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Singuläre Stönmgsrechnung

9.6. - 15.6.1991

The meeting was organized byJ. HaIe (Atlanra), W. Jäger (Heidelberg) and L. Modica
(Pisa). Tbc topic "singular peiturbations"had not been covered by a Oberwolfach
meeting far years. Its teehniques are used in a lot of mathematical fields, especially in
those dealing with mathematical modelling and applications of mathematics. ~owever,
whereas a lot of analytic tools and techniques have been developed in different
situations the theoretical treatment is up t<;> now not in the state it should be. Tbe recent
developments in the theory of dynamical systems, the progress obtained in the theory
of phase transition or in. the growing field of homogenization stimulated the organizers
to bring together scientists from this areas using or working on singular perturbations
methods. The aims were:
(1) -Information about the progress in these fields concerning singular

perturbations.
(2) Discussion of a more unified approach· to singular penurbation and the .

perspectives for theory .opened up e.g. by technlques used in dynamical
systems theory.

The list of 34 lectures reflects the variety of applications of singular perturbation
methods and the necessity to have an exchange of knowledge. There is no doubt about
the success in reaching goal (1). More imponant is progress in theory. At least the
discussion during or after the lectures contributed essentially to a better theoretical
understanding. The different groups could profit from each other. Here the role 10 leave
enough time far discussions again proved 10 be imponant. Tbe stimulating atmosphere
of the Forschungsinstitut is essential for meetings of this type, where the field and also
the group of panicipants is not so standard. All participants aggreed that this workshop
was very usefull and that the different groups have to stay in contael Only few lectures
addres~ the imponant relation of the field to ninnerical analysis. There is a special
need far research in this area.

                                   
                                                                                                       ©



Tbe following al:Phabeticallist ofcontributions can be ordered according to topics:
Dynamical systems aod singular penurbations (geometrie methods, bifurcation,
attraetors, ordinary arid partial differential equations, funetional equations); nonlinear
waves; singular perturbati9ns .of vanational problems; bomogenization; integral
equations; computational methods.

VortragsaUSZÜge

Nicholas Alikakos

On the Spectruin of the Cahn-Hilliard Operator

( \ an aAu
Tbe nonlinear Cahn-Hilliard equation Ut = _e2 Au + W' (u}), - = -- = 0 , 90 a

an an
bounded domain Cl S RN, W double weIl potential, e« 1, is used as a model for;
phase separation and coarsening. Formal arguments due to Pego and others show that

the formed interfaces r far small E evolve acconling to the n~n-local ~aw V= [~] =

.jump of the normal derivative of J.I. across r , wbere J.1 is determined by:the Dirichlet
Problem

. aJ.l.
AJ.I. = 0 for x Er, x e n, J.I. =-eaK on rand - =0 on an.

, an

Here V stands for the normal velocity, K is the mean curvature and a,b are constants
determined by W. Tbc lecture presents joint work with Giorgio Fusco and aims to- ~

wards a rigorous connection between the Cahn-Hilliard equation and the reduced •
geometricallaw. Tbe following two theorems~ usefulin this direction. To state ~ese
linear results we introduce the 'linearized Cahn-Hilliard elliptic operator L about a

layered funetion UE (not necessarily an equilibrium) With interface r :
{ 2 " ( )) ab aAhLh=A-eAh+W uEh,Van=an.=O
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Theorem 1

a.(L) seE , C constant independent ofE.

Theorem 2

Ifr is spherical then c

(i) a(L) see E
(ü) L has exactly N exponentially small eigenvalues at least one of which is

positive and the remaining ofthe spectrum is bounded away from zero ~y -C2~

Guy Boucbitte

Limit Analysis Problems in Electromagnetic Waves Theory

Tbe limit analysis of the Maxwell system is performed in the case of a scattering body

whose thickness h tends to 0 while the permittivity ap.d the permeability, En and J.ln,

vary with h and possibly tend to 00 in modulus.
A new interface condition is obtained which takes account of the original shape of the .
scatter. The application of this 10 the numerical study of the diffraction by a two-dimen­
sional array of thin conduetory plates is given.

Lia Bonsard

Front Propagation for Bistable Reaction-Diffusion Equations

We study the asymptotic behaviour as e -+ 0 of solutions to .

Ut - tAu + 1. w'(u) =0 in RB x R+, where w is a bistable potential. A typicale .
bistable potential is given by w'(u) = ( u2 - 1) (u - J.l) where -1 or J.l < L Fonnal analysis

suggests that RB is divided in regions where uE =:I -:r1 < uE =:I -1 and that uE is asympto­
tically given by the travelling wave q associated to the equation. Here its speed a is
proportional to the difference in height between the two wells of the potential. Using

. the teehnique of viscosity solutions far Hamilton-Jacobi equations, we proye that

ul: (x,t) =q (v (x,t~+0(1 )) as e -+ 0 , where v is the viscosity solution lO a ~t order.

Hamilton-Jacobi equation with discontinuous hamiltotrlan. In particular this says that
the intetface moves with constant speed a.
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. Pavol Brunovsky

Analysis of the Flow of a Viseoelastie Fluid by Geometrie Singular
Perturbation Theory

We consider a simplified model of the flow of a viscoelastic fluid discussed by

J. Nohel (see bis lecture). By adding a small diffusion tenn representing capillarity we

obtain a system ofpartial differential equations admitting a global attraetor.

Employing techniques developped by N. Fenichel, X. B. Lin and Ch. Jones we estab­

lish the existence of a unique equilibrium for .small and large values of the driving

pressure gradient, as well as of three equilibria for pressures in an intermediate interval.

We also determine stability propenies of the equilibria for the reduced system.

We prove that both the full and the reduced problems admit fmite dimensional internal

manifolds of equal dimension. The internal manifold of the full system approaches that

ofthe reduced system in the Cl sense as the parameter tends to zero. Since the inertial

manifold restriction of the reduced system is structurally stable, it is topologically

conjugate 10 the inertial manifold restriction of the full system.
The results haye been obtained jointly with D. Sevcovic.

Giuseppe Buttazzo

A Singular Perturbation. Problem with a Compact Support Semilinear
Term

Far every e > 0 we consider the minimum problem

(PE) min {Ft(U) +Lg(x,u) dx : u e H1(n)}

where n iso a ~unded open subset of RD, g : n x R --+ R is a suitable Caratheooory

integran~ and FE is given by

FE(u) =L[elDup + e-3ß(~)] dx.

Here p is a nonnegative function with a compact suppon. It is proven that the limit .

functional (in the variational sense gjven by r-convergence) afFE as E --+ 0+ is

4
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F(u) = min (cP(B,O): {u > O} c B c (u ~ O)}

being P (B,n) the perimeter of B in n and

( 1/2
C =2 Ja ß (s)ds.

Therefore, the limit problem of(Pt) is

(P)

where

min{CP(B,O) +i g..(x)dx + f(NJ g_(x)dx: B Borel set}

g+(x) = min g(X,t)

t~O

g_(x) = min g(x,t) .

tSO

Sbui-Nee Cbow and Ying-fei Yi

Dynamical Systems and Singularly Perturbed Equations

We study singularly perturbed ODES and its related dynamics in three aspects:

1. Geomettic theory of smgular perturbations: We derive cent~r, center stable-unstable

manifolds and their foliations by looking at so called reduced spectra and reduced flow.

The smoothness of those invariant manifolds is also obtained.

2. Dynamics of singularly penurbed systems: We study the existence of compact mo­

lions (such as quasi-periodical motions) and their stabilities by making use of regularity

of the center manifold.

3. Using dynamical systems to study singular perturbation problems: We have shown

by applying our invariant manifolds theory that dynamical system can be successfully

built into problems such as inner-outer expansions, matehing principles, nnning points,

existence of layers, initial and boundary values, etc.
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Bernold Fiedler, Jürgen Scheurle

Discretization of Homoclinic Orbits, Rapid Forcing, and "Invisible"
()haos .

One-step discretizations of order p and step size Eof ordinary differential equations can

be viewed as time-E maps of

x(t) =rlÄ.,x(t)) + EPg(E,Ä.,t/E,X(t)) ,

where g has pericxi Eint. This"is a rapidly forced nonautonomous system.

We study the behaviour of 'a homoclinic orbit r, E = 0, A = 0 under discretization.

Under generic assumptions we show that r becomes transverse for positive E. Tbe

transversality effects are estimated from above to be exponentially small in E. For

example, the length t (E) of the parameter interval of A for which r persists can be

estimated by

t (E) S Cexp (-21tT\!E)

where C, 11 are positive constants. Tbe coefficient 11 is related to the minimal distance

from the real axis of the poles of r(t) in the complex time domain.

Likewise, the region where complicated, "chaotic" dynamies prevail is estimated to be

exponentially small, provided x E R2 and the saddle quantity of the associated equili­

brium is nonzero.
Dur results are visualized by high precision numerical experiments. Tbe experiments

show that, due to exponential smallness, homoclinic transversality becomes practically

invisible under normal circumstances, already for only moderately small step sizes.

Dietrich Flockerzi

Applications of Invariant Manifolds in Nonlinear Control Theory

By studying some problems of nonlocal stabilization for nonlinear control systems

x= f(x) + g{x)u , Y=h(x) [f(O) = 0] .

6
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We show how the theory of invariant manifolds for singularily perturbed O.D.E.s can

be successfully employed in attacking control theoretical tasks. The main problems can

be phrased the following way. Given a neighbourhood U of 0 and a compact set K in
state space. Can one fmd a feedback or even an output-feedback control u such that the

solutions of the closed loop startiitg in K eventually are confmned to U1 Does there
exist such a eontrol that these solutions asymptotically tend to 01

Irene Fonseca

Phrase Transitions and Surface ~nergies

A phase transition problem where the energy density W : RD -+ [0, +00] has two po­

tential wells of equal depth is considered. As in the Van-der-Waals-Cahn-Hilliard

gradient theory cf phase transitions, a family of singular penurbations (possibly aniso­
tropie)

is introduced and the r-limit of the rescaled functionals

is obtained. Directly related 10 this problem is the question coneeming the integral

representation of the relaxation F(.) in BV (n;RD) of a funetional

u -tLr{x,u (x1Vu (x»)dx.

Assuming that f (x,U,. ) is quasiconvex and it has linear growth, in joint work with

S. Müller the integral representation of F(.) was identified. This result has been ob-

tained recently in the more restrictive case where f (x,u,· ) is convex, by Ambrosia &
Pall~ P. Rybka & I. F.
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.Leonid S. Frank

Coercive and Dispersive Singular Perturbations and' Applications.

Tbe singular perturbations appearing in linear and non-linear elasticity theory are co­
ercive (the coerciveness conditon is an algebraic condition on the principal symbol of

the linearized operator and of the boundary operators, which was intrcxluced in 1976 by

L. S. Frank, CRAC, 1. 282, s~rie A, p. 1109-1111. Typical applied problems ad­
dressed are plates and rod.s with clamped, hinged or free boundaries, plates and rods

supported by elastic media (tteated by using aversion for Garding's inequality for sin­

gular perturbations, L.S. Frank, Singular Penurbations I, North-Holland, 1990, pp.
437-485), defonnations of a long circular vessel (trough) under nonnalload, bending

of a circular hinged plate subjected to a tensile stress at its edge and a uniform trans­
verse load (L. S. Frank, Singular Perturbations fi, Elsevier Seienee Publishers, North­
Holland, to appear soon) and the existenee of solitary travelling waves for the refined

Koneweg-De Vries equation in the non-linear water wave theory under the ~vity and
eapillarity effects eombined tpgether (to appear in "Asymptotie Analysis").

Tbe stability far t --+ + 00 of sueh solitary waves is a research in progress.

Giorgio Fusco

Equilibria with Spheric~l Interior Layers fot the Nonlinear Cahn­
Hilliard Equation

The nonlinear Cahn-Hilliard equation

I) Ut =A(-e2Au + W(u}} , xe 0; du =oAu =0 , X E an.
an an

(where: U= concentration; W a double weIl potential, 0 < E« 1) mcxlels separation ~d

coarsening phenomena that take place when a binary alloy, initially homogeneous, is
quenehed at a temperature where equilibrium corresponds to two separated phases.
Fonnally it ean be shown that, in the late stages of the separation, fronts develop and
their evolution is determined by

8
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a~ [a~l2) l1J.l=o, xi! r; J.I.=-EaK,xe r, -=0, XE an· , v=b-. . an an

where: r is the front; K the mean eurvature of r; v the velocity of r; [ep]r the jump of

the funetian ep across r and a, b eonstants. The talk presents joint work with N.
Alikakos in the direction of a rigoraus understanding of the relationship between (1)

and (2). Sinee spheres are equilibria of (2) one expeets that solutions of (1) with

spherieal interface should either be equilibria or persist for a long time Te(Te --+ 00,

as E -+ 0). The questions discussed are: a) the construction of a criteria for determining
the particular spherical solutions of (2) which correspond to equilibria of (1) for

1 < e« 1. b) the estimate Te =O(e-c/e), e > O. The fIrst question is solved via a
reduction similar 10 the classical Liapounov-Schmidt reduction which allows for the
consttuction of an approximate "slow motion manifold" (an invariant manifold for (1)

with orderO(e-cle)dynamic). The estimate Te =o (e-cle) is obtained by using the appro­
ximate slow motion manifold and spectral estimates for the linearized Cahn-Hilliard

operator A{-e2A + W(üt )), üe being a function with a spherical interface, of the type

a(A) < Ce-2c/e. These estimates are presented in N. Alikakos talk.

Jack Haie

Period Doubling in a Singularl~ Pe~rbed Delay Equation

We consider the equation

(1) ex(t} + x{t} = fA(x(t -_I}}

where e > 0 is a snian parameter, fA(O) = 0 and the fIXed points 0 of fA undergoes a

generic periOd doubling bifurcation at Ä = O. If this bifurcation is supercritical, we

prove thal, for fIXed Ä - 0 small, the~ is a periodic orbit of (1) of period -2 which gOes

from a sine wave to a square wave as e --+ O. In the subcrltical case, we prove that the
periodic orbit goes from a sine wave to a pulse type periodie solution. The method of
proof is the reduction to a two-dimensional center manifold of an auxiliary system of
delayequations.

9
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Frank C. Hoppensteadt

Stability of.Quasi~StaticState ~pproximations in the Presence of Noise

Quasi-statie manifolds for systems of ordinary differential equatio~s can be derived un­

der various stability conditions on the system"s vector field. Stability of these approxi­

mations over short time and long time intervals is described in three cases. Firs~ we re­

view results for the non-nmdom case that give approximations to the solutions of

tf = fo (t,x,y) + E fl (t,X,y,E), E!f = go (~x,y) + E gl (~x,y,e)

Tbe result is that the solution 'can be a~roximated far small values ofE by a quasi-static

state over time intervals up to 10 S t S 00, depending on suitable stability conditions of fo .

and go. Nex~ we study the persistence of these states under small amplitude random
perturbations. Finally, we consider the persistence of the manifold of quasi-static states

when the system is subjected 10 large deviation perturbations.

Ulrich Hornung

Homogenization of Flow and Transport through Porous Media

•

Aperiodie porous medium is considered with periodicity all of length e" > O. In the in­

terior of the pores steady state flow of an incompressible fluid is assumed. Within the

fluid a ehemical substance is dissolved th~t undergoes diffusion and eonvection. In ad­
dition, the substance may be absorbed ooto the surfaces of the grain~of the solid ma­

terial On the surfaces certain chemical reactions take place which may be influenced by

catalysts. Finally, migration of the substances on the surfaces is laken ioto considera­

tion which is of diffusion type. Tbe corresponding mathematical model is studied, and

the limit problem far E~ 0 is derived. Convergence of thesolution of the micro-model .•
to that of the macro-model is shown. This is joint work with Willi Jäger.

Bernhard Kawobl

Eigenvalues of Clamped Plates and Related Questions

A clamped plate embedded in an elastic m~um with elasticity constant a is laterally

10
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compressed, and buckling occurs for compressions of magnitude 'Yi(a~ Tbe buckled

deformation is described by

Mu+y(a)Au+au=O inQ u = 0, Vu = 0 on ao

•

The dependence of tbe first eigenvalues y~a) on a is investigated. In particular the beha­

viour as a -+ 00 (stiffening of the ambient medium) is considered.

The mathematicaI tools are then applied 10 other eigenvaIue problems .such~ vibrnting

plates under tension, linear elasticity systems and to nonlinear variational problems of

type

over a set of adniissible functions. There are examples for which the limiting problem

has many, one or no solutions. The latter ones are most interesting, because for small E

the solutions exhibit rapid oscillations.

Tbe results were obtained jointly with Howard Levine (Ames) and Waldemar Velte
(Würzburg). .

Jim P. Keener

The Core of the Spiral - A Free Boundary Problem

An important feature of spiral patterns in J;Jelousov-Zhabotinsky reagent (as weH as

. other excitable media) is that their period, wavelength and shape are uniquely deter­

mined by chemical properties of'tbe medium. In contrast, target patterns arise with a

continuous array of peri~s and wavelength. In this presentation, we use asymptotic

and numerical methods to show that the shape and rotation frequency of the spiral in

excitable media (as described by a system of diffusion reaction equations) can be found

by solving a sequence of nonlinear ordinary differential equation eigenvalue problems,

solvable numerically with shooting methods. To obtain this solution, the governing dif­

fusion reaction system is reduced using singular perturbation methods to a free bounda­

ry problem (inttoduced originally by P. Fife) in.which the spatial domain is divided into
two regions where different "outer" dynamics apply, seperated by an interface whose

motion is govemed by an "eikonal-curvature" equation (An eikonal-curvature equation

described the normal velocity of an interface as the sum of its plane wave velocity and a

~sion coefficient times its mean curvature). In a steadily rotating coordinate system,

11
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the outer dynamics and interface motion are described by a system of ordinary differen­

tial equations which can be solved iteratively using shooting techniques. Numerical evi­

dence is that iterates cOnverge rapidly to a solution that agrees quite well quantitatively
with a solution of the original partial differential equation system in th~ limit that E (tbe

natural small parameter of the problem) goes to zero.

Klaus Kircbgässner

Nichtlineare Dynamik, die von Fronten erzeugt wird

Für die Kolmogorov Gleic~ung Ut - Uu = U - u2 wird die Dynamik der Lösungen un­
tersucht, die einer Frontlösung benachbart sind. Der Front zugeordnet ist eine Eich­

form, deren selbstadjungiene Linearisierung die räumliche Asymptotik der zugelasse­

nen Lösungen definiert. Die Eichfonn kann eigebettet werden in eine einparametrige

. Schar von Eichgleichungen, deren Linearform lautet U t - Uxx - Ha.pUx = O(~280 U2) .

Hierbei ist H ~ a fUr x < 0 und p fUr x > 0, und a,p werden durch die räumliche

Asymptotik der Front bestimmL Es zeigt sich, daß die Lösungen durch zwei dissipative
Wellen beschrieben werden, die aufkompakten Mengen exponentiell,jedoch auf Strei-

fengebieten in der (x,t)-Ebene wie t-1/2 gegen 0 gehen.

Hans Wilhelm Knobloch·

Global Center Manifolds and Geometrie Singular Perturbation Theory

•

The usual understanding of a 'singular penurbed' ODE. as a pair of coupled OE's

y=g(y,z,e1 EZ =h(y,z,e1 e > ° and 'small' (1) •implies that the role of 'slow'and 'fast'variable is fixed once and for 811. Rescal~g of

time allows to write (1) in the symmetric fann

x=f(x,e) (2)

We ~scuss (2) under the hypothesis that the vectorfield f(x,O) has a smooth k-dimen­

siona! manifold Mo of zeros, k S n = dim x. In the special case (1) this manifold is de­

fined in terms of the equation h (y,z,O) =0 and it is then assumed that Mo admits agio-

12
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bal representation z = z(y). The standard geometrie approach to singular perturbation

analysis amounts to an e~tensionof z(y) to a mapping 5(y,E) such that z = 5(y,E) re·

presents an invariant manifold for (1). Fenichel was the fIrSt to establish a analogous

result for (2). A different approach to the same problem is proposed.. Its advantage

compared with Fenichel's work is twofold: Relaxed hypotheses concerning the geome­

try of Mo and a greater variety for the choice of E.

Jobn Mallet-Paret

Conjugacy of Singularly Perturbed Vector Fields

With P. Brunovsky and S.-N. Chow we study the question of conjugacy between
singularly perturbed vector fields, and obtain results in the case of a fold

Two vector fields

z= hi(z,e), i = 1,2

for z e Rn , are said 10 be uniformly conjugate if there exists neighbourhoods

U,V ~ RB of Z =0, and a parameterized family of homeomorphisms varying conti­

nuously in e for 0 SES EQ, such that (1) cl>e (U)~ V for all E, and (2) cI>E takes solu­

tion curves of the first vector field (i =1) to those of the second (i =2).

Typiailly

z = (x,y) e Km X Rk

hi =(e fj,gi)

far funetions Ci (x,y,e) and gi (x,y,e), therefore representing a singularly perturbed vec­

tar field. Note the homeomorphism CIlo is defined even at E = O.

We say the conjugacy is uniformly Lipschitz Ü each cI>[ and its inverse has a Lipschitz

constant independent of E, and unifonnly Cl if each cI>e is a diffeomorphism varying

• continuously ~ einthe Cl topology (including at E =0).
We consider the simplest planar (m = k = 1) degenerate case in which the critical mani­

fold g·1(O) far e = 0 is a smooth curve far which nonna! hyperbolicity falls at the origin,

but in generic way. We assume specifically that g = gy = 0 but f,gyy,gx ~ 0 at x =y =
E = O. After a smooth change of variables we obtain

ü = 2uv + Eq {U,V,E} , v=u

13
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where q (0,0,0) = 1. Let qO(v) =q (O,v,O), let

p (v,c) = {v2 - c2)-1 (q (v2 - c2,v,0) - q (O,v,O)], and let

r (v) ~ [vqO (v) qu (O,v,O) - v2qe (O,v,O~ I [qO(v)]2 . Finally let

I(c) = [ p(v,c)dv - 2q'c)f r(v)dv - 2q~-C)f r(v)dv ·

Theorem. Consider two systems, with ql and Q2, as above. Tbeo they ar~ uniformly . •

conjugate. If the functions qY and~ are identical on some neighbourhood of the origin,
then the conjugacy is unifox:mJy Lipschitz. If in addition the functions 11 and 12 are

identical then the conjugacy is unifonnly Cl.

Mosbe Marcus

A Variational ~oblem Arising from a Model in Thennodynamics

We consider a model (proposed by Coleman) for determining the equilibrium state of a
body at constant temperature. This is a second order model in which the average energy
is given by

where a > 0 and 'Vo is a double-weil potential. We wish to minimize Jn [u] subject to
the consttaint

In recent joint work with Coleman and Mizel we .studied this problem in one dimension
when n = R. It is expected that the study of this problem will shed light on the
behaviour of minimizers in large intervals. Denote,

J_ Cu] = lim J(-T.T) [u], (U~ = tim .l JT U
T--+- T-+- zr .T

and
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x = {u E "2 (R) n ~ (R): J_[U] and (u~ are well-defined}.

Consider the problem, .

(Pa) inf{J00 [u] : U E X, (u~ = a)

Theorem (Coleman, Marcus, Mizel). For every real a, problem (PJ possesses a solu­
tion which is either periodic or "pseudo-periodicu

• Denote,

f T \e (P..T) inf \J(-T.T)[U] : U E H2(-T.n. -irLU= af

Theorem For every real ~

inf{P~T) ~ inf{Pa) as T ~ 00.

Alexander Mielke

Reduction of PDEs in Domains with Several Unbounded Directions

Often systems are studied which have, ~ addition to the time variable, one or more un­
bounded space directions. If a spacially homogeneous solution becomes unstable the
system can develop patterns which are modulations of the basic criticaI mode. To de­
scribe this mcxlulation equations, like the Ginzburg-Landau equation, are derived by
multiple scaling methods. We try to give thi~ methcxl a rigorous bases by using integro­
differential equations. Thus, we obtain a reduced PDE on the"unbounded .cross-sec­
tion tt involving nonlocal terms in the nonlinearity. As example we consider the Benard
problem in an infinite strip.

e Konstantin Mischaikow

Conley Index Theory on Thin Domains

. ODe of the most important properties of the Conley index for isolated invariant sets is
that it is invariant under continuous perturbations. This invariance is due primarily to
two faets:

1. The index depends on the unstable set of the invariant set being compact

15
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2. As a function of continuous parameters the invariant sets are upper semi­

continuous.

Reeent work of J. Hale and G. Raugel shows that on thin domains the attractors for

parabolic and hyperbolic equations are upper semi-continuous. In particular the attractor

for a thin enough domain in Rn+k is a neighborhood of the attractor for the correspon­

ding equation on the lower dimensional domain in Rn. They have proven similar results

comparing the attraetar far

Ut =Au + f(u)

with the attractors rar
EUtt + Ut = Au + f(u).

Joint work with G. Raugel showing that the Conley index is invariant unter perturba­
tion rar parabolic equations on thin domains is presented, along with a discussion of
the difficulty in obtaining similar results for hyperbolic equations on thinOOQ domains

and the singular perturbation from parabolic to hyperbolic.

Luciano Modica

Approximation of the Capillarity Problem by Plateau Problems

Let Q be an open, bounded, strictly convex subset of RD with smooth boundary,

Ä e ]0,1), 'I' e Loo{an). Consider the problem ofminimizing the functional

F(u;'I', A) =1"1+IvuF dx + "'1 lu - '111 dßIl-l
n ao

for u e BV (0). The case A= 1 conesponds to the Plateau problem for graphs on n; 'I' ·e
gives the prescribed boundery values. The case A< 1 is often called "capillarity pro-

blem" because the minimizer does not generally attain the boundary values '1', arid a

bound on the contaet angle between the graph of the minimizer and the cylinder an x R

exists in dependence on Ä. < 1.
Nevertheless, under some conditions on '1', we have proved in a joint work with

S. Baldo that the minimizers of F (u;'I'CI>h,I) fonn a relatively compact sequence in

L 1(n} and coo(n), and each limit point is a minimizer ofF(u;W,A) with A< 1. The se-
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;-

quence (fPh) must be chosen in such a way that it perfonns a homogenization process

on 'V. Appropriate ass~ptionsare:

I<PJJ = 1 a.e. on an; CJ>h -+ Awealdy in Ll(an) .

We used this result by ourselves to construct a non-uniqueness example for the oon­

parametric Plateau problem on the unit disk in the plane.

Yasumasa Nisbiura

Stability of Interfaces in Higher Dimensional Space

It is well-known that reaction-diffusion systems such as activator-inhitor systems and

phase field model exhibit a variety of special patterns.

We consider the relation between very complicated connected pattern (snaky pattern)

and simple· constant mean curvature solutions such as planar and spherical ones.

Through the stability analysis of an arbitrary interfacial pattern, we found that there are

no interfacial patterns which remain stable when E (=width of interface) goes to zero.

This suggests that the complicated patterns can be obtained via successive bifurcation of

tip-splitting type starting from simple patterns. A precise stability analysis of planar and

spherical solutions shows that their stability propenies heavily depend on the pamme- .

ters such as diffusion rates. N~merically it is confmned that simple spherical patterns

defonn into complicated patterns via instability.

Jobn A. Nohel

Nonlinear, Singularly Perturbed Systems of PDE's for Unsteady Aows
of Noq-Newtonian Fluids

We study the initial-boundary value problem for a singularly perturbed system ·of

quasilinear PDE's in ODe space dimension modelling shear flow of a highly elastic and

viscous non-Newtonian fluid driven by apressure gradient under incompressible, iso­

thermal conditions. The non-Newtonian contribution to the shear stress is assumed to

satisfy a Johnson-Segalman-Oldroyd differential constitutive law. Tbe key feature i~ a

non-monotone relation between the total steady shear stress and shear strain-rate that
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results in steady states having, in general, discontinuities in the strain rate. The reduced
problem is a quadratic system of ODE's which is analyzed completely by the phase­
plane teehniq~es phenomena. When the singular parameter is sufficiently small, the dy­
namics of the PDE's is similar tothat'of the quadratic system. For the PDE's, we iden­
tify steady states that are nonlinearly stable under perturbations of initial data, and we

show that every solution tends to a steady state as t --+ 00 if the singular parameter is
sufficiently smalL It appears exttemely difficult to determine the region of stability of
such stable solution (i. e. the goveming system does not appear to possess a compact

global attraetor). e
Olga Oleinik

An Asymptotic Behaviour of Solutions of Some Nonlinear Elliptic
Equations in Unbounded Domains

For the model equation Au -1uP'-lu = 0 , p = const > 1, in the halfcylindrical domain

Q = {x : Xl c CO, 0 < Xn< oo}, x' =(Xt, ... ,Xn-l) it is proved that

1) H u > 0 in Q, du = 0 on S ={x : Xl e dCO, 0 ~ Xn< oo}
dv

then

where

Cp =(2(l+p)'tt! • ~ (X'.Xn) SCexp {-axn}. C,« = const > 0,
(p-l)2 r-

du . nnald·" S- 18 a no envatlve on .
dv

2) If u (x',xn) changes the sign in Q (this m~ans that for any Xn > 0 the solution
takes on positive as weil ä.s negative values), then

~(x'·,xn)1 S C' exp{-ßxn), C',ß =const > O.

These results are obtained jointly with V. A. Kondratiev.

For the model equation Au + Jur1u =0, p = const > 1, in n it is proved that

18
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3) A solution u(x',xn) With candition au = 0 on S and condition u ~ 0 in n does
dv

not exist.

4) If ~ 0 1uP-1 < Al , where Al is a first eigenvalue of the problem

!lx'V + ÄV =0 in Ol, V =0 on dCO , and u = 0 on S, then

tu{x',xn) S C exp {-axn}, C,a = const > O.

These results are obtained jointly with L..Peletier.
Results, similar to 1) -4) are proved also fer some classes of nonlinear elliptic

equations.

Robert E. O'Malley

Regularization of Differential-Algebraic Equations

Different.ia1 algebraic equations (DAEs) have been of great recent interest to numerical
analysts who seek efficient c~mputationalmethods based on initial value. codes for
ODEs (cf. the books ofBrenan, Campbell, and Petzold (1989) and Hairer, Lubich, and

Roche (1989». One of the primary düficulties involves the selection of appropriate

consistent initial eonditions. A successful solution technique for DAEs involves intro­

duetion of an artificial singular perturbation Via a small parameter (er "viscosity") E > O.

One determines the DAE's solution as the limiting solution as E --+ 0 away from an ini­

tiallayer region. Gear integration codes ean be easily used. Details require"paying atten­
tion 10 the stability hypothe"ses of the Tikhonov-Levinson theory for singular perturba­

tions, with the nature of the initial impulses depending on the index of the DAE. Ex­

plicit examples are provided and applications are included. We note the close relation­

ship to the cheap contral approac~ to singular co~trols as developed by Jameson and
O'Malley.
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Genevieve RaugeJ

Dynamies on Thiß Bounded Domains

We consider, far instance, a oounded regular domain n in R D, n = 1,2 and a bounded

domain Qe c RD+l, e> 0, which converges in some sense to nase -+ o.

Q:~g(X.E)

n

More precisely, let g :nx [O,to] -+R be a function of class C3 such that

og -
g{x,O) = 0, go(x} E -(x,O) > 0, X E n

Oe

g(x,e} > 0 fer XE n ,e E (O,Eo]

We set: OE ={(X,Y) e RD+l; 0< y< g(x,e~ xe n}

Let ve be the outer nonna! to dOE, Q=nx(o,~) which.contains Qr, for 0< ES eo;
and let G be a function in Wl.Oo(Q).
For a > 0, we consider the equation

Ut - Au + au = -f(u -0) in Oe ,~ =°
dve

u{O) =uo given in Hl(OE)

where f: R: -+ R is a given C2-funetion such that

(2) ]im -fes) so, (3) Ir(s~ SC (I + IsM , SE R ,
1!I1-++oo S

where OSl<+oo ifn=l, OSyS2 ifn=2.

20
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Making the change of variables X = x, Y = g (X,E)y, we change the domain tk iota the

fixed domain Q = Ox(O,l). In these new variables, the Laplacian becomes the operator

Ltu = _.1 div Btu whereg

If we let Gt(x,y) = G(X,g(X,E)y), the problem (l)E becomes on Q,

Ut+~u+au=-f(u)-GtinQ, ~=Btu.v=O indQ
d1Be

- u(O) = uo given in Hl(Q)

The formal limit problem to (4)e is the following :

n

vt - -L~ (gOVXi ) + av =-f(v) - Go in n , dv =0 in ao
gO i=l Xi an

(4~

u (0) = uo given in BI (0)

IfTdt) (resp.T~t) is the semigroup on HI(Q) (resp. Hl(Q» defmed by (4)E

(resp. (4)0), we show that, iflludIH1(Q) ~ r, then, for t > 0,

where K(r,t) is a positive, increasing function ofr and t, and

MI1()(x) =Luo(x,y)dy.

Let~ (resp. Aa)·be the global attraetor of (4)E (resp. (4)0). Using the etimates (5) and

results of [Haie, Raugel] , we show that, if the equilibrium points of (4)0 are hyper­

bolie, then the attraetors (A)E are continuous at E =O.
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Moreover, if (4)0 is a Morse-Smale system, (4)(: is also Morse-Smale, for 0< ESEl.

Hans-Georg Roos

The Numerical Solution of Singularly Perturbed Elliptic Boundary
Value Problems

Let u~ consider the boundary value problem

-Mu + bVu + cu =f . in n c R2 , u =0 on an

under the assumption e - i div b ~ ß> 0 in a polygonal domain.

In the singularly perturbed case 0 < E« 1 elassica1 numerical methods eannot work

due to stability problems and the nonboundedness of the eonsistency or interpolation

errar.
From the theoretical point of view, unifonnly with respect to the parameter E, eonver­

gent methods seern to be very niee. But until now only in very simple situations uni­

formly convergent methods are available. For instance, under the assumption

b =(bhb2) > 0, bl = bl(X~ ~ =b:z(y) a standard Galerkin-technique based on L­
splines over a rectangular grid yields

110 - uJIi := Ein -uJI + lu - un~ S C h (C independent ofe I).

In practice, upwind schemes are used. It is possible to construct an upwind fmite ele­

ment rnethod on weakly acute triangulations which preserves the inverse-rnonotonicity

of the problem and satisfies.

The combination with an adaptive procedure based on local error estimations seems to

be very promising.
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Kunimochi Sakarnoto

Geometrie Approach to Singular Perturbation Problems for Ordinary
Differential Equations .

Many of dynamical features of multi-dimensional relaxation systems can be profitably

studied by dynamical system approaches, especially by invariant manifold theory. In
many cases, an important pan of the dynamies of singularly penurbed systems for

ODEs behaves in a rather regular manner when approached from a perspective of

invariant manifold theory. In this context, singular penurbation problems are treated as
a gene-ralized bifurcation problem.

In this talk, after developing a general theory for singularly perturbed systems by using

invariant manifold theory, cases are studied in which slow variable passes througb ele­

mentary cOOimension one bifurcation points, i.e., transcritical, pitch-fork, and Hopf­

bifurcation points. Once the general theory is applied, everything else turns out to be

regular perturbation problems.

Jan A. Sanders

On the Computation of Versal Nonnal Fonns

The problem of computing the (versal) notmal fonn of an ordinary differential equation

at equilibrium is a very practical one with applications in dynamics and bifurcation

theory. Since the computations necessary to do this are both simple and extensive, this.

looks like the ideal kind of problem to do with computer algebra This talk describes the

inner workings of a program, written by the author in Maple, that computers versal

normal fonns far vectorfields and Hamiltonians at equilibrium It emphasizes the use of

direct methods, exploiting the multilinear character of formal expansions. To handle the

normalization with respect to the semisimple pan of the linear field, orie uses the avera­

ging meth~while the nilpotent part is treated using embedding in an SL2(R) aod a

splitting algorithm develoj>ed by R. H. Cushman and the autbor.

To express the final result in symmetrie coordinates, use has been made of the Gröb­

ner-basis package available in Maple. Panially open problems include the treatment of

constant tenns in the oilpotent case and the computation of the nonnal fann of the linear
deformation..
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Klaus Scbneider

Singularly Perturbed ODE - Geometrical and Numerical Approaches

We prove the existence of invariant manifolds for autonomous singularly perturbed
ODEs by means of which we can reduce the original system either to a slow or fast
manifold We derive conditions guaranteeing that the dynamies on the slow manifold

determines the dynamic of the full system near that manifold.

For nonautonomous ODE with several time scales we propose a special wavefonn e
iteration procedure to solve the initial value problem in the boundary layer numerically.
We describe a method for establishing unique relaxation oscillation to autonomous sy-

stems with several time scales. As an example the Belousov-Zhabotinsky reaction is
considered.

We propose a new approach to prove the existence of unique stable relaxation oscilla­

tions Car two-dimensional systems.

Donald Smitb

Singularly Perturbed Integral Equations

The linear Volterra or Fredholm vector equation

fK(t.s) w(s) ds =h(t.e) + ew(t1 0 S; t S; 1 •

with kernel possessing ajump discontinuity along t =s is discussed for small E > O. An

asymptotic splitting permits the construction of approximate solutions of boundary­

layer typet and then a suitable error estimate leads to the existence of a (unique) solution
W = w (ttE) that is well-approximated by the given approximate solutions. (Jointly with

C. Lange)
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Luc Tartar

A Boundary Layer Effect in Optimal Design

In a ball n of radius R in RN, we consider a variational elliptic equation

-div (a(x) grad ua(x)) = 1 , with ua = 0 on the boundary an. Tbe function a is only

allowed to take the values a or p (with 0 < a < ß) and the average of a on n should be

(l-e)a + ep where eis given a small number. The optimal design problem consists in

seeking a funetion a which minimizes J(a) = Inu(x)dx. In the language ofheat conduc-

tion, one wants to minimize the average temperature in a domain n where there is a

uniform source of heat, by placing in an adequate way two conducting materials given

in a precise amounL

For e> 0, is there an optimal position for an interface between the two different con­

ducting materials ? Is there a simple analysis of what to do when e is small ?

It appears that thete is no optimal interface that seperates the two conducting materials
and the best way to use them is to create a mixture in an annular region, the mixing

using layers in the radial direction, the proportion of the good conductor varyiIig in an
affine way with respect to the distance to the center. When e is smalI, the mixing

occurs in an annulus of ·size of order E1/2 near the boundary of Q, the proportion of the

good conductor being 0 on the interior boundary of the~ulusand heing of order E112

on the exterior boundary of the annulus, i.e. the boundary of O. Tbe optimal value

InfaI(a) , whicb is only attained .by an optimal mixture, is J(a} - 0(E1/2) •

ODe can. visualize a way to approximate the "optimal" design by considering a large

number m of triangular spikes of the good conductor, each triangle having a basis of

the order BREttl/m on the boundary of n and having height bRe11l in the direction .of
the center.

~e method of attaek for this type of problem has been developed many years ago in

joint work with Fran~isMorat: it is based on homogenization results.

Berichterstatter: W. Jäger
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