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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s bel ich t 18/1992

Gruppentheorie (endliche p-Gruppen)
26.4. bis 2.5.1992

Organisatoren der Tagung waren Otto H. Kegel (Freiburg), Wilhelm Plesken
(Aachen) und Gemod Stroth (Berlin). .

Ein Schwerpunkt der Tagung war die Klassifikation endlicher p-Gruppen nach
ihrer Koklasse. Im Zusammenhang damit standen auch pro-p-Gruppen endlicher
Koklasse, sowie die Klassifikation nach Weite. Hier ordnen sich die Vorträge über die
'Nottingham' Gruppe ein. Weitere Schwerpunkte bildeten potenzreiche p-Gruppen
und die Liealgebrenmethoden zur Untersuchung von p-Gruppen, z.B. im Zusam­
menhang mit Bumsidegruppen. Struktureigenschaften von p-Gruppen wurden in
Vorträgen über Normalteiler- und Untergruppenverbände, Darstellungstheorle, mi­
nimale Relationenzahl, Automorphismengruppen und andere Themen untersucht.
Benachbarte Gebiete waren vertreten in Vorträgen über torsionsfreie endlich er­
zeugte nilpotente Gruppen, Engelbedingungen, Galoisgruppen, p-Untergruppen in
gewissen endlichen und lokal-~ndlichenGruppen, etc.

Die sehr anregende 'Problemsession' am Donnerstagabend läßt auf eine Fortset­
zung der lebhaften Entwicklung in der Theorie der p-Gruppen hoffen. Zum Gelingen
der Tagung tru:gen die offene Atmosphäre und sehr gute technische Ausstattung des
Instituts (Bibliothek und Computer) ~esentlichbei. Alle Vorträge wurden in engli­
scher Sprache gehalten.

Vortragsauszüge

c. Baginski: Finite p-groups with p-automorphisms of large order

In 1970 V.G.Berkovich classified all finite p-groups of order p" with automorphisms
of order pn-l (Algebra & Logic). Here we give a complete classification of a11 finite
p-groups G with automorphisms of order ~.
Main results:
Theorem 1. If p > 2 and IGI = pn, ?l > 4 then G has an automorphism of order pn-2
<=> G contains a cyclic subgroup of index p.

Theorem 2. A group G of order 2n
, n > 5 has an automorphism of order 2n - 2 {::> one

of the following holds:
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a) G is 'cyclic:

b) G is of maximal class.

c) G = A X B., where A is dihedral or generallzed quaternion and IB.I = 2.

d) G = AYB (central product), where 4. is dihedral and B cyclic oforder 4.

w. Bannuscher:
p-Gruppen

Eine Verallgemeinerung des Regularitätsbegrift"e~bei

In Verallgemeinerung des HALLsehen Regularitätsbegriffes bei p-Gruppen werden
sogen~ntek-reguläre p-Gruppen betrachtet: Eine p-Gruppe G heißt k-regulär, falls
fjir alle x, y E G stets

gilt mit geeigneten ~ E (x, y)'. VieleSätz~ über reguläre p-Gruppen (k = l)"Iassen
sich auf k-reguläre p-Gruppen verallgemeinern. .

B; Baumann: . Some P""group~ with given groups ofautomorphisms

Some p-groups were constructed which are related to· the classical finite simple
groups: the general linear groups GLm(ph) and the symplectic groups SPm(ph) are
related to the automorphism group of a certain factor group of Fn/~[F~, Fn] for
odd primes p; the orthogonal and unitary groups Om(ph) and Um(ph) are related to
the automorphism-group of a certain factor group'of Fn/~[F~,Fn][F~,Fn,Fn]for
primes p > 3. Here n = m . hand Fn is the free group fo rank n. In a.ll cases the
representation on the Frattini factor module is the natural one for these groups.

S. Blackburn: Enumeration of finite p-groups: Isoclinism-

Define V.(pm) := the number of. (isomorphism classes of) groups inan isoclinism
class () of order pm.
What can we say about this function:

1) When m is fixed and ~ varies?

2) When ~ is fixed and m varies?

R. Brand): p-groups with 'few' subgroups

.The set C(G) of all conjugacy classes [H] of subgroups H of a group G admits a
natural partial order, defined by [Ht ] ~ [.112] if and only if Ht ~ H: for some 9 E G.
Theorem 1. Let G and H be finite groups and let H be a noncyclic p-group. H
C(G) ~ C(H), then
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a) IGI = IHI, ezpG = ezpH and d(G) = d(H).

b) Ir H is abelian or metacyclic, then G ~ H.

Let w c ( G) be the,greatest length of an antichain in C(G). It is easy to .see that a
p-group G has wc( G) = 3 if and only if G is a 2-group of maximal dass. For larger
values, however, we have the following result:
Theorem 2. Let n ~ 4·. Then there exist only· finitely many p-groups G with
wc(G) = n.

G. Busetto:
ties of groups

Some results on permutable p-subgroups and projectivi-

We construct a finitely generated infinite perfect p-group G with the following pro­
petties:

1) G co~tains apermutable subgroup H such that HIHG is infinite..

2) There is an autoprojectivity of G sending anormal subgroup to a non normal
one.

In the first part a survey is given of realizations' of finite p-groups as Galois groups..
As base fields occur number fields, rational function neIds lFq(t) and 1Oab,nil for regu­
lar realizations. In the second part a class of soluble groups is introduced that occur
as Galois groups over a greater number of base fields. This class is examined further.

The main topic cf this talk is a characterization of pairs of p-groups H, K with the
property:
There exists a p-group G ~ H, K such that 1i = 1~.

The same question for arbitrary (finite) groups H, K, G has a nice answer in t.erms.
of orders of elements in H arid K.
For p-groups, the situation is subtler: We provide some results and examples.

.~

A. Caranti:
character

R. Dentzer:

M. Hart!:

Subgroups of p-groups inducing the same permutation

p-groups as Galois groups

On the fourth integer dimension subgroup

We construct a broad class of groups of dass 3 but of dimension ~ 4, containing the
known examples of Rips and Tahara as simplest c~es. Under certaiil restrietions
completeness of the list can be shown.
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The method relies on a near constructive approach which starts with the descrip­
tion,' of 'relative' dimension subgroups in terms of a polyriomial 'co'-approximation
of the Schur multiplier H 2G. The approxim~tionH 2G -it P2H2G for groups of class
2 which enters in the description of D.(G) is computed, name1y by adetermination
of the first two filtration quotients of a canonical ~tration of H2G and of tbe corre­
sponding extension problem as weIl.

" B. Hartley: Locally Rnite groups with finite Sylow subgroups

I should like to report on the work of my former student S.D. Bell. •
Theorem 1. Let G be a countable locally finite group with finite Sylow-p-subgroup
for a1l p. Then G has' a proper subgroup isomorphie to itse1f {::}"G is not hyperfinite.
Under these circumstances G ean be embedded in an uncountable loeally finite group
with the same Sylow subgroups as G. It is then shown that this CaD. be done in 2No

ways.

H. Heineken: Normal embedding of p-groups into p-groups ,

For a given finite p-group M to be anormal subgroup of G whieh is contained in
w(G), where w(G) is a word subgroup of the finite p-group G, it is neeessary that
I nn(M) is eontained in w(S), where S is a p-Sylow subgroup of Aut(M). On the
other hand, if this eondition on I nn(M) is satisfied, a suitable· p-group G ean be
constructed, making this condition also sufficient.

L. H'thelyi: On uniserially embedded subgroups of a 'p-group

Let G be a p-group. A subgroup A of'"G is uni.serially embedded if the subgroups of
G containing A form achain.

If A is a maximal abelian subgroup of G such that ING(A) : AI = p then A is
uniserially embedded. Such a subgroup of G is called .soft. First I would like to
mention some properties of a p-group G having .~ soft subgroup. Then I eonsider the •
ease when a maximal elementary abelian subgroup A of G is uniserially embedded
and ING(A) : AI ~ p2. Then the unique maximal subgroup M of G eontaining Ais
contained in the normalizer of A and if A is an indecomposable NG(A)-module then
A is normal in G. If A is not normal in G then all uniserially embedded maximal
abelian subgroups of G are eonjugate and there are exactly p such subgroups in G. G
eontains a uniserially embedded abelian subgroup not contained in M ifF G contains
a soft subgroup. A eontains a great number of uniserially embedded subgroups of
G and these are maximal in their normalizers. Finally let B be a eyclie subgroup
of a p-group G such that ING(B) : BI" = p. Then" B is uniserially embedded. If
p ~ 5 and if a p-group G contains a uniserially embedded cyelic subgroup C sueh
that ING(C) : CI ~ p2 then G is metaeyclic.
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B. Huppert: Character-degrees of some ~groups

•

HG is a p-group with exact1y k(G) different character-degrees (overa'), then by Ta­
keta dl(G) ~ k(G). Is asymptotically a better result true like dl( G) ::; C ·log(k(G»?
Two senes of.p-groups are considered:

1) Let S(n,p) = .Zp I .:.1 Zp", (wreath-product). Then dIS(n,p) = n.
n

a) If p > 2, then cdS(n,p) = {~ I0 ~ j ~ 1 + p + ... + pn-2}.
b) If p = 2', then cdS(n,2) = {2i I0 ~ j ~ 2n

-
2 +2n

-
3 -tl·

2) Let G = G(n,p) be the group of unitriangular matrices of degree (n, n) over
GF(P). Then 'dl(g)= s, where 2' ~ n > 2'-1. Now cdG(n,p) = {pi I 0 ~ j ::; f(n)},

{

n(n-2) if 21n
where f(n)· = (n!1)2 . . (The method does not work for unitriangUlar

. 4 . else_
group~ over G.F(q), where q = pI.)

. P. Igodt: Classi~ing almost Bieberbach groups up to dimension 4

•

Based on an algebrRic set-up known in literature as the 'Seifert Fiber Space Oon­
st~uction' we can describe and construct faithful affine representations for torsion
free, flnitely generated nilpotent (and virtually :fi~tely generated nilpotent) groups
N. This approach inight be of particular interest in relation to a conjecture of John
Milnor (1977). The technique us~d is based on iteration from the upper central series
of the nilpotent groups. Th~ representations obtained are called 'of canonical type'
and are unique up to conjugacY.in a well determined group. Moreover' they are also
valid on the Lie group level.

Using information o~tained from tbis type of representatjons, we could obtain an
algebraic classification of al1 3-dimensional almost Bieberbach groups. In particular
cas.es we also remark .that information on the polyIiomiality of H2(N,~)might be
deduced and that computation of these groups H 2(N, 2Z) might be possible.
(joint work with K. Dekimp~)

D.L. Johnson: Recurrence relations in finite p-groups

Define N2(p, n) := the 2-generator relatively free group in the variety of exponent­
p-groups of class n

R(2,5):= restricted ·Burnside group on 2 generators of exponent 5
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Theorem 1. (Smith-Aydin, 1991) If F(2,n) ---* N 2(p,1) then F(2,n) --.. N 2 (p,4).
Theorem 2. (Smith-Aydin-Cayley, 1991) F(2,20) ---* R(2,5).
As a very spe~ial case of current joint work with RWK Odoni, we know exactly when
the condition of Theorem 1 ·holds. I also discuss Fibonacci identities mod p.

L.-C. Kappe:
of class 2

The nonabelian tensor square oC a 2-generlltor p-group

The nonabelian tensor square of a group G, denoted by G0G, is the group g~nerated

by the symbols u ®v, u, v E G and deßned by the relations .

where V u = vuv-1 • Explicit computations of such groups 'have been ~ven so far
only in a lew special cases.

The nonab~lian·tensor square of a finit~ nilpotent group G is the direct product
of the nonabelian tensor squares of the p-components. If G is nilp~tent of c1~s 2

thenG /&) G is abelian and the defining relations reduce to tLV ~ W = (11. ® w)(v~
w)«u,v] ® w)(v ® [u,w]) and
u®vw = (u®v)(u®w)(u®[v,w])«v,u]0w). We explicitely compute the nonabelian
tensor square for 2-generator p-groups of class 2, p odd.

E.I•. Khurkhro: The restricted Burnside Problem Cor' varieties of
groups with operators

e·

Suppose 0 is a finite group (of operators) and let 'M be a variety of groups with ope-
. ratars !l given by !l-identities {va}. Let M denote the (ordinary) variety of groups
given by {va}, 'where Va is obtained from Va 1>y replacing all.operators by 1..
Theorem. Suppose there is a 'multilinear' positive solution of RBP for M in the
sense that the associated Lie ring of a free group in M satisfies a system of mul­
tilinear identities which define a locally nilpotent variety of Lie rings with function
f(d) bounding the class of a d-generator Lie ring. Then if GArl is locally nilpotent e
for G E'M, then G belongs to a locally nilpotent variety with function f(d. 1(1101 ).
An exampleshows that 'multilinear' is essential. .
lliustration: M given by zP = 1, M given by zzfP ••• Z~-l = 1, I'PI = p, G a finite
p-group E M.

E.I. Khurkhro: New identities in L:(B(n,p» and the problems oC
Hughes and of Blackburn and Espuelas

1. Blackburn and Espuelas proved that irin a metabelian p-group P, IU1(P)1 = p,
then IP : f!t(P)1 :$ pP and conjectured that here 'metabelian, may be omitted (there
were also examples of G.E. Wall with IP : Ol(P)I'= PP).
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Theorem 1. Suppose that for eacb k = 1,2, ... ,r the (Vaughan-Lee's) multilinear
identity of degree 1 +k(p -1) of .c(B(n,p) is not a consequence of tbose of smaller
degree. Tben there is a finite p-group P with IUt(P)1 = p and IP : Ot(P)1 ~ pt+f'(p-l)
and 01(P) = ~(P) ('secretive').
Tbe condition is Itnown to hol.d for p = 5,7 and k = 2 (Wall, Cannon & computer).

11. Under the condition of Theorem 1 Wall proved tbat there is a finite p-group P
with IP : Hp(P)1 ~ p3 and Hp(P) '! 1. In tbe opposite, positive direction we prove
Theorem 2. Suppose that .c(B(n, p» is a!ree (relatively) Lie algebra over GF(p) all
of whose identities follow !rom its multilinear ones of degrees ~ 1 + r(p - 1). T~en,

in-any finite group G, IG : Hp(G)1 :5 p2 if Hp(G) '! 1. .
II!. Of special interest is a 2-generator anti-Hughes group, as it gives answer to

several other questions.
Theorem 3. There exists a 2-generator countereJtample to Hughes conjecture (for
p = 7 with the aid of computer). .

w. Kimmerle: Class sums oe p-elements

Let G be a finite group, ~G its integral group ring. A subgroup H of tbe group of
units of augmentation 1 in ZG is called a group basis, if IBI = IGI. The'object of
the talk is the following p-power variation of a conjecture of Zassenhaus.
p-power Variation: Let H be a group basis of ZG. Then there exists an isomorphism
q : H -+ G such that q fixes the dass sums of a1l prime power elements.
Note tbat, if this variation h91ds, it gives a strong positive answer to the isomorphism
problem. One of tbe results is the following
Theorem. Suppose that G/ F(G) is nilpotent. Assume that each conjugacy dass
preserving automorphism of G/ F(G) and of its quotient is inner. Then the p-power
variation holds. In particular this is the case when [G; G] is nilpotent.

A.I. Kostrikin: On finite sandwich p-groups

Let Gm = Lie(ct, ... , cm ) be a sandwich Lie algebraembeddedin Am = ASS(Cl' .. ' ,Cm)
so that cl = 0 = CiZCi for all Z E Cm. In accordance with M. Vaughan-Lee, E.I. Zel­
manov the upper bound of the nilpotency class cl(Cm ) of Cm is cl(Cm ) :5 T(m, 20),
where

T(m,n) = m T (m,n-l).

Perhaps, cl(Gm) ~ m 2 , but it is obvious only for m ~ 4.
Proposition 1. cl(e5 ) ~ 16.
Now let Pm = Gr(al' .. . , am) C U(Am) be a finite sandwich p-group, where D.i = l+Ci
and U(Am ) is the group of invertible elements of the algebra Am over GF(p).
Proposition 2. .

(i) cl(Pm ) = cl(Cm );
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i.-

(ü).. ezp(Pm ) = p for p '» 1.

In particular, we have ezp(P.) = p. for p = 2; p2 for p = 3 or 5; p for p > 5.

c. Leedham-Green: The coclass coqjectures

If G is a group of order pft, P a prime, and nilpotency dass c~ the coclass of G is
defined to be n - c. The coclass conjectures published by M.F. Newman and myse1f
have now al1 been proved in a collaborative efFord by a large Dumber of mathemati­
cians. The conjectures, or theorems as they should now be called, are in descending
order of strength. •
Conjecture A. There is a fUDction f(p, r) such that every p-group of eoc1ass r has a
normal subgroup cf inde~ :5 f(p, r) and class 2. If p = 2, this subgroup ean be taken
to be abelian.
Conjecture B. There is abound to the derived length of p-groups of coclass r.
Conjecture C. Every pro-p-group of finite coclass is soluble.
Conjecture D. There are only finite1y many pro-p-groups of coclass r.

Conjeeture E. There are only finitely many soluble pro-p-groups of coclass r.
In fact a stronger theorem than CODjeeture A has been proved. Define a 'eonstructi­
ble' p-group to be ODe obtained by takiDg a finite quotient of a p-adic space group of
coclass r and (if p > 2) 'twi"sting' the translation group to make it of dass 2. 'rhen
every p-group P of coclass r has anormal subgroup N of order bounded in terms of
p and r such tbat G/ N is constructible.

F. Leinen: Unipotent ftnitary linear groups

Let V be a K-vector space. A subgroup G of GL(V) is said to be finitary linear, if
the degree dim[V,g] is finite for every 9 E G. _
Theorem 1. Every countable unipotent finitary linear group has a faithful finitary
linear representation by unitriangular matrices A with the property, that A - E has
only finitely many non-zero entries.
Theorem 2. McLain groups are not existentially closed (e.c.) in tbe class L,K of all
unipotent finitary linear groups with fixed Iocal degree function.
However, as direct limit of full unitriangular matrix groups with respect to certain
canonical embeddings, we can construct an e.c. .cK-group LK' which bas properties
similar to those of McLtdn's group M((fJ, K). If K is algebraically closed, then Lx
is even e.c. in the class

(joint work with O. Puglisi)
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A.·Mann: Powerful p-groups and the uncovered Conjecture A

A weaker form of the Conjecture A (cf C. Leedham-Green) is that a p-group of co­
class r centers a 'nice' subgroup of sm~ index. We prove the following result of that
type
Theorem 1. A group of coclass 2 (p > 2) contains a powerful subgroup N ~ G, such
that d(N) ~ p2 and IG :NI ~ pp2+1

•

The proof applies some results about powerful groups and about uniserial modules.
The result is helpful in providing shorter proofs for Conjecture E and C. It also
helps in providing a proof with explicit bounds for Conjecture A in the case of unco­
vered groups, i.e. groups containing an element s that does not centralize any factor
Gi /Gi+2 • This special case of Conjecture A is proved by reducing it to the Lie case
of so-called CF-groups, which were treated already by S. McKay.

s. McKay: The correct bo·und to the coclass. of space groups

In 1986 Leedham-Green, McKay and Plesken proved that the coclaSs "of a uniserial
p-"adic space group of dimension pp-l(p - 1) is at least p - 1. In that paper we
conjectured that the correct bound is p rather than p - 1. McKay has now proved
t~at .the coclass. is at least p. We discuss tbe basic ideas of the proo!.

M. Newell: On Engel elements of length three

Let·G be a group and denote by R3 (G) the set {a E G I [a, x, x, xl = 1 for all x E G}.
We prove the following .
Theorem. Let a ~ R3(G)and x E G. Then the groul> H := (a, x) is nilpotent of
dass at most 6 and r4H is a finite group of order dividing 26 •

Corollary. The set R3G is a subgroup of G whenever
1) it consists of periodie elements of odd order
cr 2) G has no non-trivial elements of order 2.

M.F. Newman: Groups of prime-power order viacoclass· 11

This talk continued the report of joint work with E.A. 0 'Brien. The results of the use
of a p-group generation program to obtain information about the iso~orphismtypes
of 2-groups of coclass 3 were outljned. These results were used, together with some
of the results ansing in the proofs of Theorem A (see Leedham-Green'8 abstract), to
state some shorter conjectures about 2-groups.

F(2, r): The riumber e(n) ofisomorphism types of 2-groups of coclass r and order
2" is virtually periodic in n with period 2"-1. .

A p-group P is cofinitely 4e.scendant periodic if it has a proper descendant Q
such that the descendant tree JQ of Q isisomorphic to Jp and the difference Jp - JQ
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is finite. Let P be a cofinitely descendant periodic p-group snd "let Q be the least
proper descendant of P with J Q ~ Jp; tben logp(~) is the perlod of P. (Let 1rp be

the isomorphism. )
DD(2~ ~): Ev:ery infinite pro-2-group of eoclass r has a finite quotient which is

cofinitely deseeridant periodic with perlod dividing 2"-1.

A one.parameter family of p-groups of coclass r is a set of descendants of a
eofinitely deseendant periodie p-group P of eoelass r which is monogenie under 1rp.

A 2-group of coclass r which does not lie in a one-parameter family is -,poradie.

AA(2, r): Tbe 2-groups of coclass r CaD. be divided into finitely many one': •
parameter familiesand finitely many sporadics.

M.F. Newman: Some computations

The Golod-Safarevic Theorem can be viewed as saying that a finite"pro-~presentation

with d generators and r relations defines a ,finite pro-p-group only if r > ~. Wisli-
"eeny in bis leeture reported on the existenee of pro-p-presentations with 'd generators
and ~ + ~ - 7+(;1)d relations which define finite pro-p-groups. This leaves a small
gap. The first ease is 5 generators" and 7 relations. Wisliceny gave a presentation
of this kind whieh might ciefine a finite pro-p-group. A computer program "for com­
puting p-quotients of such presentations shows that Wisliceny's presentation does
define a finite pro-p-group for p = 3,5, 7, 11 and that its order is p55 for p = 5,7, 1l.
Moreover it ean be used to give an outline of a proof for every p ~ 7. We also found
a presentation with 7 generators and 14 relations whieh defines a finite pro-p-group
and one with 6 generators and 10 relations.

E.A. O'Brien: Groups of prime-power order via coclass I

This is the first of two reports of work in progress in association with M.F. New­
man. In this talk I describe the use of direeted graphs to present information about
p-groups of a particular coclass. I present sampie directed graphs for the 2- and
3-groups of coc1ass 1. With each infinite branch of one of these directed graphs, we •
may assoeiate an inverse limit which is a p-adic pre-space group. Hence, the classi-
fication of tbe groups of a particular coclass is closely related to tbe classification of
these pre-space groups. Thc primary computational too1 used in our elassification
project is the p-group generation algorithm. Given a p-group G, it ean be used to
eonstruct certain extensions of G. I present a summary of the theory of this algo-
rithm. "

P.P. Palfy: On the lattice of nor~al subgroups of finite p-groups

In 1877 Dedekind discovered the modular law, namely that for arbitrary subgroups
X, Y, Z of the additive group of complex numbers (X + Y) n (X + Z) = X + (Y n
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•

(X + Z)) holds. This identity is however valid in a more general setting, in the
lattice of normal subgroups of an arbitrary group. The same is true for the so-called
Arguesian law - a lattice theoretic equivalent of Desargue's Theorem from projective
geometry. When Bjarni Jausson introduced this identity in 1953 he asked whether
the dass of lattices embeddable into the lattice of normal subgroups of some groups
is strictly larger than those embeddable into the subgroup lattice ofsome Abelian
group. In a joint work with Csaba Szab6 we answered this question: The identity
Xl 1\ {Y1 V [(Z2 V Y2) 1\ (Z3 V Y3)]} ~ ({[(P12 V P34) A (P13 I\. P24)] V P23} I\. (Z4 VYt» VY4
where 1'ij = (Xi VYj)A(Zj VYi) holds in the subgroup lattice of any Abelian group but.
falls in the lattice of normal subgroups of a certain group of order 220

• The question
for p-groups with p > 2 is still open.

G. Pazderski: Finite p-groups and their conjugacy classes

We refer to a formula due to P. Hall on the number k(G) of 'classes of conjugate
elements of a group of order pn = pe+2m (e =0,1), namely k(G) = pe + (m +ko(p­
1))(p2 -1) where ko = ko(G) is a non-negative integer. Our main topic is the connec­
tion between the possible values of ko( G) and the structure of G. It is looked at from
two points of view. On the one hand general results are stated. For instance:
(1) If N ~ G then ko(GIN) ~ ko(G).
(2) If N ~ G and INI = p and ko(GIN) = ko(G) then GIN and G have the same
coclass or the same cobreadth.
(3) If GIN has maximal class and ko(GIN) = ko(G) then G has maximal class.
On the other hand particularly groups G with ko ( G) = 0 are investigated. They have
maximal class and are characterized by certain commutator conditions between the .
members of the central series. For these groups the characters are given explicitly
and it is shown that their character table do coincide to a great extend.

w. Plesken: Extensions of p-adic analytic groups by p'-groups

Discussing these extensions leads to representation theoretic problems of finite groups
G acting on ~p-Liea1gebras. Evidence is given that for fixed G there are only finitely
many such Liealgebras without nontrivial G-invariant subalgebras. On the group
theoretic side the extensions ean be stuclied by linearizing the problems to lattice
problems as B. Souvignier pointed out. Ir an extension is of finite p-coclass then its
associated Liealgebra is of the above type, but not conversely. In any case the p-adic
groups showing up are of bounded width.
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M.P.F. duSautoy: Zeta functions associated with groups

Let R be a number field and G a linear algebraic group over R. Let f be an S­
arithmetic group in G. We define

cn(f) = card{H ::::; r Ilr : HI·= n and H is a congruence subgroup }

and (f,p(s) := L::=o Cpn(r)p-n6. We prove the following:
Theorem. Suppose that G has strong approximation. Then
a) if p ~. 3 then (f,p(s) is rational in p-6; .. _
~) if p = 2 and SL2 does not occur as a factorof G then (rtp(s) is rational in p-6; •
b) if p =.2 -and SL2 does occur as a factor of G then, if there are finitely many'
Mersenne prjmes' (r,p(s) is rational in p-•.

The proof involves Guralnick's classification of subgroups of p-power index in sim­
ple groups, Shoney and Tidjeman's finiteness theorems for exponential differential
equations together with my result that (a,p(s) is rational .if. G is a compact p-adic
an8.1ytic group.
Conjecture. If r ::::;/ SL2(2Z) and there are infinitely many Mersenne primes then
(r,2(s) is irrational.

C.M. Scoppola:
groups

Lattice of normal subgroups of p-gro~ps and pro-p-

(report on joint work with R. Brandl and A. Caranti)
Let p be a prime, p > 3. Let {Gi} be the lower central series of- the group G. Let G
be a p-group or a pro-p-group such that IG : Gil < 00.

G is a DN-group if G3 :F 1 and (DN) N ~ G, IG : NI = IG : Gil => N = Gi. It is
easy to show that IGi : Gi+1 1 ::::; IG : G2 1 and Gi/Gi+l is elementary abelian. Thus G
is of bounded width. Furthermore
Proposition 1. (with C. Bonmassar)
Let G .be a DN-group, and pd = IG : 4>(G)I. Then the following are equivalent:

(i) d is even.

(ü) G/G3 has exponent p.

(iii) There exists i such that Gi+1 :F 1 and Gi/Gi+2 has exponent p.

(iv). G is not powerful.

No examples of DN-groups are known in which dis odd. No such examples can exist
for d = 3. Johnson and York 'Nottingham groups' N(q), where q is apower of p,
are DN-groups (Johnson and York). We say that G is thin if G isa 2-generated
DN-group and G is not of maximal dass. We have

12
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Proposition 2.

(i) If G is metabelian thin, then IGI = p2n, cl(G) ~ p + 1.

(ü) If G is metabelian, G is thin {::} G / G5 is thin.

(iü) An explicit construction of metabe1ian thin p-groups is given.

A. Shalev: Nonsingular derivations and a proof of Conjecture A

We prove the following quantitative version of Conjecture A of Leedham-Green and
Newman:
Theorem. Let G be a finite p-group of coclass r, and let {Gi} be its lower central
series. Then

(i) If p ~ 2 then G2(p7'_p7'-1_1) has class at most 2.

(Ü) If p = 2 and the order of G is at. least 222
"+5 then G7.2" -2 is abelian.

A.Shalev: Almost flxed-point-free automorphisms

Let G be a finite p-group admitting an automorphism of order pie and pm fixed points.
We show that the derived length of G'is bounded in terms of pie and pm. This extends
a theorem of Alperin dealing with the case k = 1 and gives rise to the following
Theorem. The derived length of"a finite p-group G is bounded in terms of the mini­
mal order of a centralizet GG(x) in G.
Corollary. A locally finite p-group with an element of finite centralizer is soluble.

G. Tiedt: . Über die Existenz eines normalen p-Komplements

Es wird folgende Frage von Asaad (1981) beantwortet:
Sei P eine. p-Sylowgruppe der endlichen Gruppe G. Angenommen NG(P) ist p­
nilpotent und es gilt Ifh(P) n fh(PZ)1 ~ pp-I .für alle x E G - NG(P). Ist G
p-nilpotent?
Im Falle p = 2 ist die Gruppe GL(2,3) ein Gegenbeispiel. Für ungerades p gilt
folgender
Satz. Sei P eine p-Sylogruppe von G, NG(P) p-nilpotent und Ifh(P n PZ)I ~ pp-I.
Dann ist Gebenfalls p-nilpotent.

A. Vera-L6pez: New bounds for the degree of commutativity of a
p-group of maximal class

No doubt, the most important invariant related with a p-group of maximal class G
is its degree of commutativity c(G). Since the defining relations of G are much
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simpler when c(G) is large, this raises the problem of finding lower bounds for
c(G). If IGI =. pm and tbe index of the maximal abelian normal subgroup of G
is pa (a 2:: 3), Blackburn showed that c(G) 2:: m - p - 2a + 4. Shephard, Leedham­
Green and McKay proved that c(G) 2: [m-~p+7], a good bound when working with
fixed p and large ·m. Nevertheless, in ou~ study of conjugacy classes in these groups
we work with m small and p arbitrary. This has led us to work with the invari­
ant b := maz{i I 3j 2:: i + 1 with aij :I O}, where we follow Blackburn's nota­
tion for the ai;'s. Among some other interesting bounds, for b ~ 3 we prove that
c(G) ~ m - p - 2b + 4, generalizing Blackburn's result (since b :5 a) and that
c(G) ~ m-~±6. Since b ~ !f, this last inequality yields good boun·ds for a1l primes p"
Also, we precise when we can substitute 4 by a greater integer in Blackburn's type
bound: if 4 ~ k ~ p aod m :$ 2(p - k) + b + 4 tben c(G) 2:: m - p - ·2b + k.

A. Weiss: Finite subgr!lups ofthe 'Nottingham' group

The Nottingham group is the group of automorphisms (T of tbe ring 1Fp[[~]] (of formal
Taylor series over IFp ) whicb ~atisfy ut == t mod t2

• Using methods of Galois theory
one cao show that the Nottingham group contains, up to isomorphism,

1) every finite p-group

2) an infinite abelian group of exponent p

3) etc.

v. Welker: On the set of p-subgroups of PGLn(q) for p I q - 1

Let p be a prime. We denote by Sp(G) the partially ordered set {P 11 :f IPI = pi} of
all nontrivial p-subgroups. To· Sp(G) we associate the simplicial complex CSp(G) =
{Pt< ... < Pie I Pi E Sp(G)} of all chains in Sp(G). This complex. has been firstly
studied by Guilleu and has gainecl: considerable interest recently. We derive the di-
mension of the unique nonvanishing homology group of CSp(G) for G = PGLn(q) •
and pi q -1.

J. Wisliceny: Minimale Anzahl von Relationen bei der
Präsentation algebraischer Strukturen

Die vorzustellenden Untersuchungen zur Präsentation algebraischer Strukturen mit
möglichst wenig Relationen knüpfen an eine Optimalitätsaussage zum Satz von
Golod-Savarevic an, nach der eine Folge endlicher p-Gruppen existiert, für die der
Quotient ;f2 gegen ~ konvergiert (d Erzeugendenrang, r Relationenrang).

Folgende Ergebnisse seien genannt:
Es gibt Pro-p-Gruppen G mit d(G) = 5 und r(G) = 7, so daß gpl0 e und
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·e

(... (91,92),93), ... ,91S)p2 = e für beliebige gi E G gelten. Es existieren analyti;.
sehe Pro-p-Gruppen G mit d(G) = 5 und r(G) = 7 (ebenfalls z.B. mit d( G) = 7 und
r(G) = 14).
In der Varietät der metabelsehen Liealgebren gibt es zu jedem n ~ 2 nilpotente Lie­
algebren mit n Er~eugenden und 2n - 3 Relationen. In der Varietät der metabe1scheI;l
Pro-p-Gruppen existieren endliche Pro-p-Gruppen mit n Erzeugenden und 2(n - 1)
Relationen.

Berichterstatterin: Gabriele Nebe
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