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The meeting was organized by Hans-Werner Henn (Heidelberg), Haynes Miller
(Cambridge, U.S.A.) and Dieter Puppe (Heidelberg). About 45 participants
from Asia, Europe and North America attended the conference, exchanged ideas

‘ and reported on recent progress in their research areas. Most of the 20 talks
were concerned with different aspects in the theory of classifying spaces, ques-
tions involving the Steenrod algebra and periodicity in homotopy theory.

‘ Vortragsausziige

ALEJANDRO ADEM:
Invariant Theory and Splittings in Group Cohomology

In this lecture we describe rings of invariants which appear in certain decom-

positions of the cohomology of a finite group (at a prime p) derived from local

methods. Particular applications include H*(PSL3(F,),F2) and H*(Ma, Fp).
| (joint work with J. Milgram)

. JAUME AGUADE:
Some Spaces with Interesting Cohomology

Consider the following unstable algebras over the Steenrod algebra:
Ar = (Flz2] ® E(a))Y", Bz =y, Ply=2"~y, rlp— 1
Bi,r = (Fp(22:] ® Eyzpisn )", Bz =y, Pry=10,k>0, rlp—1
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(here subscripts denote degree). A, and B;, are well defined (i.e. the Adem
relations are satisfied) and moreover, if A = F,[z2,] ® E(Bz) is an unstable
algebra over the Steenrod algebra then A is isomorphic to either A, or B;,. For
each of these algebras there is a non-trivial homomorphism of algebras f : A —
H*(BZ,;T,). Let T; denote the component of the T-functor corresponding to
f. Then:

TyBi, = Biy
Ty A, = Fylz2] ® E(21), Bz # 0 ,
In 1976 G. Cooke conjectured that the algebras Bi,, i > 1 can not be the ’
cohomology of a space. On the other side, By, and B, , are realizable. For .

instance, B; , = H*(S®<3 >;Fp).
Theorem If H*(X;F,) = B;,, then i =0,1.

Theorem A, is realizable. If H*(X;F,;) & H*(Y;F,) = A, (in K),then X, ~
Y, (>2).

However there is no homotopy uniqeness for B; .:

Theorem Let p > 2. There is a family of spaces X;.(n) with i € {0,1} and
nlp—1, n=1,2,...,00, such that if H*(X;F,) = B;, then X, is homotopy
equivalent to exactly one space X;,.(n).

In particular, there are infinitely many ”fake” S% < 3 >.
(joint work with C. Broto and D. Notbohm)

FRED R. COHEN:
On the Homotopy Theory of Double Suspensions

Let o : 2B — A bean element of order g in the abelian group [£2B, A)].
Theorem 1 If ¢ = 2, then 4Q%(a) = 0 in the abelian group [Q°Z2B,0%4).

Remark 2 It seems likely that the techniques used in the proof of Theorem 1 -
will give that ¢2(2%(a)) = 0 if g(a) = 0. If the order of the identity for £2B is
¢, then this last result implies that ¢?(7.Z2B) = 0.

Remark 3 The techniques involve studying a homomorphism

Gy — [XV,05X) ‘

where X = £(X’) and Gn has the following presentation:

Generators: zy,...,TN

Relations: (1) [z{},...,z{f) = [zi1,...,Zix] where ¢; = xl and e = ¢, --- €&

(2) [zi1,-..,zie) = 1 if some z;; = 24y, j <, and [z, ..., z;] is a commutator
of weight k in the z;.
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ALBRECHT DOLD:
Lusternik-Schnirelman Category of ByG, 1 <k < o0

By deﬁmtlon, a space B has cat(B) < k iffl B admits a numerable covering
B =5, Vi such that V; < B is nullhomotopic.

A pnncnpal G-bundle £ — B has genus(E) < k iff it admits a' numerable
covering {V;}1<i<k which trivializes E iff £ admits a G-map E — E;G into the
Milnor bundle E;G — B:G. The following are familiar:

genus(E) < cat(B), cat(B:G) <k

We prove:

(i) If G has elements of finite order # 1 and dtm(G) < oo then cat(BgG)
genus(EyG) = k for all k.

(ii) If dim(G) < oo and cat(BG) = oo then cat(B:G) = genus(E;G) = k for
all k.

(iii) If genus(EG) < oo then cat(BG) = yenus(BG) and cat(B,G) < cat(BG)+
1 for all k.

The assumption dim(G) < co may be redundant in (ii) but not in (i).

EMMANUEL DROR FARJOUN:
Periodic Homotopy Theory

We gave a survey of some typical recent results relating K-Theory and v;-
localization. We work in the framework of general homotopical localization
W/r to a general map f: A — B denoted by L;. When f: W — * we write
Ly = Pw. Recent progress by Bousfield and Thompson:

Theorem (Bousﬁeld-Thompson) A map f: X — Y induces Kpye -

isomorphisms on all Q'f for 3-connected spaces X,Y iff vy '7.(f,Z/p) and
Q@ 7. f are isomorphisms.

Bousfield reported privately on similar progress for higher v, and K < n >.
We strive to understand v;- and K-localization on spaces are special cases of
Ly. We are especially interested in preservation of fibrations and the fibre of
X — L;X.

Theorem (with J. Smith after Bousﬁeld for X with p-torsion) Let

X = QY be any l-connected space. Let A N B -2, C be a cofibration of
connected spaces. The fibre of Py QX — QPWX is a product of Eilenberg-
MacLane spaces (GEM).

Forschungsgemeinschaft
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Corollary Let X = Q?Y and Lk the Kc-localization of Bousfield. Then the
fibre of LxQX — QL X has only two non trivial 7, in dimension 1 and 2.

This is based on a key lemma of Bousfield together with a ”calculus” of Lg:
Theorem (1) Pw(fibre of X — Py X) =~ *

(2) If PwQX =~ «, then Pw Q%X is GEM.

(3) Ly(hocolimX) = Ly(hocolimL;X).

(4) Pw preserves fibrations with W-local base.

Corollary If X is 5-connected and K¢f2®X = 0, then X is made by cofibrations .
out of V(1).

VINCENT FRANJOU:

MacLane Cohomology via the De Rham Complex and the
Koszul Complex ,

Let p be aprime and R the finite field F,. Let F be the category of covariant
functors from the category of finite vector spaces to the category of vector spaces
over R. MacLane cohomology with coefficients in a functor F is defined by

Hi; (R, F) = Ezt:-(I,F), ieN

where [ is the inclusion functor.
We compute it when F is any of the functor I, exterior power A", (n € N) or
homogenous polynomials of degree n, S, where S,V = (V®"),_. In particular:
i _ | Fp : ideven

Eatz(L,1) = { 0 : iodd
To perform the computation, we use as input:
(1) Eztie(1,Spx) =0 for k> i, i # 0.
(2) Ezt’s(I,F ® G) = 0 for all 4, if F(0) = G(0) = 0.
and we work with the De Rham complex, and a subcomplex of it, built as the
kernel of the Koszul differential K (the latter is a subcomplex because of the
Euler formula: dK + Kd is multiplication by the degree). The related hyperco-
homology spectral sequences allow us to perform a downward induction on k,
starting with (1).
(joint work with J. Lannes and L. Schwartz)

PAUL G. GOERSS: .
Bousfield Local Homotopy Theory is Determined by Cochains
Let X be a space and S* X the simplicial cochains over a field F. We ask to

what extent X is determined by S* X.
We recover first a result similar to that of I. Kriz and V.Smirnov.
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Theorem 1 Suppose X,Y are spaces of finite type and there is a map f :
S*X — S°Y of cosimplicial algebras, such that H*f : H*X — H*Y is an
isomorphism. Then there is a weak equivalence of Bousfield localizations

LyX ~ L[Y

This is obvious if f is a continous map, but this is not assumed. Theorem 1 is
a corollary of examining S* X as a cosimplicial complete algebra.

Theorem 2 Let cA be the category of cosimplicial complete algebras. There is
a closed model category structure on cA, such that if B — S* X is a cofibrant
cover of S* X, then

Sp(B) = Hom4{(B,F) = LyX

Then one places an appropriate closed model category structure on cA without
the topologies.

JOHN PATRICK C. GREENLEES:

The Local Cohomology Theorem and Rationality of the
Tate Spectrum

For any finite group G we have the augmentation ideal I = (ay,...,a,) of
the Burnside ring A(G). One may then construct the G-spectrum H;(S°) =
S~ /o A---AS7!/aP, and it is easy to show there are short exact sequences
(for.an equivariant cohomology theory Fg(:))

0 — LYFE* — FA(H/(S) — LLFE — 0
(where LI(-) are left derived functors of /-completion) and
0 — H}(F&) — FE(HI(S%) — HY(FS) — 0

(where Hj(-) are Grothendieck’s local cohomology groups).
The essential fact is that A(G) is of Krull dimension 1.
It is also elementary to construct a map

¢: EG, — H(S%

and hence we have an improved version of the completion conjecture and a ho-
mological analogue. :

.
C:mpletion statement for Fi5(-) : Fg(c) is an isomorphism.

Local cohomology statement for Ff?'(') : FS(c) is an isomorphism.
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If true these calculate F5(EG,) and FE(EG,) as algebraic functors of FS.
Of course the Atiyah-Segal theorem-is the completion statement for equivari-
ant K-theory and the Segal conjecture is the completion statement for stable
cohomotopy. The local cohomology statement is false for stable cohomotopy.

Theorem 1 The local cohomology statement holds for equivariant K-theory.

This is a reformulation of a deduction of G. Wilson, but it admits a short direct

proof. Analogues exist for any compact Lie group, but are only proved in certain

cases.

Theorem 2 If the local cohomology statement holds for FG( ) then the Tate
spectrum ¢(F) is rational.

There is some evidence for a converse of theorem 2: if t(F) is rational then there
is an F'. with ¢(F) ~ t(F’) such that the local cohomology statement holds for
FI0). :

JEAN LANNES:
Algebraic Smith Theory

Let p be a prime and V be an elementary abelian p-group. One sets HV =
H*(BV;Fp) and ¢v = [luemiv_(o) for p=2and cv = [[yemrv-q(oy Bu for
p>2

Let H*V — U denote the category of unstable H*V — A4-modules (i.e. unstable
modules M over the Steenrod algebra A which are H*V-modules such that the
structure map H*'V @ M — M is A-linear). Let Fiz : H*V —U — U be the
left adjoint of the functor Y —> H*V —U,N — H*V@N..

The main technical result is:

Proposition 1 Let M be an object in H*V —U. Then the following conditions
are equivalent:

() Mlc;'} =0

(ii) Fiz(M)=0

Corollary 2 (compare with Dwyer and Wilkerson) Assume M finitely generatéd
as an H*V-module. Then Fiz(M) is finite and for dimV = 1 the kernel and
cokernel of the natural map M — H*V ® Fiz(M) are finite too.

Corollary 3 (Dwyer-Wilkerson) Let X be a p-complete space equipped with
an action of V. Assume that H*(X;F,) is finite and that X"V is p-good. Then
xr, (X*) = xr,(X) mod p.

Proposition 1 leads also to the deterrmnat.lon of all the injective objects in the
category H*V - U.
(joint work with S. Zarati)

Fa Y
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JOHN MARTINO:
A Classification of the Stable Type of BG

We determined a necessary and sufficient condition for the p-completions of two
finite groups G, G’ to be stably homotopy equivalent.

Theorem For two finite groups G, G’ the following are equivalent:
(1) BG, and BG', are stably homotopy equivalent.
(2) For every p-group Q,

F,Rep(Q,G) = F,Rep(Q,G")

as Out(Q)-modules. Rep(Q,G) = Hom(Q,G)/G with G acting by conjugation.
(3) For every p-group Q,

FoInj(Q,G) = F,Inj(Q,G’)

as Out(Q)-modules. Inj(Q,G) C Rep(Q,G) consists of conjugacy classes of
monomorphisms. - o

We also gave an unstable analogue of this theorem. We applied the theorem to
the special case of G, G’ having normal Sylow p-subgroups. We used the special
case to analyse the Minami-Webb formula, which express BG in terms of cyclic
mod-p groups.

(joint work with S. Priddy)

HAYNES MILLER:
Higher Real K-Theory

This is joint work in progress with Mike Hopkins. We construct analogues of
KO, by forming homotopy fixed point spectra of actions on Landweber theories

E, with m.E, = W(EFp=)[ut"][[v1, ..., vac1]l, where v~ = v,. This requires.

the construction of a topological (closed model) category of Ac-ring spectra.
If n = p = 2, the binary tetrahedral group acts, and there result.s a theory in
many ways analogous to KO;.

DIETRICH NOTBOHM:

Homotopy Uniqueness of Classifying Spaces of Compact
Connected Lie Groups

Let p be an odd prime. Let G be a compact connected Lie group, T the
maximal torus and Wg the Weyl group. We say that a p-complete space X
has the mod-p type of BG, if H*(BG;Z/p) = H*(X;Z/p) as algebras over the

o
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Steenrod algebra.

Under these conditions, Dwyer, Miller and Wilkerson constructed a maximal
torus of X. That is a map BTx, — X of the classifying space of a torus Tx,
such that the homotopy fibre has finite mod-p cohomology and that rank(Tx) =
rank(G). BTx, denotes the p-adic completion. Moreover they got an action
of Wg on BTx and a map BTx, — BTgy, such that BTx — X is Wg-
equivariant (up to homotopy) and such that the following diagram commutes
and is equivariant. ’

H*(X; Z/p) H*(BG; Z/p)

H*(BTx;Z/p) * H*(BTs:;Z/p)

We say, that a space X with the mod-p type of BG has the p-adic type of
BG, if BTx; ~ BTg; as Wg-spaces; ie. there exist a Wg-equivariant map
BTg — X such that the following diagram commutes

H'(BTGZ;) .

H*(BG;Z;) H*(X;Z;)

.

Theorem 1 Let G be a compact connected Lie group, such that H*(BG; Z) is

_p-torsion free,-and let X be a p-complete space with the mod-p type of BG.
-(1) There exists a compact connected Lie group H, such that X has the p-adic

type of BH. )
(2) If in addition G.is simply connected or a product of unitary groups, then X
has the p-adic type of BG.

Theorem 2 Let G be a compact connected Lie group, such that H*(BG;Z) is
p-torsion free. If X has the p-adic type of BG, then X and BGj are homotopy
equivalent.

Theorem 1 and 2 together imply the following corollary.

Corollary 3 Let G be simply connected and H*(BG;Z) be p-torsion free, or
let G be a product of unitary groups. If X has the mod-p type of BG, then X
and BG, are homotopy equivalent.

EN
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BOB OLIVER:
Higher Limits via Steinberg Representations

This dealt with higher derived functors of inverse limits of functors on certain
categories based on elementary abelian p-groups:

Ap(G), for a compact Lie group G, is the category whose objects are elementary
abelian p-subgroups E C G, and where morphisms between objects are those
morphisms induced by inclusions and conjugation.

Ap(X), for a space X such that H*(X;Z/p) is noetherian, is the category
whose objects are homotopy classes of maps ¢ : BE — X such that H*(BE)
is finitely generated as an H*(X)-module; and where morphisms are monomor-
phisms between groups which induce triangles commutative up to homotopy.
Theorem Fix A = A,(G) or Ay(X).

(1) If F: A — Z(p) — mod is a covariant functor which vanishes except on the
isomorphism class of one object (E, ), where E = (Z/p)*, then

L Hom gy, Ew)(Ste, F(E)) : i=k+1"
'E“(F)E{ ) 0« ifk+1

Here, Stg denotes the Steinberg representation of GL(E).
(2) if F: A — Zp) — mod is any covariant functor, then im_(F) is the
homology of a cochain complex

0— JI Homauaew(Ste, F(E)) —
(Ed)eanns

—_ H HomAuu(E‘,p)(Slg,F(E)) —_..
(E)renxa .
In particular, im*_(F) = 0 for i > p— rk(G) (if A = Ap(G)) or for i >
dim(H*(X;Z[p)) (if A = Ap(X)).

STEWART PRIDDY:

A Generalization of Swan‘s Theorem for Group Cohomol-
ogy

Let P be a finite p-group. We say P satisfies condition (A) if

(A) [P, Q41 P] < QP for all k > 0.

Here Qi P is the subgroup of P generated by all elements of order < p*.

Theorem A If P satisfies condition (A) and G is any finite group with' P as
p-Sylow subgroup, then

H*(BG;Z/p) = H*(BP;Z[p)*

o®
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where W is the Weyl group W = NG(P)/P and Ng(P) is the normalizer of P
inG.

Swan pmved the same result under the hypothesis that P is abehan (1960)
Theorem B Almost all p-groups satisfy condition (A).

Theorem A uses the Segal conjecture to show the transfer is a weak map. Then

. H*(BP;Z/p) is only influenced by the automorphisms of P, in particular the

Weyl group. Theorem B is related to the following theorem which is actually
the main part of our work.

Theorem C BP is stably indecomposable for almost all ﬁmte p-groups P.
(joint work with H. W. Henn)’ ’

YULY RUDYAK:

On the Mahowald Conjecture that the Spectrum k is Not
a Thom Spectrum

Main Theorem The spectrum kO, as well as the spectrum k, is not a Thom
spectrum of any stable sperical fibration, i.e. of any map X — BG.

Let p be an odd prime, and let Qo = B, @1 = BP! — P13 are the elements of
the Steenrod algebra A = .A,, The proof of the Main Theoréi is based on the
following

Basic Theorem Let { be any connected Z,)-local spectrum of finite Z,)-type
such that mo(l) = Z,y and H*(1;Z/p) = A/A(Qo, Q). There is no morphism
f:1— TBSPL, such that .

f7  HYTBSPL; Zyy) — H(1;Z)

is epic.

HAL SADOFSKY:
A Chromatic Version of Lin’s Theorem

Let X be a finite CW-complex. A theorem of W. H. Lin implies the statement
holim(RP%, A X) = £-'X3. Here RP®, = (RP®)~*¢ is the Thom spec-
trum of —k times the tautological bundle over RP*. At odd primes there is
a generalization (due to Gunawardena): holim((BE,)()-¢ A X) = £-1X, for
(BZ;)(p)-+ defined appropriate.

Let L, be Bousfield localization with respect to E(n), where E(n) is glven by
E(n), = Zp)lv1, .-, vn-1,01,0077). Let P_g be RPZ; or (BE,)(p)-k as p is 2
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or odd. Hopkins and Mahowald conjecture:
Im(P_x AL, X) = E"L;.-;(X;) VE 2L y(X;)

This should be considered a version of the slogan “the Mahowald invariant
should convert v;-periodicity to vi4-periodicity”.

It is easy to verify this conjecture in the following cases: n = 0,n = 1, X such
that L,—; X. We show it is true for n = 2,p > 5. Our technique is to show
(where M(p) is the mod p Moore spectrum):

Proposition lim—(P_x A M(p) = S~'LM(p) VE-2L, M(p).

Our methods use a comparison to Shimomura’s v;-Bockstein spectral sequence
calculation.
(joint work with M. Hopkins)

KATSUMI SHIMOMURA:

Relations between a Mahowald Spectral Sequénce and the
Universal Greek Letter Map

Considering the spectra BP and E(n), we have the Mahowald spectral sequence
in the sense of H. Miller: ’

Eyt = Ezthp pp(BP., Eztyny. g(n)( E(n)., E(n).(BP)))
= E'zt;,;(':').ﬁ(n)(li'(n).,E'(n).)

On the E>-term, we have:

Theorem A
BP : t=0
Ezl'E(,,).E(n)(E(n)., E(n).(BP)) =< NF*' : t=n
0 : else

Here Ns""‘ is defined inductively by: )
N§ =BP, 0 — N§ — v]'N§ — Ni*' — 0 is exact.

This and the Mahowald spectral sequence give:

Theorem B
(1) Eztyp gp(BP.,Ny¥') = Extif?t . (BP.,BP.) if n < p~1and 5 > n?.
2) Eztbp_BP(BPT, BP.) = Ezty,) py(E(n)s, E(n).) if n > s.

The first result (1) of theorem B is induced from the diferential dn4; of the
Mahowald spectral sequence. Similar result is obtained by Miller, Ravenel and
Wilson using the universal Greek letter map . Here we get the relation between
them:

o
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Theorem C dn4y = (—l)"“’"n.

These results are applied to the stable homotopy of a Bousfield localization of
a spectrum.
(joint work with M. Hikida)

VLADIMIR A. SMIRNOV
The Cohomology of the Steenrod Algebra

Let Sco-acyclic operad with generator v; € Se of dimension i, dv; = vio1 +
(—l')'v;_lT, T€EX;and 7; € S,,(i+2), dm; = 2(—1)‘7(1!’; PIR..OmM_ k1 ®
..®1). All relations between these operations follows from acyclic condition.

Theorem On the cohomology of the Steenrod algebra there exists the structure
of Seo-algebra and as Sno-algebra it has one generator ho of dxmensxon 1 and
relations generated by the folowing:

Tiho, by, hig1) =0, hipa = hiUi by

JEFF SMITH'
An Approach to Constructing Morava K- Theones

Let B denote a sub Hopf algebra of the mod p Steenrod algebra. Let A//B
denote the quotient of A by the left ideal generated by By, the elements of
positive degree. We hope to show that the geometric problem of constructing an
Aco- ring spectrum R with H*(R) = A//B is equivalent to an algebraic problem
in the category of functors, Funct(V,V), where V denotes the category of Fp-
vector spaces. To solve the algebraic problem one must construct a simplicial

.comonad T, satisfying:

(1) T. is homotopy linear.
(2) #T. = B. as a module over the algebra of homotopy operations in the
category of homotopy linear simplicial functors.

It is a separate computation, that the ring of operations is isomorphic to A,,
the dual Steenrod algebra.

NOBUAKI YAGITA:
Representations of the Steenrod Algebra

‘We construct a map of Hopf algebras
6: K[U,] — P(n-2)"

where K([U,] is the coordinate ring of r-th Frobenius kernel of the maximal

o &
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unipotent subgroup U in GL, and where P(n—2)* is the dual of the subalgebra

of the Steenrod algebra generated by P!,... L prt=?

algebra embedding

. Therefore we get a K-

P(n - 2) — Dist(Uy,)

Using this we show if a weight A is p-regular, then the Weyl module V(}) is
generated only by P(n—2). Moreover we consider some embedding of V(1) into
products of H*(CP>), which are closely related to G L,-simplicity of V().
(joint work with M. Kaneda, N. Shimada and M. Tezuka)

Berichterstatter: Frank Neumann
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