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Vortragsauszüge

Rudolf Ahlswede:

On a General Theory of Information Transfer

We live in a world vibrating with "information" and in most cases we don't know how it is
processed 01' even whit.t it is at the semantic and pragmatic levels. A multitude of challenges
to information theory comes from computer science. They, in particular, have stimulated
us to reconsider the basic assumptions of Shannon 's Theory and to investigate, whether
its formulation is broad enough. This theory deals with "messages", which are elements
of a prescribed set of objects, k~own to the communicators. The receiver wants to know •
the true message. This basic model, occuring in all engineering work on communicatlon
channels and networks addresses a very special communication situation.'. More generally
they are characterized by /

(I) The senders prior knowledge
(11) The prior knowledge of the receiver

(III) The guest.ion of the receivers concerning the given "ensen1ble", to be answered by the
senders.

We build up an understanding by considering first specific problems and then outline a
general theory of information transfer. The classical transmission problem as formulated
by Shannon and· the iden.tification problem are kno\vn special cases. '

Ingo Althöfer:

Compression of Chess Ganles Using a Deterministic Chess Computer·

The ~torage of chess ganles can be done effectively, ·if a deterministic chess computer is
available. Mephisto RaHH}, 11, for instance, a comtnercial chess nlachine, allows to compute
not only the best, hut also second and third best move pr<;>posals in any position. In
typical master galnes these computer proposals coincide with the moves played by the
humans rather often: 33% 1. proposal, 18% 2. prop·osal, 13% 3. proposal.
These coincidenc~s can be used in an encoding schen1e with very short bit strings for the
cases \vhere the computer guesses the master moves. As an example, the first six games of •
the 1972 ma.tch between Spassky and Fischer take 2693 bits,. if stored by the best traditional
Hlethod, and only 2001 bits by our new luethod.
To the best of our knowledge this is the first time \\rhere a concrete product of Artificial .
Int.elligence is l1sccl for dat.a cOHl}>l'ession pllrposes.

L.A. Bassalygo:

Codes Correcting Localized. Errors

A review of recent results of R. Ahlswede, L. Bassalygo, S. Gelfand, D. Gevorkjan, G.
Kaba.tyansky, :t\1. Pinsker about codes correcting localized errors is presented.
VVe suppose that during the transluission of q-ary \vords of length 11, over the channel at
lnnst. terrors nCCl1r anel t.he eBeoder knows the set of t posi tions where these errors are
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possible. The decoder doesn't know anything about these positions. The code corrects t
localized errors if the decoder can correttly recover every message. A code ward depends
not only on the message but also on the configuration of possible errors. The maximal
number cf messages, which \ve can transmit by a code correcting t localized errors, is
denoted by Lq(n, t) . Asymptotically exact and exäct values Lq(n, t) are obtained for
several cases.

Toby Berger:

New Results in Successive Reflnements

~uccessiverefinement is said to hold when an information source first is described coarsely
Wl'in an efficient manner and then can be described more finely via additional information in

such a \Vay that the total infonnation supplied is no greater than it need have been had
we proceeded directly to the fine description \vithout the coarse one having intervened.
The successive refinement probien) is sho\vn to be a special case of several multiterminal
source coding problems previously considered in the literature ~ the Gray-:-Wyner model,
the multiple description problem, and especially Yamamoto's cascaded sources problem to
which it is proven here to be equivalent. The dass of sources exhibiting succesive refinement
is sho\vn to include all Gaussian r~ndomfields with stationary measures and quadratic error,
and all sources under hoth absolute and quadratic error whenever the Shannon lower bound
to the rate-distortion function is tight at the coarse distortion. Several open problems were
cited, including the general one of ~'how to further inform someone efficiently".

Th. Beth:

Special Group Codes: Algebra and Practice

Following the talks by Bossert, Blahut, and Ingemarsson at this conference a group theoretic
approach to the construction of error-correcting codes both· in the discrete (H~ming-)

and real (modulation) space is given. The connection of algebraic geometry codes and
generalized BCH-codes by virtue of the DFT-Mattson-Solomon approach, as described
by Blahut, relies on the FFT-transform in its well-known tensorproduct decomposition

.of the irreducible 1 dim-group representation of the group of automorphisms, while the
socalled eoset decomposition leading to the classical FFT version can he applied to more
cases~ such as FFT (2 r

) and the Hadcuna.d transform FHT (2r
) . This ~specially applies

to the construction of codes, which are group codes as defined by Ingemarsson, i.e. codes
as orbits of isometry groups. Thc deep connection between these concepts is displayed by
reconsidering the renowned Reed Muller Codes RA!(r , m) over GF(2) . The isometry
group of RM(r, nl) is the Special Linear Group SL{1n,2) . Owing to the decomposition
RlvJ(r+ 1, nl +1) ~ RlvJ(r+ 1, 1n)ffiRM(r, m) the isometry groups allow an adapted. coset
deconlposition SL(m + 1, 2)/SL(m, 2) where the subgroup SL(m,2) is the canonical
stabilizer of the (m + 1)-th coordinate. Thus the tree

RA1(r + 1,m + 1)

~~
R/l.1(r, n1-) R(r + 1, 1TI)
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gives a decoluposit.ion chain of n.lvt-codes as G-nl0dllles of t.he subgroup tower indicated,
leading to the tenninal codes R.~1(O, rn / ) (repetition codes) and Rl\1(rrt'-1, m') (parity
codes) which are irreducible I-diluensional (resp. their cOlnplements) G-Spaces, for which
a fast decoding procedure has been giyen in Bassert 's talk. It is shown that the underlying
method of coded modulation is a direct consequenee of the representation theoretic aspeets
described here. .

Richard E. Blahut:

Algebraic Geometry Codes and Signal Processing

Good codes have recently been developed with the aid of algebraic geometry. Now t~at we.
know the structure of such codes, the question arises of whether they can be constructed
in a more elementary way. These codes would be accessible to a wider audience if alge­
braic geomet~y could be suppressed from their development~ This paper will show, with
hindsight, how some of these codes ean be defined in terms of Reed-Solomon codes by a
construction parallel to the Turyn construction for the Golay code from Hamming codes.

M. Bossert:

Coded Modulation with Generalized Conca"tenatiol1

Coded modulation conlbines modulation with coding in order to increase the performance
of digital transmission. Coded nl0dulation will be describedas generalized ,concatenated
codes. The inner codes are over the m-dimensional euclidean space Rm . Using block
codes of length n as outer codes a coded modulation scheme over Rm'n is obtained.
The construction can also be used as a multidimensional signal set and thus, the so called
set partitioning can be constructed. It will be shown that the finite sections of lattices
which are recently used as multidimensional signal sets can be described by generalized
concatenation as \\r~ll.

Furthermore, R,eed-Muller codes will be described as generalized multiple concatenate.d
codes and as a. cons~quenee of this description a soft decision decoding algorithm for ~hese

codes is derived. The ability of soft decision decoding \vill imprave cansiderably the per-
formance of decoding, also for coded modulation schemes. •

A.R. Calderbank:

Linear aud Nonlinear Codes for the Cyclic Triangle

Shauuon introdllC(-~d thC:" cOllcept. of ZCI'o--error capacity of a discrete memoryless ehanne!.
The channel detenuines an llnrlirect.ed graph on the symbol alphabet, where adjacency
lneans that sYlnbols cannot be confused at the receiver. The zero-error or Shannon capaci ty
is a.n inva.riant of this graph. Gargano, Körner, a.nd \Taccaro have recently extended the
concept of Shannon capa.city t.o directed graphs. Their generalization of Shannon capacity
is called Sperner capacity. 'Ve resolve a prablen1 posed by these authors by giving the
first example (the two orientations of the triangle) of a graph where the Sperner capacity
depends on the orientation of the edges.
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G. Cohen (joint \vork with G. Zemor):

Threshold Codes and Z-Channels

Let C be a binary linear [n, nR, d] code, and let us choose randomly a vector v
of length n, v == (V),V2, ... ,vn ) where Pr{vj == I} == p, Vi. Let le(P) be the
probability that v covers some non zero codeword of C . By a simple generalization of
a~result of Margulis, we show that le displays a threshold (T) phenomenori when n
tends to 00 ,provided d also g~es to 00.

We furthermore show: 1) T ~ 1 - R ,where T == ~ (/;1 (!)) . 2) For almost all codes
T==l-R.
We give an illustration to coding for the Z-channel (where "1" is always correctly received,
whereas "0" can be transformed into "1" with probability q); same threshold codes with
rate R == (1 - q)/2 could be used on this channel.. Highly intersecting codes (linear
Sperner families with minimum size of intersection growing to 00 with n) are good
candidates. Vfe give sonle constructions for them. VVe end the talk with open questi~nson
the threshold of residual codes.

Bernhard Dorsch:

Error-Exponent~Estimationsfor Various Decoding Principles

The main point of the paper is, that what \ve expect and are used to in the Discrete World
F~ often does not hold in the Analog ';Vorld RN .For three main decoding principles
the decoding error probability is compared, using error-exponent-estimations:
1) Bounded Mininlll1l1 Distance Decoding with symnletric disjoint decision regions.
2) Threshold Decoding, with a fixed optimum threshold and symmetrie, but overlapping
decision regions.
3) Maximum Likelihood Decoding.
In all three eases decoding performs ~uch differently in the analog case with ·AWGN and
Euclidean Distances than in finite fields wi th Hamming Distances. -

MicheIe Elia:

• Are Fifth-Degree Equations over GF(sm) Solvable by Radicals?

The solution of algebraic eql1ations hy radicals Qver any field has lang been a fascinating
subject. Applications to algebraic decoding and to cryptography enhanced the importance
of this undertaking. Here we consider fifth-degree polynomials over GF(sm) and we
prove the following

i) Any polynomial can be reduced to the form x 5 _;2 - A by a Tschirnhaus transfor­
mation of the form y = b2 x 3 + b3 x 2 + b4 X + bs with at most a quadratie extension.

ii) Any polynomial x S - x - a admits a closed-form solution.
iii) The transfonnation y = -(2x3 - x 2 + X + 3 - ~)/~ brings x 5 - x - a into

yS _ y2 _ A with A = 3(a4 + 1)2/ ifdiö
iv) There exist.s a. Tschirnhalls transforn1ation that brings any fully reducible or irre­

ducible polyn<'Hllial int.o .1':) - ;r - (L , with all the coefficients of the transformation
in GF(sm) .
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Tor Helleseth:

Nonbinary Codes meeting the Grieslner Bound

The Griesmer bound says that for any In, k, cl) code over GF(q) , n ~ ~ f;l where
1=0 q

rx1 is the smallest integer ~ x . For q = 2 and d ~ 2k
- 1 it is known that all codes

meeting the Griesmer.bound can be obtB.ined from the Solomon and StifHer construction
or the Belov construction.
For q ~ 3 and d:S: qk-l ,there are several other possible codes that meet the Griesmer
bound. In particular, a construction due to Hamada, Helleseth and Ytrehus, give new
nonbinary codes as follows. Let G = (Sk,ql 'F] be a generator matrix for a code such that

Sk,g' denotes the columns of the generator matrix of a [2g',"::/, k, ql(k-l)] simplex code •
. h

over GF(qt) and F = Ul/ui is a disjoint union of (Ui - l)-flats in' PG(k - 1, q) ,
i=)

[

u h qUi _ 1 ' h qUi _ [qUi-l]]
We show that this is a dass of q l~)l - L ---, k,ql(k-l) - L codes

q i=) q - 1 i= 1 q - 1
which for suitable choices of f., Ul,"" Uh- meet the Griesmer bound. !

For f. = 1 this is the dass of S9lomon and Stiffier codes, but fqr f. > 1 this family is
not equivalent to the Solomon and StifHer codes.

Ingemar Ingemarsson:

Generalized Group Codes

Let n be the group of all distance-preserving transformations of a metric space. Let
gen be a subgroup of n and x an element in the space. Then a Generalized Group
Code is defined as the set of elements obtained by 9 operating on x',

C = Qx

Ir 'H. c n is the stabilizer of x (:r = H x; H E 'H) then:

ICI = 191/1'H1
Special cases are: Slepian's grou'p codes für the Gaussian channel where the space is Rn
a.nd 9 a group of orthogonal matrices, linear algebraic codes where the space is Fqn and
9 is a group of translations, pern1utation modulation were the space is R~ and g a
group of permutation on n letters and linear codes with Lee metric where the space is
Z; " and Q a group of translations. New codes are constant-weight codes (where x
is binary); a special case of permutation codes which in turn is a subset of permutation
nl0dulation.

6
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Rolf Johannesson:

On the Invariance of the Generalized Constraint Lengths
(joint work with Zhe-Yian \I\'an)

Let G be a k x n convolutional encoding matrix over F(D). G is said to be canon­
ical if it is realizable in controller canonical form \vith the minimum number of memory
elements of any realization of any equivalent encoding matrix. Recently Forney (1991)
defined the generalized constraint lengths for encoding matrices over F(D) . (For mini­
mal encoding matrices over F[D] this definition coincides with his (1970)-definition of
constraint lengths.)
We have
Theorem: The generalized constraint lengths of two equivalent canonical encoding 'matri-.es are equal ane by ane up ta arearrangement. .

Ref.
Forney, G.D., Jr (1970), Convolutional codes I: Algebraic structure. IEEE Trans.loform.
Theory,IT-16: 720-738.
Forney, G.D., Jr (1991), Algebraic structure of convolutional codes, and algebraic system
theory. In Mathematical System Theory, A.C. Antoulas, Ed., pp. 527-5"58. Springer­
Verlag, Berlin.

Torlew Klöve:

Minimum Support Weights

For an [n, k] binary code C, one defines . dr(C) as the smallest support of an [n, rl
subcode of C .
A fundamental relation is

(2 r
- 1)dr - 1 :c5 (2 r

- 2)dr

for 1 < r ~ k . Using this relation in combination with the ordinary Griesmer b.ound on
a punctured code E we can show that . '

•
k-l rd 1

If n = d1 +?= 2:
f=l

, then, for all l' ,we have

. k-r r dr 1
n = dr +~ 2i(2r _ 1) ,

d·=~rd~l·r L." 21 '

i=O

r
2r

- 1 1dr = 2r _ 2 dr-l .
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D.E. Lazic:

Error Exponent of any Speciftc Falnily of Block Codes

A direct, general and conceptually simple geometrical method (or determining lower and
upper bounds on the error exponent of any specific family of thannel block codes used
on a given coding channel is presellted. It is considered that a specific family of codes is
characterized by a unique asymptotic (in code "length) expected Bhattacharyya. distance
distribution exponent, defined as the negative normalized logarithm of the expected Bhat­
tacharyya distance distribution. The new method discards the well-known random co~ing

argument used .in lower-bounding the channel error exponent, enabling one to obtain the
error exponent that pertains to a specific family of channel codes used on the given trans­
mission channel. The code family that attains the channel error exponent is tbe optimal
one, and its Bhattacharyya distance distribution the optimal distance distribution. The.
requirements that a code family should meet in order to attain the channel error expo-
nent are now. stated in a limpid way - the family should have the optimal Bhattacharyya
distance distribution.

l.H. van Lint:

The Johnson Bound

We explain arecent result of A.E. Brower and L.M.G.M. Tolhuizen. The classical Johnson
bouud

for a binary code C of length 11. \vit.h distance d = 2e + 1 is obtained by a counting
argument frorn

In the proof of Johnson ad is estimated as (;)/(~). ad,e where ad,e is the number of.

codewards of weight d with ones in e given positions. This is estimated as l:.;~ J .
Tbe improvement is based on the observation that the surn of this many codewords would
yield a. codeworrl of Cl 'lJp.ry la,rgp. weight. This is excluded by an easy argument. The result

replaces :+~ - l:+~ J by this expression +1 .

Katalin Marton:

On the Blowing-up Property of Stationary Processes

The "blowing-up" property (for i.i.d. processes) \vas introduced in a paper of Ahlswede,
Ga.cs and !(örner, to prove strang converses in multi-user information theory. \Ve explore
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this property, and a stronger version of it for sources with memory. There is an evidence
that this property is closely related to the ergodic theoretic properties of the process.

James L. Massey:

On Codes for the Two-User Binary Adder Channe)

On the two-user binary adder channel, the received ward is the real componentwise surn
of the two transmitted words. The following is proved:
Theorem: Let Cl and C2 be blocklength n binary constant-weight codes with
weights WI and W2 and minimum distances d1 and d2 ,respectively. Let

and

Then,

max{ d1 , d2 } +D min > D max

is a sufficient condition for the pair (Cl, C2 ) to be uniquely decodable on the two-user
binary adder channel,i:e., for #(C], C2 ) = #(C1)· #(C2) .
It- isfurther shown how to combine codes that are uniquely decodable by this theorem to
produce uniquely decodable codes with R) + R2 > 1 .

H.F. Matts~n, Jr.:

On Fault-Detection in Networks

To fip.d broken links in networks we use the cut-set space. Information on which nocles can
tal~, or not, to which other nodes allows reduction of the problem to that of decoding the
cut-:-set code of a graph. Special classes of such codes are known t~- havepolynomial-:-time
decoding algorithms. We present a simple algorithm to achieve the reduction and apply it

• in two examples.

E.C. van der Meulen:

Distribution Estimation Consistent in Information Divergence

We consider the problem of estimating an unknown probability distribution p. , defined
on an arbitrary measurable space (X, B) , based on i.i.d. observations X}, ... ,Xn

from p., such that the resulting distribution estimate jJ.n is consistent in informa­
tion divergence 1(11, jJ.';'). First we observe that if J1. is absolutely continuous then
the standard empirical measure is not snitable since then I(p., [Ln} will be infinite with
posit.iv<' prohabilit.y. 111 order t.o oht.ail1 ("ol1sist.ency \\10. lUllst also limit the class of dis­
tributions to which the unknown J1. belongs. As apriori information we assume that
there exists a known probability lneasure v such that 1(11, v) < 00 . We introduce a
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distribution estimator j.L~ , \vhich iso a modification of the empirical measure, such that
limn_ex> E( I(j.L, j.L~)) = 0 and I(J-L, J.L:J ~ 0 a.s. as n ~ 00 , under appropriate eon­
ditions. This distribution estinlator is. further applie<;l to design a universal souree code
for finely quantized data. It is shown that the redundancy of such a code tends to zero
uniformly in partitions for all JL such that [(j.Lv) < 00 • The results are eontained in
the following paper:
A.R. Barron, L. Györfi, and E.C. van der Meulen: "Distribution estimation eosistent in
total variation and in two types of information divergence", IEEE Trans. on Information
Theory, 1992 (to appear).

Thomas Mittelholzer:

Convolutional Codes over Groups

The Illotivation to consider convolutional codes over groups rather than over fields comes
from the fact that there .are nonabelian groups corresponding to signal sets in dimension
three and four, which have a capacity that exceeds the PSI{-limit of an AWGN ehannel.
Nonabelian groups are of particular interest because abelian groups can generate only
slepian-type signal sets having a eapacity, which is upper bounded by the PSK-limit. For
every convolutional code C a canonical state group Se and a canonical transition
graph Be is introduced. The" transition graph Be corresponds to a trellis diagram,
which generates the code C. It is ShO\VIl that if a convolutional code is defined over a
nonabelian group and if it has an abelian state group Sc then its free Hamming distance
equals one~

·e

Fredy D. Neeser:

A Simplified Derivation of the Capacity of the ISI Channel with AWGN using
complex Random Variables

The 'covariance' of complex random variables can be specified by the (conventiot:lal) eom~

plex covariance and a quantity called the pseudo-~ovariance. Complex random vari~bles

\Vi th a vanishing pseudo-covariance are called proper. It is shown that properness is pre­
l:ierved under linea.r transformations.
The maximum-entropy theorem is generalized to the complex-multivariate case. For a '.
given correlation matrix, the different.ial entropy of a. random vector is maximum if and-
only if it is proper Gaussian with zero rnean. ~A.. discrete Fourier transform correspondence
between stationarity in the time-do111ain and unc·orrelatedness in the frequency-domain is
presented and used for a simplified derivation of the capacity of the N-circular ehannel
with intersymbol' interferenee (cf. \V. Hirt and J .L. Massey, IEEE Trans. IT, vol. 34, May
1988).

Alon Orlitsky:

Interactive Communication of Balanced Distributions

(X, Y) is a pair ef randem variables distributed over a support set S. Person Px
knows ){ ,Person Py knows }.~ ,and both know S . Using a predetermined protocol,
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they exchange binary messages in order for Py to learn X. Px may or may not learn
Y . The rn-message complexity, Gm" ,is the number of information bits that roust be
transmitted (by bath persons) in the \vorst case if only 7n messages are allowed. Crx;,
is the number of bits required when there is no restrietion on the number of messages
exchanged.
We consider a natural dass of random pairs. jj is the maximum number of X values
possible with a give~ Y value~ ij is the maximum number of Y values possible with
a giyen X value. Tbe random pair (X, Y) is balanced if jJ. = ~. The following
hold for all balanced random pairs. One-way communication requires at most twice the
minimunf number of bits: Cl ~ 2Crx;, + 1 . This bound is almost tight: for every 0' ,

there is a 'balanced random pair for which Cl 2:: 2Crx;, - 6 2:: a . Three messages are
~ymptoticallyoptimal: -Cl ~ Crx;, + 310g Crx;, + 11 . More impor~antly, the numbex: of
W>its required i~ only negligibly larger than the number needed when Px knows Y in

advance: Grx> ~ 63 ~ log {t + 3log log {t + 11 .
We apply these results to the following correlated files problem. X aild Y are binary
strings (files) within a small edit distance from each other. Px knows X while' Py
knows Y and wants to learh )(. The results above imply efficient ,three-message
protocols for conveying .~\"" to Py . We provide efficierit one-way·protocols for certain
restricted cases and discuss their possible gene~alizations.

V.M. Blinovsky, P. Narayan,-M.S. Pinsker:

AV Channel and List Decoding'

An arbitrary varying channel (AV ~hannel) without memory is described.by a transition
probabilityfunction w(Ylx,s) \vhere x E X,y E Y,s·E S, X,Y,Sare finite sets, X
being :an input alphabet, Y being an output alphabet and S being a channel state
alphabet. . , '

We consider transmission over an AV ~hannel by deterministic codes,of length n with
fixed list decoding size Land avera.ge error probability. Let CL be the capacity. for
such a transmission. -

Let also CT be the capa.ci ty ofan AV channel for random codes andaverage error prob­
a-bility.
~heorem 1: ,CL ~ er and CL is equal either 0 or er .

Definition: An AV channel is synlmetrizable of order L ,if for some distribution

P(SIX2,'" , XL+l), sES, ::2, ... , XL+IE )[

L W(Ylx), S )P(SIX2" .. , XL+l) = L w(ylx 1r1 , S )p(slx7r2 , ••• 'X 1rL +1 )

sES sES

where 1r = (1r}, ... , 1r L+ 1) is an arbitrary permutation of the sequence (1, ... , L +" 1) .
Theorem 2: CL 2:: 0 , if and only if an A\' channel is not symmetrizable of order L .
If CL > 0 then· CL = C r . .

Theorem 3: Let I~\""I = IY"I = 151 = 2 and C r > 0 . Then for any AV channel there is
some L such tha.t it is notsymnletrizable of order L .
Corollary: For I~YI = IYI = 151 = 2 we have CL =' er for some L < 00 .

11
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Marcel Rupf:

Optimum Sequence Multisets for Symbol-Synchronous Code-Division M ultiple­
Access Channels

The capacity regi9n of the S-C011A channel is considered under the condition that all
channel inputs fulfill the same average symbol-energy constraint. 1t is shown t~at the
surn eapacity is maximized by all sequenee multisets whieh meet Weleh's lower bound on
the eorrelation of a sequenee multiset. Moreover, it is also shown that the symmetrie
capacity in function of these sequence multisets is equal to the sum capacity, where the
symmetrie capacity is defined by the maximum achievable equal-rate point in the-capaeity
region. Finally, it is concluded that S-COMA systems ean use dimension or banclwidth
most efficient and in a (fair) communication when the number of users is larger than ore
equal to the sequence length.

Paul C. Shields:

Entropy and. ioint Distributions

The problem of eonsistent estimation of the k':"'th order joint distribution from observation
of a finite sampie path, where k = k(n) is a function of path length n, is addressed.
It is shown that if the proeess is a function of an irredueible Markov chain and . k(n) ::;
(logn)/(H +e) , where H is the process entropy, then the variational di~tance between
the emprieal· k-block distribution and the true k-block distribution goes to 0 almost
surely. A convergence in probability result also holds for the more geileral dass of weak
Bernoulli processes.

J. Simonis:

MacWilliams ·Identities and Coordinate Partitions

Let ·C be a binary linear code, with coordinate set S , and let T:= {Tl,"" Tp } be
a partition of S in sets of size 71 u := ITu I . The weight distribution 0/ C with respect
to T is the set of numbers

We show that the ..4i(7) and the weight distribution {Bi(T)} of the dual code C.l..
satisfy the identities -

(*)

where Pi(X; v) := 2::=o( _l)m (r~,) (r~T~) ,the l(rawtchouk polynomial of degree i .
These generalized ~1ac\Villiarllsidelltit.ies (*) can be llsecl to prove the nonexistence of codes
satisfying conditions on the Ininin1UI11 clistance O!" the covering radius. Another applieation
i::; a siIuple proof of the ASSlllllS !Vla.ttsoll theoren1.
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Gabor Simonyi:

Trifference (jointly with Janos Körner)

We focus on the following t\VO problems:
1. Trifference problem: Let 1"'3,3(n) denote the minimum length for which we can have
n ternary sequences \vith the property that for ,any three of them: ;f, 'J!..' ~ 3i.: Xi, Yi, Zi

are three different values.

F 6 r . f Y3,3 (n ) ?
3,3 = ~~ log n =.

2. Triangle problem (asked by Vera T. S6s): Let t(n) denote the minimum number of
colorings of the edges of a complete graph on n vertices with three colours such that for
every triangle we would have a coloring where all its edges have different calors.

T ~ lim inf t (n ) =?
n-oo log n

.'J:he fi~s·t. problem is a well-known special case of the ~~perfect hashing problem" the second
is visibly related. '''le expla.in why they have special 'interest after arecent success of
applying information theory in combina.torics (a result by Ga.x:gano, Körner, Vaccaro) and

prove: F3 ,3 ~ 10&6~ and 10~ 3 ::; T :::; 1 .
2S

Ludwig Staiger:

Information-Theoretic Aspects of Kohnogorov COluplexity

Various relationships between the Kolnlogorov conlplexity or infinite strings and measures
üf inform'ation content are given. The general approach taken here is to bound the complex­
·ity of"a maximally complex string in a given set of strings by the Hausdorff dimension or
the entropy [box dinlension] of that set.. It tllrns out that Hausdorff dimension yields lower
bounds .to the I{olmogorov ,colnplexity whereas under certain recursiveness constraints to
the structure of the respective sets their entropy yields upper bounds.
More detailed investigations result in a generalization of two of P. Martin-Löf's the~rems

on the complexity of randorn strings to t.he complexity of maximally complex strings in
regularly structured sets of infinite strings .

Rene Struik:

Covering ProbleIns

We consider linear codes over GF(2) only.
Let C be an In, k]R code with R = lnin{r ~ Old(x, C) ~ r for all x E F2} .
A basic question is to determine the lowest dimension k S.t. an In, k]R code ex­
ists. Equivalently the prohlenl is to detenlline pa.rallleters e(1n, r) with f(m, r) =
rnin{nlAn [n, n - ln)r code over GF(2) exists} . A trivial lower bound on i(m, r)
is i{ m, r) ~ min{11. I~~=o (7) ~ 2m

} . In the talk several inlprovements on known lower­
bounds of i( nl, r) \vill be disCllSSen anel a relation \vith the non-linear covering problem
will be gi \Ten. They are based on:
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- theorems in "ordinary" coding theory (nlostly 111inimum distance bounds)
- a generalizatic;>n of the concept of co~ering

- counting arguments

All non-existence proofs 'are const.ructive and all known bounds for r = 2,3 'can be
derived in this way.

€(8,2) ;::: 25(24),t'(9',2) 2: 34(33),t'(2m - 1,2) ;::: 2m + l(m ;::: 3)(2
Tn

) [Conjectured by
Brualdi, Pless, Wilson);

l(9, 3) ~ 17( 16), €( 10, 3) ~ 21(19), €(12, 3) 2:: 31(30), l(13, 3) ;::: 38(37) In brackets are
"old" bounds.

R.. Ahlswede, N. Cai and U. Tamm:

Communication <;;olnplexity of Sum~Type and Vect<:>r-Valued Functio~s

The comnlunicatioll cornplexity of a. function F denotes the number of bits that two pro­
cessors have to exchange in order to COlupute a function value' F(x, y) ,when initially each
of the processors kno\vs one of the arguments. The functions examined are vector-valued
and surn-type function. To define the vector-valued function Vn : xn X yn -+ zn let f:
X x y -. Z be any function. Vn(Xl"", Xn), (Yn, ... ,Yp») = (f(xl' Yl'), ... , f(xn, Yn))
is obtained by componentwise evaluation of f. Accordingly, the surn-type function

n

5 n : .yn X yn ~ N (ar Zp) is defined by Sn(Xl"'" Xn), (Yl, ... , Yn») ~ L f(Xt, y',) .
t=l

Ir, ~.g.. f is the logica.l ~'and" ~ thcn the vector-valued function Vn can be inter-
preted as t.he ill{,crscet.ioll of thc t.wo set.s represented by (Xl"", X n ) and (Yl,"" Yn) ,
whereas the stun-t.ype function Sn gives the cardinality of this intersection. For both
function's the COIUluunication complexity is deternlined. Ahlswede and .Cai ([1]) show
that C(Vn ) = fn log2 31. C(Sn) can be deterrnined up to 'one bit ([4]), namely
n + flog2(n + 1)1-- 1 ~ C(Sn) :::; n + flog2(n + 1)1 , where upper and lower bound
are assumed for n = 2t and n = 2t - 1 , respectively.
The communicatiori complexity of surn-type functions is considered under two different
aspects. Communicf.ttion st.ops~ when a) oue processor knows the result ([2]), or b)both
processors know the result ([3]), ([4]). In all nl0dels, the basic algebraic tool in the proof
of lower bounds is t.he Kronecker proouct in terms of \:vhich the function matrices can be
expressed. Thc res\llts are cOllt.aillcd in thc following pa.pers
(Preprints 91-041~ 91--053, 91·-016~ a.ncl 91-077~ SFB 343, Universität BielefeId)

[1] R. Ahlswede, N. Cai: On COnin1l1nication complexity of vector-valued functions
[2] R. Ahls\vede, N. Cai: 2-way cornmunication complexity of surn-type functions for

one processol' to be infonued
[3] U. Talunl: On the communication cOluplexity of surn-type functions_
[4] U. Tamrn: Detenninistic cOffilllunication complexity of the set-intersection function
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A. Tietäväinen:

On Bounds for the Number of Binary Vectors with a Given Maximum Corre­
lation

Code division multiple access (= CDMA) techniques require large families of sequences with
good correlation properties. If the number of sequences is smaller than or approximately
equal to the period of sequences, there are good constructions and tight bounds. On the
other hand, if the number of sequences is remarkably larger than the period, there is a huge
gap between bounds and constructions. This is the problem considered in this talk.

• Henk van Tilborg: .

Is there such a Thing as a Perfect Asynllnetric~Erro~CorrectingCode?

For the Z-channel the following special classes are defined: 1) perfect; 2) weakly perfect,
and 3) uniformly weakly perfect asymmetric-error-correcting codes (AsEC).
It turns out that the only nontrivial perfect AsEC code is the repetition code. "For any
weakly perfect t-AsEC code it is shown that a larger size code exists that is also t-AsEC.

Sergio Verdti:

Approximation Theory of Output Statistics (Sulnnlary)

To motiva.te the problern studied in this talk consider the computer simulation of stochastlc
systems. Usually, the objective is to compute a .set of statistics of the response of the
system to a given ~~real-world" input random process. Tc acccmplish this, a sampie' path
of the input random process is generatecl and en1pirical estimates of the desired output
statistics are computed from the output scunple" path. A random number generator is used
to generate the input saluple path anel an iInportant questi0J.1is how many random bits
are required per input sarnple. 111 t.his work we are interested in the approxi~ation of
output statistics with arbitrary accura.cy, in the sense that the distance between the finite­
dimensional st.atistics of the true output process and the approximated output process is
required to vanish asynlptotically. VVe define the resolva.bility of a system as the number of

A random bits required in order to achieve arbitrary accurate approximation of the output
.. statistics for any input process. .

Although the problem ofapproximation of output statistics involves no codes of any sort or
the transmission/reproduction of information and it deals with arbitrary (not necessarily
ergodie) input statistics~ we show that the resolvabilityof a system is equal to its Shannon
capacity.

A..T. Han \'inck:

Correction of Peak-Shifts in (d,k)-sequences

\~e describe joint work with V.I. Levenshtein and A. Kuznetsov from Moscow. We consider
codes consisting of sequences Od+o t 1 Od+o 2 1 .. . Od+ON , 0:$ Gi ~ k - d := q - 1 . First
we construct codes
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N

C'(W,g) = {Q. E C : L O'jWi = g(mod ln),Wi and 9 integer < 1n}
i=l

that are capable of correcting single peak-shifts of size t = 1,2 . We introduce the concept
of perfect t':'-shift correcting codes and finally g~ve a construction of systematic codes.
In the second part of the talk we show that the (linear) code defined by .

[

+1

H= ~ q-1 o 1 q-2

Aaron Wyner:

Shannon Capacity of ~ellular Multiaccess Channel

We begin with a. shart discussion of the classical Gaussian multi-access channel, and show
that uTPMA" (ar ;~FD~1A") is optimal. V'le then discuss a simple though insightful model
of the cellular luulti·-access channel in which neighboring cells interfere with each other. We
show that, when optimal coding/decoding is used, the interference degrades performance
only slightly, and somet.imes even itnproves perforn1ance.

V.A. Zinoviev:

On Universal Families of Codes

Let E = {O, 1, ... , q - 1} . Denote by Ui ~ En the block code of length n with
minimal (Halunling) -dist.ance d; ~ 2i + 1 and power lVi = I[Ti I . A family of codes
Utl ,. '." U l , , where 1 ~ t 1 < '" < t~ ~ [Cd - 1)/2], d ~ [n(q - l)jq] , we call the
universal family, if fo.r any i,j: i # j, i,j E {I, ... , s} , the distance di,j = d(Ui, Uj)
between the codes U t , and U tj satisfies the inequality di,j ~ tj + tj + 1 . We giv;e
here the exact construction of the universal family of codes wi th asymptotically (when
n ~ 00 and t s is fixed) optimal parameters. The main result is the following. For
any fixed integer t 2: 1 we construct the fan1ily of universal codes U1 , ••. , Ut , where
Ui, i = 1, ... ,t , has lengt.h 11. , minimal clistance d j 2: 2i + 1 and power Ni , where

1 .)Tt

lVi = -..-. =-(1 + 0(1)), 0(1) --t O.
2' -

1 n,t n-lX)

The power .Ni of code U;differs from the Hamlning upper bound t!2 n /n t only by a
multiplica.tive constant.
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Jacob Ziv:

A Measure of Relative Entropy between two Individual Sequences with Appli­
cation to Universal Classification

A new notion of empirical informat.ional divergence (relative entropy) between two indi­
vidual sequences is introduced. If the two sequences are independent realizations of two
finite-order, finite alphabet, stationary ivlarkov· Processes, the empirical relative entropy
converges to the relative entropy almost surely. This new empiric.al divergence is based on
aversion of the Lempel-Ziv data compression algorithm.
Applications to universal classification are discussed.

Berichterstatter: U. Tamm
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