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p-adische Analysis und Anwendungen

23.-29.2.1992

Die Tagung fand unter der Leitung von S. Boseh (Münster), L. Gerritzen
(Boehum) und A. Ogus (Berkeley) statt.

The use of p-adie methods is spreading more and more, most notably in
algebraie geometry and number theory, but also in various other fields, in­
duding theoretical Physics. 1t was the aim of the eonferenee to bring together
resea"rehers from different diseiplines, who all are experiencing the need of ap­
plying p-adic methods in their work. The subjects which were covered include
L-funetions, p-adie differential equations, p-adic Physies, motives, De Rham
cohomology, rigid cohomology, rigid uniformization, periods of abelian vari­
eties, p-adic symmetrie spaees, Drinfeld modular forms, stable reduction of
eurves as weIl as various other topies from algebraie and arithmetie algebraic
geometry.

Vortragsauszüge

M. Rapoport:

Variation 0/ F -isocrystals

Let G be a eonneeted reductive group over <Qp. Kottwitz introduces the
set B(G) and a map

v : B(G) -+ M(G)~ .

Here M (G)~ denotes the set of eonjugaey elasses defined over Qp of homo­
morphisms v : lD> -+ G, where ID> is the diagonalizable pro-algebraic group
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with character group Q. In case G = GLn , the set B(G) is the set of iso­
morphism classes of F-isocrystals of rank n on an algebraically closed field
of characteristic p, and the map v associates to an F -isocrystal its slopes.
We introduce an order on M (G)~, which in the case of GLn reduces to the
order on the set of Newton polygons. Using it one can, in certain cases,
generaJize to this context the theorem of Grothendieck on the behaviour of
Newton polygons in a family of F -isocrystals.

A.A. Panchishkin:

A general criterium for the existence of p-adic L-fu.nctions

For a motive M over a totally real field F with coefficients in another
number field T p-adic properties are studied of the corresponding L-function
L(M,s) = nLp(M, Np-S), where Lp(M,X)-l is the characteristic polyno-

p

mialof the Frobenius elementFrp E GF = Gal(FIF) in the corresponding
Galois representation rA,~ : CF ~ GL(MA) (MA is the ..\-realization of M,
...\ a finite place of T). A Iocal p-invariant h = hM(p) = (h(1')(1' is introduced,
which generalizes the Hasse invariant of an elliptic curve E IrQ, whose compo­
nents h(7 are indexed by imbeddings q : F -+ ij of the ground field F, and are
defined as the differences h(7 := PNwt,(7(d+) - PHdg,C1(d+) for d+ = dimT M:,
where PNwt ,(7 and 1\Jdg,(7 are the Newton polygon and the Hodge polygon
of M. Suppose that there exist a Hecke character X of finite order and an
integer mEZ such that the twist M(x)(m) is critical in the sense of Deligne.

A general criterium is established for the existence of a (bounded)
p-adic interpolation of the algebraic numbers A(Ptoo)(M(xHm},O)jO(e),
where A(p,oo) denote.s the modified L-function of J. Coates and B. Perrin­
Biou, obtained by a canonieal replaeement of loeal factors above p and
00, and O(e) is a certain period of M, whieh depends only on the sign
c; = (€(7)(7,C(1 = X(7(-I)(-l)m. This criterium says that this p-adie inter­
polation exists if and only if the Ioeal invariant vanishes: h = (h(7)(7 = O. In
the general case a more elaborated technique of admissible measures can be
applied in order to obtain certain growing p-adic L-functions.

Examples are given for the L-functions of Hilbert modular forms, of Siegel
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modular forms, and of Hecke characters of CM-type.

J -Y. Etesse:

L-functions in rigid cohomology: unit root zeroes and poles

Dwork proved in 1971 that the unit root zeta function (u(t) of the ordinary .

part of the Legendre family of elliptie eurves X~S = Spec IFp[A, l(l-:)H().)]

is meromorpbie in CCp; this (u can be deseribed as the L-function: (u(t) =
L(S, Rl f.7l p, t) associated to the lisse 7lp.sheaf R1 f.'llp. The aim of the talk
is to extend this result to more general L-functions to get conjeetures of Katz
in bis Bourbaki talk ("Travaux de Dwork", 1972).

In the case S is proper and smooth over lFq and E is an F ·crystal,
L(S, E, t) is a rational function (using crystalline cohomology). We get a
functional equation and if E is a unit root F ·crystal we can single out the
zeroes and poles of L(S, E, t) with q-order an integer r (cf. "Annales de
l'Institut Fourier" t. 38, fase. 4, 1988, p. 33-92).

When S is separated of finite type over lFq , we consider a field K of char­
acteristic 0, complete under a discrete valuation, with perfeet r~sidue field
k ::> IFq , andan overconvergent F-isocrystal E on SIK. Then L(S, E, t) is
proved to be a meromorphic function of t, using rigid cohomology'with com­
pact supports. Applying this to the structure sheaf E == (JSjK one can show
that

/

2dimS

L(S, t) g [det(l - tFIH;t,C<S, Zp) ® Qp](-1)'+1 ,

S := S xrq lFq , has neither zeroes nor poles on the annulus jtlp = 1. This
generalizes to sheaves E with finite monodromy.

Y. Andre:

ij-realization 0/ p-adic motives

General problem: Let L anzn
, an E Q, be a formal power senes. We

want to compare the real and p-adic evaluations for z E Q in case of conver-
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gence to rational or algebraic numbers.
Conjecture: Let (Yl(Z), . .. ,Yn(z))t E Q[[z])n be a vector-solution to a Picard­
Fuchs differential system. If the oo-adic evaluations of Yl(~), ... ,Yn(~), (, E
Q, are Q-linearly dependent, so are the p-adic evaluations for every prime p

where they make sense.
Indeed, the Grothendieck conjecture implies that the relation between

Yt({)oo,' .. ,Yn({)oo should come from an algebraic cycle, i.e. an endomor-
phism of a certain motive M/Q• •

We define a Q-realization of M/Qp, at least in the case of good reduction,
stahle under End M/Qp, say HB(M/Qp,"Q), such that HB(M/Qp,"Q) <8>ij Qp ~
HOR(M) ® Qp. Moreover, there is a relative version HB(M /s,.Q),. and for
constant reduction HB(M/s,Q) <8>ijQp ~ HDR(M/s)anV ®Qp. We explicit
HB(X, Q) for any elliptic curve X/Cp' We can prove:

Theorem. The above conjecture is true if the dependence relation between
Yt()oo,'" ,Yn(()oo comes (according to Grothendieck's conjecture) /rom an
algebraic cycle.

M. Candilera:

Periods on p-adic Barsotti- Tate groups via Witt realization

Let k be a perfect field of char p > 0, A = W(K), A' the ring of integers
of a totally ramified extension K ' of Frac A with ramification index e < p - 1.

If R is the affine algebra of a Barsotti-Tate group oveI k and u : # R -+ R
is a lifting to A', then # R can be realized as a sub-hialgebra of W(9t), where

9l is the completion of liuJ(RÄRÄR . .. ).
ln this way one has a representative for any class of isomorphism of lift­

ings of R inside A' ~ W(9t).
Using Witt bivectors, one can realize the Dieudonne module M(R) inside •

hiv 9t. In particular, via Witt reaJization, the integrals of first kind of # R are
embedded into A' ® M(R). This doesn't happen for the integrals of second
kind, hut for any such integral h there is a unique element T]h E A' ® M(R)
such that h == 11h mod m ® W(!.lt).

Using tbis fact and the identification between Tate spaces over A' and
over k, one can define, for any P in the Tate space and any integral of second
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kind h, the pairing f Bh = [lAI ® biv(P)]l1h with values in bivectors.
p

Using this definition and the properties of Witt realization, one can com-
pare different approaches to the periods. .

E.-U. Gekeler:

Shimura-Taniyama- Weil fOT function fields

Let K be a fu~ction field over a finite field IF'q, and fix a place 00 of K
(principal example: K = IFq(T), "00" the usual place at infinity).

We consider elliptic curves E over K that satisfy

(*) E has split multiplicative reduction at 00.

(Equivalent: E is a Tate curve over the completion K oo )' It forces that the
conductor cond(E) is 00 • f with some "finite" divisor f of K."

By results of Grothendieck and Jacquet-Langlands, E corresponds to a
certain automorphic representation 1rE for GL(2, 2lK) (21K the adele ring of
K). Using Drinfeld's theory of elliptic (or Drinfeld) modules, 1rE gives rise to
a one-dimensional factor of the Jacobian Jo(/) of a Drinfeld modular curve
Mo(f). Taken together, this establishes bijections between the sets of

1
isogeny classes Of}
E that satisfy (*)
and cond(E) = '
00·/ 1

automorphic new- }
one-dimensional d forms of a certain

{ factors of J8ew(I)} an t~pe with rational '
elgenvalues

respectively.
Besides the fact that it is proved, it is the analogue of the conjecture of

Shimura, Taniyama, and Weil, the coefficient field Q being replaced by K.
The assumption (*) is not a serious one since 00 is at our disposal; if (*)
cannot be achieved for a place of K, E will be a twisted constant curve.
But the above correspondence is not explicit; so far, it is a pure existence
statement without constructing the objects nnder consideration.

In the talk , we (joint work with M. Reversat/Toulouse) described how
to explicitly obtain a curve E = Er.p as a Tate curve from an automorphic
newform tp. The construction depends on
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- results of M. van der Put on holomorphic functions on the Drinfeld upper
half-plane;
- Teitelbaum's description of Drinfeld modular forms as certain measures on
the Bruhat-Tits tree of GL(~,K oo );

- the existence of liftings of Drinfeld modular forms (char p-valued) to auto-
morphic forms (ehar O-valued);
- the deseription of the Jaeobians of Drinfeld modular curves.

•P. Schneider:

The p-adic holomorphic discrete series 0/ SLd+l

Let X be Drinfeld's d-dimensional upper half spaee over a local field
K/Qp. For any eocompaet discrete (torsionfree) subgroup r c SLd+1(K) the
quotient Xr := r\X is a projeetive smooth algebraic variety over K. Any
finite-dimenensional K[r]-module M gives rise to a loeal system on XF.
Its de Rham cohomology HoR(Xr , M) by Kiehl's GAGA-theorem actually
is the de Rham cohomology of an algebraie vector bundle with connection
on Xr. Based on joint work with U. Stuhler the dimensions of these coho­
mology groups can be eomputed explicitly in terms of the covolume of the
group r. In particular the only interesting eohomology group turns out to
be HgR(Xr, M). It remains to understand the de Rham filtration on this
group. Consider the ease where M comes from an irreducible K -rational
representation of SLd+1 • In this ease the Hodge-de Rham speetral sequence
usually will not degenerate which makes it difficult to analyze the induced
filtration. It was shown that for such an M the de Rham complex for M is
naturally quasi-isomorphie to a mueh simpler "redueed" de Rham eomplex.
We hope that the associated "reduced" Hodge-de Rham speetral sequence
always degenerates. This reduced complex is built out of the holomorphic •
discrete senes representations in the title (for d = 1 this notion was studied by
Monta and Murase); it is a p-adic analog of the Bernstein-Gelfand-Gelfand
resolution in the theory of Verma modules. Its construction is based upon
Lie algebra cohomology eomputations of Kostant.
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H. Voskuil:

Non-archimedean ftag domains

Part of the talk is joint work with M. van der Put.
Non-archimedean Hag domains Y for G(K) are open analytical subspaces

of X = GIP, that are G(K)-invariant and have the property that Ylr iS'a
compact analytical space for any r c G(K). Here K is a non-archimedean
local field, G a (simply) connected, absolutely almost simple, semisimple
linear algebraic group defined over K, P C G a parabolic subgroup, and
X = GIP a projective homogeneous variety, defined over K.

The description of a Hag domain is as follows:
Let! be an ample line bundle on X, defined aver K; which n:ieans that

the embedding of X '-+ pn determined by I:, is defined over K (i.e. is an
embedding in IPK). Let S c G be a K -split torus ofm~maJ rank.. Take a G­
linearization o(.c. This induces an S-linearization of.c. Now we have a set of
stahle points, denoted by XS(S, .c), arid a set of semi-stable points, denoted
by XSS(S,I:,}, for this S-linearization of 1:,. Take Y:= n g. X8(S, .c).

gEG(K)

Then Y C X is a Hag domain if XS(S,.c) = XSS(S, .c).
To find X such that X contains Hag domains, we only have to study sets

of (semi-)stable points. We have the following result:

Theorem. The projective homogeneous variety X = G/ P, defined over K,
has a line bundle defined over K, such that XS(S,.c) = XSS(S,.c) if and only
if:

1) G = SLn(D), DIK a skew field of dimension cP, X = GIPI,
gcd(i E I, n) = 1, I C {I, ... , nd - I}. Here PI = n Pi and Pi are maximal

ieI
parabolics containing some fixed B such that G ® KtJI Pi ® K tJ = ·Gr(i, nd)
where K tJ :::> K is a maximal separable closure of K
2) G = the non-split form 0/ the symplectic group, X = GIB' and X =
GIP fOT an extra parabolic subgroup (B is the Borel group, i.e. the minimal
parabolic subgroup)

3) G =F outer form of type A" quasi-split form of type D, or Ea, X == GIB,
where B is the Borel group.

The quotients YIr for r c G(K) a discrete co-compact subgroup are in
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general non-algebraic. In fact they have" only constant meromorphic funetions
exeept when:

G = SLn{I<) and we have a G-equivariant projeetion <p : X -+ pn-l,
sueh that Y = <p-1 (On-I). Here !1n-l is Drinfeld's symmetrie space lPK1

­

{K-rational hyperplanes} . In these exeeptional cases Yjr is ~ algebraic
variety.

M. van der Put:

Unijormization 0/ Jacobi varieties and -de/oTm.ation 0/ CU'MJes

This is joint work with Jean Fresnel (Univ. de Bordeaux).
The problem. Let Z j K be a non-singular eurve (projeetive) over a field

K whieh is complete with respect to a non-archimedean valuation. Suppose
that Z has stable reduetion Xo/k where k is the residue field of K. Then
the Jaeobian variety of Z has the following uniformization (Raynaud, Boseh,
Lütkebohmert, Fresnel, van der Put, ... )

1
1

Jac(Z)
1

1 ~ T ~ G ~ A(Z) ~ 1

1
A

·T
1

with T a torus of dimension h, A(Z) an abelian variety with principal polar­
ization of dimension g, and A a lattice.

Is A(Z) again a Jacobian variety?
Answer: "In general" No!
Two methods:
(A) Suppose Xo/k is a "general stable curve", then there exists a Zj I< with
stable reduetion X o such that A(Z) is not a product of Jaeobian varieties.
Proof: Deformation theory of curves and a special version of Petri's theorem
of canonieal embedded curves.
(B) Let Z denote an etale extension of degree 2 of a Mumford eurve. If the
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Mumford eurve is general enough, then A(Z) is not a produet of Jaeobian
varieties.
Proof: Prym-vaneties, Kodaira-Speneer maps, work of F. Oort and J. Steen­
brink on the hyperelliptie loeus in Mg and the Torelli map.
A preprint is available!

B. Le Stum:

The geometrical meaning 0/ monodromy and Frobenius Quer p-adic Jields

Fix a smooth proper eurve Cover Cp. Using Coleman's integration of
differential forms on basic wide open spaees, one can define a map

the period pairing.

One can show that H I
( C an, Z) injeets in HÖR(C), that the period pair­

ing induces the natural pairing between HI(Can) and HI(Can , Z), and that
HI(Can

, Z) is orthogonal to itself with respeet to the Poincare pairing. It
formally follows that there is a natural isomorphism

HÖR ~ HI(Can
, Cp) E9 iI E9 HI (C8J1

) ®z Cp

with iI := H I
( Cau

, Cp )1. / H I
( Can

, Cp ). Then one can show that if X is any
reduction of C with only ordinary multiple points (with normal tangents) as
singularities, there is a natural isomorphism

where X is the normalisation of X and W the ring of Witt vectors of lFp­
Thus, if we set
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we get a natural isomorphism D ®w Cp ~ H6R(Can ). Moreover, one can
endow D with a Frobenius and a mo~odromy operator as follows. One defines
ep on H 1 (Can , W) as q when u is the Frobenius of W, r.p is the usual Frobenius
on H:ris(.X/W) and r.p = p(8)u on the last part. Actually, monodromy factors
through an isogeny

that comes from a scalar product

This product is just Grothendieck's monodromy pairing of SGA 7. Also, the
above description of Frobenius is mainly due to Coleman.

A.Ogus:

F -crystals on the Punctured Point

Let V be a finite extension of Zp , K = V ® Q , k = the residue field of V,
and W = the Witt ring of k. Suppose V/V is projective, with semi-stable
reduction. Then Hyodo and Kato have endowed the De Rham cohomology
H(YK / K) with "hidden structure", as suggested by Jannsen:

Given a uniformizer 1r of V, there exists a W -module Ho endowed with
- an isomorphism P-rr : Ho ®w K -'::"HDR(YK / [{)
- an Fw-linear injection <I> : Ho -+ Ho
- a nilpotent endomorphism N = Ho -+ Ho, such that p~N = N~.

The main idea of the proof is to. endow Y and S = Spec V with log
structures, so that ~e obtain a smooth proper map of log schemes y x / SX,
this map reduces modulo p to a "perfectly smooth" ~x /~:, where {: is
Spec V/pV with log structure with chart N -+ V/pV , 11-+ (class of 1r). The
theory of log crysta1line cohomology then furnishes an F-crystalon {eX whose
value at SX is HDR(Y x

/ SX). We attempt to explain the hidden structure
alluded to above by studying abstract F-crystals on e:. This is supposed
to be analogous to the approach of W. Schmidt and Cornalba in the study
of limit mixed Hodge structures and the approach of Grothendieck to the
monodromy theorem in l-adic (1 # p) etale cohomology.
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D. Bertrand:

Auto-dual l-motives and hypergeometrie equations

In [J. Number Th., 25, 1987, 152-161], K. Ribet constructed I-motives
whose l-adie reaJizations satisfy a strong degeneration property.

We eonstruct in a similar fashion redueible differential modules whose dif­
ferential Galois groups are "as small as possible". More precisely, let (K, a)
be a differential field and write KM (resp. Gala(KM / K)) for the Pieard­
Vessiot extension of K defined by M E K[al (resp. for its differential Galois
group). Consider an irreducible L in K[al, isomorphie to its adjoint LV, and
two elements P, Q in K[al, of order 1, sueh that P is isom~rphic to QV.

Theorem. Let M = P LQ E K[a], and let X be the relative "differential
Galois group Gala(KM/KpL ' KQ}. Then:
i) If the autoduality L ~ LV is antisymmetrj.c, X is always isomärphic to C.
ü} // the autoduality L ~ LV is symmetrie, and if M is isomorphie to MV,
X is trivial. Otherwise, it is isomorphie to C.

This theorem ean be applied to the study of Gal(KM / K) when M is a
generaJized hypergeometrie operator. By the work of K. Boussel, eaeh of
the cases above can be expressed by eongruences and sign conditions on the
parameters.

Time permitting (and time didn't permit), we also explain how the
de Rham/Betti realizations of Ribet's motives ean be viewed as an extended
Riemann-Lege~dretype of relations. It is worthwhile pointing out that tbeir
period matrix involves logarithms of Lame functions.

R. Crew:

Finiteness questions in rigid cohomology

Suppose X/k isseparated of finite type, where k is a perfeet field of
characteristic p > O. Drawing on tbe work of Dwork, Washnitzer-Monsky,
and others, Berthelot has constructed a "rigid" eohomology theory H"(X),
as weIl as a theory H~(X) of "rigid eohomology with eompaet supports". It
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is not known to be finite-dimensional. Grothendieck's proof of the finite­
ness of l-adic cohomology suggests that a basic case to study is that of the
Hi(X, M), H~(X,M) where X is a smooth curve, and M is a "local coeffi­
cient system" - in this case, an overconvergent isocrystal in Berthe16t 's sense.
Now in fact the H"(X, M) are not always finite-dimensional, and so the ques­
tion arises of finding sufficient conditions for this. We define the nation of
a "strict" isocrystal, and sketch a proof that if M is a strict isocrystal on
a smooth curve X/k, then the H"(X, M), H~(X,M) are finite-dimensional,
and the duaJity pairing Hi(M) x H;-i(M) -+ K is perfect. We show also
that a "locally quasi-unipotent" isocrystal, i.e. one which satisfies an ana­
logue of Grothendieck's local monodromy theorem, is strict" The key idea
of the proof is that the H"(X, M), H~(X,M) carry natural topologies, and
the duality theorem h~lds in a topological sense, without knowing finiteness.
This duality, and a simple functional-analytic argument involving the dual­
ity of the "middle extension" Im(H;(M) -+ H1(M)) shows that H1(M) and
H; (M) are finite-dimensional.

P. Colmez:

A product formula fOT periods 0/ GM abelian varieties

We gave a construction of the period pairing HÖR (X) x Tp ( X) -+ BriR'
where X is an abelian variety defined over a finite extension of Qp and B~R

is the ring of p-adic periods constructed by Fontaine and which is the com­
pletion of Qp for a certain topology. This construction is quite analogous to
the complex case and uses -a theory of integration on X.

The second theorem was a (conjectural) product formula for periods of
CM abelian varieties. This formula gives rise to a conjecture relating deriva- •
tive of Artill-L-functions and periods of CM abelian varieties which gener-
alizes the well-known formula ('(0)/((0) = log 211" which can be seen as the
product formula for 211"i (using the convention ('(1}/((1) = -('(0)/((0) and
the formula vp (211"i) = 1/{p - 1)).

12

                                   
                                                                                                       ©



•

LV. Volovich:

p-adic analysis and quantum groups

Motivations for application of p-adic analysis in mathematical physics
were discussed including a non-archimedean geometry at the Planck length
and Jradic analysis as an instrument for consideration of fractal-like behavior
of some systems. Then classical mechanies over Q", and quantum mechanies
as a triplet (L2(C!b)~W(z), U(t)) were discussed with L2 (Qp) a Hilbert space
of complex valued functions, W (z) a representation of the Heisenberg-Weyl
group, and U(t) a unitary representation of an additive subgroup Qp. Further
topics were: quantum field theory, Jradic gravity, quantum groups and q­
analysis; strings. In particular the following formula takes place:

r(a)r(b) r(b)f(c) r(c)r(a) _ «1 - a) «1 - b) «(1 - c) b-
r(a + b) + r(b + c) + r(c + a) - «a) «b) «c) , a+ +c - 1 ,

noted by I. Aref'eva, B. Dragovic and I.V.

w. Lütkebohmert:

The structure 01 proper p-adic groups

The fundamental example of a proper smooth connected p.adic group GK

of dimension 9 is obtained in the following way:

Let BISpf(R) be a formal abelian scheme of dimension (9 - r) and let
EI, ... ,Er be translation invariant line bundles over B ®R K. Then EK =
E; XB ... xBE; is a commutative smooth p-adic group due to the theorem of
the square. Since any Ep extends to a formal line bundle on B, there exists
a well-defined absolute value on Ep •· So one gets a map

A lattice MK of EK is a closed etale subgroup of EK such that -log maps
MK(K) bijectively to a lattice of Rr of rank r. Then EK /MK is a proper
smooth connected p-adic group.
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The main results are:

Theorem. Let R be a complete discrete valuation ring with field 01 fractions
K. Let GK be a smooth proper connected p-adic group over the field !(. Then
there ezists a finite separable field eztension K'JK such that GK <8> !(' is of
type EK,JMK, as in the ezample.

Corollary. For any GK as above there ezists a finite separable field extension
K'JK such that GK ® K' has a stable and, hence, semi-abelian formal NiTon
model. '

Corollary. Any G K as above has a dual; i.e. PiCGK/K is representable by a
smooth proper connected p-adic group.

J. Teitelbaum:

Modular Symbols for IFq(T)

I describe a theory of modular symbols for automorphic forms on
GL 2 {lFq (T)) modelled closely on Manin's elassical theory. If T = the Bruhat
Tits tree of PGL2(IFq((~))),a "modular symbol" is a path in T joining two
rational ends. There is a natural "integration" pairing between sueh symbols
and cuspidal harmonie funetions on T whieh are invariant by an arithmetic
subgroup r c GL2 (IFq[Tl). This pairing is equivariant with respect to the
action of the Hecke algebra.

I deseribe explicit generators and relations for the spaee of modular sym­
bols modulo the r-aetion, and explain various applications to the arithmetic
of Drinfeld modular curves, elliptic curves over IFq (T), and automorphic
forms.
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V.S. Vladimirov:

Spectral theory 0/ some pseudo-dijferential operators on the field 0/ p-adic
numbers

Let G be a clopen set in <Q;;. The operator A of the form

(Aw)(x) = Ja({, x)Xp(-({. x))-i!({)d{ • x E G. wE .c2
( G) •

Q~

is called a pseudo-differential operator in the set G with symbol a({, x), { E
Q;, x E G. Here the functions w(x), x E G are complex valued of p-adic

arguments; ~({) is their Fourier transform

-i!(ü = Jw(x)Xp«x.e>ldx • wE .c2 (Q;) , supp Wc Gj
Qp

xp(x) is the standard additive character of Qp, (x, {) = Xt{t +... + xn{n.
The aim is to study the spectral theory (including explicit calculations of

eigen-values and eigen-functions) for the following operators:
1) A = D(\ 0' > 0, symboll{I:, a) G = !Qp, b) G = [lxlp:::; 1], c) G = [Ixlp =
1).
2) a * +V(x)·, symbol a({) + V(x),O:::; a({) -+ +00, 1{lp -+ 00,0 ~ V(x) ~
+00, Ixlp -+ 00, x E G. In particular A = Der + V(lxl p ). '

3) The evolution operator A = U(T),ltl p :::; ~ (p #- 2) for p-adic harmonie

oscillator with symbol at({,x) = Xp(x 2 tgt +{2~ + x{c;st)' U(t)U(t') =
U(t + t'). Connections with a group representation.

Re/erences: V.S. Vladimirov, LV. Volovich, and LE. Zelenov, Spectral
theory in p-adic quantum mechanics, and representation theory, Math. USSR
Izvestia, v. 36(1991); N2.p-adic Analysis and Mathematical Physics, World
Scientific, Singapore, 1992 (in press).
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P. Ullrich:

The direct image theorem in formal and rigid analytic geometry

According to an idea of Raynaud, one should develop the theory of rigid
.analytic spaces over 'a complete non-archimedean valued field via the cor­
responding results on formal schemes over the valuation ring of the field.
The direct image theorem for formal schemes, however, is documented in the
literature (EGA 111, §3.4) only for the noetherian case, i.e., in the present
situation, only for fields resp. rings with a discrete valuation.

The talk gives a proof of the direct image theorem for formal schemes
that also works in the situation over the valuation ring of a general non­
archimedean valued field.

Q. Liu:

Stable reduction 0/ the curves 0/ genus two

Let R be a discrete valuation ring, K = Frac(R}, C a projective smooth,
geometrically conneted curve over K, g(C) = 2. Then C is defined by an
equation

y2 = aox6 + al xs + ... + aB E K[x] .

Dur aim is to determine the stable reduction of C (after some extension
of K) in function of the coefficients ao, at, ... ,a6. We have succeeded by
using Igusa's invariants -J2, J4, ... ,J10 of aox6 +alxs +... +a6 and two "new
invariants" 14 ,112• This is the analogue of the case of elliptic curves whose
stahle reduction is determined by the modular invariant j.

A further application of this result is the determination of tbe minimal
model of Cover K (without extension!).

16
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M. Matignon:

- Extensions 01 a finite morphism between formal fibres

Let R be a non-archimedean valued ring, K = Frac(R), k = R/m. Let
Cl, C2 be two projective smooth geometrical connected curves aver R. As­
sume there are Cl, C2 models over R with reduced special fibres and f :Cl -+

C2 a finite morphism. Let p E (CI)s (special fibre of Cd. We compare the
singularities of the special fibres at p and f(p) = q.

This problem appears in a result of H. Lange (Cl has good reduction =? C2

has potentially good reduction); case Cl is smooth.
We see this problem in the category of analytic spaces over!( (assume now

complete and algebraically closed). Let us denote by r (indistinctly from Cl
and C2 ) the reduction map. Then r-l(q) (formal fiber) is a K-analytic space
and we can compactify r-l(q) in an algebraic curve Cq by "adding" balls horn
lFk (Bosch-Lütkebohmert, v.d. Put); we define the genus g(r-l(q)) :7= g(Cq ).

Then we have the following result:

Theorem (T. Yousseffi). Under the hypothesis above we have the following
inequalities: g(r-l(p)) ~ g(r-l(q)) ,. m p ~ m q where m q = cardSpmOq , the
number 0/ branches at q.

Denote by {qi} = Spm Oq and Pij denote points in Op above qi; and
ei.j = e(pi,j Iqi) the ramification index.

Theorem. lf char k = p f eij for all i,j then one can prolongate the finite
morphism fp : r-l(p) -+ r-l(q) between the formal jibres in amorphism
jp : Cp --+ Cq fOT suitable curves compactijications as above mentioned.

Corollary. g(r-l(p)) - 1 ;::: (deg fp)(g(r-l(q)) - 1).

Now suppose p, q are regular points. Then fp : r-l(p) -+ r-1(q) is a finite
morphism between balls. Then fp can be prolongated to lFk- ~ Cp --t Cq ~

IPk iff the valuation of the different D Op / oq ~ 2 deg fp - 2.
If we have big wild ramification we prove that it is possible to prolongate

to X -+ lPk ~ Cq , where X has good reduction. This is possible due to the
following theorem.

Theorem (lifting of morphisms). Let k be algebraically closed, 9 : C -+ lFl

17
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a finite morphism with C projective smooth connected. Let W (k) be the Witt
ring; then one can

o

lift 9 to 9 : C -+°lPt.v(k)' where C is smooth / W(k).

Question. Find the minimal genus for the compactification X. It comes
from the preceding theorem, it is the same to find a covering of the affine
line Al with small ramification and imposed ramification at 00.

F. Baldassari:

Dwork 's theory via tone varieties.

We recall the Morita p-adic gamma function and its role in in~erpolatio~of
Gauß sums, via the Gross-Koblitz formula. We are interested in generalized
Jacobi sums of the type

where Xa, for a E q':1 Z, denotes the multiplicative character of Irq, Xa =
Teich(l-q)a (Xa(O) = 0), and where f(j)(x) is a homogeneous form of degree

dj: E ai = E djbj .
It is well·known, e.g. in the context of Dwork's theory or of rigid co­

homology, how to associate to the previous sums overconvergent F -:crystals
{a,b, such that Sa,b may he recovered via a trace formula for the action of
Frobenius on Hrig({a,b)' But we are interested in variation with respect to
(a, b): there are difficulties in trying to extend ea,b into a continuous'family
of overconvergent crystals with finite dimensional cohomology. Dwork's dual
theory provides such a possibility: Frobenius essentially operates on algebraic
dual cohomology and satisfies the Boyarsky Principle. That means: "When
cohomology is parametrized rationally by a character, the Frobenius opera- •
tion will vary continuously (loc. analytically) with the character."

We interpret Dwork's theory in the framework of toroidal embeddings.

Berichterstatter: K. Schlöter, P. Ullrich
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