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Vortragsausziige

Rudolf Ahlswede:
On a General Theory of Information Transfer

We live in a world vibrating with “information” and in most cases we don’t know how it is
processed or even what it is at the semantic and pragmatic levels. A multitude of challenges
to information theory comes from computer science. They, in particular, have stimulated
us to reconsider the basic assumptions of Shannon’s Theory and to investigate, whether
its formulation is broad enough. This theory deals with “messages”, which are elements
of a prescribed set of objects, known to the communicators. The receiver wants to know
the true message. This basic model, occuring in all engineering work on communication
channels and networks addresses a very special communication situation. More generally
they are characterized by y

(I) The senders prior knowledge
(II) The prior knowledge of the receiver )
(IIT) The guestion of the receivers concerning the given “ensemble”, to be answered by the
senders.

We build up an understanding by considering first specific problems and then outline a
general theory of information transfer. The classical transmission problem as formulated
by Shannon and-the identification problem are known special cases.

Ingo Althofer:
Compression of Chess Games Using a Deterministic Chess Computer

The storage of chess games can be done effectively, -if a deterministic chess computer is
available. Mephisto Roma I1, for instance, a commercial chess machine, allows to compute
not only the best, but also second and third best move proposals in any position. In
typical master games these computer proposals coincide with the moves played by the
humans rather often: 33% 1. proposal, 18% 2. proposal, 13% 3. proposal.

These coincidences can be used in an encoding scheme with very short bit strings for the
cases where the computer guesses the master moves. As an example, the first six games of
the 1972 match between Spassky and Fischer take 2693 bits, if stored by the best traditional
method, and only 2001 bits by our new method.

To the best of our knowledge this is the first time where a concrete product of Artificial .

Intelligence is used for data compression purposes.

L.A. Bassalygo:
Codes Correcting Localized Errors

A review of recent results of R. Ahlswede, L. Bassalygo, S. Gelfand, D. Gevorkjan, G.
Kabatyansky, M. Pinsker about codes correcting localized errors is presented.

We suppose that during the transmission of g-ary wordsof length n over the channel at
most. # errors occur and the encoder knows the set of ¢ positions where these errors are
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possible. The decoder doesn’t know anything about these positions. The code corrects t
localized errors if the decoder can correctly recover every message. A code word depends
not only on the message but also on the configuration of possible errors. The maximal
number of messages, which we can transmit by a code correcting t localized errors, is
denoted by Lg(n,t) . Asymptotically exact and exact values Ly(n,t) are obtained for
several cases. . '

Toby Berger:

New Results in Successive Refinements

.Successive refinement is said to hold when an information source first is described coarsely
i
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n an efficient manner and then can be described more finely via additional information in

such a way that the total information supplied is no greater than it need have been had
we proceeded directly to the fine description without the coarse one having intervened.
The successive refinement problem is shown to be a special case of several multiterminal
source coding problems previously considered in the literature — the Gray-Wyner model,
the multiple description problem, and especially Yamamoto's cascaded sources problem to
which it is proven here to be equivalent. The class of sources exhibiting succesive refinement
is shown to include all Gaussian random fields with stationary measures and quadratic error,
and all sources under both absolute and quadratic error whenever the Shannon lower bound
to the rate—distortion function is tight at the coarse distortion. Several open problems were
cited, including the general one of “how to further inform someone efficiently”.

Th. Beth:
Special Group Codes: Algebra and Practice

Following the talks by Bossert, Blahut, and Ingemarsson at this conference a group theoretic
approach to the construction of error—correcting codes both-in the discrete (Hamming-)
and real (modulation) space is given. The connection of algebraic geometry codes and
generalized BCH-codes by virtue of the DFT-Mattson—-Solomon approach, as described
by Blahut, relies on the FFT-transform in its well-known tensorproduct decomposition
of the irreducible 1 dim-group representation of the group of automorphisms, while the
socalled coset decomposition leading to the classical FFT version can be applied to more
cases, such as FFT (27) and the Hadamad transform FHT (27) . This especially applies
to the construction of codes, which are group codes as defined by Ingemarsson, i.e. codes
as orbits of isometry groups. The deep connection between these concepts is displayed by
reconsidering the renowned Reed Muller Codes RM(r,m) over GF(2) . The isometry
group of RM(r,m) is the Special Linear Group SL(m,2) . Owing to the decomposition
RM(r+1,m+1) >~ RM(r+1,m)®RM(r,m) theisometry groups allow an adapted coset
decomposition SL(m + 1,2)/SL(m,2) where the subgroup SL(m,2) is the canonical
stabilizer of the (m + 1)-th coordinate. Thus the tree

RM(r +1,m+1)

RM(r,m) R(r +1,m)
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gives a decomposition chain of RM-codes as G-modules of the subgroup tower indicated,
leading to the terminal codes RA{(0,m') (repetition codes)and RM(m'—1,m') (parity
codes) which are irreducible 1-dimensional (resp. their complements) G-Spaces, for which
a fast decoding procedure has been given in Bossert’s talk. It is shown that the underlying
method of coded modulation is a direct consequence of the representation theoretic aspects
described here. ’

Richard E. Blahut:
Algebraic Geometry Codes and Signal Processing

Good codes have recently been developed with the aid of algebraic geometry. Now that we
know the structure of such codes, the question arises of whether they can be constructed
in a more elementary way. These codes would be accessible to a wider audience if alge-
braic geometry could be suppressed from their development. This paper will show, with
hindsight, how some of these codes can be defined in terms of Reed-Solomon codes by a
construction parallel to the Turyn construction for the Golay code from Hamming codes.

M. Bossert:
Coded Modulation with Generalized Concatenation

Coded modulation combines modulation with coding in order to increase the performance
of digital transmission. Coded modulation will be described as generalized concatenated
codes. The inner codes are over the m-dimensional euclidean space R™ . Using block
codes of length 7 as outer codes a coded modulation scheme over R™™ is obtained.
The construction can also be used as a multidimensional signal set and thus, the so called
set partitioning can be constructed. It will be shown that the finite sections of lattices
which are recently used as multidimensional signal sets can be described by generalized
concatenation as well. ) ’ .

Furthermore, Reed-Muller codes will be described as generalized multiple concatenated
codes and as a consequence of this description a soft decision decoding algorithm for these
codes is derived. The ability of soft decision decoding will improve considerably the per-
formance of decoding, also for coded modulation schemes.

A.R. Calderbank:
Linear and Nonlinear Codes for the Cyclic Triangle

Shannon introduced the concept of zero-error capacity of a discrete memoryless channel.
The channel determines an undirected graph on the symbol alphabet, where adjacency
means that symbols cannot be confused at the receiver. The zero—error or Shannon capacity
is an invariant of this graph. Gargano, Kérner, and Vaccaro have recently extended the
concept of Shannon capacity to directed graphs. Their generalization of Shannon capacity
is called Sperner capacity. We resolve a problem posed by these authors by giving the
first example (the two orientations of the triangle) of a graph where the Sperner capacity
depends on the orientation of the edges.

Deutsche
Forschungsgemeinschaft

o®




UFG

Deutsche
Forschungsgemeinschaft

G. Cohen (joint work with G. Zemor):
Threshold Codes and Z—Channels

Let C be a binary linear [n,nR,d] code, and let us choose randomly a vector v
of length n, v = (vi,v2,...,vn) where Pr{v; = 1} = p,Vi . Let fc(p) be the
probability that v covers some non zero codeword of C . By a simple generalization of
a-result of Margulis, we show that fc displays a threshold (T) phenomenon when n
tends to oo , provided d also goes to oo .

We furthermore show: 1) T <1—R , where T = 1(f7!(})) . 2) For almost all codes
T=1-R. )

We give an illustration to coding for the Z—channel (where “1” is always correctly received,
whereas “0” can be transformed into “1” with probability q); some threshold codes with
rate. R = (1~ g¢)/2 could be used on this channel. Highly intersecting codes (linear
Sperner families with minimum size of intersection growing to oo with n ) are good
candidates. We give some constructions for them. We end the talk with open questions on
the threshold of residual codes.

Bernhard Dorsch: »
Error—-Exponent-Estimations for Various Decoding Principles

The main point of the paper is, that what we expect and are used to in the Discrete World
Fq N often does not hold in the Analog World R . For three main decoding principles
t.he decoding error probability is compared, using error-exponent-estimations:

1) Bounded Minimum Distance Decoding with symmetric disjoint decision regions.

2) Threshold Decoding, with a fixed optimum threshold and symmetric, but overlapping
decision regions.

3) Maximum Likelihood Decoding.

In all three cases decodmg performs much differently in the analog case with AWGN and
Euclidean Distances than in finite fields with Hamming Distances.

Michele Elia:
Are Fifth-Degree Equations over GF(5™) Solvable by Radicals?

The solution of algebraic equations by radicals over any field has long been a fascinating
subject. Applications to algebraic decoding and to cryptography enhanced the importance
of this undertaking. Here we consider fifth-degree polynomials over GF(5™) and we
prove the following

i) Any polynomial can be reduced to the form z°—z? — A4 by a Tschirnhaus transfor-
mation of the form y = bpz® + b3z? + bsz + bs with at most a quadratic extension.
ii) Any polynomial 2° — z —a admits a closed—form solution.
iii) The transformation y = —(22° — 22 +z+3 - 1)/Ya brings z° -z —a into
¥ —y?— A with A=3(a*+1)2/Va?®
iv) There exists a Tschirnhaus transformation that brings any fully reducible or irre-

ducible polynomial into +® —x —a , with all the coefficients of the transformation
in GF(5™)
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Tor Helleseth:

Nonbinary Codes meeting the Griesmer Bound

The Griesmer bound says that for any [n,k,d] codeover GF(q) , n 2> z [q] where
=0

[z] is the smallest integer >z . For ¢ = -2 and d <251 it is known that all codes
meeting the Griesmer bound can be obtained from the Solomon and Stiffler construction
or the Belov construction. :

For ¢>3 and d<g*! , there are several other possible codes that meet the Griesmer
bound. In particular, a construction due to Hamada, Helleseth and Ytrehus, give new
nonbinary codes as follows. Let G = (Siq¢\F] be a generator matrix for a code such that

Sk gt denotes the columns of the generator matrix of a [9-1— k,qtk= 1)] simplex code
h
over GF(q%) and F = U V,: is a disjoint union of (u; — 1)-flats in PG(k -1,q) .

=1

. L R
We show that this is a class of %,_L]‘_Z gt g{k=1) Z

which for suitable choices of £,uq,..., u;.~_ meet the Griesmer bound. 4
For £ =1 this is the class of Solomon and Stiffler codes, but for £ > 1 this family is
not equivalent to the Solomon and Stiffler codes.

Ingemar Ingemarsson:
Generalized Group Codes

Let £ be the group of all distance~preserving transformations of a metric space. Let
G C ! beasubgroupof @ and z anelement in the space. Then a Generalized Group
Code is defined as the set of elements obta.lned by G operatingon z .

C=¢Gz
If HCQ isthestabilizerof 2z (2 =Hz;H € 'H) then:

ICl = 1G1/IHl

Special cases are: Slepian’s group codes for the Gaussian channel where the space is R®
and G a group of orthogonal matrices, linear algebraic codés where the spaceis F7 and
G is a group of translations, permutation modulation were the space is R® and § a
group of permutation on n letters and linear codes with Lee metric where the space is
Z} ,and G a group of translations. New codes are constant-weight codes (where z
is bmary) a special case of permutation codes which in turn is a subset of permutatlon
modulation.
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Rolf Johannesson:

On the Invariance of the Generalized Constraint Lengths
(joint work with Zhe-Yian Wan)

Let G bea kxn convolutional encoding matrix over F(D) . G issaid to be canon-
ical if it is realizable in controller canonical form with the minimum number of memory
elements of any realization of any equivalent encoding matrix. Recently Forney (1991)
defined the generalized constraint lengths for encoding matrices over F(D) . (For mini-
mal encoding matrices over F[D] this definition coincides with his (1970)-definition of
constraint lengths.)

We have

Theorem: The generalized constraint lengths of two equivalent canonical encoding matri-

.es are equal one by one up to a rearrangement.

Ref.

Forney, G.D., Jr (1970), Convolutional codes I: Algebraic structure. IEEE Trans. Inform
Theory, IT-16: 720-738.

Forney, G.D., Jr (1991), Algebraic structure of convolutional codes, and algebraic system
theory. In Mathematical System Theory, A.C. Antoulas, Ed., pp. 527-558. Springer—
Verlag, Berlin.

Torlew Klove:
Minimum Support Weights

Foran [n,k] binary code C , one defines d,(C) as the smallest support of an [n,7]
subcode of C . :

A fundamental relation is

(2" = 1)dry < (27 = 2)d,

for 1 <r <k . Using this relation in combination with the ordinary Griesmer bound on
a punctured code E we can show that

k—r d
>d, T —
o .2 +§[2'(2f—1>]
k=1 e
If n=d;,+ Z [7—:] , then, for all r , we have

k—r

n_drA+Z1 [‘»(r- )],
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D.E. Lazié:
Error Exponent of any Specific Family of Block Codes

A direct, general and conceptually simple geometrical method for determining lower and
upper bounds on the error exponent of any specific family of channel block codes used
on a given coding channel is presented. It is considered that a specific family of codes is
characterized by a unique asymptotic (in code length) expected Bhattacharyya distance
distribution exponent, defined as the negative normalized logarithm of the expected Bhat-
tacharyya distance distribution. The new method discards the well-known random coding
argument used in lower-bounding the channel error exponent, enabling one to obtain the
error exponent that pertains to a specific family of channel codes used on the given trans-
mission channél. The code family that attains the channel error exponent is the optimal
one, and its Bhattacharyya distance distribution the optimal distance distribution. The
requirements that a code family should meet in order to attain the channel error expo-
nent are now stated in a limpid way ~ the family should have the optimal Bhattacharyya
distance distribution.

J.H. van Lint:
The Johnson Bound

We explain a recent result of A.E. Brower and L.M.G.M. Tolhuizen. The classical Johnson
bound

1 icl- i(’;)+lgj (- 125]) <

1=0 1

for a binary code C of length n with distance d =2e+ 1 is obtained by a counting

argument from v A
{50 () () =

=0

In the proof of Johnson a4 is estimated as (7)/(?) -aq,. where ag. isthe number of.

€

e+1
The improvement is based on the observation that the sum of this many codewords would
yvield a codeword of a wery large weight. This is excluded by an easy argument. The result

codewords of weight d with ones in e given positions. This is estimated as l""

replaces I7% — [:—;T‘J by this expression +1 .

Katalin Marton:
On the Blowing—up Property of Stationary Processes

The “blowing-up” property (for i.i.d. processes) was introduced in a paper of Ahlswede,
Gaécs and Kérner, to prove strong converses in multi-user information theory. We explore

8
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this property, and a stronger version of it for sources with memory. There is an evidence
that this property is closely related to the ergodic theoretic properties of the process.

James L. Massey:
On Codes for the Two—User Binary Adder Channel

On the two-user binary adder channel, the received word is the real componentwise sum
of the two transmitted words. The following is proved:

Theorem: Let C; and C2 be blocklength n binary constant-weight codes with
weights w; and w; and minimum distances d; and d, , respectively. Let

Duin = min{du(z,y) : z € C1,y € Ca}

and

Dyyax = max{dy(z,y): z € C1,y € C2}.
Then,

max{dl,dz} + Dmin > Dmax

is a sufficient condition for the pair (C;,C;) to be uniquely decodable on the two-user
binary adder channel,i'e., for #(C1,C2) = #(C))- #(C2) .

It'is further shown how to combine codes that are uniquely decodable by this theorem to
produce uniquely decodable codes with R; + Ry >1 .

H.F. Mattson Jr.:
On Fault—Detectlon in Networks

To find broken links in networks we use the cut-set space. Information on which nodes can
talk, or not, to which other nodes allows reduction of the problem to that of decoding the
cut-set code of a graph. Special classes of such codes are known to have polynomial-time
decodmg algorithms. We present a simple algorithm to achieve the reduction and apply it
in two examples.

E.C. van der Meulen:
Distribution Estimation Consistent in Information Divergence

We consider the problem of estimating an unknown probability distribution u , defined
on an arbitrary measurable space (X,B) , based on i.i.d. observations Xj,...,X,
from p , such that the resulting distribution estimate f, is consistent in informa-
tion divergence I(u,fn) . First we observe that if u is absolutely continuous then
the standard empirical measure is not suitable since then I(gu,f,) will be infinite with
positive probability. In order to obtain consistency we must also limit the class of dis-
tributions to which the unknown u belongs. As a priori information we assume that
there exists a known probability measure v such that I(y,v) < co . We introduce a

9,
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distribution estimator u}, , which is' a modification of the empirical measure, such that
limpooo E(I(p,pt)) =0 and I(p,pl) - 0 as. as n — oo , under appropriate con-
ditions. This distribution estimator is further applied to design a universal source code
for finely quantized data. It is shown that the redundancy of such a code tends to zero
uniformly in partitions for all s such that I(uv) < co . The results are contained in
the following paper: :

A.R. Barron, L. Gyérfi, and E.C. van der Meulen: “Distribution estimation cosistent in
total variation and in two types of information divergence”, IEEE Trans. on Information
Theory, 1992 (to appear).

Thomas Mittelholzer:
Convolutional Codes over Groups

The motivation to consider convolutional codes over groups rather than over fields comes
from the fact that there are nonabelian groups corresponding to signal sets in dimension
three and four, which have a capacity that exceeds the PSK-limit of an AWGN channel.
Nonabelian groups are of particular interest because abelian groups can generate only
slepian-type signal sets having a capacity, which is upper bounded by the PSK-limit. For
every convolutional code C a canonical state group Sc and a canonical transition
graph B¢ is introduced. The transition graph B¢ corresponds to a trellis diagram,
which generates the code C . It is shown that if a convolutional code is defined over a
nonabelian group and if it has an abelian state group Sc then its free Hamming distance
equals one! . :

Fredy D. Neeser:

A Simplified Derivation of the Capacity of the ISI Channel with AWGN using
complex Random Variables

The ‘covariance’ of complex random variables can be specified by the (conventional) com-
plex covariance and a quantity called the pseudo-covariance. Complex random variables
with a vanishing pseudo-covariance are called proper. It is shown that properness is pre-
served under linear transformations.

The maximum-entropy theorem is generalized to the complex-multivariate case. For a

given correlation matrix, the differential entropy of a random vector is maximum if and-

only if it is proper Gaussian with zero mean. A discrete Fourier transform correspondence
between stationarity in the time-domain and uncorrelatedness in the frequency-domain is
presented and used for a simplified derivation of the capacity of the N-circular channel
with intersymbol interference (cf. W. Hirt and J.L. Massey, IEEE Trans. IT, vol. 34, May
1988).

Alon Orlitsky:
Interactive Communication of Balanced Distributions
(X,Y) is a pair of random variables distributed over a support set S . Person Py

knows X ,Person Py knows Y ,andbothknow S . Usinga predetermined protocol,

10
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they exchange binary messages in ordér for Py tolearn X . Py may or may not learn
Y . The m-message complexity, C,,, , is the number of information bits that must be
transmitted (by both persons) in the worst case if only m messages are allowed. Coo
is the number of bits required when there is no restriction on the number of messages
exchanged.
We consider a natural class of random pairs. i is the maximum number of X values
possible with a given Y value. # is the maximum number of Y values possible with
a given X value. The random pair (X,Y) is balanced if 2 = 7i . The following
hold for all balanced random pairs. One-way communication requires at most twice the
minimum number of bits: C€; < 2Co + 1 . This bound is almost tight: for every a ,
there is a balanced random pair for which (:‘1 > Zé'oo — 6 > a . Three messages are
ymptotically optimal: €, < Coo + 3log Coo + 11 . More importantly, the number of
its required is only negligibly larger than the number needed when Py knows Y in
advance: Coo < C3 <logji + 3loglogp + 11 .
We apply these results to the following correlated files problem. X a.nd Y are binary
strings (files) within a small edit distance from each other. Py knows X while Py
knows Y and wants to learn X . The results above imply efficient three-message
protocols for conveying X to Py . We provide efficient one-way protocols for certain
restricted cases and discuss their possible generalizations.

V.M. Blinovsk);, P. Narayan, M.S. Pinsker:
AV Channel and List Decbding .

An arbitrary varying channel (AV channel) without memory is described by a transition
probability function w(y|z,s) where z € X,y €Y,s €S, X,Y,S are finite sets, X
being an input alphabet, Y being an output alphabet and § being a channel state
alphabet. ' o
We consider transmission over an AV channel by deterministic codes of length n with
fixed list decoding size L and average error probabxlxty Let Cr be the capacnty for
such a transmission. -

Let also C, be the capacity of an AV channel for random codes and average error prob-
bility.

heorem 1: C; <C, and C, is equal either 0 or C,
Definition: An AV channel is symmetrizable of order L , if for some distribution
p(slza,....z141) , SES | Tp ..z €X

Zw(y|xl,s)p(slzg, e TL41) = Z W(YlTr,, $)p(s|Tnys- o Ty yy)

3€S sES

where 7 = (m,...,m141) is an arbitrary permutation of the sequence (1,...,L +‘1)

Theorem 2: C'L >0 , if and only if an AV channel is not symmetnzable of order L .
If C.>0 then C.L =C, .

Theorem 3: Let [X|=[Y|=|S|=2 and C, >0 . Then for any AV channel there is
some L such that it is not symmetrizable of order L .

Corollary: For |X|=|Y|=|S|=2 wehave C,=C, forsome L < oo .

11
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Marcel Rupf:

Optimum Sequence Multisets for Symbol-Synchronous Code—Division Multiple—-
Access Channels

The capacity region of the S-COMA channel is considered under the condition that all
channel inputs fulfill the same average symbol-energy constraint. It is shown that the
sum capacity is maximized by all sequence multisets which meet Welch’s lower bound on
the correlation of a sequence multiset. Moreover, it is also shown that the symmetric
capacity in function of these sequence multisets is equal to the sum capacity, where the
symmetric capacity is defined by the maximum achievable equal-rate point in the capacity
region. Finally, it is concluded that S~COMA systems can use dimension or bandwidth

most efficient and in a (fair) communication when the number of users is larger than or .

equal to the sequence length.

Paul C. Shields:
Entropy and Joint Distributions

The problem of consistent estimation of the k-th order joint distribution from observation
of a finite sample path, where k = k(n) is a function of path length n | is addressed.
It is shown that if the process is a function of an irreducible Markov chain and . k(n) <

(logn)/(H +¢€) , where H is the process entropy, then the variational distance between ,

the emprical- k-block distribution and the true k-block distribution goes to 0 almost
surely. A convergence in probability result also holds for the more general class of weak
Bernoulli processes.

J. Simonis:
MacWilliams Identities and Coordinate Partitions

Let 'C be a binary linear code, with coordinate set S , and let T := {Th,...,T,} be
a partition of S in sets of size n, := |T}| . The weight distribution of C with respect

to T is the set of numbers .

AlT):={X e CIIXNT, | =i,Vu}|.

We show that the 4;(7) and the weight distribution {Bi(T)} of the dual code C+
satisfy the identities

P
A=) (H Piu(iu;nu)> Bj., *
i u=1 ’

where  Pi(z;v):= L7 _o(=1)"(2)(!5F) . the Krawtchouk polynomial of degree i .
These generalized MacWilliams identities (*) can be used to prove the nonexistence of codes
satisfying conditions on the minimum distance or the covering radius. Another application
is a sunple proof of the Assmus Mattson theorem.

12
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Gébor Simonyi:
Trifference (jointly with Janos Korner)

We focus on the following two problems:

1. Trifference problem: Let Y3 3(n) denote the minimum length for which we can have
n ternary sequences with the property that for any three of them: z,y,z 3¢ : =z, 9,2
are three different values.

Y;
Fys 2 liminf 2230 _ 5
n—co logn
2. Triangle problem (asked by Vera T. Sés): Let t(n) denote the minimum number of
colorings of the edges of a complete graph on n vertices with three colours such that for
every triangle we would have a coloring where all its edges have different colors.

T2 fiminf %) — 9
n—oc Og n

‘The first problem is a well-known special case of the “perfect hashing problem” the second

is visibly related. We explain why they have special interest after a recent success of
applying information theory in combinatorics (a result by Gargano, Kérner, Vaccaro) and

. 6 1 -
prove: F33 < g B and iog3 <T<1.

Ludwig Staiger:
Information-Theoretic Aspects of Kolmogorov Complexity

Various relationships between the Kolmogorov complexity or infinite strings and measures
of information content are given. The general approach taken here is to bound the complex-
ity of 'a maximally complex string in a given set of strings by the Hausdorff dimension or
the entropy [box dimension] of that set. It turns out that Hausdorff dimension yields lower
bounds to the Kolmogorov complexity whereas under certain recursiveness constraints to
the structure of the respective sets their entropy yields upper bounds.

" More detailed investigations result in a generalization of two of P. Martin-Lof’s theorems

on the complexity of random strings to the complexity of maximally complex strings in
regularly structured sets of infinite strings.

René Struik:
Covering Problems

We consider linear codes over GF(2) only. -

Let C be an [n,k]R code with R = min{r > 0|d(z,C) < r for all = € F3} .
A basic question is to determine the lowest dimension %k s.t. an [n,k]R code ex-
ists. Equivalently the problem is to determine parameters £(m,r) with £&(m,r) =
min{n|An [n,n — m]r code over GF(2) exists } . A trivial lower bound on ¢(m,r)
is €(m,r) > min{n| Y[, (?) > 2™} . In the talk several improvements on known lower-
bounds of ¢(m,r) will be discussed and a relation with the non-linear covering problem
will be given. They are based on:

13
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~ theorems in “ordinary” coding theory (mostly minimum distance bounds)
- a generalization of the concept of covering
- counting arguments

All non-existence proofs are constructive and all known bounds for r = 2,3 ‘can be
derived in this way. ,

€(8,2) > 25(24),0(9,2) > 34(33), ¢2m —1,2) > 2™ + 1(m > 3)3™ [Conjectured b); :

Brualdi, Pless, Wilson],
€(9,3) > 17(16),£(10,3) > 21(19),£(12,3) > 31(30),£(13,3) > 38(37) In brackets are
“old” bounds. :

R. Ahlswede, N. Cai and U. Tamm:
Communication Complexity of Sum-Type and Vector—Valued Functions

The communication complexity of a function F'  denotes the number of bits that two pro-

cessors have to exchange in order to compute a function value F(z,y) , when initially each

of the processors knows one of the arguments. The functions examined are vector-valued

and sum-type function. To define the vector-valued function V,: X" xY" — 2" let f:

X x Y o> Z beany function.  V,((21,..-,2n)s (Un,---»¥n)) = (fl@1,31),-.. L f(Znyyn))

is obtained by componentwise evaluation of f . Accordingly, the sum-type function
n

Su:Xmx Y 5N (or Z,) isdefined by Su((21,....zn),(1,---2¥n)) = I f(ze,90)

If, eg.. f is the logical “and”. then the vector-valued function V, can be inter-
preted as the intersection of the two sets represented by (z1,...;2,) and (y1,...,Ya) »
whereas the sum-type function S, gives the cardinality of this intersection. For both
functions the communication complexity is determined. Ahlswede and Cai ([1]) show
that C(V,) = [nlog,3] . C(Sn) can be determined up to one bit ([4]), namely
n + [loga(n + 1)]— 1 < C(Sn) < n + [logy(n + 1)] , where upper and lower bound
are assumed for n=2' and n=2'-1, respectively.

The communication complexity of sum~type functions is considered under two different
aspects. Communication stops, when a) one processor knows the result ([2]), or b) both
processors know the result ([3]), ([4]). In all models, the basic algebraic tool in the proof
of lower bounds is the Kronecker product in terms of which the function matrlces can be
expressed. The results are coutained in the following papers

(Preprints 91-041, 91-053, 91--016. and 91-077, SFB 343, Universitit Bielefeld)

[1] R. Ahlswede, N. Cai: On communication complexity of vector—valued functions

(2] R. Ahlswede, N. Cai: 2-way communication complexity of sum-type functions for
one processor to be informed

(3] U. Tamm: On the communication complexity of sum-type functions .

[4] U. Tamm: Deterministic communication complexity of the set-intersection function
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A Tietavainen:

On Bounds for the Number of Binary Vectors with a Given Maximum Corre-
lation

Code division multiple access (= CDMA) techniques require large families of sequences with
good correlation properties. If the number of sequences is smaller than or approximately
equal to the period of sequences, there are good constructions and tight bounds. On the
other hand, if the number of sequences is remarkably larger than the period, there is a huge
gap between bounds and constructions. This is the problem considered in this talk.

. Henk van Tilborg;:

Is there such a Thing as a Perfect Asymmetric-Error—Correcting Code?

For the Z-channel the following special classes are defined: 1) perfect, 2) weakly perfect,
and 3) uniformly weakly perfect asymmetric-error-correcting codes (AsEC).

It turns out that the only nontrivial perfect AsEC code is the repetition code. -For any
weakly perfect t-AsEC code it is shown that a larger size code exists that is also t—AsEC.

Sergio Verdu:
Approximation Theory of Output Statistics (Summary)

To motivate the problem studied in this talk consider the computer simulation of stochastic
systems. Usually, the objective is to compute a_set of statistics of the response of the
system to a given “real-world” input random process. To accomplish this, a sample path
of the input random process is generated and empirical estimates of the desired output
statistics are computed from the output sample path. A random number generator is used
to generate the input sample path and an important question is how many random bits
are required per input sample. In this work we are interested in the approximation of
output statistics with arbitrary accuracy, in the sense that the distance between the finite—
dimensional statistics of the true output process and the approximated output process is
required to vanish asymptotically. We define the resolvability of a system as the number of

. random bits required in order to achieve arbitrary accurate approximation of the output

UFG

statistics for any input process.

Although the problem of approximation of output statistics involves no codes of any sort or
the transmission/reproduction of information and it deals with arbitrary (not necessarily
ergodic) input statistics, we show that the resolvability of a system is equal to its Shannon
capacity. '

A.J. Han Vinck:
Correction of Peak—Shifts in (d,k)-sequences

We describe joint work with V.I. Levenshtein and A. Kuznetsov from Moscow. We consider
codes consisting of sequences (¢te1104te2]  gdtor | 0<q; <k—-d:=¢g-1 . First
we construct codes °
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Clw,g)={a€C: Z aw; = g(mod m),w; and g integer < m}
i=1 .
that are capable of correcting single peak-shifts of size ¢t =1,2 . We introduce the concept
of perfect t=shift correcting codes and finally give a construction of systematic codes.
In the second part of the talk we show that the (linear) code defined by

+1 -1 +1 =1 ... -1 ,
H=|1 2 3 4 ... q¢-101 ...q¢-2 g¢g-1|,a€GF(q),q25
a a? o at ... alV =1

corrects t—shifts for ¢t < LL;]J = % . The redundancy of this code is (r + 2) >.
log,(2-¢"-t+1)* >r +log,(¢ — 1) , which is very close to optimal.

Aaron Wyner:
Shannon Capacity of Cellular Multiaccess Channel

We begin with a short discussion of the classical Gaussian multi-access channel, and show
that “TDMA” (or “FDMA") is optimal. We then discuss a simple though insightful model
of the cellular multi-access channel in which neighboring cells interfere with each other. We
show that, when optimal coding/decoding is used, the interference degrades performance
only slightly, and sometimes even improves performance.

V.A. Zinoviev:
On Universal Families of Codes

Let E = {0,1,...,g — 1} . Denote by U; C E™ the block code of length n with
minimal (Hamming) distance d; > 2i + 1 and power N; = |U;] . A family of codes
Uiy Us, , where 1 <ty < oo <ty £ [(d—1)/2],d < [n(¢ — 1)/q] , we call the
universal family, if for any 1,5 : ¢ # j, i, € {1,...,s} , the distance d;; = d(U;,Uj)
between the codes U;; and U, satisfies the inequality di; > t; +t; +1 . We giv
here the exact construction of the universal family of codes with asymptotically (when
n — oo and t, is fixed) optimal parameters. The main result is the following. For

any fixed integer ¢ > 1 we construct the family of universal codes U,...,U; , where
U;,i=1,...,t , has length n . minimal distance d; > 2+ 1 and power N; , where
1 2»
Ni= — = (1+0(1)), o(1) —> 0.
2=t n—oo

The power N; of code U; differs from the Hamming upper bound ¢!27/n' only by a
multiplicative constant.
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Jacob Ziv:

A Measure of Relative Entropy between two Individual Sequences with Appli-
cation to Universal Classification

A new notion of empirical informational divergence (relative entropy) between two indi-
vidual sequences is introduced. If the two sequences are independent realizations of two
finite—order, finite alphabet, stationary Markov Processes, the empirical relative entropy
converges to the relative entropy almost surely. This new empirical divergence is based on
a version of the Lempel-Ziv data compression algorithm.

Applications to universal classification are discussed.

Berichterstatter: U. Tamm
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