MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 10/1992
Mathematische Stochastik

8.3. bis 14.3.1992

statt. Thr Konzept, sowohl Wahrscheinlichkeitstheoretiker als auch mathematische Statis-
tiker zu gemeinsamer wissenschaftlicher Diskussion einzuladen, hat sich erneut bewihrt.
Thematische Schwerpunkte waren

— stochastische Analysis, zufillige Baume

— inverse Probleme, empirische Prozesse und bootstrap.

Die weiteren Vortriage behandelten ein weites Spektrum von Einzelthemen und reichte
von grofien Abweichungen, Erzeugung von Zufallszahlen in Kryptographie und Statistik bis
zur Statistik von diinnbesetzten Daten. Sie stieBen auf breites Interesse.
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Die Tagung fand unter der Leitung von G. Kersting (Frankfurt) und R. Griibel (Delft)
An der Tagung nahmen insgesamt 42 Wissenschaftler aus 12 Landern teil.
|
|
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VORTRAGSAUSZUGE

D. ALpovus
Random Trees

The “Continuum Random Tree” is an interesting object which arises in 4 ways
(1) Take a Galton-Watson branching. process, condition on total population size = =,
draw the family tree with edge-lengths = ﬁ, then let n — oo.

(2) Via a direct construction from Brownian excursion of duration 1.

(3) Via a direct construction involving cutting the interval [0,00) into random segments,
and reassembling the segments into a tree.

(4) The particular distribution of this tree can be specified by giving (for each k) the
distribution of the spanning subtree on k randomly—chosen points. The distribution
has a simple form: the topological shape of the tree is independent of the edge-lengths
(Li,--.,L2k-1), and their density is

Hl,ostar) = e se™ % 5= 3t

T. ARAK
Polygonal Markov fields and their simulation

The first examples of polygona.l Markov ﬁelds on RR? were given in [1}, and the notion in
whole generality was introduced in [2]. There exists a subclass of polygonal fields called
“consistent”. The fields of this subclass are Markovian not only in two-dimensional sense
but also in one-dimensional sense on every straight line £ C R?. Some of their probabilistic
characteristics can be expressed by explicit formulae. Consistent fields can be described in .
terms of evolution of a system of particles on IR!, and this fact makes them easy to simulate
on the computer.

The simulation of a nonconsistent field can be based on its description as a stationary
measure of some special Markov process, defined on the space of all realizations (of polygonal
fields). Two algorithms of such kind are described.

[1} Arak, T.: On Markovian random fields with finite number of values, 4th USSR-Japan
Symposium on Prob. Theory and Math. Stat. Abstracts of communications. Tbilisi 1982.
[2] Arak, T., Surgailis, D.: Markov fields with polygonal realizations, Probab. Th. Rel.
Fields 80, 543-579 (1989).
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S. ASMUSSEN

Wiener-Hopf identities and mazima for some dependent processes

We consider the problem of computing the distribution of the maximum M and the
ascending ladder height of a Markov additive process {§:};>0 defined on 2 Markov process
{J:}1>0 with continuous time and a finite state space E. Important tools are time reversal,
occupation measures and an auxiliary Markov process {m,},zo obtained by observing {J;}
only when {S;} is at a minimum at —z. Solutions are obtained subset to some weak
conditions on the jumps in one direction, say that the paths are downwards skip-free as
is the case in the MAP’s arising in queues and fluid flow models. The crucial step in the
algorithm is the evaluation of the intensity matrix Q of {m.} and is performed by solving
a fixpoint problem Q = ¥(Q) iteratively.

V. BENTKUS

On smoothness conditions and convergence rates in the CLT in Banach spaces

In Banach spaces estimates O(n~!/2) of the rate of convergence in the Central Limit
Theorem are known. These estimates are obtained for the probability of a set provided the
boundary of the set is thrice differentiable. We show that in general one can not weaken this
condition. Thus the situation in the infinite dimensional spaces differs completely from that
in finite dimensional spaces, where the convexity of sets is sufficient for the rate O(n~1/2).
Similar results hold for the expectation of smooth functionals, where the rate O(n~1/2)
can be proved only under the condition that the functional is three times differentiable.
(joint work with F. GOTZE, Bielefeld)

N.H. BINGHAM

Applications of Large Deviations

[Professor Bingham was prevented at a late stage from attending the meeting, and his talk

was presented by C.M. GoLDIE].

The talk presents (I) a large—deviation theorem, (II). applications to branching processes,

(IIT) applications to number theory. I and II are joint work with' J.D. Biggins.

In I the theorem is a variant of Ellis’ Large Deviation Theorem, giving convergence of

—log P(Y, > anz)/an, to alimit k*(z) when the Y, are random va.nables for which
a;llog Ee*" — k(s) (n — o) for a sequence of constants a, — oo.

In II some results are deduced for the almost-sure limit random variable W of a supercrit-

ical Bienaymé-Galton-Watson process, suitably normed. When the maximum family size

is d < oo the right-hand tail of W is proved to decay exponentially. When the minimum

family size is m > 2 a similar result is established for the left-hand tail.

In III divisor functions are treated. It is proved that log 1 37 1{w(m) > (<)aloglogn} ~

—(loglogn)(aloga—a+1) as n— oo, for a>1, (0 < a < 1). A similar result is given

for Q, for 0<a<?2.
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L. BIRGE

Estimation of integral functionals of quadratic type of a density

From n i.i.d. observations of an unknown density f, belonging to some smoothness class

Fsa defined on [0,1} by

For= {1 [117@) - (@) < 4l — 4} s=m+a

we want to estimate [ (f) where ¢ is a smooth function. This can be done at rate

! 4
1/v/n when s>1/4. For s<1/4 one cannot estimate at a rate better than n T
(joint work with P. MassART, University of Paris-Sud).

E. BOLTHAUSEN

Critial large deviations in a Gaussian model with a continuous symmetry

Critical large deviations for the Ising model have recently attracted much attention, e.g. in
works by R. Schonman, Féllmer-Ort, Dobrushin-Kolecky-Shiosman. These results show

_that within the phase transition region, the appropriate large deviation principle estimates

probabilities in terms of the surface and not the volume of a box: A simple Gaussian model is
presented where large deviations have probabilities decaying still at a smaller order, namely
exp(—nd2I), where n? is the volume of the box.

(joint work with J.D. DeuscHEL, ETH Ziirich)

-R. BUCKDAHN

Linear Skorohod stochastic differential equations

Let ¢ and b be bounded processes on the Wiener space (£, F,P), Q = C([0,1}), which

are possible anticipating the Brownian motion W;(w) = w(t), and let G be a bounded
random variable. Then there is a unique solution X of the linear S.D.E. with Skorohod
integral

t t .
X = G+/ 0,(X,)dW, +/ by(X,)ds, 0<t<1, (1)
0 0 :

under rather weak assumptions on ¢ and no additional requirements on b and G. The
description of the solution X requires to study the family of {T},0 <t <1} of possibly
anticipating transformations T; of Q into itself associated to (1) by the equation

tA.
T,w=w+/a,(T,w)ds, weN, 0<tL1. ’ 2)
0
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If o is nonanticipating, the solution X of (1) has the form

X = G (w - 7Aa,(w)ds)

0
(3)
t ) t t tA.
exp {/a,(w)dW,(w)— 5/03(@)ds+/ b, (w— /a,(w)dr) ds}
0 o 0 SA.
. Choosing G(w) = sign(w), 0,(w) =1, by(w) =0, we see that the solution process
Xy =sign(Wh — t)exp{W,; —t/2}, 0<t<1, (4)

jumps and changes the sign on {0 < W; < 1} at time t = W;. This shows that, in
difference to the nonanticipating case, the Skorohod integral process can have jumps.
Reference: BUCKDAEN, R.: Linear Skorohod stochastic differential equations, Probab. Th.
Relat. Fields 80, 223-240 (1991). Please, find further references there.

I. CucuLEscu

The infinite tensor product of conditional mean values in noncommutative probability

The conditional mean values are mappings from a von Neumann algebra to a von Neumann
subalgebra, in the sense of Umegaki. We show the existence of the infinite tensor product
of such conditional mean values. The finite case was established by F. Combes and C.
Delaroche in Bull. Soc. Math. France 103 (1975) Nr. 4.

R. DAHLHAUS

Modelling of locally stationary processes

Locally stationary processes are defined as processes that have a time varying spectral

representation. We model those processes e.g. by autoregressive processes with time varying

coefficients. As a goodness of fit measure the Kullback-Leibler distance is used. We study

the asymptotic behaviour of parameter estimates without assuming that the true process

lies in the model class. Furthermore, the distance of the fitted model to the true unknown
" process is studied. As an example we show the analysis of sound data.

L. Davies

Unimodal models

Let X be a sample space and z a generic point of X, P the model space whose
elements IP are distributions over X. A data feature F is a mapping of X x P into
{0,1}. We denote by X(PP) arandom element of X with distribution IP. F is called
an a-feature if P({z : F(z,lP) =1}) > a forall P € P. It is clear that if F; is
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an aj-feature, 1< j< k, then F =[] Fjis an a-feature with a =1 - ¥¥(1 - a;).
1

Given a feature F we define the adequacy region A(z,F) of the data point z by
Az, F) = {P: F(z,PP) = 1}. .

Using features based on (i) the Kuiper metric (ii) the behavnour of the extreme statistics and
(iii) a modified dip statistic we investigate several data sets from the statistical literature.
A similar analysis is performed using unimodal models PP with at most 3 dips and bumps.

H. DEHLING

Log-density limit theorems

Our research originates from the question whether one can observe the CLT along a single
path of the normalized random walk Si/vk. Brosamler, Fisher and Schatte proved inde-
pendently in 1988 that the logarithmic density of the set of integers for which Si/vk < z
equals ®(z/0). Where & is the standard normal d.f. (Pathwise CLT).
For a function f:IN — IR we define the log-average by pur(f) = hll_rflm m}w Tl H (k).
For aset H the log-density pp(H) is defined by ur(1g).
Theorem : Let Xj,X,... beindependent r.v’s, a, > 0 and define S, = 3}F_, Xi.
Suppose ag/ay > (£/k)? (£ > k) for some -y > 0 and that IE|S,/a,|? < e('°l‘“)l , €>0.
I G isadf, then the following are equivalent

M po({k:3 *<z}) = G) ¥ z€Cc (as)

I p(P(<2)) G(z) "
As corollaries we obtain extensions of the pathwise CLT to stable convergence, conditions
for the Law of Large Numbers in log-density, as well as strong approximations by Wiener

and stable processes in log-density.
(joint work with I. BERKES, Budapest)

W. Eim

A class of quasi-Bayesian procedures for sparse discrete data

Statistical models for sparse discrete data typically involve unbalanced designs and/or many
parameters, which tend to be “close to the boundary”. For such cases, and for use with a
class of linear exponential family models, we propose an approach in which the asymptotics
is driven by “critical quantities”. These quantities reflect properties of leading terms and
are used to control remainder terms in stochastic expansions of statistics of interest.

It is shown that for certain likelihood type procedures confidence statements remain valid
under more general conditions if the likelihood function is replaced by the posterior density
w.r.t. specifically chosen priors which are modifications of the well-known Jeffreys’ prior. In
particular, we discuss properties of the Jeffreys’ posterior mode estimator and the “ postenor
ratio test” within the extended asymptotic setting indicated above.
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H.J. EINMAHL

Local processes (Empirical and quantile processes in a shrinking neighbourhood of a point)

The most simple example of the local processes we consider is the so called tail empirical
process

wa(t) = (n/an)'/*(Tn(tan) — tan), 0< 1< 1,

where {a,}32, is a sequence of numbers in (0,1) which converges sufficient slowly to 0
and T, the uniform empirical distribution function at stage n.

More general we will consider weak convergence of empirical and quantile processes in the
neighbourhood of a point in R?. Dependent on the choice of {a,}32, (and a weight
function) the limiting process will be Gaussian or Poisson.

The material generalizes recent results in the literature and finds application in local sta-
tistical procedures like statistics of extreme values and density estimation.

R. GiLL
Cryptography, Statistics and the Propagation of Randomness

We survey the approach to random number generation developed in the last ten years by
workers in cryptography (Bhem, Micali, Yao, Levin, ... ), and argue its relevance to statistics
and probability. In fact the approach measures the quality of random number generators in
a way exactly appropriate for their use in large statistical simulation experiments. The ap-
proach also uses some nice probabilistic techniques (coupling, time reversal, ...). From the
statistical point of view we propose some areas for future research (cryptographic security
of classical generators, improvement by combination of ‘independent’ generators, ... ):
Reference: S. Brands, The cryptographic approach to pseudo-random bit generatxon Cryp-
tography group, CWI Amsterdam.

C.M. GoLpIE

Tail decay of stationary solutions of tree-structured random recurrences

A theorem is presented that gives the tail decay of the stationary solution, assumed to
exist, of a class of random recurrence relations. It is specialized to the case of the ‘linear
multiplicative transform’, leading to a result extending those of Durrett and Liggett, and
Guivarc’h.

P. GROENEBOOM
Inverse problems

In statistics one usually denotes by “inverse problems” the situation where one wants to
estimate (in a non- or semiparametric way) a probability distribution on a basis of indirect or
censored data and where the usual machinery of \/n-asymptotics and asymptotic normality
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is not available. A typical example is the “Wicksell problem”, where one tries to estimate
the distribution of radii of balls on the basis of observations of sections of these balls.
Wicksell derived in 1925 an (Abel-type) integral equation, describing the relation between
the distribution of the radii of the balls and the distribution of the radii of the sections of
these balls. This integral equation is a well-known example of an inverse (or “ill-posed”)
problem in numerical analysis.

Other examples of inverse problems are: interval censoring and deconvolution. These prob-
lems have recently received much attention in the context of AIDS research, where on tries
to make predictions using both interval censored data and data which are only indirectly
observable via convolutions. We discuss nonparametric maximum likelihood estimators
(NPMLE’s) in this context and formulate some conjectures about their properties.

R. GRUBEL

A piece of statistical archaeology

We introduce a new multivariate version of the median that shares the equivariance prop-
erties of the spatial median, but seems to behave better for heavy-tailed distributions. Its
asymptotic properties are derived, and the procedure is illustrated by two numerical exam-
ples. The original motivation for such procedures seems to have been the determination of
population centers (US at about 1900, Italy in the 1930’s).

H.G. KELLERER

Ergodic theorems for affinely-recursive stochastic sequences

The affine recursion X, = ¥pXn-1 + Zn, 7 € IN, with state space IR, is classified ac-
cording to its Markovian properties (transience, null recurrence, positive recurrence) in the
topological framework. Main result in the recurrent case is the existence and uniqueness of
a locally finite invariant measure, which yields mean and pointwise ergodic theorems. More-
over, under weak boundedness conditions on Z with respect to Y one obtains a bijection

between the asymptotic behaviour of the associated random walk S, = ¥ ' logV;, and
1<m<n

the Markovian behaviour of the sequence (X,.);,zo.

U. KRENGEL

Speed limits on the circle

The motivation of the above topic is to study a class of examples of “generalized” Markov
operators. In the Markov case, particles move with transition probabilities depending only
on their location. If one wants to admit interaction, one is led to operators in L} (an
integr. function is a mass distribution) which preserve the order and integrals. There is
now a deep generalization of the Birkhoff ergodic theorem for such operators, proved by
R. Wittmann. An interesting class of such operators is provided by generalized measure
preserving transformations. Here we study mainly another class defined on the line or on
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the circle. It is determined by a speed limit function ¢ taking only finitely many values,
and piecewise constant. Mass moves according to the following rules: 1) The total mass
is preserved; 2) The particles move in a fixed direction as fast as possible but never faster
than the speed limit allows; 3) There is never an increase of potential energy. It is shown
that there is a well defined semigroup of order preserving, positively homogeneous operators
in L}, say {T., t>0}. On the circle, if there are at least 2 speeds, T:f converges
exponentially fast to a constant (for bounded f). On the line, for f € L} N Leo, there
is uniform convergence of T:f to 0, provided the intervals of constancy of the speed limit
are bounded below and above.

(joint work with B. Fernow)

H.R. LERCHE
Prediction prisms

Two geometric bodies were shown. The first describes a random prediction procedure for
data taking values in three categories. The second is a puzzle arising from the first by
some more cuts. The procedure has the property that for i.i.d. random data it predicts
asymptotically as good as if the probabilities of the outcomes were known beforehand. For
all other data the procedure does ‘a least as good as in the i.i.d. case. The prediction
procedure is a natural generalization of Blackwell’s for two categories.

J. MICHBALEK

Detection of changes in the behaviour of random sequences

In the contribution the author wants to present a method detecting changes in the behaviour
of a locally stationary random sequence when a possible change can occur in a mean value
jump.or in a spectral characteristic, too. The method is based on an approximation of an
obsetved sequence by a suitable autoregressive model and a statistic yielding the information
on a possible change is derived from the asymptotic I-divergence rate between Gaussian

. probability mea.r;ures. The presented method will be documented by practical results on

PC’s. :

D.W. MULLER
Minimaz Correlation Methods

A method is proposed to assess “goodness of fit” to “estimates” of a (conditional) a-
quantile regression curve (0 < a < 1). Let P be an absolutely continuous probability

measure on IR*xRR!, andlet g, be its conditional a—quantile curve, Py < ga(z)|2z] = 0.
We treat the case where g, is totally unknown. The method consists in fixing two entities

(1) aclass H of curves £ (to work with)
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(2) afamily C of (“forbidden™) residual patterns C
(= measurable subsets of the design space IR¥.)

These entities are related by the condition that C* = {z : £(z) > ga(z)} € C. As

a measure of fit, one considers the quantity E(a,f) = P[y is between ¢(z) and go(z)]. -

This quantity can be estimated in a natural way from an i.i.d. sample (z1,¥1),...,(Zn,yn)
from P: i.e. by E,(a,£). For ahypothetical curve ¢, the value E,(a,£) is then compared
to the distribution of D, = mingen En(a,£), where g, € H (this is the case where the
best fit occurs). In many models, this distribution depends only slightly on the nuisance
parameters (e.g. the form of marginal distributions of P). This is shown by extensive
simulations. An asymptotic theory explaining part of this phenomenon is developed.
The main technical problems of the proposed procedure consist in the construction of fast
(enumerative or stochastic) search algorithms for Dy.

W. NATHER

Probabilistic interpretation of some notions in fuzzy theory

Essential notions of fuzzy set theory can be expressed in terms of random sets. For example,
the membership function of a fuzzy set A can be considered as one—point—coverage prob-
ability of a random set (symb. A ~ §). Fuzziness measures of A appear as “variance”
terms of S. The specification of set-theoretic operations between fuzzy sets A ~ §,
B ~ §3 (e.g. the intersection) can be thought as specification of a correlation structure
between S; and S;. Also for essential classes of fuzzy measures a probabilistic interpre-
tation is possible: Belief- and plausibility measures are capacities and, using Choquet’s
theorem, can be considered as hit— or miss-probabilities of random sets. Decomposable
fuzzy measures in the Archimedean case are “distorted” additive measures (in the special
case “distorted” probabilities).

M. NussBauM

Gaussian Approzimation of some Curve Estimation Problems

We are concerned with asymptotic decision theory in some non-/n-consistent problems like
density and nonparametric regression estimation. It is known that in such problems, which
may also be described as inverse ones, the standard approach of localizing around a fixed
point  in the parameter space according to 8 = 8y + n~1/2h does not lead to a sensible
Gaussian limit experiment, and hence does not yield nontrivial risk bounds. A natural
approach then would be to try to approximate the original nonlocalized experiment by a
suitable accompanying Gaussian shift - the signal recovery problem in white noise, which is
in fact known for some time as the model problem for nonparametric curve estimation. An
approximation by LeCam’s deficiency distance A would be desirable, but turns out to be
beyond reach at this stage. However, we are nevertheless able to establish risk approximation
by the signal recovery problem in some interesting special cases, where the experiment is

10

Forschungsgemeinschaft

o




oF

Deutsche

generated by i.i.d. observations. In this case LeCam’s result on approximation in A by
the poissonized version can be utilized, which yields an observed Poisson process on the
sample space. Due to the property of independent increments, we may then treat the
estimation problem separately for each one of small intervals subdividing the sample space.
Furthermore, when the size of these tends to zero, we can employ the result of Low (1989)
on sirong convergence to'a Gaussian limit on each interval, when reparametrization is done
in a nonstandard fashion by asymptotically delta—shaped alternatives. Thus, for some
i.i.d. models and integral-type loss functions which behave additively when the function
is broken into pieces, we can automatically transfer asymptotic risk bounds (optimal rates
and constants) from the accompanying Gaussian shift experiments.

L. PARTZSCH

Some contributions to the problem of uniformly conditional ergodicity for Markov
processes with finite life-time )

For “positive R-recurrent” Markov processes (Xi);>0 with topological state space E
and a finite life-time ( conditions are considered, under which we have the conver-
gence to the quasi-stationary distribution p (i.e. limy.o Po(X; € A|C > t) = p(A4))
and to the transition function ﬁ(t,z,A) of the corresponding conditional process (i.e.
lim, oo Po(X¢ € A|C > t+ s)) uniformly with respect to z € E.

On the one hand, we use the spectral theory of positive operators, where a Doeblin condition
“with upper bound” for the normalized kernel Q(t,z,A) = e™*- P(t,z,A) is involved. On
the other hand, classical proofs of J.L. Doob are transfered to substochastic kernels using
an appropriately defined ergodic coefficient.

S.M. PITTS

Nonparametric estimation of the stationary waiting time distribution function for the
GI|G|1 queue

The GI|G|1 queueing model is regarded as a functional that maps the service and inter-
arrival time distribution functions onto the stationary wating time distribution ‘function.
When random samples from the service and interarrival time distributions are available,
a nonparametric estimator of the stationary waiting time distribution function is obtained
by applying the functional to nonparametric estimators of the input distributions. Using
appropriate continuity and differentiability properties of the functional, we show that strong
consistency and asymptotic normality of the input estimators carry over to corresponding
properties for the output estimator.

A. RACKAUSKAS

On the bootstrap for some statistics from empirical measures

We prove some results on estimates of the accuracy of the bootstrap approximation for the

11
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Euclidean norm of empirical processes indexed by finite but increasing number of functions.
As a consequence we obtain the bootstrap approximation of the quadratic measure of de-
viations for the orthogonal series density estimate.

(joint work with F. GOTZE, Bielefeld)

P. RESSEL

Non-homogeneous DeFinetti-theorems

The classical results of DeFinetti and Schoenberg are closely related to an abstract integral
representation theorem for positive definite functions on semigroups. We introduce the
new notion of a “positivity forcing” function and use an amended version of the mentioned
abstract result for a derivation of a number of non-homogeneous DeFinetti type theorems,
generalizing slightly some recent results of Diaconis, Eaton and Lauritzen on mixtures of
certain linear models. Finally we show an application to row—column—exchangeability.

L.C.G. ROGERS

The joint law of the 1 and terminal value of a martingale

If ;(Mg)gzo is a uniformly integrable martingale, M, = sup,¢y My, and § = Mo,

Y'= Moo — My, what are the possible joint laws u of the pair (S,Y) ? It is clear that
the conditions

(1) [ [ls - ylu(ds,dy) = E|Ms| < 00
(2) e(s)2 s
(3) ¢(-) is increasing

are necessary conditions (where the function ¢ is defined by ¢(s) = E[Mw|Mo > $])-
(The necessity of (3) is a simple proposition.) The main result discussed in this talk is to
prove the converse, namely that if a probability x on IR x R* satisfies (1), (2) and (3),
then there exists a Ul martingale such that (S,Y) ~ pu. [Note that the conditions (1),
(2), (3) can be expressed solely in terms of g.] The method of proof is a variant of the
Skorohod embedding technique of Azéma & Yor. A recent result of R.P. Kertz & U. Rosler
(Isr. J. Math. 69) follows as a corollary. The possible joint laws when the martingale M
is restricted to be continuous can also be computed, by quite different methods. In the
uniformly integrable case, this characterization was first established by P. Vallois.

L. RUSCHENDORF

On the rate of convergence in the CLT

Two different methods for proving stable limit theorems for sums of independent random
variables with values in separable Banach spaces are presented. The first method is based

12
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on an inequality of Woyzinski and is applicable in Banach spaces of type p. The second
method is based on convolution metrics and does not need a restriction on the space. Both
results are formulated for the Kantorovich metric, which implies rates of convergence results
also for the (full) Prohorov metric. The conditions on the domain of attraction are given in
metric form. Based on the notion of dependence metrics an extension is given for the stable
limit theorems for martingales with values in separable Banach spaces.

(joint work with S.P. RACHEV).

M. ScHEUTZOW
An integral inequality

o o z+s =3 o
We show that the inequality [ [ g( J b(v)dv) dsdz < [ gy dv [ g(s)ds holds true
—oc0 0 T —oco o

for g :[0,00] - [0,00], 4 : R — [0,00] both measurable and g(c0) = 0. An appli- .

cation to g(s) := exp(— % s), b > 0, shows that if the solutions of X(t) = b(X(t))
o0

explode in finite time, ie. [ F(lﬁ dv < oo, then so do those of the stochastically per-
: 0

turbed equation dX(t) = b(X(t))dt + odW(t), where ¢ >0 and W(t), t >0, is

Brownian motion (using Feller’s test of explosion). The key is to show that the function
. . z+s
F(y):= X ({(z,s) eRxR*: [ b(v)dv< y}) has a density w.r.t. Lebesgue measure
T
00
on R* which is bounded above by i) g(l;; dv. We also formulate an integral inequality
-00
in a more genera.l;set—up.

W. STUTE

The SLLN under random censorship

Let F, denote the sample size n Kaplan-Meier estimator, and let ¢ be integrable
w.r.t. the true survival function F. We show that [ quf,. converges with probability one
and in the mean, under no additional assumptions whatsoever. A necessary and sufficient
condition is derived under which the limit is [ @dF, the quantity of interest. The result is a
key tool for proving consistency of many estimators, as is the classical SLLN for completely
observable data.

(joint work with Jane-Ling-Wang, the Univ. of California at Davis).

A. WAKOLBINGER

Recurrence and transience in time-stationary branching particle systems

In typical examples of time-stationary branching particle systems (TSBPS) like, e.g., critical
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binary random walk on 7%, d >3, the lines of descent of the individual particles “enter
from infinity”. We give examples of TSBPS’s whose lines of descent are all recurrent.

(1) in the presence of critical branching (and with finite expected particle number at any
site) :

(2) in the presence of even subcritical branching (and with infinite expected particle number
per site)

Consider now the following three properties of a family tree in a TSBPS:

(FT): all rooted forward subtrees of T are transient

(BT): the line of descent of any individual in T is transient

(R): T grows out of a “backbone” which is the path of a recurrent Markov chain

As a general result there holds that each family tree of a TSBPS either is (FT and BT), or
(FT and R), or (R), and that each of these three subsystems constitutes a TSBPS for itself.
Finally, another aspect of recurrence on the level of family trees is discussed. An example
(3) of a TSBPS is given which consists of only one (FT and BT) family tree, which hits
any site with a positive frequency in the course of time. In a time stationary critical binary
branching Brownian particle system, any family tree hits each fixed ball over an infinite
time horizon in dimensions 3 and 4, and over a finite time horizon in dimensions > 5.
(joint work with K. MATTHES and R. SIEGMUND-SCHULTZE; in particular, examples (2)
and (3) are due to the latter).

H. v. WEIZSACKER

Jeffreys’ prior as a Hausdorff measure

The following result of W. Doster is reported. It is motivated by the desire to measure the
‘size’ of a distribution family, e.g. by the number of Hellinger balls need to cover it.
Theorem: Let (ps)sco, © C RF open be a family of probability distributions on some
observation space 2. Suppose that the identity (©, euclidean metric) — (O, Hellinger
metric) is locally Lipschitz. Then the Fisher information matrix I(9) exists Lebesgue a.e.
and the k-dimensional Hausdorff measure on © constructed from the Hellinger metric is
given by : .

dHl:lellinger(") = det I(l’) dv .
This measure does not depend on the parametrization. It is Jeffreys’ ‘noninformative prior’.

The proof of the theorem is based on a coarea formula for Lipschitz maps with values in
Banach spaces. This technique may be.used to construct many similar invariant priors.
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J.A. WELLNER
Multiplier CLT’s and alternative bootstraps

A general exchangeably weighted “bootstrap” can be described as follows:
Let X;,X3,...,X, beiid. P on (A,.A) with empirical measure P,.
Let W, = (Whi,...,Wna) be arandom weight vector satisfying

A.1 W, is exchangeable for each n,
A2 Wy20, SiWai=n.

Then for fixed X 1(w),..., Xa(w) the general exchangeably weighted bootstrap empirical
measure is PY = 137 Woilx,o). When W, = M, ~ Multinomial, (n,(3,...,1)),
PY is Efron’s bootstrap. When W, = (Y3,...,Y,)/¥, with ¥;,Y,,... iid. nonnegative,
PY s an “i.i.d. weighted” bootstrap, and, in particular, if the ¥’s are exponential (1),
PY is Rubin’s “Bayesian bootstrap”. Many other bootstrap resampling schemes are also

included in this formulation.
To validate the general exchangeably weighted bootstrap asymptotically, suppose that the

.. weights also satisfy

Deutsche

A3 lim/\—ooo lim SUPg o ||W'lll[Wn1 Z»\]Ilzol =0, and
A4 LTI =1 =,

o -
where [|Y|l2; = [ /Pr(|Y] > t)dt < co.
0

The following theorem of Jens Praestgaard generalizes results of Giné and Zinn for Efron’s
bootstrap:
Theorem 1: Suppose that F C Ly(P) satisfies F € M(P) (measurability), W, satisfies
Al— A4

A.If F€CLT(P)and P(F?)< oo, then /a(PY —~P¥) = ¢G, P -as.
B. If ¥ € CLT(P), then /n(PY¥ —P%) = cG, in P®-prob. in £°(F).

The methods used to prove this theorem yield the following result for Efron’s boot-
strap with bootstrap sample size m # n: let ]Pﬁ,,. = LY My zi(w) Where
M, ~ Multinomial,(m,(2,...,1)).

Theorem 2: Suppose that ¥ € M(P), F € CLT(P) and P(F?) < oo.

Then m(PE, -PY)= G, as mAn — 0 P®-as.

Berichterstatter: J. Geiger
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