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Tagungsbericht 8/1992

p-adische Analysis und Anwendungen

‘ ) 23.-29.2.1992

Die Tagung fand unter der Leitung von S. Bosch (Miinster), L. Gerritzen
(Bochum) und A. Ogus (Berkeley) statt.

The use of p-adic methods is spreading more and more, most notably in
algebraic geometry and number theory, but also in various other fields, in-
cluding theoretical Physics. It was the aim of the conference to bring together
researchers from different disciplines, who all are experiencing the need of ap-
plying p-adic methods in their work. The subjects which were covered include
L-functions, p-adic differential equations, p-adic Physics, motives, De Rham
cohomology, rigid cohomology, rigid uniformization, periods of abelian vari-
eties, p-adic symmetric spaces, Drinfeld modular forms, stable reduction of
curves as well as various other topics from algebraic and arithmetic algebraic
geometry.

Vortragsauszige

‘ M. Rapoport:

Variation of F-isocrystals

Let G be a connected reductive group over Q,. Kottwitz introduces the
set B(G) and a map
v:B(G) = M(G)g .

Here M(G)g denotes the set of conjugacy classes defined over Q, of homo-
morphisms v : D — G, where D is the diagonalizable pro-algebraic group
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with character group Q. In case G = GL,, the set B(G) is the set of iso-
morphism classes of F-isocrystals of rank n on an algebraically closed field
of characteristic p, and the map v associates to an F-isocrystal its slopes.
We introduce an order on M(G)B, which in the case of GL, reduces to the
order on the set of Newton polygons. Using it one can, in certain cases,
generalize to this context the theorem of Grothendieck on the behaviour of
Newton polygons in a family of F-isocrystals.

A.A. Panchishkin:

A general criterium for the ezistence of p-adic L-functions

For a motive M over a totally real field F with coefficients in another
number field T p-adic properties are studied of the corresponding L-function
L(M,s) = [1L,(M,Np~*), where L,(M,X)™! is the characteristic polyno-

P

mial of the Frobenius element Fr, € Gr = Gal(F/F) in the corresponding
Galois representation r,\,y : Gr — GL(M)) (M, is the A-realization of M,
A a finite place of T'). A local p-invariant k = hp(p) = (h,), is introduced,
which generalizes the Hasse invariant of an elliptic curve E/Q, whose compo-
neats h, are indexed by imbeddings ¢ : F — Q of the ground field F, and are
defined as the differences h, := Punwt,o(d) — Pugge(d*) for d* = dimy M},
where Pywio and Pyggo are the Newton polygon and the Hodge polygon
of M. Suppose that there exist a Hecke character x of finite order and an
integer m € Z such that the twist M(x)(m) is critical in the sense of Deligne.

A general criterium is established for the existence of a (bounded)
p-adic interpolation of the algebraic numbers A(po0)(M(x)(m),0)/Qe),
where A, ) denotes the modified L-function of J. Coates and B. Perrin-
Riou, obtained by a canonical replacement of local factors above p and
oo, and €(e) is a certain period of M, which depends only on the sign
€ = (€s)er€e = Xo(—1)(—1)™. This criterium says that this p-adic inter-
polation exists if and only if the local invariant vanishes: h = (h,), = 0. In
the general case a more elaborated technique of admissible measures can be
applied in order to obtain certain growing p-adic L-functions.

Examples are given for the L-functions of Hilbert modular forms, of Siegel
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modular forms, and of Hecke cha.racte_rs of CM-type.

J-Y. Etesse:

L-functions in rigid cohomology: unit root zeroes and poles

Dwork proved in 1971 that the unit root zeta function (,(t) of the ordinary
‘ part of the Legendre family of elliptic curves X —+5 = Spec F(A, TJ)T(T)]
is meromorphic in G;; this ¢, can be described as the L-function: (,(t) =
L(S, R'f.Z,,t) associated to the lisse Z,-sheaf R' f.Z,. The aim of the talk
is to extend this result to more general L-functions to get conjectures of Katz
in his Bourbaki talk (“Travaux de Dwork”, 1972).

In the case S is proper and smooth over F, and E is an F-crystal,
L(S, E,t) is a rational function (using crystalline cohomology). We get a
functional equation and if F is a unit root F-crystal we can single out the
zeroes and poles of L(S, E,t) with g-order an integer r (cf. “Annales de
I'Institut Fourier” t. 38, fasc. 4, 1988, p. 33-92).

When S is separated of finite type over F,, we consider a field K of char-
acteristic 0, complete under a discrete valuation, with perfect residue field
k O F,, and an overconvergent F-isocrystal E on S/K. Then L(S,E,t) is
proved to be a meromorphic function of ¢, using rigid cohomology with com-
pact supports. Applying this to the structure sheaf E = Ok one can show

that rdims | )
L(S,t) / I [det(1 - tF|H}, (5,2Z,) ® Q) "V |

i=0

S := § xy, Fy, has neither zeroes nor poles on the annulus |¢|, = 1. This
generalizes to sheaves E with finite monodromy.

‘ Y. André:

Q-realization of p-adic motives

General problem: Let Y anz" , a, € Q, be a formal power series. We
want to compare the real and p-adic evaluations for z € Q in case of conver-
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gence to rational or algebraic numbers.

Conjecture: Let (11(2),- .. ,¥a(2))" € Q[[2]]" be a vector-solution to a Picard-
Fuchs differential system. If the co-adic evaluations of y1(€),... ,ya(), £ €
Q, are Q-linearly dependent, so are the p-adic evaluations for every prime p
where they make sense. . ]

Indeed, the Grothendieck conjecture implies that the relation between
Y1800y -+ - »Yn(€)eo should come from an algebraic cycle, i.e. an endomor-
phism of a certain motive M/q.

We define a Q-realization of M, /Q,» at least in the case of good reduction,
stable under End Myq,, say Hg(Mq,, Q), such that Hp(Mq,, Q) ®5Q, =
Hpr(M) ® @p. Moreover, there is a relative version HB(M__[.S’,@),, and for
constant reduction Hp(M/s,Q) @5 Q, = Hpr(M/s)*" ¥ ® Q,. We explicit
Hp(X,Q) for any elliptic curve X/,c,. We can prove:

Theorem. The above conjecture is true if the dependence relation between
¥1(Qoos - - - »Yn({)oo comes (according to Grothendieck’s conjecture) from an
algebraic cycle. :

M. Candilera:

Periods on p-;ldic Barsotti-Tate groups via Wilt realization

Let k be a perfect field of char p > 0,4 = W(K), A’ the ring of integers
of a totally ramified extension K’ of Frac A with ramification index e < p—1.

If R is the affine algebra of a Barsotti-Tate group over kand 0 : ¥R — R
is a lifting to A’, then #R can be realized as a sub-bialgebra of W (), where
R is the completion of li;(R-E5>R-Z4R...).

In this way one has a representative for any class of isomorphism of lift-
ings of R inside A’ ® W(RR).

Using Witt bivectors, one can realize the Dieudonné module M(R) inside
bivR. In particular, via Witt realization, the integrals of first kind of # R are
embedded into A’ ® M(R). This doesn’t happen for the integrals of second
kind, but for any such integral k there is a unique element 7, € A’ ® M(R)
such that k =7, mod m ® W(R).

Using this fact and the identification between Tate spaces over A’ and
over k, one can define, for any P in the Tate space and any integral of second
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kind k, the pairing [ 8k = [14 ® biv(P)}y, with values in bivectors.
P

Using this definition and the properties of Witt realization, one can com-
pare different approaches to the periods.

E.-U. Gekeler:
Shimura-Taniyama- Weil for function fields

Let K be a function field over a finite field F,, and fix a place oo of K
(principal example: K = F,(T), “oo” the usual place at infinity).
We consider elliptic curves E over K that satisfy

(%) E has split multiplicative reduction at co.

(Equivalent: E is a Tate curve over the completion Ko ). It forces that the
conductor cond(E) is oo - f with some “finite” divisor f of K.

By results of Grothendieck and Jacquet-Langlands, E corresponds to a
certain automorphic representation ng for GL(2,2k) (2k the adéle ring of
K). Using Drinfeld’s theory of elliptic (or Drinfeld) modules, 7z gives rise to
a one-dimensional factor of the Jacobian Jo(f) of a Drinfeld modular curve
Mo(f). Taken together, this establishes bijections between the sets of

isogeny classes of automorphic new-
{ E that satisfy (%) } { one-dimensional } and { forms gf a ceftain
and cond(E) = ’ factors of J§¥(f) type with rational ’
oo f eigenvalues
respectively.

Besides the fact that it is proved, it is the analogue of the conjecture of
Shimura, Taniyama, and Weil, the coefficient field Q being replaced by K.
The assumption (*) is not a serious one since oo is at our disposal; if (*)
cannot be achieved for a place of K, E will be a twisted constant curve.
But the above correspondence is not explicit; so far, it is a pure existence
statement without constructing the objects under consideration.

In the talk, we (joint work with M. Reversat/Toulouse) described how
to explicitly obtain a curve E = E, as a Tate curve from an automorphic
newform ¢. The construction depends on
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- results of M. van der Put on holomorphic functions on the Drinfeld upper
half-plane; '

- Teitelbaum’s description of Drinfeld modular forms as certain measures on
the Bruhat-Tits tree of GL(2, K );

- the existence of liftings of Drinfeld modular forms (char p-valued) to auto-
morphic forms (char 0-valued);

- the description of the Jacobians of Drinfeld modular curves.

P. Schneider:

The p-adic holomorphic discrete series of SLaya

Let X be Drinfeld’s d-dimensional upper half space over a local field
K/Q,. For any cocompact discrete (torsionfree) subgroup T' C SLa41(K) the
quotient Xr := '\ X is a projective smooth algebraic variety over K. Any
finite-dimenensional K[I'-module M gives rise to a local system on Xp".
Its de Rham cohomology Hpg(Xr, M) by Kiehl’s GAGA-theorem actually
is the de Rham cohomology of an algebraic vector bundle with connection
on Xr. Based on joint work with U. Stuhler the dimensions of these coho-
mology groups can be computed explicitly in terms of the covolume of the
group I'. In particular the only interesting cohomology group turns out to
be HZp(Xr,M). It remains to understand the de Rham filtration on this
group. Consider the case where M comes from an irreducible K-rational
representation of SLg44;. In this case the Hodge-de Rham spectral sequence
usually will not degenerate which makes it difficult to analyze the induced
filtration. It was shown that for such an M the de Rham complex for M is
naturally quasi-isomorphic to a much simpler “reduced” de Rham complex.
We hope that the associated “reduced” Hodge-de Rham spectral sequence
always degenerates. This reduced complex is built out of the holomorphic
discrete series representations in the title (for d = 1 this notion was studied by
Morita and Murase); it is a p-adic analog of the Bernstein-Gelfand-Gelfand
resolution in the theory of Verma modules. Its construction is based upon
Lie algebra cohomology computations of Kostant.
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H. Voskuil:

Non-archimedean flag domains

Part of the talk is joint work with M. van der Put.

Non-archimedean flag domains Y for G(K') are open analytical subspaces
of X = G/P, that are G(K)-invariant and have the property that Y/T is-a
compact analytical space for any I' C G(K). Here K is a non-archimedean
local field, G a (simply) conmnected, absolutely almost simple, semisimple
linear algebraic group defined over K, P C G a parabolic subgroup, and
X = G/P a projective homogeneous variety, defined over K.

The description of a flag domain is as follows:

Let £ be an ample line bundle on X, defined over K, which means that
the embedding of X < P" determined by £ is defined over K (i.e. is an
embedding in P%). Let S C G be a K-split torus of maximal rank. Take a G-
linearization of £. This induces an S-linearization of £. Now we have a set of
stable points, denoted by X*(S, £), and a set of semi-stable points, denoted
by X*(S, L), for this S-linearization of £. Take Y := [ g-X%(S, L).

- g€G(K)
Then Y C X is a flag domain if X*(S, L) = X*(S, £).
To find X such that X contains flag domains, we only have to study sets
of (semi-)stable points. We have the following result:

Theorem. The proyectwe homogeneous variety X = G/ P, defined over K,
has a line bundle deﬁned over K, such that X*(S, L) = X*(S, L) if and only
if:

1) G = SLn(D), D/K a skew field of dimension d?, X = G/ Py,
ged(ieI,n)=1,1C{l1,... ,nd—1}. Here P = ﬂ P; and P; are mazimal

parabolics containing some fized B such that G ® K ./P; ® K, = Gi(i,nd)
where K, D K is a mazimal separable closure of K
2) G = the non-split form of the symplectic group, X = G/B and X =
G/P for an ectra parabolic subgroup (B is the Borel group, i.e. the minimal
parabolic subgroup)
3) G # outer form of type Ay, quasi-split form of type D; or Es, X = G/B,
where B is the Borel group.

The quotients Y/T' for T' C G(K) a discrete co-compact subgroup are in
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general non-algebraic. In fact they have only constant meromorphic functions
except when:

G = SL,(K) and we have a G-equivariant pro_]ectlon @ X — Prt,
such that Y = ¢~ !(Qn-1). Here Q,_; is Drinfeld’s symmetric space Pg~ st
{K-rational hyperplanes} . In these exceptional cases Y/I' is an algebraic
variety.

M. van der Put:

Uniformization of Jacobi varieties and -deformation of curves

This is joint work with Jean Fresnel (Univ. de Bordeaux).

The problem. Let Z/K be a non-singular curve (pwJectwe) over a field
K which is complete with respect to a non-archimedean valuation. Suppose
that Z has stable reduction Xo/k where k is the residue field of K. Then
the Jacobian variety of Z has the following uniformization (Raynaud, Bosch,
Liitkebohmert, Fresnel, van der Put, ...)

1
1
Jac(Z)

1 - T — — A(Z) - 1

_—S e Q-

with T a torus of dimension h, A(Z) an abelian variety with principal polar-
ization of dimension g, and A a lattice.

Is A(Z) again a Jacobian variety?
Answer: "In general” No!
Two methods:
(A) Suppose Xo/k is a “general stable curve”, then there exists a Z/K with
stable reduction X such that A(Z) is not a product of Jacobian varieties.
Proof: Deformation theory of curves and a special version of Petri’s theorem
of canonical embedded curves.
(B) Let Z denote an étale extension of degree 2 of a Mumford curve. If the
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Mumford curve is general enough, then A(Z) is not a product of Jacobian
varieties.

Proof: Prym-varieties, Kodaira-Spencer maps, work of F. Oort and J. Steen-
brink on the hyperelliptic locus in M, and the Torelli map. -
A preprint is available!

B. Le Stum:

The geometrical meaning of monodromy and Frobenius over p-adic fields

Fix a smooth proper curve C over C,. Using Coleman’s integration of
differential forms on basic wide open spaces, one can define a map

Hpr(C) = Hpg(C™) — HY(C™,G).

Setting H, (C*) := H'(C*,Z)%*, one can see this map as a pairing
Hi(C*™) ©2C, X Hya(C) — Gy, (78 ayw) +—: a/w ,
! v

the period pairing.

One can show that H'(C®,Z) injects in Hjr(C), that the period pair-
ing induces the natural pairing between H;(C*") and H'(C®",Z), and that
H'(C*,Z) is orthogonal to itself with respect to the Poincaré pairing. It
formally follows that there is a natural isomorphism

Hip 2 HY(C*™,G,) ® Ho® Hi(C™) 82 G,

with H := HY(C*,C,)*/H"(C*,C,). Then one can show that if X is any
reduction of C with only ordinary multiple points (with normal tangents) as
singularities, there is a natural isomorphism

Hclris(X/W) Ow CP = f[ s

where X is the normalisation of X and W the ring of Witt vectors of F,.
Thus, if we set

D:= H(C*™ W)@ H. (X/W)® Hi(C™) @ W ,
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we get a natural isomorphism D ®w C, = H}r(C*"). Moreover, one can
endow D with a Frobenius and a monodromy operator as follows. One defines
¢ on H(C®",W) as o when ¢ is the Frobenius of W, ¢ is the usual Frobenius
on HY, (X/W) and ¢ = p®o¢ on the last part. Actually, monodromy factors
through an isogeny

H(C*™) @, W — H'(C™, W)
that comes from a scalar product

Hy(C™) x Hy(C*™) — Q, (1,7) — 77"

This product is just Grothendieck’s monodromy pairing of SGA 7. Also, the
above description of Frobenius is mainly due to Coleman.

A. Ogus:
F-crystals on the Punctured Point

Let V be a finite extension of Z, , K = V®Q , k = the residue field of V,
and W = the Witt ring of k. Suppose Y/V is projective, with semi-stable
reduction. Then Hyodo and Kato have endowed the De Rham cohomology
H(Yx/K) with “hidden structure”, as suggested by Jannsen:

Given a uniformizer w of V, there exists a W-module Hy endowed with
- an isomorphism p, : Hy ®w K-~ Hpr(Yx/K)

- an Fy-linear injection ® : Hy — Hp
- a nilpotent endomorphism N : Hy — Hp, such that p®N = N®.

The main idea of the proof is to endow Y and S = SpecV with log
structures, so that we obtain a smooth proper map of log schemes Y */$*,
this map reduces modulo p to a “perfectly smooth” Y,*/¢X, where £ is
Spec V/pV with log structure with chart N — V/pV | 1 — (class of 7). The
theory of log crystalline cohomology then furnishes an F-crystal.on £X whose
value at S* is Hpr(Y*/S*). We attempt to explain the hidden structure
alluded to above by studying abstract F-crystals on ¢X. This is supposed
to be analogous to the approach of W. Schmidt and Cornalba in the study
of limit mixed Hodge structures and the approach of Grothendieck to the
monodromy theorem in l-adic (I # p) étale cohomology.

10

Deutsche
DFG Forschungsgemeinschaft © @




DFG Deutsche
Forschungsgemeinschaft

D. Bertrand:

Auto-dual 1-motives and hypergeomeiv‘ic equations

In [J. Number Th., 25, 1987, 152-161], K. Ribet constructed 1-motives
whose I-adic realizations satisfy a strong degeneration property.
We construct in a similar fashion reducible differential modules whose dif-

ferential Galois groups are “as small as possible”. More precisely, let (K,0) .

be a differential field and write Kp (resp. Gals(Ka/K)) for the Picard-
Vessiot extension of K defined by M € K|[d] (resp. for its differential Galois
group). Consider an irreducible L in K[8)], isomorphic to its adjoint LY, and
two elements P,Q in K[], of order 1, such that P is isomorphic to QV.

Theorem. Let M = PLQ € K|[d), and let X be the relative differential

Galois group Gals(Km/Kpr - Kgq). Then:

1) If the autoduality L = LV is antisymmetric, X is always :somorphzc to C.
ii) If the autoduality L = LV is symmetric, and if M is isomorphic to M"Y,

X is trivial. Otherwise, it is isomorphic to C.

This theorem can be applied to the study of Gal(Kp/K) when M is a
generalized hypergeometric operator. By the work of K. Boussel, each of
the cases above can be expressed by congruences and sign conditions on the
parameters.

Time permitting (and time didn’t permit), we also explain how the
de Rham/Betti realizations of Ribet’s motives can be viewed as an extended
Riemann-Legendre type of relations. It is worthwhile pointing out that their
period matrix involves logarithms of Lamé functions.

R. Crew:

Finiteness questions in rigid cohomology

Suppose X/k is separated of finite type, where k is a perfect field of
characteristic p > 0. Drawing on the work of Dwork, Washnitzer-Monsky,
and others, Berthelot has constructed a “rigid” cohomology theory H'(X),
as well as a theory H;(X) of “rigid cohomology with compact supports”. It
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is not known to be finite-dimensional. Grothendieck’s proof of the finite-
ness of l-adic cohomology suggests that a basic case to study is that of the
HY(X, M), H{(X, M) where X is a smooth curve, and M is a “local coeffi-
cient system” - in this case, an overconvergent isocrystal in Berthelot’s sense.
Now in fact the H'(X, M) are not always finite-dimensional, and so the ques-
tion arises of finding sufficient conditions for this. We define the notion of
a “strict” isocrystal, and sketch a proof that if M is a strict isocrystal on
a smooth curve X/k, then the H'(X, M), H,(X, M) are finite-dimensional,
and the duality pairing H'(M) x H>*"*(M) — K is perfect. We show also
that a “locally quasi-unipotent” isocrystal, i.e. one which satisfies an ana-
logue of Grothendieck’s local monodromy theorem, is strict. The key idea
of the proof is that the H'(X, M), H.(X, M) carry natural topologies, and
the duality theorem holds in a topological sense, without knowing finiteness.
This duality, and a simple functional-analytic argument involving the dual-
ity of the “middle extension” Im(H}(M) — H'(M)) shows that H'(M) and
H!(M) are finite-dimensional.

P. Colmez:
A product formula for periods of CM abelian varieties

We gave a construction of the period pairing Hbg(X) x T,(X) — By,
where X is an abelian variety defined over a finite extension of Q, and By
is the ring of p-adic periods constructed by Fontaine and which is the com-
pletion of @p for a certain topology. This construction is quite analogous to
the complex case and uses a theory of integration on X.

The second theorem was a (conjectural) product formula for periods of
CM abelian varieties. This formula gives rise to a conjecture relating deriva-
tive of Artin-L-functions and periods of CM abelian varieties which gener-
alizes the well-known formula ¢’(0)/¢(0) = log 2r which can be seen as the
product formula for 274 (using the convention ¢'(1)/¢(1) = —(’(0)/¢(0) and
the formula v, (27¢) = 1/(p — 1)).
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1.V. Volovich:

p-adic analysis and quantum groups

Motivations for application of p-adic analysis in mathematical physics
were discussed including a non-archimedean geometry at the Planck length
and p-adic analysis as an instrument for consideration of fractal-like behavior
of some systems. Then classical mechanics over Q,, and quantum mechanics

. as a triplet (L2(Q,), W(z), U(t)) were discussed with L,(Q,) a Hilbert space
of complex valued functions, W(z) a representation of the Heisenberg-Weyl
group, and U(t) a unitary representation of an additive subgroup Q,. Further
topics were: quantum field theory, p-adic gravity, quantum groups and g-
analysis; strings. In particular the following formula takes place:

D(a)T(b) | T(b)T(c) | T(c)T(a) _ ((1-a)¢(1 - b)((1~c)
T(a+b) T(b+c) T(c+a) ((a) (B ((o)

noted by I. Aref’eva, B. Dragovi¢ and L.V.

sa+b+c=1,

W. Liitkebohmert:

The structure of proper p-adic groups

The fundamental example of a proper smooth connected p-adic group Gk
of dimension g is obtained in the following way:
Let B/Spf(R) be a formal abelian scheme of dimension (g — r) and let
E,,..., E, be translation invariant line bundles over B ® g K. Then Ex =
Ef xp...xgE} is a commutative smooth p-adic group due to the theorem of
the square. Since any E, extends to a formal line bundle on B, there exists
. a well-defined absolute value on E,." So one gets a map

—log : Ex(K) - R",(z;) — (—logiz;)) .
A lattice My of Eg is a closed étale subgroup of Ex such that —log maps

Mg (K) bijectively to a lattice of R” of rank r. Then Ex /My is a proper
smooth connected p-adic group.
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The main results are:

Theorem. Let R be a complete discrete valuation ring with field of fractions
K. Let Gk be a smooth proper connected p-adic group over the field K. Then
there ezists a finite separable field eztension K'[/K such that Gk ® K' is of
type Ex:[Mg: as in the ezample.

Corollary. For any Gk as above there ezists a finite separable field eztension
K'/K such that Gk ® K' has a stable and, hence, semi-abelian formal Néron
model.

Corollary. Any Gk as above has a dual; i.e. Picg, /i is representable by a
smooth proper connected p-adic group.

J. Teitelbaum:
Modular Symbols for F,(T)

I describe a theory of modular symbols for automorphic forms on
GL(Fy(T)) modelled closely on Manin’s classical theory. If T = the Bruhat
Tits tree of PGL2(Fy((F))), a “modular symbol” is a path in T joining two
rational ends. There is a natural “integration” pairing between such symbols
and cuspidal harmonic functions on 7' which are invariant by an arithmetic
subgroup I' C GLy(Fy(T]). This pairing is equivariant with respect to the
action of the Hecke algebra.

I describe explicit generators and relations for the space of modular sym-
bols modulo the I'-action, and explain various applications to the arithmetic
of Drinfeld modular curves, elliptic curves over F,(T"), and automorphic
forms.

14

Forschungsgemeinschaft

o®




V.S. Vladimirov:

Spectral theory of some pseudo-differential operators on the field of p-adic
numbers

Let G be a clopen set in Q5. The opeta.tof A of the form

(40)(z) = [ a6 2)xl— (62O , 2 € G, ¥ € LXG),

is called a pseudo-differential operator in the set G with symbol a(§,z),£ €
Qj,z € G. Here the functions ¥(z),z € G are complex valued of p—adlc
arguments; ¥(¢) is their Fourier transform

¥6) = [ ¥@xol(@,6))dz , ¥ € LHQ}), supp ¥ C G
Q3

Xp(z) is the standard additive character of Q,, (z,£) = 2161 + ... + Tpéa.

The aim is to study the spectral theory (including explicit calculations of
eigen-values and eigen-functions) for the following operators:

1) A= D" a >0, symbol [£[5,a) G=Q,,b) G=[lz|, < 1],¢c) G = [[:c],,
1).

2) a * +V(z)-, symbol a(£) + V(z),0 < a(€) — +oo, [¢[p — 00,0 < V(z)
+00, |z|, — 0o,z € G. In particular A = D* + V(|z|,).

3) The evolution operator A = U(T),|t|, < L 5 (p # 2) for p-adic harmonic
oscillator with symbol a,(€,z) = x,(ztgt + 52-5— + z uyu) =
U(t +t'). Connections with a group representation.

References: V.S. Vladimirov, 1.V. Volovich, and L.E. Zelenov, Spectral
theory in p-adic quantum mechanics, and representation theory, Math. USSR
Izvestia, v. 36(1991); N2. p-adic Analysis and Mathematical Physics, World
Scientific, Singapore, 1992 (in press).
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P. Ullrich:

The direct image theorem in formal and rigid analytic geometry

According to an idea of Raynaud, one should develop the theory of rigid

_analytic spaces over a complete non-archimedean valued field via the cor-

responding results on formal schemes over the valuation ring of the field.
The direct image theorem for formal schemes, however, is documented in the
literature (EGA III, §3.4) only for the noetherian case, i.e., in the present
situation, only for fields resp. rings with a discrete valuation.

The talk gives a proof of the direct image theorem for formal schemes
that also works in the situation over the valuation ring of a general non-
archimedean valued field.

Q. Liu:

Stable reduction of the curves of genus two

Let R be a discrete valuation ring, K = Frac(R), C a projective smooth,
geometrically conneted curve over K, g(C) = 2. Then C is defined by an
equation

¥ =aoz® + a1z’ +... +as € K[z] .

Our aim is to determine the stable reduction of C (after some extension
of K) in function of the coefficients ao,a1,... ,as. We have succeeded by
using Igusa’s invariants Jp, Jy, . . . , Jio of apz® + a12% +. .. 4 ag and two “new
invariants” I, ;3. This is the analogue of the case of elliptic curves whose
stable reduction is determined by the modular invariant j.

A further application of this result is the determination of the minimal
model of C over K (without extension!).

16
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M. Matignon:

" Extensions of a finite morphism between formal fibres

Let R be a non-archimedean valued ring, K = Frac(R),k = R/m. Let
C,,C; be two projective smooth geometrical connected curves over R. As-
sume there are C;,C; models over R with reduced special fibres and f : C; —
C, a finite morphism. Let p € (C,), (special fibre of ;). We compare the
singularities of the special fibres at p and f(p) = g.

This problem appears in a result of H. Lange (C; has good reduction = C,
has potentially good reduction); case C is smooth.

We see this problem in the category of analytic spaces over K (assume now
complete and algebraically closed). Let us denote by r (indistinctly from C;
and C;) the reduction map. Then r~*(g) (formal fiber) is a K-analytic space
and we can compactify r~!(g) in an algebraic curve C, by “adding” balls from
Pk (Bosch-Liitkebohmert, v.d. Put); we define the genus g(r~(g)) := g(C,).
Then we have the following result:

Theorem (T. Youssefli). Under the hypothesis above we have the following

inequalities: g(r~'(p)) = g(r~(q)) ; mp > m, where m, = card Spm O,, the -

number of branches at q.

Denote by {¢;} = Spm O, and p;; denote points in O, above ¢;; and
€i; = e(pi ;|g:;) the ramification index.
Theorem. If chark = p{e;; for all i,j then one can prolongate the finite
morphism f, : 77 (p) — r7'(q) between the formal fibres in a morphism
fp : Cp — C, for suitable curves compactifications as above mentioned.

Corollary. g(r~'(p)) — 1 > (deg f,)(9(r"*(g)) — 1).

Now suppose p, q are regular points. Then f, : 7~1(p) — r7!(q) is a finite
morphism between balls. Then f, can be prolongated to Py = C, — C, &
P} iff the valuation of the different Do, o, > 2deg f, — 2.

If we have big wild ramification we prove that it is possible to prolongate
to X — Pk = C,, where X has good reduction. This is possible due to the
following theorem.

Theorem (lifting of morphisms). Let k be algebraically closed, §: C — P}

17
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a finite morphism with C projective smooth connected. Let W (k) be the Witt
ring; then one can lift gtog:C — ]Pw(k), where C is smooth / W (k).

Question. Find the minimal genus for the compactification X. It comes
from the preceding theorem, it is the same to find a covering of the affine
line A} with small ramification and imposed ramification at oo.

F. Baldassari:

Dwork’s theory via toric varieties.

We recall the Morita p-adic gamma function and its role in interpolation of
Gaufl sums, via the Gross-Koblitz formula. We are interested in generalized
Jacobi sums of the type

Sap = q— 2 qu_.(z.) H X-5;(f9(2))

ze]l""” =0

where x,, for a € ; —5Z, denotes the multiplicative character of F,, Xa =
Teich®=94 (x,(0) = 0) and where fU)(z) is a homogeneous form of degree
d;j: Ya; = Y d;b;.

It is well-known, e.g. in the context of Dwork’s theory or of rigid co-
homology, how to associate to the previous sums overconvergent F-crystals
&ap, such that S, may be recovered via a trace formula for the action of
Frobenius on Hyig(¢s). But we are interested in variation with respect to
(a,b): there are difficulties in trying to extend £, into a continuous family
of overconvergent crystals with finite dimensional cohomology. Dwork’s dual
theory provides such a possibility: Frobenius essentially operates on algebraic
dual cohomology and satisfies the Boyarsky Principle. That means: “When
cohomology is parametrized rationally by a character, the Frobenius opera-
tion will vary continuously (loc. analytically) with the character.”

We interpret Dwork’s theory in the framework of toroidal embeddings.

Berichterstatter: K. Schloter, P. Ullrich
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