

Theorem 4· Let S := S(fJ,L,T,RN) and suppose:

S is not empty

CJ and L are minimal under the fIrSt condition

there are only ~in i tely many congruence-classes in S ,

then every member of S admits ~ linearly independent translations (is multiregular).

N. DOLBILIN:

Periodic tilings

Some finiteness theorems on space tilings are considered. The results are fonnulated in tenns

of coronas and are based on the concept of the stable rank for a tiling.
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Theorem 1. A tiling ry of Rd is periodic if apossesses a finite stable rank. Moreover, the

index m of regularity of fJ is equal to the number mk (m = mJJ of differen~eoronas of a

rank k.

Theorem 2 (a generalization oftheDelone theorem). Let 'J be an'm-regularface-to-face tiling

fJ with eonvex tiles. For the number f of faeets of an arbitrary tile of fJ holds

f S 2· (2d - 1) + (hm -1)· 2d,

where h S; h(ll) is a value depending onIy on the dimension d.

From theorems 1 and 2 follows

Theorem 3. Fpr mEIN there exists a value c(m,d) such that any given tHing fJ of Rd is

rn-regular if and ooly ü 'J has a,finite stahle rank k and we have k < c(m,d) .

Ib~orem 4. There exists such a number t(d,m) such that the number of all combinatorial

classes of m-regular face-to-face tHings of Rd with convex (finite) tiles is less than t(d,m).

Some words were said a~ut a special method 10 construet 3-dimensional tilings. The method

is describing the combinatorial structure by the,continuous fraction representation of same

parameter for tilings of the 3 - sphere. For any fmite sequen~e al' ... , an E IN one can

construct a periodic tiling of R3 with convex polytopes of the same structure well-defmed by

~e sequence al' ... ,an . Ibis implies that the sttucture of such tiles can be as complicate as

desired.

The method rnay also be used for computing the Dirichlet-Voronoi (0-V:)tiling for an ~rbit of

screw group r ofmotions in" R3. Let r = (1) (1 is a screw.motion given by the rotation

angle t/J around a chosen screw axe and translational shift along it) and r·x an orbit. 1)len

the strucutre of theD-V-tiling for r·x is well-defmed bythe representation 21t = [al'~' ... ] .q,

From this it follows that the st!Ucuture of 0-V-tHings must change continuously in dependence

of t/J. Thus, there are uncountably many different structures of D-V-tilings for screw orbits

corresponding to a value cf the angle t/J.

J. ECKHOFF:

Grapbs, boxes, f· vectors

We address the problem of finding an intrinsic characterization of the set of all f-vectors of

(i) finite simple graphs, (ü) fmite families of boxes in .IRd with ~ges parallel to the coordinate

•

•
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axes. The f-vector of a graph G is the. sequence fl..G) = (JO ,11 ,/2, ... ), where Ik =f~(G)

denotes the number of eomplete subgraphs of G having k+ 1 vertices. The f-vector of a

family fJ of boxes is the f -vector of the intersectioo graph G(7) of fJ. Since every graph G

is of the fonn G(:J) for some family fJ in some dimension d, the two problems are

intimately eonnected A solution would have important consequenees in combinatorial

geometry and extremal graph theory. We introduce a new kind of "pseudopowers" similar to

the oDes used in the Kruskal-Katona theorem but based on elementary symmetrie functions

rather than binomial coefficients. We believe that these pseudopowers will playa decisive role

in the characterization. As a frrst positive resul~ we establish the best possible lower bo~nd 00

Ik-2 in tenns of fk.l ,subject to the condition Ik =:= 0., in both the graph-theoretical and the

geometrical setting.

G. FEJES TOT":
Covering with convex bodies

For a convex body K in Ed let ß(K) be the density of the thinnest covering "with c<.?ngruent

copies of K and let 'ÖL(K) be the density of the thinnest lattice covering 'with K. The main

result in the talk, which is a repon on joint work with W. Kuperberg, is that if d> 2 then for

any strictly eonvex body K in Ed there is an affinity A such that i}(AK) < 'ÖL(AK).

J. E. GOODMAN:

Finite and infinite families of Iines and curves

We discuss three problems involving arrangements of lines in the plane, arrangements of

pseudolines, and spreads (Le., continuously varying arrangements) of bQth lines and pseu~~­

lines, in all of whieh the idea of extending families, or properties cf families, to infmite

families, plays a central role.

The first is the eonjecture of B. Grünbaum that any ammgement of pseudolines in the plane

may be extended to a spread, which we have recently proved in joint work with R. Pollack,

R. Wenger, and T. Zamfrrescu.

The second is the conjecture ofR. Aharoni, P. Duche~ and B. Wajnryb that a family of lines in

the plane which is such that any tWo of its members meet in the unit disk has the prope~ that

any sequence of projections onte its members must remain bounded This we have proved

jointly with I. B~y and R. Pollack.

The last is the problem: given a spread of chords on the unh disk, is it the set of bisectors of
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some mass distribution on the disk? Tbe corresponding fact is easily seen to hold for a finite

arrangement of chords, and the difficulty of the problem in the infmite case seems to depend on

function-theoretic considerations. This is work in progress with I. Barany, J. Pach, and R.

Pollack.

P. GRITZMANN:

Successive determination and verification of polytopes by tbeir X-rays

Tbe talk whieh is based on joint work with Riehard Gardner deals with the problem from

eomputational eonvexity of reconstrueting polytopes for which only X-ray images are known.

We consider the general case of k-dimensional X-rays of polytopes P in d-dimensional

Euclldean space Ed, funetions whieh retum the k-dimensional volumes ofparallel k-dimen­

sional sections. For k = 1 we have the ordinary X-rays, which for our purposes ean be

identified with the Steiner symmetral of P.

We will be dealing with the three concepts of determination of a class of objects, where the

directions of the X-rays are 10 be specified in advance, of verification, where the directions may

be chosen depending on the subject (in order to check agiven shape, for example) and of

successive determination, where one does not know the body in advance, but is allowed to

consult previo~s X-ray :pictures in selecting the direction for the next X-ray.

We will give various results ouiline some appllcations and state some open problems.

H.-C. IM HOF:
Tbe generalized pentagramma mirificum

The pentagramma mirificum, viewed as a eycle of orthoschemes, has a counterpart in hyper­

bolle geometry of any dimension. Tbe tnmcated orthoschemes, that necessarily appear, are

also known as tbe fundamental polytopes of eertain hyperbolic Coxeter groups. •

A. IVIe WEISS:
Polytopes constructed ·from projective linear groups

In recent years the tenn f1chirallt has been used for geometric and combinatorial figures which

are symmetrieal by rotation but not by reflection. Tbe cotrespondence of groups and polyWpes

is used to eonstroct infinite series of ehiral and regular polytopes whose facets or venex-figures

are chiral cr regular toroidal maps. In particular, the groups PS~fl4J are used to construct

ehiral polytopes, while PS~l74n[ll) and PS~l74n[ro]) are used to construet regular

polytopes.
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G. KABATYANSKI:

Packing and covering, coding theory

We provide a new construction for packing and covering in Hamming space, and prove that the

density of optimal packing and covering by unit spheres approaches 1 as the dimension of the
space tends to infinity. We also discuss the general case when the radius of the spheres is

larger 'than 1. Finally, we consider a similar problem of paeking the H~gspaceby

certain special sets.

P. KLEINSCHMIDT:

Flag vectors of polytopes

For general convex polytopes there are eoinbinatorial invariants which ean be expressed as
linear combinations of flag-numbers and whieh are nonnegative. Additional linear combi­

nations are obtained using a convolution operation. Using all this infonnation we proved

several results about face numbers of polytopes and their quotients. The results were obtained

with a computer and some of them checked by hand.

Two of the results are:

Every rational" d-polytope, d ~ q , has a "smali" 3-face with at most 500 vertices.

Every d-polytope, d ~ q , has a 3-dimensional quotient whieh is a simplex.

(Joint work with G. Kalai and G. Meisinger.)

D. G. LARMAN:

Maximal k- simplices in the n - cube (joint work with V. L. Klee)

• It is well known that the vertiees of the unit cube cn+1 .= [_l,l]n+l admit an orthogonal set of

vectors of cardinality n+1 if and ~nly if the vertices of C" admit the vertices of a regular

n - simple~. Such a, ~gular n - simplex must necessarily be the n - simplex of maximal volume in

cn. It is well known that if the a~ve situation oceurs then 4 divides n+1 and it is a famous

problem of Hadamard 10 decide if the eonverse is true. It is reasonable to conjecture that a

maximal n-simplex in C" is regular only if 4 divides n+l. This would be the case if the

maximal n-simplex necessarily has its vertices as vertiees of C". Unfortunately this is not true

for n = 2, 6, 10 and perhaps whenever n == 2 mod 4. Generalising to maximal k-sirnpli­

ces in cn, it must be that at least two of the vertiees of that k-simplex are also vertices of Cn

and perhaps it is true that if that k- simplex is also regular then all of its vertices are vertices of
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ca. For triangles and tetrahedra, the maxiffial simplex is regular if and ooly if 3 divides n.

However, the maximal4-simplex is never regular in Cn . Perhaps it is true that for k ~ 3 ,a

maximal k-simplex in Cn is regular if and ooly if k = 4m - 1 and n = p (4m - 1) , m ,p

positive integers.

V. I. LEVENSTEIN:

Optimal packings on the euclidean sphere and in IRn
-

Let M n(a) be the maximal cardinality of a fmite set of points on the Euclidean sphere Sn-l

the angular distance between any two of which does not exceed <p. An upper bound on Mn(t!)

is given which is anained in many cases, for example it follows that Ms(i) = 240 and

M24(~) = 196560, which gives contact numbers for n = 8 and n =24. The following

bound on the highest density an for packings of equal spheres in IRn is also obtained:

V(!l»n
ön ~ 2 , n = 2, 3 , ...

(r(!! + 1»)24n

2

Here j(v) is the smallest positive zero of the Bessei function Jv(z). This bound is better than

the known bound of Rogers for sufficiently large n (n ~ 97).

H. MARTINI:

Extremal and exposed symmetrizations 01 convex bodies

ASteiner symmetrization of a convex body K c p;l at the hyperplane H is said 10 be extremaJ

if it has at most two extreme points outside H or if it is a cylinder normal to H. A Schwarz

symmetrization of K at the line L has this property if all its extreme points outside L fonn a

(d-2) - sphere or if it is a cylinder. Additionally, such symmetrizations are c~ed exposed if •

they are given in directions of extremal cross-sectional measures (as thickness or diameter) of

K. Disc~temethods are sufficient 10 investigate how large the direction sets of extremal and

exposed symmetrizations for convex bodies can be and which classes of convex bodies can be

characterized in that way.

P. MCMULLEN:

Higher toroidal polytopes

An abstract regular polytope whose underlying point-set can be identified with a torus of some
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dimension is ealled a toroid.· One whose faeet and vertex-figure are both spheres or toroids

(with at least one of the latter) is called toroidal. In this talk, recent work (with Egon Schulte)

on classifying the regular toroidal polytopes of rank at least 5 is described. In most cases, the

questions of existenee and finiteness ean be settled. Among the techniques employed are .

twisting arguments, as w'ell as reduction of the problem to thase concerning toroids of lower

rank, and direct approaehes. Same related polytopes'"are also (useussed.

B. MONSON (with A. Ivic Weiss): :e Regular rnaps constructed (rom linear groups

For m ~ 2' , the group L(m) of 2x 2 matrices over 74n with detenninants ±1 is generated by

ro ~ [0 1] , rl = [ 1.-1] , r2 = [1 0'],. '.
1 0 0 -1 . 0 -1

Now ~hoose any subgroup H with {±I} ~.H ~ Centre(L(m». Then L(m.~/H with the

generators ~ is a C-group yielding, for m > 2 a regular mapof type {3,m' ' and "for m='2

the triangle {3}. (This generalizes constructions in McMullen's 'RegulB! Polyhedra Related

to Projective Linear Groups\ Discrete Mathematics, in press.)

We have detennined ways in which one such map can cover another, and the way in which"a

map decomposes as ablend of simpler maps. In all this, the prime factorization of m plays ~e

"key role. In some cases OUf structunil. results enable a simple descriptio~of the correspondlng

automorphism groups.

We also describe a 'realization' for the maps based on the 'plane' ~ .

•
J. PACH:

Remarks on a paper of Danzer and Grünbaum

Some 30 years aga Turan discovered a beautiful connection .between packing problems and

questions about the distribution of distances detennined by a fmite set of points in space.

Given a compact domain D ~ ~. ,l~t Ct be the maximum number such that there are

PI ' ... ,Pt E D with Ip; - p} ~ CJr. (V i *J). Then

C2 = C3 = ... = Ck l > CJr.1+1 = ... = CJr.2 > CJr.2+1 = ... -+ O.

He proved that, for any set of n points in D, the minimum number of pairs detennining a

distance ~ Ck.+1 is - t (;). This result has various applications in potential theory. for

embeddability of graphs ete.

                                   
                                                                                                       ©



12

Let g(n) (and g*(n» denote the minimum number of distinct. distances (resp. distinct vectors)

detennined by n points in the plane in general position (no 3 on a line, no 4 on a circle).

It follows from a 30 years old construction of Danzer and Griinbaum that

g(n) S g*(n) S n log3/1og2 . 'We improve this re'sult to g(n') S. g*(n) ~ neC~ ,

and we show that it follows from some deep results in additive number theory that
.. ~ .
Iim ;::00.
n~ n

We say that a set of n points in IR" !s generic, if all the (;) distances determined by them are

distinct. A theorem of Avis, Erdös and Pach states thal; for any fIXed k, almost all k - element

subsets of an y n - ele~nt set in the plane are generic (as n --+ 00). This result remains true

for sloWly increasing values of k (more precisely, if k = o(n In». However, the situation

radically changes in higher dimensions. Let glk) =g deno~ the largest number with the

property that almost all k - element subsets of any n - element set in JRd are generic (as

n --+ 00). We can determine exactly all values of g,.{k)(< (~) Cor d ~ 3 .

R.·POLLACK:

Arrangements of Iin~ in space

We discuss seme problems relating to arrangements of lines in IR3 • They involv~ "weaving

patterns" of lines, i.e., the over/under patterns of projections of lines onto suitable planes.

We fIrSt survey seme results that are joint with J. Pach and E. Welzl where we discuss the

realizability of certain bipartite perfect weaving patterns and the non-realizability of perlect

weaving patterns of more than 4 lines, as well as the nonrealizability of a 4 x 4 perfect

bipartite weaving pattern.

This last nonrealizability result is the basis for showing that the maximum number,.f(n), of

elementary cycles in abipartite weaving of n lines satisfies Cl n 4f3 < f(n) < C2 n 3/2 •

Though we have been ~ble 10 obtain any non-trivial bounds on the number o{cycles in an

arbitrary weaving pattern, we are able t9 show that in a family of n lines there are at most

C n7/4 points that are ineident to at least three noncollinear lines of the family. These results on

counting cycles are joint with B. Chazelle, H. Edelsbrunner, L. 1. Guibas, R. Seidel,

M. Sharir and J. Snoeyink.

•
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J. F. RIGBY:
Two cubic curves connected witb a triangle

The study of 'triangle centres' is largely concemed with particular points: the orthocentre,

incentte, Gergonne and Nagel points, Broeard points, and other points of a more exotic natme.

One cf the few general results is Kiepert's theorem.

Here we present further general theorems. Let P and Q be points .in the plane of a triangle

ABC. The feet of the perpendiculars from P to the sides of the triangle fonn the pedal triangle

of P , and the lines QA , QB ,QC meet BC , CA ,AB in three points forming the cevian

triangle of Q. if the pedal triangle of P is also a cevian triangle, P is a pedal point. If the

cevian triangle of Q is also a pedal triangle, Q is a cevian point. Notable pedal points are the

circumcentre, orthocentte and incentte; notable cevian points are the centroid, orthocentre,

Gergonne point and Nagel point. The pedal points and the cevian points lie on two cubic

cwves through A ,B ,C and have many interesting collinearity properties.

J. RUSH:
Dense lattice packings of'certain convex centrally symmetrie sbapes

By applying construction A of Leech and Sloane to nonbinary error-eorrecting codes, one

obtains s~singly dense lattice packings. Sometimes the density exceeds 2-n +o(n) as

assured by the Minkowski-Hlawka bound.

P. SCHMITT:
An aperiodic prototile in space

A set of prototiles in JR1 is called aperiodie if it does not admit aperiodie tiling. (A tiling is

ealled periodie if among its symmetries there are translations in d linearly independent

directions.) An example of such an aperiodie set of prototiles is the well-known pair (in the

plane) found by Penrose. It is not known if there is an aperiodic prototile, Le. a single prototile

that fonns an aperiodie set

The purpose of this talk is to present a construction which shows the following: In space (and

therefore in higher dimensi~ns, too) aperiodie prototiles do exisL More precisely, there are

prototiles which are spacefillers and for which every tiling of space eonsists of congruent plane

layers that are rotated with respect to each other by an angle irrational to 1t, and which

therefore cannot be periodie. The prototiles can be chosen 10 be polytopes.
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J. J. SEIDEL:
Distance matrices and Lorentz space

1. A distance matrix G is a symmetric matrix with zero diagonal and positive eotries

elsewhere. Suggested by questions on metric embeddability, we assUme G to have signature

+ 1 On-d _d. Theo G is the Gram matrix ofvectors go, gl' ... , gn on the light cone K

ofLorentz space IRl,d. Write x = ~ ~igi' and D for the positive diagonal matrices. Then

DGD has the following members:

2. NEGATIVETYPE G has go,gl,~ .. ,gn E F()"K+ for F//E,F*E, E aEuclidean
n

hyperplane. Theo ~ ~i = 0 for x E E ~. and = 1 for x E F . The sphere F n K has centre

m.1.E,meF.

n "

3. REGULAR G hasconstantrow sums andceotre m =··~gj/(n+l)' Existencefrom

Sinkhomts theorem.

[01] .
4. CAYLEY-MENGER G has shape , where the eotries of Barethe squated

1 B .

distanees of n vectors in Euelidean (d-l )-spaee.

5. INTEGRAL G gene~tes a discrete lattiee L = (go, ... , gn~ if G is hypermetric (that

is, if F n K is a hole in L fl F). Theo L nE = {gi - gj)z is an even Euclidean'lattice,

and gi - m are minimal vectors in a eoset of L () E in its dual.

6. L n E is a ROOT LAITICE if (gi, gj) = 1 is a connected reiatioo. ~e Euclidean ~~t

lattiees, and the minimal vectors in their.cosets are well-known. This produces the integniI

connected hypennetric distance matrices, cf. Terwilliger-Deza, Graphs and Combinatorics 3

(1987), 193-198.

M. SENECHAL:
Tbe quasicrystal problem

This talk is a survey of the present status of the development of a geometric model for

quasicrystal structures. Quasicrystals are crystal.s whose diffraction diagrams show bright

spots but noncrystallographic symmetry. A suitable model would be a d.iscrete, relatively dense'

point set in En which can be reconstructed from its local neighbourhoods and whose Fourier

transfonn has a discrete component. The vertex sets ofprojected tilings (such as the Penrose

tilings) are the most popular model today. TItey satisfy the first and third criteria but

(apparently) not the second; in any ease this elass ofpoint sets may be insufficiently general.

•
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G. C. SHEPHARD:

Pick's theorem

The traditional fonn of Piek's theorem (G. Pick 1899) eoncems simple lattiee polygons P, that

is, polygons whose vertiees are points of the unit lattiee L, and whose edges fonn a simple

eircuit, that is, have 00 intersections except at their vertices. Theo the area A{P) = i + lJ, - 1
2

where i is the number of lattice points in P and b is the number of lattiee points on the

boundary of P .

In this lecture a generalisation of the theorem will be giveo, that applies to the most general

lattiee poly~ons, in whieh edges may intersect at relatively interior points,. or even o~erlap, 8J!d

vertiees may coincide. The basic idea.is that such a polygon P and any point x e L ~e can ,

define an index i{P,x). (The defmition is too lang to inelude here.) Theo the area of P is

given by A{P) = f i{P,x) - r(P) where the summation is over all the points of L and r{P)

is the rotation number of P. For the definition of area and also for the proofof the theorem it .

is essential that the polygon be oriental. Details will appear shortly in Amer. Math. Monthly..

This work was done pointly with B. Grünbaum.

. H. TVERBERG:

Wben do tbree sides ur diagonals (prolonged) or a regular n-gon· bave a

common point?

The talk: will deal with the problem of deciding all the non-trivial occurrenees Qf the phenome­

non of the title. "Non-trivial" means that the eommon point is not avertex. Let 1 and. 2,3

and 4, 5 and 6 denote the n' th raots of unity, which determine the three lines in question.

Then the coneurrenee is expressed by the equation (12 tenns)

123 + 124 + ... + 561 + 562 - (125 + 126 + ... + 564) = O.
We shall give an idea of the general theory of such equations (vanishing of a sum of roots of

unity) as developed by H. B. Mann (Mathematika 1965). We shall then sketch same situations

arising when we go back from the algebraic solutioDs to see whether they correspond to

geometrie ODes.

P.S. After the talk, 1. F. Rigby infonned us that the problem had been solved by him (see

Geom. Ded. 9 (1980) 207-238).
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G. WEGNER:

Maximal packings

A maximal packing in the usualsense is a packing § of congruent copies of a convex body C

such that for each member of § the number .of neighbours is as large as possible, i.e. the

number is given by the Newton number N(C) of C. I generalize this notion in two ways by

weakening the assumption of congruence: I call a packing § locally maximal iff it is not

possible to rearrange the neighbourhood ~f any member C of g in such a way that a further

convex body D congruent to ODe of the neighbours of C may be attached to C. 'And § is

called globa/ly maximal iff the same is true for D being congruent to any member of §. e
I present here some results conceming maximality of packiIigs and iilings in the plane,

especially I investigate tilings consisting.of regular polygons (including the archimedian tilings)

for maximality.

J. M. WILLS:

Intrinsic volumes aod minimal determinants

I) In euclidean d - space E d , d ~ 2 , let K be a convex body and L a lattice with detL > 0 .

Further let Vi' i =0, 1 , ... ,d denote the intrinsic volumes, G(K,L) = card (K r. L) and

D;(L) = min { IdetL;I I Li i-dirn. sublattice of L }, i =1, ... , d , Do(L) = 1. Then

ViK) -L d-l~ d ., V,{K)
DI..L) - 2 {...J3} D

d
_
1
(L) ~ G(K.L) ~ ~ I. Dj(L)

For small d or special L or special K there are improvements by various authors (e.g. Pick,

Blichfeldt, Davenport, Hadwiger et a1.).

mFor O-symmetric K and Minkowski's successive minima A.; hol~
2; ~

(1) i! ~ A}(K,L) ... A;(K,L) D,{L) ; = 1, ... , d

(2) '\ (K L) 'l (K L)~ < ., 2d.;~
"';+1 ' •.• Ad,' D(L) - l. D,{L) ;=0,1, ,d-I

(3) Ä;+}(K,Zd) ... AI..K,ZJ) V(K) $ 2d-; V,{K) ; =0, 1, , d -1 (Henk)

(1) and (3) are light, (2) only for ; = 0 and 1 . (Conjecture: 1 instead of ;! )
1 ·1

A consequence of (3): Vs- A;+1 K) ~ V;(i Ai+l K) ; = 0, 1 , ... ,d-I

Berichterstatter: G. Wegner
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