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APPLIED AND COMPUTATIONAL CONVEXITY
26.1. bis'1.2. 1992

Die Tagung fand unter der Leitung von P. Gritzmann (Trier), V. Klee (Seattle) und P, Klein-
schmidt (Passau) statt. Sie hatte 39 Teilnehmer, von denen 37 Vortrage hielten.

Die Tagung spiegelte die interessanten Entwicklungen im Bereich der Applied and Computa-
tional Convexity wider, die dieser jungen mathematischen Disziplin ihr Profil verleihen. Die
Waurzeln des Gebietes finden sich im Bereich der Geometrie, der mathematischen Optimierung
sowie der Informatik. Die Fragestellungen sind algorithmischer Natur, die studierten Objekte
sind geometrischer Art, wobei der Begriff der Konvexitit eine besondere Bedeutung hat, und
motiviert sind die Fragen oft durch praktische Anwendungen innerhalb der mathematischen
Programmierung und der Informatik.

--Entsprechend dem Konzept der Tagung kamen die Teilnehmer aus vier verschiedenen Diszi-
plinen, der klassischen Konvexitatstheorie, der mathematischen. Optimierung, der algorithmi-
schen Geometrie und der Informatik. Aufgrund der giinstigen Zusammensetzung der Tagung
fand eine rege Kommunikation zwischen den verschiedenen Gruppen statt, und es kristallisierten
sich neue Forschungsansitze um das zentrale Konzept der Tagung heraus.

Die Vortrage behandelten vielfiltige Themen aus dem weiten Spektrum der Applied and Com-
putational Convexity. So gab es eine Reihe von Vortragen zum Bereich der Polyedergeometrie
und der Kombinatorik, in der Methoden der Polyedergeometrie benutzt werden, um kombina-

torische Optimierungsprobleme zu I6sen. Probleme der linearen Optimierung wurden sowohl

im Hinblick auf das durchschnittliche Verhalten von Algorithmen, als-auch auf die Entwicklung
randomisierter Verfahren und Verfahren mit méglichst kleiner Parallelkomplexitat vorgestellt.
Geometrische Aspekte nichtlinearer Optimierungsaufgaben wurden ebenso behandelt wie
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Fragen aus dem Bereich der Gitterpunktlehre, zum Teil vom Gesichtspunkt der ganzzahligen
Optimierung aus gesehen. Ein weiterer Bereich ‘deckte Phinomene der klassischen Konvexitat
ab, insbesondere auch gemischte Volumina konvexer Korper, und stellte diese in Bezug zu An-
wendungen etwa im Bereich der Computer Algebra oder zu Fragen der mathematischen Pro-
grammierung, etwa im Mixture Management.

Weitere Vortrage beschiftigten sich mit Problemen des Geometric Probing, die insbesondere
im Zusammenhang mit verschiedenen Fragen der Numerik und der Computertomographie gese-
hen wurden. Hierbei spielte natiirlicherweise auch die algorithmische Theorie konvexer Korper
eine grofie Rolle. Eine Reihe von konkreten Anwendungen wurde besprochen; hierzu zahlten
insbesondere auch Fragen der Klassifikation von Chromosomen. Ferner wurden algorithmische
Ansétze zum Studium von Tilings untersucht, die im Zusammenhang mit der Untersuchung von
Quasikristallen an Bedeutung gewonnen haben. Verschiedene offene Probleme gaben AnlaB zu
weitreichender Diskussion.

Die Tagung zeigte, daB trotz der Zuordnung der Teilnehmer zu verschiedenen Arbeits-
gebieten, die mit unterschiedlichen Methoden und Ideen an Probleme herangehen, eine tiefe

* enge Verwandtschaft vorhanden ist, die am zentralen Begriff der Konvexitat festzumachen ist,
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und deren weiteres Studium zu einer fruchtbaren Weiterentwicklung des Bereichs der Applied
and Computational Convexity fithren wird.
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Vortragsauszige

Imre Barany

On the number of convex lattice polygons
(Joint work with J. Pach and A. Vershik)

. Two convex lattice polygons are equivalent if there is a lattice preserving affine transformation

UFG

mapping one to the other. This is an equivalence relation. Write N(A) for the number of
different convex lattice polygons of area A. V.I. Arnold proved in 1980 that ¢, A'/? < log N(A) <
c,AY3log A. We improve upon this by showing that log N(A) < c3A/3. We also show that the
convex lattice polygons that lie in the box C, = [—n,n] X [-n,n] C IR? have a limit shape as
n — 0o,

Louis J. Billera -
Fiber polytopes and transportation polytopes
(Joint work partly with B. Sturmfels and A. Sarangarajan)

For 7 : P — @ a surjective affine map of convex polytopes,we define the fiber polytope L(P,Q)
by the Minkowski integral

£(P,Q) = /Q 7 (z) da.

Z(P,Q) is again a convex polytope of dimension dim P — dim @, whose face lattice is isomorphic
to the lattice of all coherent subdivisions of Q. We consider the case P = A, (the n--simplex), in
which case (P, Q) = £(Q), the secondary polytope of Q. In particular we discuss the problem
of determining X(An—1 X Apy), which corresponds to the polytope map whose fibers are all the
m X n transportation polytopes.

Jiirgen Bokowski

Spatial polyhedra without diagonals

(Joint work with Amos Altshuler and Peter Schuchert)
Our investigation was motivated by the following:

e Find a triangulated 2- manifold whxch can not be embedded in 3-space (longstanding,
open)!
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e Apply, test and improve algorithms for realizing oriented matroids or finding final polyno-
mials (NP- hard)!

Our results can be summarized as follows:

Theorem: There are altogether five orientable neighborly 2-pseudo-manifolds with 9 vertices.
Each of them is geometrically embeddable in IR. The following example is depicted as a exploded
view:

Vladimir G. Boltyanski ‘

The Helly dimension of convex bodies

The problem is to find the Helly dimension himT' (M) of the family T(M) of all translates of a
convex body M in n-dimensional Euclidean space. Two new results will be formulated in the
report. The first one contains a description of all n-dimensional convex bodies M (generally,
non centrally symmetric), that satisfy the condition him7'(M) = 2.

The second result contains a counterexample M’ to one Kinszes’s theorem (that gives a de-
scription of all centrally symmetric n-dimensional convex bodies M with himT(M) = 3). This
counterexample M’ is the polar set for the convex polytope convH, where H consists of all the
vectors te; + e;,1 = 2,..,n (all combinations of signs).

4
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Karl Heinz Borgwardt

Improvements in the average-case analysis of the simplex-method-based on geomet-
rical properties of randomly generated polyhedra

For linear programming problems of the type max vz s. t. Az < 1 with A € R™™; v,z € R”
the author had proven that — under the so called rotation-symmetry-model - the average number
of pivot steps of a certain variant of the simplex method is not greater than m'/*~'n3 . const,
when m > n.

This result refers to the solution of n—1 successive optimization problems of increasing dimension
until finally the original problem has been solved. The upper bound mentioned above is based
on a run along a complete circle in the dual polyhedron.

Now we show that in each stage first we have to correct the irregularity of the polyhedron
(qualitative difference to a ball) and that then only an arc of length O(1/v/E) ( k& = number of
stage) has to be traversed. Inclusion of this insight into our consideration leads to an improved
bound of m!/"~1n%?2 for m > n.

L. Danzer

Strategies for the generation of PENROSE-tilings with defects, which (hopefully)
will not lead into dead ends

To explain the growth of quasicrystals one would like to have appropriate local matching rules
(LMR). Unfortunately all known LMRs leading ~ together with a finite set of prototiles - to a
species S of quasiperiodic tilings are unsatisfactory since they are “non-local” in the following
sense:

(NL): For every real r there is a patch .4 in some member of S, atile T, and a patch B > T+rIB?,
such that A is extendable to the whole of space, while AU{T'} is not, but nevertheless .4 U B
satisfies the LMR.

Therefore I suggested to allow additional matchings in order to avoid (NL) (i.e. allow AUB
to be extended) and provide all permitted matchings with a preference order. In the case of
the PENROSE-tilings it seems to be sufficient to allow some vertexstars where opposite arrows
match. This leads to strictly locally defined strategies for the creation of large patches by adding
one vertexstar at every step. So far they did not run into a dead end. The maximal number of
tiles in a patch so obtained is now about 430 000. Probably the method can be carried over to
E3.
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Klaus Donner

Best L’-approximation with order convex and cone star-shaped sets in MR-
tomographic images

'In digital image processing we often wish to localize graphical objects and to estimate their
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contours from rather noisy image data. A typical example is the reconstruction of cross sections
of vessels in magnetic resonance images in order to detect dangerous narrowings of veins or
arteries. Modeling assumptions about the type of set used for the approximation are essential
for good reconstruction results. In many cases star-shaped fitting systems are appropriate but
digital analogues of star-shaped sets are inefficient in algorithms. We therefore introduce the
notion of cone star-shaped sets and characterize local L2- fitting optima in this context. The main
problem how to choose significant local set-approximations can be transformed into a problem
of efficiently computing upper concave envelopes of real-valued functions. This leads to rather
good reconstruction results and can be extended to other set types.-

Martin Dyer

Random walks and unimodular linear programs
(Joint work with A. Frieze)

We examine three problems:

1. Generating an (almost) uniformly distributed random basis of a m x n unimodular matrix
A in polynomial time.

2. Solving a linear program max{c-z : Az = b,z > 0} where A is unimodular in strongly
polynomial time.

3. Placing a polynomial bound on the combinatorial diameter of the polyhedron underlying
the linear program in 2. -

In each case the algorithms are based on random walk techniques, which are analyzed using
conductance and a geometric isoperimetric inequality. The result of 2. is also not new, but is of
interest since it is close to the dual simplex method. The result of 3. is, as far as we knew, new.

Giinter Ewald

Projections of polytopes onto k-spaces

Given a polytope P in IR",dimP = n, we discuss the maximal volume of projections of P onto
k-dimensional subspaces, 1 < k < n —1 (k fixed). For k =1 and k = n — 1 the problem of

6
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finding a good algorithmic solution has been solved. For 1 < k < n— 1 partial results have been
found by Filliman. We introduce a numerical algorithm for finding the maximum provided a
sharp shadow boundary is given such that those directions in the GraBmann-manifold to which
the shadow-boundary is assigned must contain the maximal direction.

Miroslav Fiedler

: . An application of simplex geometry to graphs and resistive electrical circuits

In [1], T proved that to a connected resistive electrical circuit C with nodes 1,...,n and total
resistances R between the nodes 7 and k,7 # k, an (n — 1)-simplex ¥ with vertices Ay,...,An
in a Euclidean (n — 1)-space can be assigned for which Ry = p2(A;, Ax), where p denotes
the Euclidean distance. ¥ does not have any obtuse dihedral interior angle (between (n — 2)-
dimensional faces). Conversely, every (n —1)-simplex without obtuse dihedral interior angles can
be realized in this way by a resistive electrical circuit with n nodes. Using algebraic and graph-
theoretical equivalent models, we shall describe relations between some geometric properties of
¥ and properties of C and formulate problems of interpretation of some geometric invariants of
¥ in the electrical model.

[1] M. Fiedler, Aggregation in graphs. In: Combinatorics (A Hajnal, V.T. Sés, Editors), Coll.
Math. Soc. J. Bolyai 18, 1976, 315-330.

Richard J. Gardner
Determination of convex polytopes by X - rays
(Joint work with Peter Gritzmann)

Theorem 1: Given an convex polytope P in IE?, (almost any) set of n = [ k] +1 k-dimensional
X-rays parallel to the chosen k-dimensional subspaces will distinguish P from any other convex

polytope.
. (A k-dimensional X-ray parallel to a k-dimensional subspace S gives the k-dimensional volume
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of each section of the polytope by a k- dimensional plane parallel to S). Zonotopes can be
constructed which show that the number n is best possible; the theorem is false for non-convex
polytopes.

Theorem 2: A convex polytope in IE® can be successively determined by (almost any set of) 2
ordinary (1- dimensional) X-rays.

This means that the first X-ray taken in an arbitrary direction can be consulted to decide in
which direction the second X-ray should be taken; the two together determine the polytope.
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The methods include a volume formula of Lawrence and a duality formula for the spherical
Radon transform.

Peter Gritzmann

Polytope containment and determination by linear probes
(Joint work with Victor Klee and John Westwater)

We discuss the following algorithmic problem which arose from a question in abstract numerical
analysis: suppose we are faced with a convex body C in IR? with 0 € intC that is accessible only
by means of its ray-oracle O — when presented with any ray R issuing from 0, Q¢ returns the
point at which R intersects C’s boundary; and suppose we want to use O¢ to find a polytope that
contains P. It is assumed that the usual arithmetic operations in IR? are available at no cost,
so the problem’s difficulty is measured solely in terms of the number of calls to the ray-oracle.
A main result shows that, if d > 3, then even when C is known to be symmetric about the
origin and to be rotund, or when C is known to be a polytope that is symmetric about the
origin, no finite number of calls to the ray-oracle is sufficient: a polytope containment algorithm

" based solely on information supplied by the ray-oracle simply does not exist. And this is the

case even when much more powerful oracles are available.

Contrasting this result we give various algorithms which solve relaxations and variations of
the containment problem. In particular, we show that by means of a finite number of calls to
the ray-oracle we can determine whether C’s condition number exceeds a given bound and, if
this is not the case, construct a containing polytope. Further, we show how a polytope P can
be reconstructed by means of a finite number of calls to its ray-oracle; this number, however,
depends on the combinatorial complexity of P.

Martin Henk
Approximating the volume of convex bodies
(Joint work with U. Betke)

It is a well-known fact that every deterministic polynomial time algorithm which gives an upper
bound V(K) and a lower bound V(K) for the volume of a convex set in the d-dimensional
Euclidean space, the ratio V(K)/V(K) is at least (cdlogd)?, where c is a constant. Here we
describe an algorithm which gives for every € > 0 in polynomial time an upper bound and lower
bound with the property V(K)/V(K) < d!(1 + ¢)*.
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Reiner Horst
Global optimization and the geometric complementarity problem

Let D,C be convex sets in IR". Then the problem of finding a point z € D\C ( or else
establishing that D C C) is called Geometric Complementary Problem (GCP). It is shown

that, for large classes of optimization problems which include concave minimization, reverse

convex programming, DC optimization and Lipschitz programming, the fundamental problem of
transcending stationarity (in the sense of finding a better feasible solution than a given one which
is usually a stationary point or local minimum) can be reduced to a geometric complementarity
problem.

We also discuss solution methods for solving a (GCP), and show that in certain interesting
cases, a dual (GC P) of considerably reduced dimension can be solved by an outer approximation
technique.

Alexander Hufnagel

(Joint work with Martin Dyer and Peter Gritzmann)

On the complexity of computing the volume of a zonotope
Given Vectors z,...,z, € IR", the zonotope generated by these vectors is the set of all points
which can written in the form z = ¥[_, Aiz; with 0 < A; < 1. Zonotopes are special convex
polytopes whose number of vertices and facets may be exponential in the input size. The volume
of a zonotope is equal to

3 |det(z;), ¢ € I].

IC{1,.r}lll=n
It is shown that computing the volume of a zonotope is #P-hard. From this it can be deduced
that computing the number of integer points in an integer zonotope is # P- complete. There are
also other interesting applications in mixture management problems .

Gil Kalai A
The diameter of graphs of convex polyhedra and a randomized simplex algorithm

Let P be a convex d-dimensional polyhedron with n facets and let ¢ be a linear functional.
We prove that from every vertex v of P there is a monotone path from v to a top vertex of P
(or unbounded ray) of length < (’“"’"‘) We describe a randomized simplex algorithm which
requires an expected subexponentla.l number of arithmetic operations. A simple version of the
algorithm is: given a vertex v, choose a facet containing v at random, apply the algorithm
recursively to each top of the facet and repeat.
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Victor Klee
Three unsolved problems concerning cubes

The following three problems are discussed, partly for their intrinsic interest and partly for their
computational aspects:

(1) If R? is tiled by congruent cubes, must some cubes share a common facet? (Affirma-
tive answer by Perron for d < 6. There are purely graph-theoretical formulations due to
Lawrence and to Covadi and Szabé, that turn the problem into one that is (in theory)
finitely computable).

(2) What is the mininum number of hyperplanes needed to cut all edges of a d- cube? (Ob-
viously min < d. Emamy-K. proved min = d for d < 4. Paterson showed min = d — 1 for
d > 6. O’Neil gave a sharp upper bound on the number of edges cut by a single hyperplane.)

(3) What is the minimum number T(d) of simplices for triangulating a d- cube? (Min is
known only for d = 2,3,4,5 and is resp. 2,5,16,67. Best asymptotic bound is given by
d
the inequality (Z‘%‘!ﬂ)l/ < 0.870 for all d > 8, obtained by combining general results of
Haiman with Sallee’s triangulations of the 8-cube.)

Peter Kleinschmidt
Methods of automated chromosome classification
(Joint work with Ilse Mittereiter, Christian Rank)

The automated chromosome classification of human chromosomes (Karyotyping) is a useful tool
for prenatal diagnostics. Karyotyping systems use methods of computational geometry for image
processing and combinatorial optimization for the classification process.

New approaches for classification and segmentation of chromosomes are presented. In classifi-
cation, a transportation model based on the Mahalanobis distance yields good accuracy. For
segmentation, a non-bipartite matching model based on geometric data seems promising on ﬁi
attempts.
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Jeffrey C. Lagarias :
The spectral radius of a set of matrices and matrix norms
(Joint work with Yang Wang, Georgia Tech)

The spectral radius of an n X n matrix A is o0(A) = max{|A[, A eigenvalue ofA}.
The generalized spectral radius 5(X) of a set £ = {A;,...,Am} of matrices is ()

limsup,_, ., 5x(X)!, where 5x(Z) = max{o(A;, --

-A;L) Ay ez} .

Finiteness conjecture: For any finite set £ there exists a finite product A;, - - - A;, with &(Z) =

conjecture for all norms ||.|| on IR™.

o(A;, --- Ai,)V/*. Here k depends on X, and examples show that k can be arbitrarily large, even
when ¥ consists of two 2 x 2 matrices. This conjecture is shown equivalent to the following

Normed finiteness conjecture for ||.|| . Let ||.||p be the operator norm on n x n matrices induced
from ||.||. Suppose £ = {Ay,...,An} has all ||Aj]lp < 1.
Let Ty = {A;, --- Ai, : £ = 1,||Ai; - - - Ay ||lop = 1}. Then exactly one of the following holds. (a)

Ty is finite (b) There is a finite product 4;, - -

- A;, with o(A;, -+ A) = 1.

L. Gurits showed that the normed finiteness conjecture is true for polytopal norms (unit ball
= polytope). We prove it for norms whose unit ball in IR™ is contained in the zero-set of the

holomorphic function on a subset of C* containing 0 (piecewise analytic norms). This includes

polytopal norms and the Euclidean norm. We also derive a bound for k in the normed finiteness
conjecture depending on n and m = || only for the Euclidean norm.

D. G. Larman

A Ramsey theorem for convex sets in the plane

Suppose we have a set of n convex bodies S in the plane. We wish to pick a large subset S of S
with the following property: Either two members of S are disjoint or every two members of S

intersect.

Using the usual Ramsey theorem we can always find a set S with more than logn Elements.
Here, using ideas of To6roscik, modified by myself and Janos Pach, we prove that we can always
find a set S with more than n'/° elements. Simple examples show that an upper bound is n!/2.
Since every graph can be represented as the intersection graph of convex sets in IR*, extensions

to higher dimensions are somewhat limited.

Jim -Lawrence

Transversals and the Euler characteristic

A convez tranversal of a collection of sets is a convex set which has nonempty intersection with
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each member of the collection. When do two finite collections of closed convex polyhedra have
precisely the same convex transversals? We describe an arithmetical condition which determines
this.

Carl Lee

Generalized stress and rigidity

The notions of stress and rigidity of a bar and joint framework are extended to higher dimensional
faces of simplicial complexes. This provides a geometrical interpretation of the face ring of a
complex. From this one obtains a new inductive proof that p.l-spheres are Cohen-Macaulay,
and can see how the hard Lefschetz theorem for toric varieties associated with simplicial convex
polytopes is related to volume polynomials, Minkowski’s theorem, and the Brunn-Minkowski
theorem.

Horst Martini
The generalized Fermat-Torricelli problem

Let P, = {p1,...,Pn} be afinite point set in R (d > 2) and {wy, ..., w,} theset of corresponding
positive weights. If IF* is the set of all k—dimensional flats in R% € {0,...,d — 1}, we consider
the problem
i i Dist 'aF )
min, Z w; Dist (pi, F)

with Dist (-,-) denoting the Euclidean distance function. The following results are presented:

k=d-1: (MINSUM HYPERPLANE PROBLEM) :
solvable in 0(n?) time; joint work with N.M. Korneenko), ’ .

ke{1,...,d-2}: at least as difficult as the classical Fermat/Torricelli problem in R4
(joint work with P. Gritzmann),

k=0 (classical FERMAT-TORRICELLI-PROBLEM)

Already for n = 5,d = 2, the solution cannot be expressed
in radicals over the field of rationals in terms of the input points
(Bajaj 1988).

12
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Nimrod Megiddo

Parallel complexity of linear programming

For any fixed d the LP-problem in d variables and n inequalities can be solved on n processors
in O((loglogn)?) time. Probabilistically the problem can be solved almost surely in constant
time.

Giinter Meisinger _
On the face and flag numbers of convex polytopes

I developed a computer program, that proves theorems about face and flag numbers of general
(not necessarily simplicial) polytopes and computes all known linear relations between face and
flag numbers. These relations are the generalized Dehn-Sommerville equations and the g-numbers
and their convolutions.

Using the program I was able to prove among others the following result: Every rational d-
polytope (d > 9) has “small” 3-faces (i. e. one with less than 150 vertices). oo
The idea of the program is to take all known linear relations and the relation corresponding to
the negation of the theorem’s claim as input of a linear programming problem. An infeasibility
of the LP implies the correctness of the theorem. -

Shmuel Onn
Permutation polytopes

Each group G of permutation matrices gives rise to a permutation polytope P(G) = conv(G) C
IR?*?, and, for any z € IR?, an orbit polytope P(G,z) = conv(G - z). A special subclass is formed
by the Young permutation polytopes, which correspond bijectively to partitions A = A, ) F
n,n € IN.

Young polytopes, such as the traveling salesman polytope, arise naturally in polyhedral com-
binatorics, and many algorithmic combinatorial problems, such as deciding hypergraph isomor-
phism, reduce to optimizing linear functionals over such polytopes.

Second, the assignment polytope P((n ~ 1,1)) is studied. Large stable sets in its 1-skeleton are
exhibited, and it is shown that its stability number a(n) is 28(v" logn)

Next, letting I be the largest integer for which P()) is l-neighborly, under some restrictions on
A it is shown that [£] <1< Fk+ 1)

13
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combinatorially the same (the permutohedron), in general there may exist generic points having
nonisomorphic orbit polytopes P(G, z) % P(G,y). This settles a question raised by D. Kozen.

Panos Pardalos
Minimization of separable convex functions subject to equality and box constraints
(Joint work with N. Kovoov)

|
\
Finally, it is shown that, unlike the orbxt polytope P(S,,z) which, for every generic point z is '

We consider the problem of minimizing a separable differentiable strictly convex function on IR™
subject to m equality constraints and upper and lower bounds (box constraints). We provide
parametric characterization in IR™ of the family of solutions to this problem, thereby showing
equivalence with a problem of search in an arrangement of hyperplanes in IR". We use this
characterization to develop an exact algorithm for the problem. For the special case of the least
distance problem we obtain a strongly polynomial algorithm running in time ©(n™) for each
fixed dimension m.

Richard Pollack

Arrangements, spreads and topological projective planes
(Joint work with J. E. Goodman, R. Wenger, and T. Zamfirescu)

We prove the following theorems which resolve (affirmatively) several conjectures stated by B.
Griinbaum in “Arrangements and Spreads”:

1. Every arrangement of pseudolines can be extended to a topological projectfve plane.

2. There exists a universal topological projective plane T'; i.e. given any arrangement of
pseudolines A there is an arrangement A’ of lines of T which is isomorphic to A.

3. There are uncountably many non-isomorphic universal topological projective ﬁla.nes. ‘

A corollary of the first result is the theorem that any arrangement can be extended to a spread,
which we had proved by a more complicated argument a year ago.

A corollary of the third theorem is that there exist non-isomorphic topological planes T and T"
such that every arrangement in T has an isomorphic copy in 7" and vice versa. Thxs resolves
another conjecture of Grinbaum.

14
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Bill Pulleyblank
On splittable sets )
(Joint work with F. B. Shephard and B. A. Reed)

Let S be a finite set of points in the plane. A set X C S is splittable if there exists a line { in the
plane such that all members of X lie on one side of  and all members of S\ X lie on the other
side. Our goal is to obtain a linear system Az < b such that the extreme solutions are precisely
the incidence vectors of the splittable sets.

In the case that the members of S form the vertices of a convex polygon, we show that the
minimal such system is the following:

0<z,<lforallve S

3> z,— Y z, <1 for all suitable R*, R~ C S
vERt vER—

Here R* and R~ are disjoint equicardinal subsets of S, such that each palr_of members of R*
is separated on the polygon by a member of R~, and conversely.

This we show by projecting network flow polyhedra. We also describe some additional essential
inequalities for the general case.

Alexander Schrijver

The stable set and odd path polytopes

(Joint work with P. D. Seymour)

We consider the stable set and odd path polytopes. Let G = (V, E) be an undirected graph.

The stable set polytope S(G) of G is the convex hull of the stable set incidence vectors. As the

stable set problem is NP-complete, the facets of S(G) are NP-hard to recognize. We describe a

new approximation for S(G) that is polynomially optimizable and that gives S(G) exactly for a

class of graphs including all perfect graphs (joint work with L. Lovdsz). We also show that the
e facets of the odd path polytope (= convex hull of incidence vectors of odd s — ¢ paths, for fixed
‘s,t) all have 0,1/2,1 coefficients and are of a special type.

Ron Shamir
Unimodal separable minimization subject to partial order constrairits
(Joint work with Endre Boros, Rutgers.)

We describe a combinatorial, network flow based algorithm for the minimization of a separable
function subject to partial order constraints, under certam unimodality assumptions on the
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objective function. Special cases of the problem include convex separable objective and isotonic
regression. The results generalize and simplify previous results of Maxwell and Muckstadt and
of Picard and Queyranne.

Gyorgy Sonnevend

Analytic centers for semiinfinite sets of convex inequalities

Let P = {z | f(a,z) > 0,a € A} be the description of a convex set ~ intersection of “elementa,n.
ones —, where f(a,.) is concave (e.g. linear or quadratic) and f(.,.) is analytic (algebraically
simple) in its variables, A = [0, 1]™. We study the problem of picking up one “central” element of
P, z(f, A) so that it be an analytic function of the “data” (f, A) and shares invariance properties
under the class of affine transformations and scaling. As a generalization of the “analytic centre”
for polyhedra (i.e. where card(A) = m) we propose affine invariant central points, which provide
also optimal order ellipsoidal approximations for the case A = [0,1]", m =1and m =n—1 and
are easily computable (updatable): they are generalization of the classical maximum entropy
solutions of Nevanlinna-Pick type moment problems.

Josef Stoer
On the complexity of continuation methods following an infeasible path

To get around the existence and knowledge of strictly feasible solutions of a dual pair (FP), (Do)
of linear programs, it is common to embed them into a family of perturbed linear programs

min(c + r&)Tz min(b + rb)Ty
(%) z: ATz <b+rb (Dr) y:Ay+c+ré=0,y>0,

where A is a n x m-matrix of rank n. This gives rise to a central path z = z(r),y = y(r),
s(r) = b4+ rb— ATz(r),r | 0, of solutions z,y,s to the perturbed system ‘

ATz +s=b+rb, Ay+c+ré=0
yisi=r, t=1,...,m.

Path following methods compute approximations to the central path at parameters R = ry >
r1 > ..., and their complexity is measured by the number N = N(r,R) of steps needed to
reduce Rtoanr >0, R=rg>r >...>ry_; > ry. It is shown for a standard method that,
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as in the unperturbed case, N(r, R) is bounded above by a curvature integral

=1

m e 271/2
N(r,R) < « / L] jg:) + ) (%) } dr + c; log g,

_ leading for small perturbations ¢, bto N(r,R) = O(y/m log&).

Bernd Sturmfels
. Product formulas for sparse resultants
" (joint work with Paul Pedersen).

This work concerns an application of convexity to computational algebra. The sparse resultant
of a system of polynomial equations

fi(z) = Z ¢zt = 1=0,.,k (*)
in k variables z = (z,,...,z;) is an irreducible polynomial R(cgo. . . ,Ckn,) Which vanishes when-
ever () has a solution in (@ *)*. The degree of R in cio,ci1,- - -, Cin; €quals Minkowski’s mixed

volume V(P,,..., B, . ., P), where P, = conv{ap,an,-. ,a,m} c ]R" are the Newton polytopes
of (*). Our main result is a formula of Poisson type,

R(COO! . '7ck'nk) = H fo(‘)‘) : R’(Q’Oy’ o 7ck'ng)

1€Q

where 2 is the zero set of f;, ... fx, and R’ is a certain rational function in the coefficients of
f1,-, fx- The irreducible factors of R’ are indexed by the facets of the Minkowski sum P, +..+ P;.

Emo Welzl
A randomized LP-algorithm with a subexponential number of arithmetic operations
. (joint work with Jirka Matousek and Micha Sharir; see also talk by Gil Kalai).

We present a randomized algorithm which solves linear programs with n constraints and d vari-
ables in expected O (mie"'v ¢ In(n+1) ) time in the unit cost model (when we count the number -
of arithmetic operations on the numbers in the input). The expectation is over the internal

randomization performed by the algorithm, and holds for any input. The algorithm can be
presented in an abstract frame work, which faciliates its applications to several other related

optimization problems (e g. smallest enclosing ball of n points in IR?, smallest volume ellipsoid
containing n points in RY, largest ball (ellipsoid) in a convex polytope in R? with n facets).
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J.M. Wills

A lattice point problem

Let K C E? be a convex body with (normalized) Minkowski’s quermassintegrals V;,i =
0,1,...,d (V4 = V volume, Vy_, = IF surface area, Vo = 1). Further let L C E? be a
lattice and D;(L) = min{|detL;| : L; i-dim. sublattice of L}, = 0,1,...,d. In particular
Do(L) =1, D4(L) = D(L) = det L. Then for centrally symmetric K

Xivi(K, L) - Ma(K, L)V (K)[D(L) < &t 27Vi(K)/Di(L); i=0,1,...,d=1 (1)

and for general convex K - -
VK) _ prYaaK) G(K,L) < zd:i,Ve(K) @ ‘
D(L) ~ Daa(L) = "7 T & Di(L)

(1) is tight for ¢ = 0 and ¢ = 1, and for ¢ = 0 it is Minkowski’s main theorem on successive
minima. For i > 2, (1) is far from being best possible, as well as the right-hand side of (2) is.
We discuss improvements for special cases by Henk, Schnell and the author.

Giinter M. Ziegler
Subspace arrangements and their homotopy types
(Joint work with Rade T. Zivaljevi¢)

We prove combinatorial formulas for the homotopy type of the union of the subspaces in an
(affine, compactified affine, spherical or projective) subspace arrangement. For example, let A
be a set of affine subspaces in IR", let P be the poset of all non-empty intersections of subspaces
in A, ordered by reversed inclusion, and let d : P — IN; be the dimension function. Then the
one-point compactification of the union A is homotopy equivalent to a wedge of suspended
order complexes V,ep Z¥P+1A(P,,). From this one immediately gets the formula of Goresky &
MacPherson for the cohomology of the complement of A. ‘

Our method consists in interpreting the union of an arrangement as the direct limit of a diagram '
of spaces over the intersection poset, which is homotopy equivalent to the homotopy direct limg
We construct a combinatorial model diagram over the same poset, whose homotopy limit ca.:’
compared to the original one by usual homotopy comparison results for diagrams of spaces.

Berichterstatter: ~A. Hufnagel, Trier

G. Meisinger, Passau
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