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Die Tagung fand unter der Leitung von D. Lascar (Paris), A. Prestel (Kon­
stanz) und M. Ziegler (Freiburg) statt. Der Schwerpunkt lag auf dem Thema
"Geometrische Stabilitätstheorie" . Hierzu fand vormittags eine Vortragsreihe
statt, in der S. Buechler über seinen Beweis der Vaught'schen Vermutung im

. unidimensionalen Fall referierte. Weitere Hauptvorträge dienten teilweise der
Erg"anzung und der Vermittlung der bei diesem Beweis benutzten Methoden
und Ergebnisse, teilweise der Darstellung von wichtigen neueren Ergebnissen
in diesem Gebiet. Nachmittags fanden halbstündige Kurzvorträge zu einer
Vielzahl von Themen zumeist aus der Stabilitätstheorie statt.

Vortragsauszüge: Hauptvorträge

s. Buechler: Vaught 's Conjecture {or Unidimensional Theories

This is an exposition of tbe proof that a unidimensional theory has 2~ many
or countably many countable models. Let T be unidimensional, not w-stable,
with < 2l'o many countable models. First we prove for T what is called the

. Tree Theorem. This allows us to view the model as being almost atomic over
a tree of elements where each node realises a rank 1 type over its predecessor.
Using results about groups in I-based theories we eventually prove a Struc­
ture Theorem -for the countable models of the Theory. This Theorem says
that a model is prime over an independent set of elements which is tbe union
of finitely many sets of indiscernibles. It follows that there are countably
many countable models.
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. E. Bousearen: Defining Groups in Stable Theories

Definable Groups arise in a natural and unavoidable way in the study of •
"interactions" in the context of stahle theories. The recognition of this and· .
its use to get back information about the theories has been one major new
feature of Model Theory in reeent years.
In order to give an illustration of this, we explain the eonstruction involved
in the following result, a particular case of which is used by S. Buechler in
the proof of Vaught's Conjecture for superstable unidimensional theories.
.This generalises earlier construetions of Zil'ber för loeally modular strongly
minimal sets, and of Hrushovski for locally modular regular types.
Theorem [B-Hrushovski]: Let T be a stable one-based" theory.
1) Let at, a2, (13 be pairwise independent (over acl(0)) and such that ai E
ael(ajak). Then there exists e, e l-{aia2ß3}, and:a;,a~,a; such that f~r all
i, ad(eai) = ael(eai) and a: E' dcl(ajak). .

. 2) Given at, a2, a3 pairwise independent (over ael(0)) such that ai E del(ajak)'
let P (resp. Q, R) denote tp(atfad(0)) (resp. a2, a3)' Then theie is an 1\-
definable groilp G, connected abelian, such that: .
- there is a definable regular generic action of G on P, Q and R,
- there is an I\-definable subgroup H of G3

, with generie of the form (91 +
92,91, 92) for 91,92 independent generies of G, and a defiriable regular generie
action of H on V = tp(ata2a3facl(0)).

c. Herrmann: Finite Geometries

.~

The purpose of the talk is to give some background from combinatorial ge­
ometry resp. geometrie lattices and alternative views o,n Zil'ber's theoren:t on
homogeneous locally finite geometries of infinite dimension. E.g. Ioeal modu­
larity ean be derived froIp any localisation of corank at least 3, using results
of Doyen-Hubauf and Cameron. Groh's theorem on topological geometrie
lattices is suggested as a method for establishing modularity in finite corank.
Also, the finitary case is -diseussed based on Kantor's classifieation of -2­
transitive 2-designs. OnIy a special case of this is needed: homogeneous rank
4 geometries which are the linear elosure of a basis (and of order ~ 3). These
are indeed projective or affine and one might avoid Kantor's heavyuse of
group theory. Such proofs, due to Eva.ns and Zil'ber, exist for rank ~ 7.

2

                                   
                                                                                                       ©



•

•

A. Pillay: Unimodular Theories

We present the following result due to Hrushovski:
Theorem: Let D be a unimodular strongly minimal set. Then D is locally
modular.
D is said to be unimodular if 'whenever dI , ... ,dn are independent in D,
eI, ... , en are independent in D and dand eare interalgebraic, then muIt(d/e)
=mult(e/d).
The proof proceeds by first associating to any d~finable set X in Deq a
rational number f(X). An intersection formula is developed for "curves"
in D 2 with eanonieal based of dimension ?: 2. It is deduced that D is "2­
pseudo-modular" (any family of curves in D2 has dimension ~ 2). The group
eonfiguration is used to deduee loeal modularity.
The pioof both generalises and explains Zil 'ber's proof in the No-categorieal
ease.

B. Poizat: Udi's Amalgamation

Theorem: Let Di , i2 - 3i + 2 = 0 be two eountable saturated strongly mini­
mal struetures in disjoint languages L. and L2 (i.e. LI n L 2 = {=}), and in
whieh Morley degree of formulae is definable. Then there exists a strop.gly
minimal structure D in the language L = LI U L 2 , whose reduet to Li is the
corresponding Di. .

If X is a set with two pregeometries G. and G2 and A ~ X finite, we define
6(A) = d.(A) +d2(A) - eard(A); the pregeom~triesform a positive amalgam
if 6 is always nonnegative. We then set d(A) = min{6(B) : A ~ B} and de­
clare A self-sufficient in B if d(A) = 6(A). For any A there exists a minimal
self-suflieient set containing A, called elaut(A).
If A is self-sufficient in two extensions B "and C, we define step by step (it is
not unique!) a free amalgam B ffiA C of B and Cover A"; the idea is to take
Band C independent over A in both languages, if we can. The obstruetion
may be a bEB - A whieh is algt hut trans2 over A, in which case Ab ~s

self-sufficient in B. If there is b' E C with the same type. over A, it must
be trans2 over A by self-sufficiency" and we identify band b'. Otherwise we
make b trans2 over C.
Amalgamation Lemma: If A is self-sufficient in Band C, then any free amal-

3

                                   
                                                                                                       ©



garn B EBA C is positive, and A, B, C are self-sufficient i~ it.
Corollary: There is a unique (up to permutation) countable D such that if
A is self-sufficient in D and in some finite B, then B can be embedde~ in D
over A self-sufficiently. The restrictions of D to Li is Di..
Now consider the theory T in the language L = L t U L2, which contains
Tt U T2 , {) ~ 0 and says for every partial description of so~e self-suflicient
extension B over A, that if A is sufficiently self-sufficient, then B can be
sufficiently self-sufliciently embedded.
Theorem: T is consistent and D is a model of T.
Corollary: D is saturated.
Now except in some special cases, D has Morley rank omega, and the amal­
gam geometry is the geometry of its unique type of rank omega. In D, -all
types' of finite' rank are trivial, and D has elimination of imagina!ies, PlO­
vided D t and D2 have.
How now to produce a structure of rank one? We must work in a dass 6f finite
structures where the realisations of unlimited minimal types ,(i.e. B = AU {b}
and bis alg t over A and trans2 (or vice versa)) will he hounded, so that in D
these types will have rank zero instead of finite. However, we have a problem
of canonical basis. Still, we have no choice for the amalgamation: If b is not
already realised, then we must takke the free amalgam. Apparantly, when we
choose the bound big relatively to the transcendence degree of the canonical
hases, this works. My understanding of the situation is weak, and I don't see

-what is the use of the crucial hypothesis of definability of Morley degree. Is
it really necessary when both D t and D2 are No-categorical?

M. Prest: Representation Theory

Baldwin and McKenzie proved that a countable ring with fewer than cqn­
tinuum many countable modules (up to isomorphism) has countably many
such modules ·(indeed, is of finite representation type). This has been used
in connection with Vaught's conjecture for varieties and in Buechler's proof
of Vaught's conjecture for unidimensional theories. A proof of Baldwin and
McKenzie's result is presented along with associated ideas which are used in
Buechler's praof.
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Kurzvorträge

J. T."Baldwin: Same Problems on Generic Models• Hrushovski's constructions of counterexarnples to the Zil'ber conjecture and
solving Lachlan's problem on No-categorical stable theories involve the nation
of a (K, ~ )-generic model. Different examples can be obtained by varying the
language, the class K, the nation of strong substructure (~) and in several
other ways. By changing the nation of ~, the author constructed an N1­

categorical non-Desarguesian projective plane. Further varying the class K
he constructs a plane II thä.t is N1-categorical and of Lenz-Barlotti class I. In
particular, TI is in the definable closure of any line.
Can one classify the geometries or theories that arise in a fixed language and
with a fixed noti~n of 5:?
For M a countable model of a strongly minimal theory, let L(M) be the
lattice of algebraically closed. submodels of the countably saturated model
which contain M. K. Holland showed that if T is modular, for each M, M'
we have L(M) ~ L(M'), while for T any theory of algebraically closed fields
L(M) ~ L(M') implies M ~ M'. Does either ot these conditions hold for
the strongly minimal sets .construct~ as (K, $)-generic models?

.A. Baudiseh: A New N1 -categorical Group

• By constructing a strongly minimal (N1-categorical) tbeory witb a non-lo~ally
modular geometry that does not allow the interpretation of a group Udi
Ilrushovski gave a negative answer to Zil'ber's conjecture.
Theorem: There is an Nt-categorical theory of a pure group with a non-Iocally"
modular geometry, which does not allow the interpretation of a field.

O. V. Belegradek: Some Model Theory o[ Unitriangular Groups

We discuss the question of C. R. Videla whether, for an associative ring with
unit R, n ~ 3 and an infinite cardinal K, I(K, R) = I(K, UT(n, R)).
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1) In general, the class of groups of the form UT(n, R) is not elementarily
closOO. However, if the reduced part of the additive group of R is bounded
(in particular if Th(R) is stahle or small), any group elementarily equivalent
to UT(n, R) is of the form UT(n, S) for some S. (An example shows that in e,
general one cannot choose S == R.) . j

2) If Rand S are domains or commutative, UT(n, R) ~ UT(n, S) iff R ~ S
or R ~ soP. (In general, this fails.)
3) If R is cornmutative, then I(K, R) = I(K., UT(n, R)) for every infinite K.

4) Let R be a domain. Then I(K., R) = I(K., UT(n, R)), for every uncount­
able K., and I(w, R) ~ l(w, UT(n, R)). I conjecture that indeed I(w, R) =
I(w, UT(n, R)). (We show that R is a counterexample iff R is a skew'field
with I(w,R) < w, and, for some countable S, S == 8°P== Rand 8'1 soP.)
5) There is R with I(w}, R) = 3 and I(w}, UT(n, R)) = 2.

L. Bröcker: Reduction oE Semialgebraic Sets and Limits

We discussed the following result on the non-approximability of semialgebraic
sets by algebraic ones:
Theorem: Let U C Rn be semialgebraic and open, B c U semialgebraic and
closOO in U and let S C Rn X R k be a semialgebraic family such that the
following conditions hold:
- 1r(S) is bounded,
- Sy is a p-chain for all y E 11"(8),
- 8y n U is essentially algebraic in U for all y E 11"(8),
- dim(B) ~ p.
TheQ there exists f > 0 such that
- for all 6 with 0 < 6 < f,

- for all q-chains T C U \ Bq where p + q = n and OT n U6(B) = 0,
- for all y E 11"(8) with (8yn U) c U6(B)
one has T 02 8 = o.
Here "essentially algebraic" means algebraic up to smaller dimension, Bq is
the essentially algebraic part of B in U and T 02 8 is the intersection number
of the chains T and S modulo 2. .
The main ingredient of the proof is to translate the problem of approximation
to the study of semialgebraic set~ over valued real closed fields and their
reduction.
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L. van den Dries: (R, +,', exp) is Model-complete

Let Texp be the ~lementary theory of (R, +, ·,exp). Wilkie's proof that Tezp

is model-complete consists of three main steps: ..
Step 1: Given models k and K of Tezp with k S; K and given Lezp ( k )-terms
tl(x}, .. . ,xn), .. . , tn(x}, . .. , xn), it suffices to show that each nonsingular
solution in Kn to the system (*) tl (XI"'" Xn) = '" = tn(Xl1"" Xn) = 0
belongs to k n

•

Step 2: It suflices to show that each nonsingular solution to (*) in Kn is
k-bounded.
Step 3: The praof that each nonsingular solution to (*) in j(n is k-bounded.
Step 2 makes essential use of Hovanskii 's theorem saying that· for k = K ==
R tbe nonsingular solutions to (*) are finite in number (with a uniform
bound depending ~n the "complexity" of the system). (Step 1 follows from
general facts on noetherian differential rings of COO-functions.) For step 3
Wilkie develops a bit of valuation theory for "smooth" o-minimal theories
and exponential fields. 1 gave an outline of the proof of ste~ 3.

D. Evans: Finite Covers of ~o-categorica1Structures

1 report on same joint work with E. Hrushovski. We are concerried with
identifying by how much a finite cover of a countable No-categorical structure
differs from a sequence of free covers. The main result shows that (in the
best circumstances) this is measured by automorphism groups wbich are.
nilpotent-by-abelian. These results generalise results of Hrushovski obtained
for the case where the base of the cover is a grassmannian of a disintegrated
set. We show that if the base is a grassmannian of a projective space, then
(in ranks> 1) "nilpotent-by-abelian" can be replaced by "nilpotent" .

U. Felgner: Solution of DeBruijn 's Problem for Infinite Symmetrie Groups

N. G. DeBruijn posed the problem which homomorphic images of an infinite
symmetrie group Gare embeddable' into G. Let S(K) be the group of all
permutations of a set n of car~inality K, (for simplicity take n = K,). For
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1r E S( K:) let supp(1r) = {O' E K: : 1T(0') ;/;O'} be the support of 1r. For
~ardinals K: and A put S.\(K) = {1T E S(K) : Isupp(1r)1 < A}. According to
R. Baer, the alternating group Alt(K) and the groups 5"(K:) (forNo ~ A) are
the only proper normal subgroups of S(K). We solve DeBruijn's problem as
follows: el
Theorem (ZF + V=L): For infinite cardinals A ~ K:: S(K:)/S,,(K:) embeds into
S(K) if and only if A < Cf(K).
The theorem cannot be proved in ZF + GCH, although the case cf( K:) = cf(A)
can be proved even in ZFC using systems of almost disjoint sets.

U. Gropp: Action oE an w-stable group on a set oE Morley rank 2

In an w-stable theory let· : G x X -+ X be a definable, transitive and faith­
ful action, where G is a connected group and X a set of Modey rank 2. Let
(ai)i<w be a Morley sequence of the unique generic type q of X. Consider
the decreasing sequence (,j )j<w, where li is the Modey rank of the orbit
Gal,... ,aj . ao of ao under the stabiliser of ab" ., aj in G.
Question: Is there a finite bound for the number of 2's in (,j )j<w? (Equiva­
lently, is there a finite bound for the multiplicity of generical transitivity?)
Partial Results:
- There are at most five 2's in (,j );<w if G is sharply n-times generically
transitive on X for sorne n < w (i.e. 't/e F qn 'Vd F qn 3!h E G : h . e= cl).
- There are at most three 2's in (,; )i<w if the action of G on X is· 00­

imprimitive (i.e. has a definable and infinite domain of imprimitivity).
- If there are at least two l's in (, j ) j <w, then the action of G on X is 00­

imprimitive.
- The question can be reduced to theone of the existence of a finite bound
for the Morley rank of G in the case where G is simple.

I. Hodkinson: The Small Index Property

Let M be a countably infinite structure and let G = Aut(M). For a finite
tuple ä E M we· write Gö for {g E G : äg = Ci}. M is said to have the
small index property if whenever H is a subgroup of G of index< 2w , then
there is ä E M such that Ga ~ H. This approach is irnportant in (e.g.)

8
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reconstructing Th(M) from Aut(M).
I described joint work with W. Hodges, E. Hrushovski, D. Lascar and S.
Shelah, showing that if M is w-categorical and w-stable, or if M is the ran­
dom graph, then M has the small index property. The proof uses "generic"
automorphisms of M.
Ref.: Hodges, Hodkinson, Lascar, Shelah, "The Small Index Property {or
w-stable w-categorical Structures and for the Random Graph", submitted to
London Mathematical Society, 1991.

E. Hrushovski: 8 1-rank

Weintroduce a generalisation of Morley rank, an integer-valued "dimension"
function on definable sets with the following property: H E 2 Ui Ei, Ei =
E(bi ), where {E(b) : b E P} is a< ~niformly defined family of sets with
moving parameter b, then d(Ei ) ~ n, d(Ei n Ej ) < n (i < j) implies d(E) >
n. All the classical' geometries over a finite field have dimension in this
sense (whereas only the linear geometry is stable). This allows generalising
Lachlan's theory of finite homogeneous structures with few 4-types. We
prove the independence theorem for finite dimensional structures: H Pi, Pij

are types over an algebraically closed set, Pij = Pij(XiXj) ~ Pi(Xi) U pj(Xj)
and d(Pij) = d(pi) +d(pj), then there exists Pijk 2 Pij U Pjk U pki, d(Pijk) =
d(Pi) + d(pj) + d(pk)' We discuss the usefulness of this as areplacement for
uniqueness of nonforking extensions.

A. Ivanov: Combinatorial Aspects oE the Cover Problem for Totally Cate-
gorical Theories .

Let D be a strictly minimal set of projective or disintegrated type with w­

categoric~ theory. Let Mo be a principal finite cover of D with 0-definable
surjection f : Mo \ D ~ D. Suppose for every a E D If-l(a)1 = P, where P
is prime. Covering binary expansions of Mo (which are obtained by adding
only binary relations) are described.

9
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K. Kudaibergenov: On Homogeneous Models of Unidimensional Theories

A theory is called unidimensional if all nonalgebraic types are nonorthogonal.
It is well~known that it is equivalent to the fact that any sufficiently satu-. e·
rated model is saturated. We prove the same thing for homogeneous models.
Let ..\(T) be the minimal ..\ such that T is ..\-stable.
Theorem: Let T be unidimensional and let ..\ be such that ..\ > ITI or
..\(T) < 2>'. Then any A-homogeneous model of T of cardinality > ..\(T)
is homogeneous.

A. Lachlan: Coordinatisations of Finitely Homogeneous, Stable Struetures

Let M be any ~tructure which adrnits a finite relationallanguage with respect
to which it is homogeneous in the sense of Fraisse. Let G denote Aut(M).
Let H be the canonical structure coordinatising M - H is 0-definable and
consists of the union of a finite number of infinite mutually indiscernible
sets definable in Meq over acleq (0), such that every infinite indiscernible set
definable in Meq over acleq (0) is equivalent to one of them. Let A· ~ M be
finite and crd(A) denote H n acleq(A) (the set of coordinates of A).
Theorem: Let K ~ Sym(~rd(A)) be the group induced by GAl.bcleq(e). Then
i) K acts independently on its orbits, i.e. K is the product of the groups
Kcrd(A)-o (0 an orbit of K). .
ii) On each .of its orbits Kinduces either the symmetrie group or the action
of Zp for some prime p.

c. Laskowski: Foreing Isomorphisms

This is joint work with J. Baldwin and S. Shelah. We investigate how robust
tbe notion of non-isomorphism between models of a theory iso Specifically, we
are interested in when a first-order theory can have non-isomorphie models
that become isomorphie in a generic e~tension of the universe. If we allow
arhitrary forcings there are trivial examples, so we restriet our attention to
forcings with the countahle chain condition (ccc). Two models are called
potentially isomorphie if they are non.isomorphic hut there is a cec forcing

10
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notion P and a P-genericfilter G so that the models are isomorphie in V[G].
We show
1) there are potentially isomorphie suborderings of (R, <),
2) if T is unsuperstable or has DOP or has OTOP, then there are potentially
isomorphie elementary substruetures of (W2, En)n~, where En(b, c) iff bin =
ein.

D. MaePherson: C -minimal Groups and Fields

In joint work with Haskell and Steinhorn, a variation of o-minimality iso con:­
sidered in whieh the role of the linear ordering is played by a ternary relation,
the "C-relation" of Adeleke and Neumann. It is interpreted in a natural way
on the set of maximal chains of a tree. The notion of C -minimal structure
is introduced. There are versions of the cell-decomposition theorem and the
monotonicity theorem of o-minimality. C-minimal fields are discussed (they
are valued algebraieally closed fields), together with some incomplete results
on C-minimal groups.

A. Mareja: Decidabilit~ for Modules over a Group Ring

We deal with the decidability of theories of modules over ZIrn G, where m
is a positive integer and G is a finite group. First we prove that this problem
can be reduced to the case that, for some prime p, rn is apower of p ancl
p divides the order of G; then we discuss how to reduce the whole matter
to the case that G is a p-group. In particular we prove that the theory of
Z/pk G-modules is undecidable, if k ~2, p2 divides the order of G and the
Sylow-p-subgroup of G is normal in G.

D. Marker: Integral Parts of Real Closed Exponential Fields

Ressayre has recently given a novel proof of Wilkie's theorem on the model
- completenes of the reals with exponentiation. We say that a discrete ordered

ring R is an integral part of an exponential field K if R+ is closed under

11

                                   
                                                                                                       ©



x ~ 2% and every element of K is within distanee at most one of an element of
R. Ressayre proves tha.t if Ko, K I t= Th(R, +,·,2%1[0,1]) are real exponential
fields which are satura.ted, then K o and K 1 have integral parts Ra and R1

such that (Ko,+,.,2%1[0,1], Re, 2.t:IRt) ~ (KI , +,.,2%1[0,1], Rb 2x lRt). We
survey these results.

E. Palyutin: Quantifier Elimination tor B-Theories

A complete theory T is called a B-theory if for some Freche filter F over an
infinite set and a model A of T, the theory Th(AF ) of the reduced power of
A by F is weakly elassifiable (i.e. stable with NDOP).
Theorem: If K is a dass of struetures such that for every A E K the theory
Th(A) isa B-theory, then Th(K) has quantifier elimination modulo positive
primitive formulas and one-plaee formulas.

Y. PetersiI: Zil'ber Type Trichotomy for o-minimal Structures

The triehotomy in question is between trivial, loeally modular and nonloeally
modular struetures (tbe first two types are tbe "simple" eases). We formu-
late an analogue of that for o-minimal struetures, where Ioeal modularity
is replaeed by the CF condition. Roughly spoken, a strueture has the CF
property if every definable family of funetions ean be locally written a.s a
one-parameter family. The following theorems hold for o-minimal M; a
1) H M has the CF property hut is nontrivial, then an ordered abelian di- •
visible group interval.is defined in M.
2) (With J. Loveys) If M is a CF group interval, then Th(M) is a reduet of
an interval in an ordered vector spaee.
3) If M is a reduet of (R, <, +,', e%) and not CF, then areal elosed field is
definahle on an interval in M.

12
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A. Pillay: Locally Modular Regular Groups

We prove:
Theorem: Let G be a superstable group such that G has locally modular
regular generic, is not connected-by-finite, and for any a, b in Geq , stp(a/b)
is orthogonal to the generic of G iff tp(a/b) has Morley rank. -Then Th(G)
has No OI 2lf'o countahle models.
The result generalises the proof of Vaught's conjecture for weakly minimal
theories (or groups).
The theorem has some content due to the· following fact: Let {)(x) be a
formula of least oo-rank 0" which does not have Morley rank in a superstable
theory T with < 2~ countable models. Then there is some regular type p
containing {J, with R4p) = 0', and p is domination equivalent to the generic
type of a groupas in the hypothesis of the above theorem.

F. Point: Decidability oE the Theory oE Modules over the Gelfand and Pono­
marev Algebra

Let B n.m = k (x,Y) l(xy,yx,xn,ym), wheren+m ~ 5, n,m ~ 2, bea Gelfand
and Ponomarev algebra. The finitely generated indecomposable modules over
Bn,m have been described by Gelfand and Ponomarev. We describe a class of
pure-injective indecomposable modules, i.e. those which contain a maximal
element.
Then we prove that any module is elementarily equivalent to a direct sum of
pure~injective indecomposable modules containing a maximal element. We
get our' decida.bility r~ult by pr~ving that one can distinguish between those
particular indecomposables using pp-formulas over k[x, x-l] and very sim­
ple pp-formulas corresponding to finite words in {x, y, x-I, y-t}. We can
generalise this decidability' result to string algebras.

E. Rabinovich: Reducts oE Algebraically Closed Fields

Conjecture (Zil'ber): For any non-Iocally modular structure M definable in
.an algebraically closed field K, the field is definable in the structure.
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We prove two theorems.
Theorem 1: The conjecture is true for M with universe K.
The proof uses algebro-geometric intersection theory on tbe projective plane.
Theorem 2: The conjecture is true for M whose universe is an arbitrary
algebraic curve. •
We use 'a notion of indiscernible array introduced by Hrusbovski to prove the
definahility of the multiplicative (additive in some special cases) group of the
field. The definability of the field follows from the first theorem.

s. Starchenko: Weakly Classifiable Varieties

A theory T is called weakly classifiahle if T is stahle without DOP..Hart,
Pillay and Starchenko have proved that a variety V is weakly cJassifiable iff
V = S @ A, where A is an affine variety and S is equivalent to a multi-sorted
linear unary variety.

F. Wagner: Theorjes Wjthout Dense Forking Chains

Herwig, Loveys, Pillay, Tanovic and Wagner have proved that in astahle
theory without dense forking chains (NDFC) one can define a dimension
analogous to Krull dimension for modules, and a generalised Lascar rank.
Furthermore, any type is domination equivalent to a finite product of regu­
lar ones.
We define a corresponding notion of dimension and rank for formulae in a
.stahle theory, which is- ordinal-valued if the theory is NDFC (hut not con­
versely). We define a notion of hereditary p-weight and show, using methods
of Hrushovski and Shelah, that for a nontrivial regular type this is definable
and continuous inside some definable set. We apply this to deduce, follow­
ing Buechler and Shelah, that in between any two models of a stahle NDFC
theory there lies the realisation of some regular type.

Berichterstatter: F. q. Wagner
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