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Die Tagung fand unter der Leitung von P. Gritzmann (Trier), V. Klee (Seattle) und P: Klein­
schmidt (Passau) statt. Sie hatte 39 Teilnehmer, von denen 37 Vorträge hielten.

Die Tagung spiegelte die interessanten Entwicklungen im Bereich der Applied and C9mputa­
tional Convexity wider, die dieser jungen mathematischen Disziplin ihr Profil verleihen. Die
Wurzeln des Gebietes finden sich im Bereich der Geometrie, der mathematischen Optimierung
sowie der Informatik. Die Fragestellungen sind algorithmischer Natur, die studierten Objekte
sind geometrischer Art, wobei der Begriff der Konvexität eine besondere Bedeutung hat, und
motiviert sind die Fragen oft durch praktische Anwendungen innerhalb der mathematischen
Programmierung und der InformatIk.

-' .Entsprechend dem Konzept der Tagung kamen die Teilnehmer aus vier verschiedenen Diszi­
plinen, der klassischen Konvexitätstheorie, der mathematischen. Optimierung, der algorithmi­
sehen Geometrie und der Informatik. Aufgrund der günstigen Zusammensetzung der Tagung
fand eine rege Kommunikation zwischen den verschiedenen Gruppen statt, und es kristallisierten
sich neue Forschungsansätze um das zentrale Konzept der Tagung heraus.

Die Vorträge behandelten vielfältige Themen aus dein weiten Spektrum der Applied and Com­
putational Convexity. So gab es eine Reihe von Vorträgen zum Bereich der Polyedergeometrie
und der Kombinatorik, in der Methoden der Polyedergeometrie benutzt werden, um kombina­
torische Optimierungsprobleme zu lösen. Probleme der linearen Optimierung wurden sowohl
im Hinblick auf das durchschnittliche Verhalten von Algorithmen, als· auch auf die Entwicklung
randomisierter Verfahren und Verfahren mit möglichst kleiner Parallelkomplexität vorgestellt.

Geometrische Aspekte nichtlinearer Optimierungsaufgaben wurden ebenso behandelt wie
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Fragen aus dem. Bereich der Gitterpunktlehre, zum Teil vom Gesichtspunkt der ganzzahligen
Optimierung aus gesehen. Ein weiterer Bereich:deckte Phänomene der klassischen Konvexität
ab, insbesondere auch gemischte Volumlna konvexer Körper, und stellte diese in Bezug zu An­
wendungen etwa im Bereich der Computer Algebra oder zu Fragen der mathematischen Pro­
grammierung, etwa im Mixture Management.

Weitere Vorträge beschäftigten sich mit Problemen des Geometrie Probing, die insbesondere
im Zusammenhang mit verschiedenen Fragen der Numerik und der Computertomographie gese­
hen wurden. Hierbei spielte natürlicherweise auch die algorithrillsche .Theorie konvexer Körper
eine große Rolle. Eine Reihe von konkreten Anwendungen wurde besprochen; hierzu zählten e.,
insbesondere auch Fragen der Klassifikation von Chromosomen. Ferner wurden algorithmische
Ansätze zum Studium von Tilings untersucht, die im Zusammenhang mit der Untersuchung von
Quasikristallen an Bedeutung gewonnen haben. Verschiedene offene Probleme gaben Anlaß zu
weitreichender Diskussion.

Die Tagung zeigte, daß trotz der Zuordnung der Teilnehmer zu verschiedenen Arbeits­
gebieten, die mit unterschiedlichen Methoden und Ideen an Probleme herangehen, eine tiefe
enge Verwandtschaft vorhanden ist, die am zentralen Begriff der Konvexität festzumachen ist,
und deren weiteres Studium zu einer fruchtbaren Weiterentwicklung des Bereichs. der Applied
and Computational Convexity führen wird.
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Vortragsauszüge

Imre Barany
On the number of convex lattice polygons
(Joint work with J. Paeh and A. Vershik)

• Two eonvex lattice polygons are equivalent if there is a lattiee preserving affine transformation
mapping one to the other. This is an equivalenee relation. Write N(A) for the number of
different eonvex lattiee polygons of area A. V.I. Arnold proved in 1980 that C1A1/3 ~ log N(A) ~
c2Al/3log A. We improve upon this by showing that log N(A) ~ C3A1/3. We also show that the
eonvex lattice polygons that lie in the box Cn = [-n, n] x [-n, n] C IR? have a limit shape as
n~ 00.

Louis J. Billera
Fiber polytopes and transportation polytopes

(Joint work partly with B. Sturmfels and A. Sarangarajan)

For'Ir : P ~ Q a surjeetive affine map of convex polytopes,we define the fiber polytope E(P, Q)
by the Minkowski integral

~(P,Q) := k1r-
1 (x) dx.

E(P, Q) is again a convex polytope of dimension dimP - dimQ, whose face lattice is isomorphie
to the lattiee of all eoherent subdivisions of Q. We consider the ease P = ß n (the n-.simplex), in
which case E(P, Q) = E(Q), the secondary polytope of Q. In particular we discuss the problem
of deterrnining E(ßm - 1 x ß n - 1 ), whieh corresponds to the polytope map whose fibers are all the
m x n transportation polytopes...'

Jürgen Bokowski
Spatial polyhedra without diagonals

(Joint work with Amos Altshuler and Peter Schuchert)

Our investigation was motivated by the. following:

• Find a triangulated 2- manifold which can not be embedded in 3-space (longstanding,
open)!
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• Apply, test and improve algorithms for realizing oriented matroids Of finding final polyno-
mials (NP- hard)!

Our results can be summarized a.s follows:
Theorem: There are altogether five orientable neighborly 2-pseudo-manifolds with 9 vertices.
Each of them i~ geometrieally embeddable in IR. The following example is depicted as a exploded
view: . .,.

Vladimir G. Boltyanski
The Helly dimension of convex bodies

The problem is to find the Helly dimension himT{M) of the family T(M) of all translates of a
eonvex body M in n-dimensional Euclidean spaee. Two new results will be formulated in the
report. The first one eontains a description of all n-dimensional convex bodies M (generally,
non centrally symmetrie), that satisfy the condition himT(M) = 2.
The second result contains a. counterexample M' to one Kinszes's theorem (that gives a de­
seription of all centrally symmetrie n-dimensional convex bodies M with himT(M) = 3). This
eounterexample M' is the polar set for the convex polytape eonvH, where H consists of aB the
vectors ±el ± ei, i = 2, .. , n (all combinations of signs).

4 .
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Karl Heinz Borgwardt
Improvements in the average-case analysis of the simplex-method-based on geomet­
rical properties of randomly generated polyhedra

For linear programming problems of the type max vT x s. t. Ax ~ 1I with A E rn}m,n); v, x E IRn

the author had proven that - under the so called rotation-symmetry-model- the average number
of pivot steps of a certain variant of the simplex method is not greater than m 1

/
n

-
1n3 . const,

when m» n.
This result refers to the solution of n -1 successive optimization problems of increasing dimension
until finally the original problem has been solved. The upper bound mentioned above is based
on a run along a complete circle in the dual polyhedron.
Now we show that in each stage first we have to correct the irregularity of the polyhedron
(qualitative difference to a ball) and that then only an are of length O(ljVk) ( k = number of
stage) has to be traversed. Inclusioo of this insight ioto our consideration leads to an improved
bound of ml/n-ln5/2 for m ~ n.

L. Danzer
Strategies for the generation of PENROSE-tilings with defects, which (hopefully)
will not lead ioto dead ends

To explain the growth of quasicrystals one would like to have appropriate loeal matehing rules
(LMR). Unfortunately all known LMRs leading - together with a finite set of prototiles - to a
speeies S of quasiperiodic tilings aFe unsatisfactory since they are "~on-local'; in the following
sense:

(NL): For every real r there is a patch A in some member of S, a tile T, and a patch B :::) T +rrnd ,

such that A is extendable to the whole of spaee, while AU{T} is not, hut nevertheless A u B
satisfies the LMR.

Therefore I suggested to allow additional matchings in order to avoid (NL) (i.e. allow Au B
to be extended) and provide all permitted matehings with a preference order. In the ease of
the PENROSE-tilings it seems .to he suflicient to allow some vertexstars where opposite arrows
match. This leads to strietly locally defined strategies for the creation of large patches by adding
one vertexstar at every step. So far they did not run into a dead end. The maximal number of
tiles in a patch so obtained is now about 430 000. frobably the method can be carried over to
IE3

.
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Klaus Donner
Best L2-approximation with order convex and eone star-shaped sets in MR­
tomographie images

In digital image proeessing we often wish to loealize graphieal objeets and to estimate their
eontours from rather noisy image data. A typical example is the reconstruction of cross sections
of vessels in magnetie resonanee images in order to detect dangerous narrowings of veins or
arteries. Modeling assumptions about the type of set used for the approximation are .essential
for good reconstruetion results. In many eases star-shaped fitting systems are appropriate but
digital analogues of star-shaped sets are inefficient in algorithms. We therefore introduee the
notion of cone star-shaped sets and eharaeterize loeal L2

_ fitting optima in this eontext. The main
problem how to ehoose signifieant loeal set-approximations can be transformed into a problem
of effieiently eomputing upper coneave envelopes of real-valued functions. This leads to rather
good reeonstruetion results and can be extended to other set types.·

Martin Dyer
Random walks and unimodular linear programs

(Joint work with A. Frieze)

We examine three problems:

1. Generating an (almost) uniformly distributed randorn basis of a m x n unimodular matrix
A in polynomial time.

2. Solving a linear program max{c· x : Ax = b, x ~ O} where A is unimodular in strongly
polynomial time.

3. Placing a polynomial bound on the eombinatorial diameter of the polyhedron underlying
the linear program in 2.

In each case the algorithms are based on randorn walk techniques, which are analyzed using
eonduetance and a geometrie isoperimetrie inequality. The result of 2. is also not new, but is of
interest sinee it is elose to the dual simplex method. The result of 3. is, as far as we knew, new.

Günter Ewald
Projeetions of polytopes ooto k-spaces

Given a polytope P in IRn
, dimP = n, we diseuss the maximal volume of projections of P outo

k-dimensional subspaces, 1 ~ k ~ n - 1 (k' fixed). For k = 1 and k = n - 1 the problem of

6

•

                                   
                                                                                                       ©



finding a good algorithmie solution has been sol~ed. For 1 < k < n - 1 partial results have bee~

fouod by Filliman. We introduee a numerical algorithm for finding the maximum provided a
sharp shadow boundary is given such that those directions in the Graßmann-manifold to which
the shadow-boundary is assigned fiust contain the maximal direction.

Miroslav Fiedler
.• An application of simplex geometry to graphs and resistive electrical circuits

In [1], I proved that to a conneeted resistive electrieal circuit C with nodes 1, .. ·., n and total
resistanees R;,k between the nodes i and k, i =F k, an (n - 1)-simplex E with vertiees Al, .. : , An
in a Euclidean (n - l)-spaee ean be assigned for whieh Rik = p2(Ai , Ak ), where p denotes
the Euelidean distanee. E does not have any obtuse dihedral interior angle (between (n - .2)­
dimensional faees). Conversely, every (n -l)-simplex without obtuse dihedral interior angles ean
be realized in this way by a resistive eleetrical eireuit with n nodes. Using algebraie and graph­
theoretical equivalent models, we shall deseribe relations between some geometrie properÜes of
E and properties of C and formulate problems of interpretation of some geometrie ~nvariants. of
E in the electrieal model.

[1] M. Fiedler, Aggregation in graphs. In: Combinatories (A. Hajnal, V.T. S6s, Editors), Coll.
Math. Soe. J. Bolyai 18, 1976, 315-330.

Richard J. Gardner
Determination of convex polytopes by X - rays

(Joint work with Peter Gritzmann)

Theorem 1: Given an eonvex polytope P in JEd, (almost any) set of n = [d~kr+ 1 k-dimensional
X-rays parallel to the chosen k-.dimensional subspaces will distinguish P from any other eonvex
polytope.

(A k-dimensional X -ray parallel to a k-dimensional subspace S gives the k-dimensional volume .
of eaeh seetion of the polytope by. a k- dimensional plane parallel to S). Zonotopes can be
constructed which show that the number n is best possible; the theorem is false for non-convex
polytopes.

Theorem 2: A convex polytope in IE3 can be sueeessively determined by (almost any set of) 2
ordinary (1- dimensional) X-rays.
This means that the first X-ray taken in an arbitrary direetion can be eonsult~d to ·decide in
which direction the second X-ray should be taken; the two together determine the polytope.

7
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The methods include a volume formula of Lawrence and a duality formula for the spherical
Radon transform.

Peter Gritzmann
Polytope containment and determination by linear probes

(Joint work with Victor Klee and John Westwater)

We discuss the following algorithmic problem which arose from aquestion in abstract numerical
analysis: suppose we are faced with a convex body C in IRd with 0 E iote that is accessible only
by means of its ray-oracle Oe - when presented with any ray R issuing from 0, Oe returns the
point at which R intersects C's boundary; and suppose we want to use Oe to find a polytope that
contains P. It is assumed that the usual arithmetic operations in IRd are available at no cost,
so the problem's difficulty is measured solely in terms of the number of calls to the ray-oracle.

A main result shows that, if d ~ 3, then even when C is known to be symmetrie about the
origin and to be rotund, or when C is known to be a polytope that is symmetrie about the
origin, no finite number of calls to the ray-oracle is sufficient: a polytope containment algorithm

. based solelyon information supplied by the ray-oracle simply does not exist. And this is the
case even when much more powerful oracles are available.

Contrasting this result we give various algorithms w hich solve relaxations and variations of
the containment problem. In particular, we show that by means of a finite number of calls to
the ray-oracle we can determine whether C's condition number exceeds a given bound and, if
this is not the case, construct a containing polytope. Further , we show how a polytape P can
be reconstructed by means of a finite number of calls to its ray-oracle; this number, however,
depends on the combinatorial complexity of P.

Martin Henk
Approximating the volume of convex bodies

(Joint work with U. Betke)

It is a well-known fact that every deterministic polynornial time algorithm which gives an upper
bound V(K) and a lower bound ~(K) for the volume of a convex set in the d-dimensional
Euclidean space, the ratio V(K)/~(K) is at least (cdlogd)d, where c is a constant. Here we
describe an algorithm which gives for every € > 0 in polynomial time an upper bound and lower
bound with th~ property V(K)/K(K) ~ d!(l +e)d.

8
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Reiner Horst
Global optimization and the geometrie eomplementarity problem

Let D, C be convex sets in IR". Then the problem of finding a point x E D\C ( or else
eStablishing that D c C) is ealled Geometrie Complementary Problem (GCP). 1t is shown
that, for large elasses of optimization problems whieh inelude eoneave minimization, reverse
eonvex programming, DC optimization and Lipsehitz programming, the fundamental problem of
transcending stationarity (in the sense of finding a better feasible solution than a given one which
is usually a stationary point or loeal minimum) can be reduced to a geometrie complementarity
problem.
We also discuss solution methods for solving a (GeP), and show that in certain interesting
cases, a dual (GeP) of considerably reduced dimension can he solved by an outer approximation
technique.

Alexander Hufnagel
(Joint work with Martin Dyer and Peter Gritzmann)

On the eomplexity of eomputing the volume of a zonotope
Given Vectors Xl, •• • , X~ E IR", the zonotope generated by these veetors is the set of all points
which can written in the form z = Ei=l Aixi with 0 ~ Ai ~ 1. Zonotopes are special convex
polytopes whose number of vertices and facets may be exponent~alin the input size. The volume
of a zonotope is equal to

E Idet(xi), i E /1·
1~{1, ...,~},lll="

1t is shown that computing the volume of a zonotope is #P-hard. From this it can be deduced
that computing the number of integer points in an integer zonotope is #P- complete. There are
also other interesting applications in mixture management problems .

Gil Kalai
The diameter of graphs of convex polyhedra and a randomized simplex algorithm

Let P be a convex d-dimensional polyhedron with n facets and let tP be alinear functional.
We prove that from every vertex v of P there is a monotone path from v to a top vertex of P
(or unbounded ray) of length ~ (dt~~"). We describe a randomized simplex algorithm which
requires an expected subexponentIal number of arithmetic operations. A simple version of the
algorithm is: given a vertex .v, ehoose a facet containing v at random, apply the algorithm
recursively to each top of the facet and repeat.

9
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Victor Klee
Three unsolved pr~blems concer~ing cubes

The following three problems are discussed, partly for their intrinsic interest and partly for their
computational aspects:

(1) If IRd is tiled by congruent cubes, must some cubes share a common facet? (Affirma­
tive answer by Perron for d ::::; 6. There are purely graph-theoretical formulations due to
Lawrence and to Covadi and Szab6, that turn the problem into one that is (i~ theory)

finitely computable). .'

(2) What is the mininum number of hyperplanes needed to cut all edges of a d- cube? (Ob­
viously min ::; d. Emamy-K. proved min = d for d ::; 4. Paterson showed min = d - 1 for
d ~ 6. Q'Neil gave a sharp upper bound on the number of edges cut by a single hyperplane.)

(3) What is the minimum number T(d) of simplices for triangulating a d- cube? (Min is
known onIy for d = 2,3,4,5 and is resp. 2,5,16,67. Best asymptotic bound is given by

the inequality (~) lId ~ 0.870 for all d ~ 8, obtained by combining general results of
Haiman with Sallee's triangulations of the 8-eube.)

Peter Kleinschmidt
Methods of automated chromosome classification

(Joint work with Ilse Mittereiter, Christian Rank)

The automated ehromosome classifieation of human chromosomes (Karyotyping) is a useful tool
for prenatal diagnosties. Karyotyping systems use methods of computational geometry for image
processing and eombinatorial optimization for the classifieation proeess.
New approaehes for classifieation and segmentation of chromosomes are presented. In classifi­
cation, a transportation model based on the M-ahalanobis distance yields good aecuraey. For
segmentation, a non-bipartite matching model based on geometrie data seems promising on fi.
attempts. •

10
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Jeffrey C. Lagarias
The spectral radius of a set .of matrices and matrix Dorms

(Joint work with Yang Wang, Georgia Tech)

The spectral radius of an n x n matrix A is u(A) = max{I~I, ~ eigenvalue ofA}.
The generalized spectml radius ü(E) of a set E = {At, ... , Am} of matrices is ü(E) =
limsup,,_oo Ük(~)l, where uk(E) = max{u(Ai1 ••• Ai.) : Aij E ~}.

Finiteness conjecture: For any finite set E there exists a finite product Ai1 ••• Aij: with ä(E) =
_ er(Aä

1
••• Ai. )1/". Here k depends on E, and examples show that k can be arbitrarily large, even

• when E consists oI tW<;l 2 x 2 matrices. This conjecture is .shown equivalent to tbe Iollowing
conjecture for all DOrms 11.11 OD IRn

•

Normed finiteness conjectuTe for 11.11 :. Let If.llop be the operator norm on n x n matrices induced
from 11.11. Suppose E = {At, ... , Am} has allllAjllop ~ 1.
Let TE = {~1 ••• ~.: k ~ 1,IIAi1 ···~.lIop = I}. Then exactly one ofthe following holds. (a)
TE is finite (b) There is a finite product Aä1 ••• At. with u(Ai1 ••• A.ä.) = 1.
L. Gurits showed that the normed finiteness conjecture is true for polytopal norms (unit ball
= .polytope). We prove it for DOrms whose unit ball in Rn is contained in the zero-set of the
holomorphic function on a subset of Cn containing 0 (piecewise analytic norms). This includes
polytopal norms and the Euclidean norm. We also derive abound for k in the normed finiteness
conjecture depending on n and m = lEI only for the Euclidean norm.

D. G. Larman
A Ramsey theorem for convex sets in the plane

Suppose we have a set of n convex bodies S in the plane. We wish to pick a large subset S of S
with the following property: Either two members of S are disjoint or every two members of S
intersect.
Using the usual Ra.m.sey theorem we can always find a set S with more than log n Elements.
Here, using ideas of Töröscik, modified by myself and Janos Poch, we prove that we can always

efind a set S with more than n l / 9 elements. Simple examples show that an upper bound is n l / 2 •

Since every graph can be represented as the intersection graph of convex sets in m.4 , extensions
10 higher dimensions are somewhat limited.

Jim ·Lawrence
Transversals and the Euler characteristic

A convez tranversal of a collection of sets is a eonvex set which has nonempty intersection with

11
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each member of the collection. When do two finite collections of closed convex polyhedra have
precisely the same convex transversals? We describe an arithmetical condition which determines
this.

earl Lee
Generalized stress and rigidity •

The notions of stress and rigidity of a bar and joint framework are extended to higher dimensional
faces of simplicial complexes. This provides a geometrical interpretation of the face ring of a
complex. From this one obtains a new inductive proof that p.l.-spheres are Cohen-Macaulay,
and can see how the hard Lefschetz theorem for toric varieties associated with simplicial convex
polytopes is related to volume polynomials, Minkowski's theorem, and the Brunn-Minkowski
theorem.

Horst Martini
The generalized Fermat-Torricelli problem

Let Pn = {Pt, ... ,Pn} be a finite point set in lRd (d ~ 2) and {Wb .. . , W n} the set of corresponding
positive weights. H]FA: is the set of all k-dimensional flats in IRdk E {O, ... , cl - I}, we consider
the problem

min L Wi Dist (Pi, F),
FEIFk i

with Dist (.,.) denoting the Euclidean distance function. The following results are presented:

k = d -1:

kE{I, ... ,d-2}:

k=O

(MINSUM HYPERPLANE PROBLEM)
solvable in O(nd ) time; joint work with N.M. Korneenko), _
at least as difficult as the classical Fermat/Torricelli problem in lRd

­

(joint work with P. Gritzmann),
(classical FERMAT-TORRICELLI-PROBLEM)
Already for n = 5, d = 2, the solution cannot be expressed
in radicals over the field of rationals in terms oI the input points
(Bajaj 1988).

12
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Nimrod Megiddo
Parallel complexity of linear programming

For any fixed d the LP-problem in d variables and n inequalities can be solved on n processors
in O( (log log n )d) time. Probabilistically the problem can be solved almost surely in constant
time.

Günter Meisinger
On the face and Hag numbers of convex polytopes

I developed a computer program, that proves theorems about face and Hag numbers of general
(not necessarily simplicial) polytopes and computes all known linear relations between face and
Hag numbers. These relations are the generalized Dehn-Sommerville equations ~nd the g-numbers
and their convolutions.
Using the program I was able to prove among others the following result: Every rational d­
polytope (d ~ 9) has "small" 3-faces (i. e. one with less than 150 vertices).
The idea of the program is to take all known linear relations and the relationcorresponding to
the negation of the theorem's claim as input of alinear programming problem. An infeasihility
of the LP implies the correctness of the theorem. .

ShmuelOnn
Permutation polytopes

Each group G of permutation matrices giv~ rise to a permutation polytope P(G) = conv(G) c
m.dxd

, and, for any x E m.d , an orbit polytope P(G,-x) = conv(G· x). A special suhclass is formed
by the Young permutation polytopes, which correspond bijectively to partitions A = (Al, ... , Ak) r
n,nElI'l.

Young polytopes, such as the traveling salesman polytope, arise naturally in polyhedral COffi­

binatorics, and many algorithmic combinatorial problems, such a.s deciding hypergraph isomor­
phism, reduce to optimizing linear functionals over such polytopes.

Second, the assignment polytope P((n - 1,1)) is studied. Large stahle sets in its I-skeleton are

exhibited, and it is shown that its stability number a(n) is 2oev'n logn).

Next, letting I be the largest integer for which P(>') is I-neighborly, under sorne restrietions on
A it is shown that [t-J :5 1< ~(~ + I)!.

13
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Finally, it is shown that, unlike the orbit poly~ope P(Sn, x) which, for every generic point x 1S
combinatorially the same (the permuto.hedron); in general there may exist generic points having
nonisomorphic orbit polytopes P(G, x) 'fi P(G, y). This settles a question raised by D. Kozen.

Panos Pardalos
Minimization of separable convex functions.subject to equality and box constraints

(Joint work with N. Kovoov) •

We consider the problem of minimizing a separable differentiable strictly convex function on IRn

subject to m equality constraints and upper and lower bounds (box constraints). We provide
parametric characterization in IRm of the family of solutions to this problem, thereby showing
equivalence with a problem of search in an arrangement of hyperplanes in IRn

• We use this
eharacterization to develop an exact algorithm for the problem. For the sp~cia1 ease of the least
distanee problem we obtain a strongly polynomial algorithm running in time 0(nm

) for eaeh
fixed dimension m.

Richard Pollack
Arrangements, spreads and topological projective planes

(Joint work with J. E. Goodman, R. Wenger, and T. Zamfirescu)

We prove the following theorems whieh resolve (aflirmatively) several conjeetures stated by B.
Grünbaum in "Arrangements and Spreads":

1. Every arrangement of pseudolines can be extended to a topological projective plane.

2. There exists a universal topologieal projective plane T; i.e. given any arrangement of
pseudolines A there is an arrangement A' of lines of T which is isomorphie to A.

3. There are uncountably many non-isomorphie uhiversal topologieal projective planes. e
A eorollary of the first result is the theorem that any arrangement can be extended to a spread,
which we had proved by a more eomplicated argument a year ago.

A corollary of the third theorem is that there exist non-isomorphie topological planes T and T'
such that every arrangement in T has an isomorphie copy in T' and viee versa. This resolves
another conjecture of Grünbaum.

14
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Bill Pulleyblank
On splittable sets

(Joint work with F. B. Shephard and B. A. Reed)

Let S be a finite set of points in the plane. A set X ~ S is splittable if there exists a line 1in the
plane such that all members of X lie on one side of land all members of S \ X lie on the other
side. Our goal is to obtain a linear system Ax ::; b such that the e~treme solutions are precisely
the incidence vectors of the splittable sets .

•

In the case that the members of S form the vertices of a convex polygon, we show that the
minimal such system is the following: .

o~ Xv :5 1 for all v E S

L Xv - L Xv ::; 1 for all suitable R+,R- ~ S
vER+ vER-

Here R+ and R- are disjoint equicardinal subsets of S, such that each pair .of members of R+
is separated on the polygon by a member of R-, and conversely.
This we show by projecting network ßow polyhedra. ·We also descrihe some additional essential
inequalities for the general case..

Alexander Schrijver
The stahle set and odd path polytopes

(Joint work with P. D. Seymour)

We consider the stahle set and odd path polytopes'- Let G = (~E) he an undirected graph.
The stahle set polytope S(G) of G is the convex hull of the stahle set incidence vectors. As the
stahle set problem is NP-complete, the facets of S(G) are NP-hard to iecognize. We describe a
new approximation for S(G) that is polynomially optimizahle and that gives S(G) exact1y for a
class of graphs including all perfect graphs (joint work with L. Lovasz). We also show that the

..facets of the odd path polytope (= convex hull of incidence vectors of odd ~ - t paths, for fixed
Ws, t) all have 0,1/2,1 coefficients and are of a special type.

Ron Shamir
Unimodal separable minimization subject to partial order constrairits

(Joint work with Endre Boras, Rutgers.)

We describe a combinatorial, network flow based algorithm for the minimization of aseparahle
function subject to partial order constraints,' under certain unimodality assumptions on the
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objective function. Special cases of the problem include convex separable objective and isotonic
regression. The results generalize and simplify previous results of Maxwell and Muckstadt and
of Picard and Queyranne.

György Sonnevend
Analytic centers for semiinfinite sets of convex inequalities .

Let P = {x 1/(0, x) ~ 0,0 E A} be the description of a convex set - interseetion of "elementa_
ones -, where 1(0,.) is con~ave (e.g. linear or quadratic) and 1(.,.) is analytic (algebraically
simple) in its variables, A = [0, l]m. We study the problem of picking up one "central" element of
P, x(f, A) so that it be an analytic function of the "data" (I, A) and shares invariance properties
under the class of affine transformations and scaling. As a generalization of the "analytic centre"
for polyhedra (i.e. where card(A) = m) we propose affine invariant central points, which provide
also optimal order ellipsoidal approximations for the case A = [0, l]m, m = 1 and m = n - 1 and
are easily computable (updatable): they are generalization of the classical maximum entropy
solutions of Nevanlinna-Pick type moment problems.

Josef Stoer
On the complexity of continuation methods following an infeasible path

To get Mound the existence and knowledge of strictly feasible solutions of a dual pair (Po), (Da)
of linear programs, it is common to embed them into a family of perturbed linear programs

min(c + rc)Tx
x: ATx::; b+ rb

min(b + rb)Ty
y : Ay + c +rc = 0, y ~ 0,

where A is ~ n x rn-matrix of rank n. This gives rise to a central path x = x(r), y = y(r),-jA
s(r) = b+ rb - ATx(r), r ! 0, of solutions x, y, s to the perturbed system •

ATX + s = b+rb, Ay +c + rc = 0

YiSi = r, i = 1, ... ,m.

P~th following methods compute approximations to the central path at parameters R = ro >
rl > ... ,' and their complexity is measured by the number N = N(r, R) of steps needed to
reduce R to an r > 0, R = ro > rl > ... > rN-I ~ rN. It is shown for a standard method that,
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as in the unperturbed case, N(r, R) is bounded above by a curvature integral

l
R [t (Si(r))2 f (Yi(r))2] 1{2 1 R

N(r, R) :5 Cl r i=l Si{r) + i=l Yi(r) dr + C2 og r

leading for small perturbations c, b to N (r, R) = 0 (vm log ~ ).

Bernd Sturmfelse. Product formulas for sparse resultants

(joint work with ·Paul Pedersen).

This work concerns an application of convexity to cornputational algebra. The sparse resultant
of a system of polynomial equations

ni

fi(X) = L: CäjXai
; = 0,

j=O
i = O, .. ,k

in k variables x = (x}, .. . , Xk) is an irreducible polynomial R{eoo ... ,Ckn,J which vanishes wheIi­
ever (*) has a solution in (<t *)k. The degree of R in <10, Cil, •.. ,~ini equals Minkowski 's mixed
volume V(Po, ... , Pi, ... ,Pk), where P, = conv{alO,all, .. " a,n,} ~ IRk are the Newton polytopes
of (*). Our main result is a forrnula of Poisson type,

R(eoo, .. . , Ckn,J = II 10(,) . R'(Cäo,' .. ,Ckn,J
"YEO

where n is the zero set of 11, .. ,Ik, and R' is a certain rational function in the coefficients of
11, .. , fk. The irreducible factors of R' are indexed by the facets of the Minkowski surn PI +.. +Pk.

Emo W"elzl
_ A randomized LP-algor~thmwith a subexponential number of arithmet~coperations

• (joint work with Jirka Matousek and Micha Sharir; see also talk by Gi! Kalai).

We present a randomized algorithrn which solves linear programs with n constraints and d vari­

ables in expected 0 (nde4oVd In(n+l l ) time in the unit cost model (when we co~nt the number·

of arithmetic operations on the nurnbers in the input). The expectation is over the internal
randomization performed by the algorithrn, and holds for any input. The algorithrn can be
pres~nted in an abstract frame work, which faciliates its applications to several other related

optimization problems (e.g. smallest enclosing ball of n points in lRd , smallest volume ellipsoid
containing n points in JRd, largest ball (ellipsoid) in a convex polytope in IRd with n facets).
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J.M. W"ills
A lattice point problem

Let K C E d be a convex body with (normalized) Minkowski's quermassintegrals Vi, i
0,1, ... , d (Vd = V volurne, Vd- t = ~F surfaee area, Vo = 1). Further let L C Ed be a
lattiee and Di(L) = rnin{ldetLil : Li i-dirn. sublattice of L},i = 0,1, ... ,d. In particular
Do(L) = 1, Dd(L) = D(L) = det L. Then for eentrally symmetrie K

Ai+l(K, L) ... Ad(K, L)V(K)jD(L) ~ i! 2d-i~(K)/ Di(L); i = 0,1, ... ,d - 1

and for general·convex K

(1)

•
(1) is tight for i = 0 and i = 1, and for i = °it is Minkowski's main theorem on suceessive
minima. For i 2:: 2, (1) is far from being b~st possible, as wen as the right-hand side of (2) iso
We diseuss improvements for special eases by Henk, Schnell and the author.

Günter ~. ~iegler

Subspace arrangements and their homotopy types

(Joint work with Rade T. Zivaljevic)

We prove eombinatorial formulas for the homotopy type of the unIon of the subspaees in an
(affine, compactified affine, spherieal or projective) subspaee arrangement. For example, let A
be a set of affine subspaces in IRn

, let P be the poset of an non-empty interseetions of subspaees
in A, ordered by reversed inelusion, and let d : P ~ INo be the dimension funetion. Then the
one-point compactification of the union UA is homotopy equivalent to a wedge of suspended
order complexes VPEP Ed(p)+lß(p<p). From this one irnmediately gets the formula of Goresky &
MacPherson for the cohomology of the cornplement of A.
Dur method consists in interpreting the union of"an arrangement as the direct limit of a diagram
of spaces over the intersection poset, whieh is homotopy equivalent to the homotopy direct li~
We construct a combinatorial model diagram over the same poset, whose homotopy limit can_
compared to the original aue by usual homotopy comparison results for diagrams of spaces.

Berichterstatter: A. Hufnagel, Trier

G. Meisinger, Passau
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