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The meeting was organized by Hans-Werner Henn (Heidelberg), Haynes Miller
(Cambridge, U.S.A.) and Dieter Puppe (Heidelberg). About 45 participa~ts

from Asia, Europe and North America attended the conference, exchanged ideas
and reported on recent progress in their research areas. Most of the 20 talks
were concerned with different aspects in the theory of classifying spaces, ques­
tions involving the Steenrod algebra and periodicity in homotopy theory.

Vortragsauszüge

ALEJANDRO ADEM:
Invariant Theory and Splittings in Group Cohomology

In this lecture we describe rings of invariants which appeal in certain decom·
positions of the cohomology of a finite group (at a prime p) derived from local
methods. Particular applications include H-(PSL3(JF'4), IF2) and H-(M22 , lF2)'
(joint work with J. Milgram)

JAUME AGUADE:
Some Spaces with Interesting Cohomo·logy

Consider the following unstable algebras over the Steenrod algebra:

Ar = (IFp [X2] ® E(Y3»Z/r, Pi: = y, ply =xP-1y, rlp - 1

IHli,r = (IFp [x2p i] ® E(Y2p i+ 1»Z/r, ßX = y, pIe Y =0, k > 0, rlp - 1
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(here subseripts denote degree). Ar aod I1Bi ,r are weIl defined (i.e. the Adern
relations are satisfied) and moreover, if A = IFp'[x2n] ~ E(ßx) is an unstable
algebra over the Steenrod algebra then Aisisomorphie to either Ar or 18i,,.. For
each ofthese algebras there is a non-trivial homomorphism of algebras f : A~
H-(B71p ; IFp ). Let TJ denote the component of the T-funetor corresponding to
f. Then:

TJIHli,r ~ Imi,i

TJAr ~ IFp [x2] @ E(zt}, ßx 1= 0

In 1976 G. Cooke conjectured that the algebras Imi,r, i > 1 can not be the
eohomology of aspace. On the other side, Bo,,. and Bi,r are realizable. For
instanee, Im1,r == H·(S3 < 3 >; IFp ).

Theorem If H-(X; IFp ) == I1B i ,r, then i =0,1.

Theorem Ar is realizable. If H·(X; IFp ) == H-(Y; IFp ) == Ar (in K),then X; ~
Y; (p> 2). .

However there is no homotopy uniqeness for lIBi,,.:

Theorem Let p > 2. There is a family of spaces Xi,r(n) with i E {O, I} aod
nlp - 1, n = 1,2, ... ,00, sueh that if H-(X;IFp ) == IHli,r theo X; is homotopy
equivalent to exactly one spaee Xi,r(n).

In particular, there are infinitely many "fake" 53 < 3 >.
(joint work with C. Broto and D. Notbohm)

FRED R. COHEN:
On the Homotopy Theory of Double Suspensions

Let 0' : E 2 B~ A be-an element of order q in the abelian group[E2 B, A].

Theorem llf q = 2, then 4112 (0') = 0 in the abelian group [{}2E 2B,f}2 A].

Remark 2 It seems likely that the techniques used in the proof of Theorem 1
will give that q2(f}2(0'» = 0 if q(a) = o. If the 'order of the identity for E 2 B is
q, then this last result implies that q2(1r_E2 B) = O.

Remark 3 The techniques involve studying a homomorphism

where X = E(X') and GN has the following preseotation:

Generators: Xl, ... ~ ZN

Relations: (1) [xa, ... ,Z~:] = [XH, ... ,Zik]f where (i =±l aod (= fl" 'Ck

(2) [XilJ.' .,Xit] = 1 ifsome Xii =Xii, j < I, aod [zn, ... ,Xit] is a eommutator
of weight k in the Xi.

•

•
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ALBRECHT DOLD:
Lusternik-Schnirelman Category of BkG, 1 ::; k ::; 00

By definition, aspace B has cat(B) :5 k iff B admits a numerable covering

B =U:=l Vi such that Vi c........ B is nullhomotopic.
A principal G-bundle E - B has genus(E) :5 k iff it admits a" numerable
covering {Vi}l<i<t which trivializes E iff E admits a G-map E - EI;G into tbe
Milnor bundle-E~G - BkG. The following are familiar: .

genus(E) :5 cat(B), cat(BtG):5 k

We prove:

(i) If G has elements of finite order # 1 and dim(G) < 00 then cat(BA:O) =
genus(EA:G) = k for all k.

(ii) Ir di.m(G) < 00 and cat(BG) = 00 then cat(BtG) :::: genus(EA:G) = ~ for
a1l k.

(üi) Ifgenus(EG) < 00 then cat(BG) = genus(BG) and cat(HtG) :5 cat(BG)+
1 for a11 k. -

The assumption dim(G) < 00 may be redundant in (ii) but not in (i).

EMMANUEL DROR FARJOUN:
Periodic Homotopy Theory

We gave a survey of some typical recent results relating K-Theory and Vl­

localization. We work in the framework of general homotopical localization
Wir to a general map f : A --+ B denoted by L/. When f : W ---: * we write
LJ = Pw . Recent progress by Bousfield and Thompson:

Theorem (Bousfield-Thompson) A map f : X ---+ Y induces K(p). ­

isomorphisms on all ni f for 3-connected spaces X, Y iff v l l
1T. (f J EIp) and

Q® rr.! are isomorphisms.

Bousfield reported privatelyon similar progress for higher Vn and K < n >.
We strive to understand Vl- and K -localization on spaces are special cases of
LJ. We are especially interested in preservation of fibrations and the fibre of
X ---+ LJX.

Theorem (with J. Smith after Bousfield for X with p-torsion) Let

X = OY be any l-connected space. Let A J....... B 2.... C be a cofibration of
connected spaces. The fibre of PwOX --. {lPw X is a product of Eilenberg­
MacLane spaces (GEM).
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Corollary Let X = (}2y and LK the I<c-loealization of Bousfield. Then the
fibre of LK(}X - OLKX has ooly two non trivial1r. in dimension 1 and 2.

This is based on a key lemma of Bousfield together with a "ealeulus" of Lx:

Theorem (1) Pw(fibre of X. - Pw X ) ~ *
(2) Ir PwQX:::: *, then PW(}2 X is GEM.
(3) LJ(hocolirnK) = LJ(hocolirnLJK)·
(4) Pw preserves fibrations with W-Ioeal base.

Corollary Ir X is 5-conneeted and K C0 5X =0, then X is made by eofibrations .
out of V(l).

VINCENT FRANJOU:
MacLane Cohomology via the De Rham Complex and the
Koszul Complex

Let p be aprime and R the finite field IFp . Let:F be the eategory of covariant
functors from the category offinite vector spaces to the category of vector spaces
over R. MaeLane cohomology with eoeffieients in a fUßetor F is defined by

HkL(RIF)=Ext~(I,F), iEN

where I is the indusion funetor.
We eompute it when F is any of the functor I, exterior power An I (n E N) or
homogeoous polynomials of degree n, Sn where Sn V = (v@n)q ... In particular:

{
IF . i even

Ezt~(I,1) == 0; i odd

·Ta perform the eomputation, we use as input:
(1) Ezt~(I,Sp") =0 for k >- i, i:f:. O.
(2) Ezt~(I, F 0 G) == 0 for all i, if F(O) == G(O) =O.
and we work with the De Rham eomplex, and asubeomplex of it, built as the
kernel of the Koszul differential K- (the latter is a subcomplex beeause of the
Euler formula: dK +Kd is multiplication by the degree). The related hyperco­
homology spectral sequenees allow us to perform a downward induction on k,
starting with (1).
(joint work with J. Lannes and L. Sehwartz)

PAUL G. GOERSS:
Bousfield Local Homotopy Theory is Determined by Cochains

Let X be aspace and S· X the simplicial cochains over a field IF. We ask to
what extent X is determined by S· X.
We recover first a result similar to that of I. Kriz and V .Smirnov.

"

•
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Theorem 1 Suppose X, Y are spaces of finite type and there is a map f :
S· X - S·Y of cosimplicial algebras, such that H· f : H· X - H·Y is an
isomorphism. Then there is a weak equivalence of Bousfield localizations

LrX ~ LrY

This is obvious if f is a continous map, but this is not assumed. Theorem 1 is
a corollary of examining S· X as a cosimplicial complete algebra.

Theorem 2 Let cÄ be the category of cosimplicial complete algebras. There is
a closed model category structure on cÄ, such that if B ---+ S·X is a cofibrant
cover of S· X, then

Sp(B) =Hom.K(B, IF) =L~X

Then one pIaces an appropriate cJosed model category structure on cÄ withou t
the topologies.

JOHN PATRICK C. GREENLEES:
The Local Cohomology Theorem and Rationality of. the
Tate Spectrum

For any finite grou}> G we have the augmentation ideal I = (0'1,"" O'n) of
the Burnside ring A(G). One may then construct the G-spectrum Hl(SO) =
S-I/O'r' /\ ... /\ S-1 /O'r:', and it is easy to show there are short exact sequences
(for.~n equivariant c~homology theory Fä(-»

o-:- LrF~+l ~ Fä(HJ(So» -- L~Fä -.0

(where L~(·) are left derived functors of I-completion) and

o-+ Hl(F~+I)-- F~(Hl(SO»-- H7(F~) - 0

(where Hj(·) are Grothendieck's loeal cohomology groups).
The essential fact is that A(C) is of Krull dimension 1.
It is also elementary to construct a map

and hence we have an improved version of the completion conjecture and a ho­
mological analogue.

,
Clmpletion statement for Fe{·) :Fa(c) is an isomorphism.

Local cohomology statement for F~(.) : Ff(c) is an isomorphism.
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If true these calculate Fä (EG+) and Ff (EG+) as algebraie funct.ors of F.G.
Of course the Atiyah-Segal theorem:is the completioo statement for equivari­
ant K-theory aod the Segal conjecture is the completion statement for stable
eohomotopy. The local cohomology statement is false for stable cohomotopy.

Theorem 1 The local cohomology statement holds for equivariant K-theory.

This is a reformulation o( a deduction of G. Wilson, but it admits a short direct
proof. Analogues exist for any compact Lie group, but are only proved in certain·
cases.

Theorem 2 If the loeal cohomology statement holds for Ff (.) then th~ Tate
spectrum t(F) is rational.

There is same evidence for a' converse of theorem 2: if t( F) is rational then there
is an F'. with t(F) ~ t(F' ) such that the local cohomology statement holds for

F'?(')'

JEAN LANNES:
Algebraic Smith. Theory

Let p be a prime and V be an elementary abelian p-group. One sets H* V =
H·(BV; lFp ) and Cv = TIuEH1V-{O} u for p = 2 and Cv = nUEHIV-{O} ßu for
p> 2. .

Let H*V - U denote the category' of unstahle H·V - A-a::nodules (i.e. uDstahle
modules M over the Steenrod algebra A which are H* V -modules such that the
strueture map H· V ® M .;---+ M is A-li.near). Let Fix: H· V - U ---. U be the
left adjoint of the functor U --+ H·'y - U ,N ......... H* V ® N ..
The maiD technieal result is:

Proposition 1 Let M be an object in H· V - U. Then the follo\ying conditions
are equivalent:
(i) M[cV1

] =0;
(ii) Fix(M) = O.

Corollary 2 (compare with Dwyer and Wilkerson) Assunle M .finitely generat~d
as an H·V-module. Then Fix(M) is finite and for dimV = 1 the kernel and
cokernel of the natural map M --+ H* V ® Fix(M) are finite too.

Corollary 3 (Dwyer-Wilkerson) Let X be a p-complete space equipped with
an action of V. Assume that H*(X; IFp ) is finite and that X hV is p-good. r hen

Xr,.(X hV
) == xip(X) mod p.

Proposition 1 leads also to the determination of all the injective objects ine the
category H*V - U.
üoint work with S. 'Zarati)

•
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JOHN MARTINO:
A Classification of the Stahle Type of BG

We determined a necessary and sufficient condition for the ~completionsof two
finite groups G, G' to be stably homotopy equivalent.

Theorem For two finite groups G, G' the following are equivalent:
(1) BG; and BG'; are stably homotopy equivalent.
(2) For every ~group Q,

IFpRep(Q, G) == JFpRep(Q, G')

as Out(Q)-modules. Rep(Q,G) = Hom(Q,G)/G with G acting by conjugation.
(3) For every p.group Q,

IFplnj(Q, C) ~ IFplnj(Q, G')

as Out(Q)-modules. Inj(Q, C) ~ Rep(Q, G) consists of conjugacy cl.asses of
monomorphisms.

We also gave an unstable analogue of this theorem. We applied the theorem to
the special case of G, G' having normal Sylow ~subgroups. We used the special
case to analyse the Minami-Webb formula, which express BG in terms of cyclic
mod-p groups.
(joint work with S. Priddy)

HAYNES MILLER:
Higher Real K-Theory

This is joint work in progress with Mike Hopkins. We construct analogues of
KO, by forming homotopy fixed p·oint spectra ofactions on Landweber theories
En with tr.En =W(IFp,,)[u±l][[Vl"'" vn-d], where up"-l =Un . This requires
the construction of a topological (c1osed model) category of Aoo-ring spectra.
If n = p =2, the binary tetrahedral group acts, and there results a theory in
many ways analogous to K O2.

DIETRICH NOTBOHM:
Homotopy Uniqueness of Classifying Spaces of Compact
Connected Lie Groups

Let p be an odd prime. Let G be a compact connected Lie group, Ta the
maximal torus and WG the Weyl graup. We say that a p.complete space X
has the mod-p type of BG, if H·(BG; 7l/p} == H·(X; Z/p) as algebras over the
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Steenrod algebra.
Under these conditions, Dwyer, Miller and Wilkerson constructed a maximal
torus of X. That is a map BTxp --+ X of the classifying space of a torus Tx,
such that the homotopy fibre has finite mod-p cohomology and that rank(Tx) =
rank(G). BTxp denotes the p-adic completion. Moreover they got an action
of Wa on BTx and a map BTxp ---+ BTGp, such that BTx --+ X is Wa­
equivariant (up to homotopy) and such that the following diagrarn commutes
and is equivariant.

• H*(BTa; 7l/p)

We say, that aspace X with the mod-p type of BG has the p.adic type of
BG, if BTx~ ~ BTG~ as WG-spaces; i.e.there exist a Wa-equivariant map
BTa --+ X such that the following diagram commutes

Theorem 1 Let G be a compact connected Lie group, such that H·(BG; Z) is
. p-torsion free,.and let X be a p-complete space with tbe mod-p type of BG.
.. (1) There exists ,a compact connected Lie group H, such that X has the p-adic
type of BH.
(2) Ir in addition G.is simply connected or a produc~ of unitary groups, tben X
has the p-adic type of BG.

Theorem 2 Let G be a compact connected Lie grou'p, such that H·(BG; Z) is
p-torsion free. Ir X has the p-adic type of BC, then X and BCp are homotopy
equivalent.

Theorem 1 and 2 together imply the following coroll~ry.

Corollary 3 Let G be simply connected and H··(BG; Z) be p-torsion free, or
let G be a product of unitary groups. If X has the mod-p type of BO, then X
and Bap are homotopy equivalent.
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BOB OLIVER:
Higher Limits via Steinberg Representations

This dealt with higher derived fundors of inverse limits of functors on certain
categories based on elementary abelian p-groups:

Ap(G), for a compact Lie group G, is the category whose objects are elementary
abelian }rsubgroups E ~ G, aod where morphisms between objects are those
morphisms induced by inclusions and conjugation.

Ap(X), for aspace X such that H·(X;71/p) is noetherian, is the category
wbose objects are homotopy classes of maps 1/J ~ BE~ X such that H·(BE)
is finitely generated as an H*(X)-module; and where morphisms are monomor­
phisms between groups which induce triangles coJnIJ:tutative up to homotopy.

Theorem Fix A =Ap(G) or Ap(X).
(1) Ir F ~ A --+ Z(p) - mod is a covariant fundor which vanishes except on the
isomorphism dass of one object (E,1/J), where E ~ (Z/p) I: , then

I· i(F) ~ { HomA~t.A(E.tJJ)(StE, F(E» : i = k + 1 .
~ - 0 : i,lk+l

Here, StE denotes the Steinberg representation of GL(E).
(2) Ir F : A --+ Z(p) - mod is any covariant functor, then lim~(F) is the
homology of a cochain complex

0- rr HomAut.A(E.tJJ)(StE, F(E»--+
(E.,p),....u

rr HomAut.A(E,tP)(StE, F(E» --+ ...

(E.'J1),. ..,,'l

In particular, lim~..(F) = 0 ror i ~ p - rk(G) (ir A = Ap(G» cr for i ?:
dim(H*(X;71/p» (ir A = Ap(X».

STEWART PRIDDY:
A Generalization of Swan's Theorem for Group Cohomol­
ogy

Let P be a finite p-group. We say P satisfies condition (A) if

(A) [P, 01:+1 P) :5 OI:P for all k ?: O.

Here fll:P is the subgroup of P generated by. a1l elements of order :5 pI:.

Theorem A Ir P satisfies condition (A) and G is any finite group with' P as
p-Sylow subgroup, then

H*(BG;71/p) ~ H·(BP;71/p)w
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where W is the Weyl group W = NG(P)/ P aod NG{P) is the normalizer of P
in G.

Swan proved the 'same result under the hypothesis that P, ~s abelian (1960) ..

Theorem BAlmost all p-groups satisfy condition (A).

Theorem A uses the Segal conjecture to show the transfer is a weak map. Then
H"'(BP;71/p) is only influenced by the automorphisms of P, in particular the
Weyl group. Theorem B is related to the following theorem which is actually
tbe main part of our work.

Theorem C BP is stably indecomposable for almost all finite p-groups P.

(joint work with H. W. Henn)·

YULY RUDYAK:
On the Mahowald Conjecture that the Spectrum k is Not
a Thom Spectrum

Main Theorem The spectrum kO, as weIl as the spectrum k, is not a Thom
sp~ctrum of any stable sperical fibration, i.e. of any map X ---+ BG.

Let p be ·an odd prime, ~nd let Qo = p, Ql = ßp1 - pI ß are the elements of
the Steenrod algebra.A = A p • The proof of the Main Theorenl is based on the
following

Basic Theorelll Let I be any connected Z(prlocal spectrum of finite Z(prtype
such that 11"0(/) =Z(p) and H"'{I;Z/p) =A/A{Qo,Qt}. There is nO.ffiorphism
f: I~ TBSPL(p) such that

f'" : HO(TBSPL;Z(p») - HO(/;Z(p»)

is epic.

HAL SADOFSKY:
A Chromatic Version of Lin '8 Theorem

Let X be a finite CW-complex. A theorem of W. H. Lin implies the statement
holim(IlP~k 1\ X) = E- 1 X2. Here llP~k = (IRpOO)-k-e is the Thom .spec­
trum of -k times the tautological bundle over lRpoo

• At odd primes there is
a generalization (due to Gunawardena): holim«BEp)(p)_A: 1\ X) = E-l X;- f~r

(BEp)(p)_k defined appropriate. .
Let Ln be Bousfield localization with respect to·E(n)', where E(n) is given by
E(n)", = iZ(p) [VI , ... ,Vn -l,Vl,Vn -1]. Let P-t be lRP~t or (BEp)(p)_A: as p is 2

•

•
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or odd. Hopkins and Mahowald conjecture:

1~(P-k" LnX) = E- I L~_I(X;) V E- 2Ln_I(X;)

This should be considered aversion of the slogan "the Mahowald invariant
should convert vi-periodicity to vi+l-periodicity".
It is easy to verify this conjecture in the following cases: n = 0, n = I, X such
that Ln-IX. We show it is true for n = 2,p ~ 5. Our technique is to show
(where M(p) is the mod p Moore spectrum):

Proposition lim_(P_1: A M(p) =E- I LIM(p) V E- 2 LI M(p).

Our methods use a comparison to Shimomura's vi-Backstein spectral sequence
calculation.
üoint work with M. Hopkins)

KATSUMI SHIMOMURA:
Relations between a Mahowald Spectral Sequence and the
Universal Greek Letter Map

Considering the spectra BP and E(n), we have the MallOwald spectral sequence
in the sense of H. Miller: . .

E;·t = EztBP.BP(BP., Extk(n).E(n)(E(n)., E(n).(BP»)

~ Ezt~1~).E(n)(E(n).,E(n).)

On the E 2-term, we have:

Theorem A

{

BP
Eztk(n).E(n)(E(n)., E(n).(BP)) = N;+~

t= 0
t =n
else

•
Here N(;+ I is defined induetively by:
N8 =HP, 0 ---+ N& '--+ v;) N& --+ N~+) --+ 0 is exact.

This and the Mahowald spectral sequence give:

Theorem B
(1) EztBP.BP(BP., N~+I)=ExtB+P:"1~(BP., B P.) if n < p - 1 and s > n2 •

(2) ExtBP.BP(BP~, BP.) =ExtE(n).E(n)(E(n)., E(n).) if n > s.

Tbe first result (1) of theorem B is induced from the diferential dn+l of tbe
Mahowald spectral sequence. Similar result is obtained by Miller, Ravenel and
Wilson using the universal Greek letter map,.,. Here we get the relation between
them:
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Theorem C dn+l =(_I)n+ol 7J •

These results are applied to the stable homotopy of a Bousfield loealization of
a speetrum.
Uoint work with M. Hikida)

VLADIMIR A. SMIRNOV
The Cohomology of the Steenrod Algebra

Let Soo-aeyclie operad with generator Vi E Soo of dimension i, dVi = Vi-t +
(-IYVi-tT, T E E2 and 1ri E Soo(i+2), d1ri = E(-I)(')'(1TA:®I® ... ® 1ri-A:-10
... ® I). All relations between these operations follows from aeyclic condition.

Theorem On the cohomology of the Steenrod algebra there exists the strueture
of Soo-algebra and as Soo-algebra °it has one generator ho of dimension 1 and
relations generated by the folowing:

7fi(ho, h t , ••• , hi+d =0, hi+1 =hi Ui hi

JEFF SMITH:
An Approach to Constructing Morava K-Theories

Let B denote a sub Hopf algebra of the mod p Steenrod algebra. Let AII B
denrite the quotient of A by the left ideal generated by B+, the elements of
positive °degree. We hope to show that the geometrie problem of construeting an
A oo- ring spectrum R with H·(R) =AIIBis equivalent to an algebraic problem
in the eategory of functors, Funct(V, VL where V denotes the eategory ofIFp ­

vecter spaces. To solve the algebraic problem one mllst construct a simplieial
.eomonad T., satisfying:
(I) T. is homotopy linear.
(2) 7fT. = B. as a module over the algebra of homotopy operations in the
eategory of homotopy linear simplicial funetors.

lt is aseparate eomputation, that the ring of operations is isomorphie to A.,
the dual Steenrod algebra.

NOBUAKI YAGITA:
Representations of the Steenrod ~lgebra

We construct a map of Hopf algebras

8 : K[Ur ] ---+ P(n - 2t

where K[Ur ] is the coordinate ring of r-th Frobenius kernel of the maximal

•

•
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unipotent subgroup U in GLn and where P(n - 2t is the dual of tbe subalgebra
of tbe Steenrod algebra generated by pt, ... 1 pp(_-2). Therefore we get a K­
algebra embedding

P(n - 2) ~ Dist(Un )

Using this we show if a weight A is p-regular, then the Weyl module V(~) is
generated only by P(n-2). Moreover we consider some embedding of V(A) into
products of H-(<cPOO

), which are closely related to GLn-simplicity of V(~).
Uoint work with M. Kaneda, N. Shimada and M. Tezuka)

Berichterstatter: Frank Neumann
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