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Tagungsbericht 10/1992

Mathematische Stochastik

8".3. bis 14.3.1992

Die Tagung fand unter der Leitung von G. Kersting (Frankfurt) und R. Grübel (Delft)
statt. Ihr Konzept, sowohl Wahrscheinlichkeitstheoretiker als auch mathematische Statis­
tiker zu gemeinsamer wissenschaftlicher Diskussion einzuladen, hat sich erneut bewährt.
Thematische Schwerpunkte waren

stochastische Analysis, zufaJ.lige Bäume

inverse Probleme, empirische Prozesse und bootstrap.

Die weiteren Vorträge behandelten ein weites Spektrum von Einzelthemen und reichte
von großEm Abweichungen, Erzeugung von Zufallszahlen in Kryptographie und Statistik bis
zur Statistik von dünnbesetzten Daten. Sie stießen auf breites Interesse.

An der Tagung nahmen insgesamt 42 Wissenschaftler aus 12 Ländern teil.
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VORTRAGSAUSZÜGE

D. ALDOUS

Random Trees

The "Continuum Random Tree" is an interesting object which arises in 4 ways

(1) Take a Galton-Watson branching· process, condition on total population size n,

draw the family tree with edge-Iengths = Jn, then let n -+ 00.

(2) Via a direct construction from Brownian excursion of duration 1.

(3) Via a direct construction involving cutting the interval [0,(0) into random segments,
and reassembling the segments into a tree.

(4) The particular distribution of this tree can be specified by giving (for each k) the
distribution of the spanning subtree on k randomly-chosen points. The distribution
has a simple form: the topological shape of the tree is independent of the edge-Iengths
(LI, ... , L 2k-l), and their density is

T. ARAK

Polygonal Markov fields andtheir simulation

The first examples of polygonal Markov fields on lR2 were given in [1], and the notion in
whole generality was introduced in [2]. There exists a subclass of polygonal fields called
"consistent". ·The flelds of this subclass are Markovian not only in two-dimensional sense

but also in one-dimensional sense on every straight line l C Bi2 • Some of their prbbabilistic
characteristics can be expressed by explicit formulae. Consistent fields can be described in .

terms of evolution of a system of particles on m.1 , and this fact makes them easy .to simulate
on the computer.
The simulation of a nonconsistent field can be based on its description as a stationary
measure of same special Markov process, defined on the space of all realizations (of polygonal
fields). Two algorithms of such kind are described.. e
[1] Arak, T.: On Markovian random fields with finite number 0/ values, 4th USSR-Japan
Symposium on Prob. Theory and Math. Stat. Abstracts of communications. Tbilisi 1982.
[2] Arak, T., Surgailis, D.: Markov jields with polygonal realizations, Probab. Th. Re!.
Fields 80, 543-579 (1989).
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S. ASMUSSEN

Wiener-Hopj identities and maxima jor some dependent processes

We consider tbe problem of computing tbe distribution of the maximum A1 and the
ascending ladder beight of a Markov additive process {St}t~O defined on a Markov process
{Jth~o witb continuous time and a finite state space E. Important tools are time reversal,
occupation measures and an auxiliary Markov process {mx}x~o obtained by observing {J,}
only when iSt} is at a minimum at -x. Solutions are obtained subset to same weak
conditions on the jumps in one direction, say that the paths are downwards skip-free as
is the case in the MAP's arising in queues and fluid flow models. The crucial step in the
algorithm is the evaluation of the intensity matrix Q of {mx} and is performed by solving
a fixpoint problem Q = ,p(Q) iteratively.

V. BENTKUS

On smoothness conditions and convergence rates in the CLT in Banach spaces

In Banach spaces estimates O(n-1/ 2 ) of the rate of convergence in tbe Central Limit
Theorem are known. These estimates are obtained for the probability of a set provided the
boundary of the set is thrice differentiable. We show that in general one can not weaken this
condition. Thus the situation in the infinite dimensional spaces differs completely from that

in finite dimensional spaces, where the convexity of sets is sufficient for tbe rate O(n-1/ 2).

Similar results hold for the expectation of smooth functionals, where the rate O(n-1/ 2 )

can be proved only under the condition that the functional is three times differentiable.
(joint work with F. GÖTZE, Bielefeld)

N.H. BINGHAM

Applications 0/ Large Deviations

[Professor Bingham was prevented at a late stage from attending the meeting, and his talk
was presented by C.M. GOLDIE].

The talk presents (I) a. large-deviation theorem, (11). applications to branching processes,
(IlI) applications to number theory. I and Il are joint work with" J .D. Biggins.
In I the theorem is a variant of Ellis' Large Deviation Theorem, giving convergence of
-log P(Yn ~ anx)/an to a limit k*(x) when the Yn are random variables for which

a;llog EeßYn -+ k(s) (n -+ (0) for a sequence of constants an -+ 00.

In Il same results are deduced for the almost-sure limit random variable W of a supercrit­
ical Bienayme-Galton-Watson process, suitably normed. When the maximum family size
is d < 00 the right-hand tai! of W is proved to decay exponentially. When the minimum
family size is m ~ 2 a. similar result is established for the left-hand ta.il.

In 111 divisor functions are treated. It is proved that log ~ L~ 1{w( m) > «) a log log n} "01

-(log log n)(alog a - a +1) as n -+ 00, for a > 1, (0 < a < 1). A similar result is given
for n, for 0 < a < 2.
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L. BIRGE

Estimation 0/ integml /unctionals 0/ quadratic type 0/ a density

From n i.i.d. observations of an unknown density /, belonging to same smoothness cla~s

:Fa,A" defined on [0, i] by

we want to estimate f <p(f) where <p is a smooth function. This can be done at ra.te
4"1/../ii when s ~ 1/4. For s < 1/4 one ~annot estimate at 30 rate better th30n n- 1 +h •

(joint work with P. MASSART, University of P3oris+Sud).

E. BOLTHAUSEN

Critial large deviations in a Gaussian model with a continuous symmetry

Criticallarge devi3otions for the Ising model have recently attracted much attention, e.g. in
works by R. Schonman, Föllmer-Ort, Dobrushin-Kolecky-Shlosman. These results show

.that within the phase transition region, the appropriate large deviation principle esiimates
probabilities in terms of the surface and not the volume of a. box: A simple Gaussian model is
presented where large deviations have probabilities decaying still 30t a smaller order, namely

exp(-nd - 2 I),. where nd is the volume of the box.
(joint work with J.D. DEuscHEL, ETHJZürich)

•

. R. BUCKDAHN

Linear Skorohod stochastic differential equations

"Let (j and b be bounded processes on the Wiener space (0, F, P), n = G([O, 1]), which
are possible anticipating the Brownian motion Wt(w) = w(t),and let G be a. bounded
random variable. Then there is a unique solution X of the linear S.D.E. with Skorohod
integral

t t

X t = G +Ju.(Xs)dW. +Jbs(X.)ds, 0 ~ t ~ 1 ,

o 0

(1) •under rather weak assumptions on (j and DO additional requirements on band G. The
description of the solution X requires to study the family of {T"°~ t ~ I} of possibly
anticipating transformations Tt of 0 into itself associated to (1) by the equation

tl\.

Ttw = w +Ju.(T.w)ds, wEn, 0 ~ t ~ 1 .

o
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If u is nonanticipating, the solution X of (1) has the form

(
tA. )

X, = G w-! u.(w)ds

(3)

{
t t t (tA' )}

exp Ju.(w)dW.(w) - ~Ju~(w)ds +Jb. w - Jur(w)dr ds
o 0 0 aA.

Choosing G(w) = sign(wI)' u,,(w) == 1, b,,(w) == 0, we see that the solution process

X t "= Sigri(WI - t)exp{Wt - t/2} , 0 ~ t ~ 1 , (4)

jumps and changes the sign on {O < W1 < I} at time t W t . This shows that, in
difference to the nonanticipating case, the Skorohod integral process can have jumps.
Reference: BUCKDAHN, R.: Linear Skorohod stochastic differential equations, Probab. Th.
Relat~ Fields 90, 223-240 (1991). Please, find further references there.

I. CUCU LESCU

The infinite tensor product 01 conditional mean values in noncommutative probability

The conditional mean vaJues are mappings from a von Neumann algebra to a von Neumann
subalgebra, in the sense of Umegaki. We show the existence of the infinite tensor product
of such conditional mean values. The finite case was established by F. Combes and C.
Delaroche in Hull. Soc. Math. France 103 (1975) Nr. 4.

R. DAHLBAUS

Modelling ollocally stationary processes

Locally stationary processes are defined as processes that have a time varying spectral
representation. We model those processes e.g. by autoregressive processes with time varying
coefficients. As a goodness of fit measure the Kullback-Leibler distance is used. We study
the asymptotic behaviour of parameter estimates without assuming that the true process
lies in the model dass. Furtherrnare, the distance of the fitted model to the true unknown
process is studied. As an exarnple we show the analysis of sound data.

L. DAVIES

Unimodal models

Let X be a sampIe space and x a generic point of X, P the model space whose
elements lP are distributions over X. A data feature :F is a mapping of X X 'P inta
{O, I}. We denoi~ by X(lP) a random element of X with distribution lP. :F is called
an (}-feature if jp({x : :F(x, lP) = I}) ~ (} for all lP E p. It is dear that if Fj is
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an aj-feature, 1 ~ j ::; k, then :F = TI Tj is an a-feature with a = 1 - I:~(1 - Gj).
1

Given a feature :F we define the adequacy region A(x, :F) of the data point x by
A(x, .1') = {lP : T(x, lP) = I}.
Using features based on (i) the Kuiper metric (ii) the behaviour ofthe extreme statistics and
(iii) a modified dip statistic we investigate several data sets from the statistical literature.
A similar analysis is performed using unimodal models lP with at most 3 dips and bumps.

H. DEHLING

Log-density limit theorems

Our research originates from the question whether one can observe the CLT along a single

path of the normalized random walk Sk/v'k. Brosamler, Fisher and Schatte proved inde­

pendently in 1988 that the logarithmic density of the set of integers for which Sk/Vk ~ x
equals ~(x/ u). Where 4l is the standard normal dJ. (Pathwise CLT).

For a function f: IN ~ IR we define the log-average by J.tL(f) = lim IQiiVgl Lzr=t t/(k).
N-oo

For a set H the log-density J.LL(H) is defined by J.LL(lH).
Theorem: Let X}, X2, ... be independent r.v's, an > 0 and define Sn = L:~=1 Xk.

Suppose at/ak;::: (l/k)'"Y (i ~ k) for same ", >" 0 and that JE ISn/ani P ~ e(logn)l-t:, E > O.
If G is a dJ., then the following ~e equivalent

(I) JLL({k:~::;x}) G(x) V XECc (a.s.)

(11) J.tL(P(~ ::; z» G(x)

As corollaries we abtain extensions of the pathwise CLT to stable convergence, conditions
for the Law of Large Numbers in log-density, as weIl as strong approximations by Wiener
and stable processes in log-density.
(joint work with I. BERKES, Budapest)

w. EHM

•

A class 01 quasi-Bayesian procedures for sparse discrete data

Statistical models for sparse discrete data typically involve unbalanced designs and/or many
parameters, which tend to be "elose to the boundary". For such cases, and for use with a •
dass of linear exponential family models, we propose an approach in which the asymptotics
is driven by "critical quantities". These quantities reffect properties of leading terms and
are used to contral remainder terms in stochastic expansions of statistics of interest.
1t is shown that for certain likelihood type procedures confidence statements remain valid
under more general conditions if the likelihood function is replaced by the posterior density
w.r.t. specifically chosen priors which are"modifications of the well-known Jeffreys' prior. In
particular, we discuss properties of the Jeffreys' posterior mode estimator and the "posterior
ratio test" within the extended asymptotic setting indicated above.

6

                                   
                                                                                                       ©



•

•

H.J. EINMAHL

Local processes (Empirical and quantile processes in a shrinking neighbourhood 0/ a point)

The most simple example of the local processes we censider is the so called tai! empirical
process

where {an}~l is a sequence of numbers in (0,1) which converges sufficient slowly to 0
and r n the uniform empirical distribution functioo at stage n.
More general we will consider weak convergence of ernpirical and quantile processes in the

neighbourhood of a point in IRd. Dependent on the choice of {an}~=l (and a weight
function) the limiting process will be Gaussian or Poisson.
The material generalizes recent results in the literature and finds application in local sta­
tistical procedures like statistics of extreme values and density estimation.

R. GILL

Cryptography, Statistics and the Propagation 0/ Randomness

We survey the approach ·ta random number generation developed in the last ten years by
warkers in cryptography (Bhem, Micali, Yao, Levin, ... ), and argue its relevance to statistics
and probability. In fact the approach measures the quality of random number generators in
a way exactly appropriate for their use in large statistical simulation experiments. The ap­
proach also uses same nice probabilistic techniques (coupling, time reversal, ... ). From the
statistical point of view we propose some areas for future research (cryptographic security
of dassical generators, improvement by combination of 'independent' generators, ... ):
Reference: S. Brands, The cryptographic approach to pseudo-random bit generation, Cryp­
tography group, CWI Amsterdam.

C.M. GOLDIE

Tail decay 0/ stationary solutions 0/ tree-structured randomrecurrences

A theorem is presented that gives the tail decay of the stationary solution, assumed to
exist, of a dass of random recurrence relations. It is specialized to the case of the "linear
multiplicative transform" leading to a result extending those of Durrett and Liggett, and
Guivarc'h.

P. GROENEBOOM

Inverse problems

In statistics one usually denotes by "inverse problems" the situation where one wants to
estimate (in a noo- or semiparametric way) a probability distribution on a basis of indirect er

ceosored data and where the usual machinery of vn-asymptotics and asymptotic normality
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is not available. A typical example is the "Wicksell problem", where one tries to estimate
the distribution of radii of balls on the basis of observations of sections of these balls.
Wicksell derived in 1925 an (Abel-type) integral equation, describing the relation between
the distribution of the radii of the balls and the distribution of the radii of the sections of
these balls. This integral equation is a well-known example of an inverse (or "ill-posed")
problem in numerical analysis.
Other examples of inverse problems are: interval censoring and deconvolution. These prob­
lems have recently received much attention in the context of AIDS research, where on tries
to make predictions using both iriterval censored data and data which are only indirectly
observable via convolutions. We discuss nonparametric maximum likelihood estimators
(NPMLE's) in this context and formulate some conjectures about their properties.

R. GRÜBEL

A piece 0/ statistical archaeology

We introduce a new multivariate version of the median that shares the equivariance prop­
erties of the spatial median, but seems to behave better for heavy-tailed distributions. Its
asymptotic properties are derived, and the procedure is illustrated by two numerical exam­
pIes. The original motivation for such procedures seems to have been the determination of
population centers (US at about 1900, Italy in the 1930's).

H.G. KELLERER

Ergodic theorem$ for affinely-rec.ursive stochastic sequences

The affine recursion X n = YnXn- 1 + Zn, n E lN, with state space R+ is classified ac­
cording to its Markovian properties (transience, null recurrence, positive recurrence) in the
topological framework. Main result in the recurrent case is the existence and uniqueness of
a locally finite invariant measure, which yields mean and pointwise ergodic theorems. More­
over, under weak boundedness conditions on Z with respect to Y one obtains a bijeetion
between the asymptotic behaviour of the associated random walk Sn = E· log Ym and

l:5m :5n

the Markovian behaviour of the sequence (Xn)n~O.

U. KRENGEL

Speed limits on the circle

The motivation of the above topic is to study a dass of examples of "generalized" Markov
operators. In the Markov ease, particles move with transition probabilities depending only

on their Ioeation. Hone wants to admit interaction, one is led to operators in Lt (an
integr. function is a mass distribution) which preserve the order and integrals. There is
now a deep generalization of the Birkhoff ergodic theorem for such operators, proved by
R. Wittmann. An interesting dass of such operators is provided by generalized measure
preserving transformations. Here we study mainly another dass defined on the line or on

8
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the cirele. It is determined by a speed limit fUDction l.p taking only finitely many values,
and piecewise constant. Mass moves according to the following rules: 1) The total roass
is preserved; 2) The particles move in a fixed direction as fast as possible but never faster
than the speed limit allows; 3) There is never an iDcrease of potential energy. It is shown
that there is a well defined semigroup of order preserving, positively homogeneous opera~ors

in Lt, say {Tt , t ~ O}. On the cirele, if there are at least 2 speeds, Ttf converges

exponentially fast to a constant (for bounded f). On the line, for f E Lt n LOCH there
is uniform convergence of Ttf to 0, provided the intervals of constancy of the speed limit
are bounded öelow and above.
(joint work with B. Fernow)

H.R. LERCHE

Prediction pris·ms

Two geometrie bodies were shown. The first describes a random prediction procedure Jor
data taking values in three categories. The second is a puzzle arising from the fir~t by
some more cuts. The procedure has the property that for i.i.d. random data it predicts
asymptotically as good as if the probabilities of the outcomes were known beforehand. For
all ather data the procedure does ·30 least as good as in the i.i.d. case. The prediction
protedure is a D.atural generalization of Blackwell's for two categories.

J. MICHALEK

Detection 0/ changes in the behaviour 0/ mndom sequences

In the contribution the author wants to present 30 method detecting changes in the behaviour
of a !ocally stationary random sequence when a possible change can occur in a mean value
jump,or in a spectral characteristic, too. The method is based on an approximation of an
obseI:ved sequence by a suitable autoregressive model and a statistic yielding the information
on a -possible change is derived from the asymptotic I -divergence rate between Gaussian
prohability meaSures. The presented method will be documented by practical results on
PC's. .

D.W. MÜLLER

Minimax Correlation Methods

A method is proposed to assess "goodness of fit" to "estimates" of a. (conditional) 0­

quantile regression curve (0 < a < 1). Let P be. an absolutely continuous probability

measure on IRk X m,1, and let 90 be its conditional a-quantile curve, P(y < 9o(x) Ix] = O.

We treat the case where 90 is totally unknown. The method consists in fixing two entities

(1) ·a dass 'H of curves l (to work with)

9
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(2) a family C of ("fnrbidden") residual patterns C

(=measurable subsets of the design space m.k •)

These entities are related by the condition that C· = {x : L(x) > 90 (x)} E C. As
a measure of fit, one considers the quantity E(a,l) =P(y is between L(x) and 90(X)].
This quantity can be estimated in a natural way from an Li.d. sampie (Xl, Y1),"" (x n, Yn)

from P: Le. by En(a, L). For a hypothetical eurve L, the value En{a, l) is then eompared
to the distribution of Dn =minlE'H En{o,l), where 90 E 1t (this is the case where the
best fit oecurs). In many models, this distribution depends only slightly ~n the nuisanee
parameters (e.g. the form of marginal distributions of P). This is shown by extensive
simulations. An asymptotic theory expla.ining part of this phenomenon is developed. . ~

The main technical problems of the proposed procedure eonsist in the copstruction of fast •
(enumerative or stochastic) search algorithms for D n •

W. NÄTHER.

Probabilistic interpretation 0/ some notions in juzzy theory

Essential notions of fuzzy set theory can be expressed in terms of random sets. For example,
the membership function of a fuzzy set A can be eonsidered as one-point-eoverage prob­
ability of a random set (symb. A rv S). Fuzziness measures of A appear as "variance"
terms of S. The specifieation of set-theoretic operations between fuzzy sets A rv SI,
B rv S2 (e.g. the interseetion) ean be thought as specification of a correlation structure
between SI and S2. Also for essential classes of fuzzy measures a probabilistie interpre­
tation is possible: Belief- and plausibility measures are capacities and, using Choquet's
theorem, can be considered as hit- or miss-probabilities of random sets. Decomposable
fuzzy measures in the Archimedean case are "distorted" additive measures (in the special
case "distorted" probabilities).

M. NUSSBAUM

Gaussian Approximation 0/ some Curve Estimation Problems

We are eoneerned with asymptotic decision theory in some non-v'Ji-consistent problems like
density and nonparametric regression estimation. It is known that in such problems, which
may also be described as inverse ones, the standard approach of localizing around a fixed

point 80 in the parameter space according to 8 = (Jo +n-1/ 2 h does not lead to a sensible e
Gaussian limit experiment, and hence does not yield nontrivial risk bounds. A natural
approach then would be to try to approximate the original nonlocalized experiment by a
suitable accompanying Gaussian shiJt - the signal recovery.problem in white noise, which is
in fact known for some time a.s the model problem for nonparametric curve estimation. An
approximation by LeCam's deficiency distanee .6 would be desirable, hut turns out to be
beyond reach at this stage. However, we are nevertheless able to establish risk approximation
by the signal recovery problem in some interesting special cases, where the experiment is

10
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generated by i.i.d. observations. In this case LeCam's result on approximation in ~ by
the poissonized version can be utilized, which yields an observed Poisson process on the
sampie space. Due to the property of ~ndependent increments, we may then treat the
estimation problem separately for each one of small intervals subdividing the sampie space.
Furthermore, when the size of these tends to' zero, we can employ the result of Low (1989)
on sirong convergence to"a Gaussian limit on each interval, when repararnetrization is done
in a nonstandard fashion by asymptotically delta-shaped alternatives. Thus, for some
i.i.d. models and integral-type 1055 functions which behave additively when the function
is broken into pieces, we can automatically transfer asymptotic risk bounds (optimal rates
and constants) from the accompanying Gaussian shift experiments.

e L. PARTZSCH

Some contributions to the problem 0/ uniformly conditional ergodicity /or Markov

processes with finite li/e-time

For "positive R-recurrent" Markov processes (Xt)t>o with topological state space E
and a finite life-time ( conditions are considered,- under which we have the conver­
gence to the quasi-stationary distribution J.L (i.e. limt_oo Px(Xt E AI( > t) = p(A»

and to the transition function P(t, x, A) of the corresponding conditional process (i.e.
lim,,_oo Px(Xt E AI( > t + s» uniformly with respect to xE E.
On the one hand, we use the spectral theory of positive operators, where a Doeblin condition
"with upper bound" for the normalized kernel Q(t, x, A) = e"Yo t . P(t, x, A) is involved. On
the other hand, classical proofs of J.L. Doob are transfered to substochastic kerneis using
an appropriately defined ergodie coefficient.

S.M. PITTS

Nonparametric estimation 0/ the stationary maiting time distribution function for the

GIIGII queue

The GIIGI1 queueing model is regarded as a functional that maps the service and inter­
arrival time distribution functions onto the stationary wating time ~istribution·function.
When random sampies from the service and interarrival time distributions are available,
a nonparametrie estimator of the stationary waiting time distribution function is obtained
by applying the functional to nonparametrie estimators of the input distributions. Using
appropriate continuity and differentiability properties of the functional, we show that strong
consistency and asymptotic normality of the input estimators carry over to corresponding
properties for the output estimator.

A. RACKAUSKAS

On the bootstrap /or some statistics /rom empirical measures

We prove some results on estimates of the accuracy of the bootstrap approximation for the

11
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Euclidean norm of empirir.al processes indexed by finite but increasing uumber of functions.
As a consequence we obtain the bootstrap approximation of the quadratic measure of de­
viations for the orthogonal series density estimate.
(joint work with F. GÖTZE, Bielefeld)

P. RESSEL

Non-homogeneous DeFinetti-theorems

The classical results of DeFinetti and Schoenberg are dosely related to an abstract integral
representation theorem for positive definite functions on semigroups. We introduce the
new notion of a "positivity forcing" function and use an amended version of the mentioned •
abstract result for a derivation of a number of non-homogeneous DeFinetti type theorems,
generalizing slightly some recent results of Diaconis, Eaton and Lauritzen on mixtures of
certain linear models. Finally we show an application to row-column-exchangeability.

L.C.G. ROGERS

Th~ joint law 0/ the maximum and terminal value 0/ a martingale

If / (Mt)t~O is a uniformly integrable martingale, Mt == sUPu:5;t M u , and S == M 00'

Y'= M oo - Moo , what are the possible joint laws Jl of the pair (S, Y) ? It is dear that
the conditions

(1) JJ 18 - Y.lJl(ds, dy) == EIMool < 00

(2)c(s)~s

(3) c(·) is increasing

are.necessary conditions (where the function c is defined by c(s):= E[MooIMCX) > sn.
(The necessity ,of (3) is a simple proposition.) The main result discussed in this talk is to

prove the converse, namely that if a probability J.t on 1R X nt+ satisfies (1), (2) and (3),
then there exists a UI martingale such that (S, Y) ""-I J.L. [Note that the conditions (1),
(2), (3) can be expressed solely in terms of J.t.] The method of proof is a variant of the
Skorohod embedding technique of Azema & Vor. Arecent result of R.P. Kertz & U. Rösler
(Isr. J. Math. 69) follows as a corollary. The possible joint laws when the martingale M
is restricted to be continuous can also be computed, by quite different methods. In the •
unjformly integrable case, this characterization was first established by P. Vallois.

L. RÜSCHENDORF

On the rote 01 converyence in the CLT

Two different methods for proving stahle limit theorems for sums of independent random
variables with values in separable Banach spaces are presented. The first method is based

12
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on an inequality of Woyzinski and is applicable in Banach spaces of type p. The second
method is based on convolution metrics and does not need a restriction on the space. Hoth
results are formulated for the Kantorovich metric, which implies rates of convergence results
also for the (full) Prohorov metric. The conditions on the domain of attraction are given in
metric form. Based on the notion of dependence metrics an extension is given for the stahle
limit theorems for martingales with values in separable Banach spaces.
(joint work with S.P. RACHEV).

M. SCBEUTZOW

An integral inequality

We show that the inequality -L [g erb(V)dlJ) dsdz ~ -L~ dv[g(s)ds holds true

for g: [0,00] --+ [0,00], b: m.. --+ [0,00] both measurable and g(oo) = O. An appli- .

cation to 9(S):= exp(- ~ s), b > 0, shows that if the solutions of X(t) = b(X(t»)

explO,de in finite time, i.e. j ~ dv < 00, then so do those of the stochastically per-
. 0

turbed equation dX(t) = b(X(t))dt + udW(t), where (1 > 0 and W(t), t 2: 0, is
Brownian motion (using Feller's test of explosion). The key is to show that the function

F(Y):= A ({ (z,"s) E m. x m.+ : :Irb(lJ)dv ~ Y}) has a density w.r.t. Lebesgue measure

on R+ which is bounded above by j ~ dv. We also formulate an integral inequality
-00

in a more general"set-up.

W. SYUTE

The SLLN "nder random censorship

Let Fn denote the sampie fiize n Kaplan-Meier estimator, and let cp be integrable

w.r.t. the true survival function F. We show that f cpdFn converges with probability one
and in the mean, under no additional assumptions whatsoever. A necessary and sufficient
condition is derived under which the limit is f cpdF, the quantity ofinterest. The resUlt is a
key tool for proving consistency of many estimators, as is the classical SLLN for completely
observable data.
(joint work with Jane-Ling-Wang, the Univ. of California at Davis).

A. WAKOLBINGER

Recurrence and transience in time-stationary branching particle systems

In typical examples oftime-stationary branching particle systems (TSBPS) like, e.g., critical
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binary randorn walk on 7ld , d ~ 3, the lines of descent of the individual particles "enter
from infinity". We give examples of TSBPS's whose lines of descent are all recurrent.

(1) in the presence of critical branching (and with finite expected particle number at any

site)

(2) in the presence of even subcritical branching (and with infinite expected particle number

per site)

Consider now the following three properties of a family tree in a TSBPS:

(FT): all rooted forward subtrees of T are transient

(BT): the line of descent of any individual in T is transient

(R): T grows out of a "hackbone" which is the path of a recurrent Markov chain

As a general result there holds that each family tree of a TSBPS either is (FT and BT), cr
(FT and R), or (R), and that each of these three subsystems constitutes a TSBPS for itself.
Finally, another aspect of recurrence on the level of family trees is discussed. An example
(3) of a TSBPS is given which consists of only one (FT and BT) family tree, which hits
any·sit~ with a positive frequency in the course of time. In a time stationary critical binary
branching Brownian particle system, any family tree hits each fixed ball over an infinite
time horizon in dimensions 3 and 4, and over a finite time horizon in dimensions ~ 5.
(joint wark with K. MATTHES and R. SIEGMUND-SCHULTZE; in particular, examples (2)

and (3) are due to the latter).

H. v. WEIZSÄCKER

JeJJreys' prior as a Hausdorff measure

The following result of W. Doster is reported. It is motivated by the desire to measure the
'size' of a distribution family, e.g. by the number of Hellinger balls need to cover it.

Theorem: Let (Pt9 )tges, e c lRk open he a family of probability distributions on 'some
observation space {l. Suppose that the identity (O, euclidean metric) --+ (O, Hellinger

metric) is locally Lipschitz. Then the Fisher information matrix I(19) exists Lebesgue a.e.
and the k-dimensional Hausdorff measure on 0 constructed from the 'Hellinger metric is
given by e

d1l~ellin«er(19) = v'det I(19) d{) .

This measure does not depend on the parametrization. It is Jeffreys' 'noninformative prior'.
The praof of the theorem is based on a coarea formula for Lipschitz maps with values in
Banach spaces. This technique may be. used to construct ~any similar invariant priors.
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J.A. WELLNER

Multiplier CLT's and alternative bootstraps

A general exchangeably weighted "bootstrap" can be described as folIows:
Let Xt,X2 , ••• ,Xn bei.i.d. P on (A,A):withempiricalmeasure P n.

Let W n =(Wnt , ... , Wnn ) be a random weight vector satisfying

A.l ~ is exchangeable for each n,

A.2 Wni ~ 0, E~Wni =n.

Then for fixed Xt{w), ... ,Xn{w) the general exchangeably weighted bootstrap empirical

measure is p~ = ~ E~Wni6xi(w). When W n = Mn ".J Multinomialn (n,(~, ... ,~»,

lP~ is Efron's bootstrap. When W n = (Yt, ... ,Yn)/Yn with Y}, Y2 , ••• i.i.d. nonnegative,

1P:; is an '"Li.d. weighted" bootstrap, and, in particular, if the Y's are exponential (1),

n>~ is Rubin's "Bayesian bootstrap" . Many other bootstrap resampling schemes are also
included in trus formulation. .
To validate the general exchangeably weighted bootstrap asymptotically, suppose that the

.' weights also satisfy

A.3 lim.\_oo tim sUPn _ oo IIWntl[wnl2:A]!I2,l = 0 , and

A.4 ~ E~(Wni - 1)2 -+p c2

where!lY!l2,t := j .jPr(IYI > t)dt < 00.
o

The following theorem of Jens Praestgaard genera.lizes results of Gine and 'Zinn for Efron's
bootstrap:
Theorem 1: Suppose that :F C L 2(P) satisfies ;: E M(P) (measurability), Wn satisfies
A.l- AA

A. H FE CLT(P) and P(F2) < 00, then vn(IP~ - IP~) ~ cGp poo-a.s.

B. H ;: E CLT(P), then y'n(n>~-]P~) ~ cGpin poo-prob. in lOO(;:).

Themethods used to prove this theorem yield the following result for Efron's boot­

strap with bootstrap sampIe size m '# n: let n>~,n:= ~ 2:~ Mnibxi(w) where

Mn ".J Multinomialn(m, (~, ... , ~».

Theorem 2: Suppose that :F E M(P), :F ECLT(P) and P(P2) < 00.

Then ß(lP~tn - n>~) =>Gp as mAn -+ 00 poo-a..s.

Berichterstatter: J. Geiger
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