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The meeting was organized by A. K. Louis (Saarbrücken) and Y. Meyer (Paris). The
tone of the conference was set hy an objective hut controversial scientific exchange of
ideas. All participants agreed that the results presented signify an important progress
and that these ideas will stimulate their further research.
The lectures can be divided into three areas:

a) Construction 0/ wavelet bases, applications 0/ wavelets in Analysis

Within the theory of wavelets, the construction of a family of arbitrary smooth
wavelet bases in 1R2 and on intervals is of most important interest. For 1R2

, both
the analytic and the geometrie approach were considered. A complete solution
of the problem seems to be only a matter of time.
Great attention was also directed to the investigation cf Riemann's function,
the classification of singularities of signals and the analysis cf seH-affine, fractal
functions.

b) Application 0/ wavelets in Numerical Analysis

In contrast to many papers on the subject, the numerical methods and algorithms
shown at the meeting are based on very special properties of wavelets. These
algorithms could not be done in the same way with other techniques. The abstract
connection of multi-level methods {hierarchical bases}, multi-grid methods and
wavelet decompositions was clarified. Surely, the ultimate success in such a young
field cannot be established quickly but the given approaches do justify optimism.
The early euphoria about the tool 'wavelet' is changed into a rea1i~tic judgement.

c) Application 0/ wavelets in Signal and System Theory as weIl as Image Processing

Most of the lectures were related to the 'elassical' applicaticns of wavelets. The
spectrum ranged from more theoretical to very practical (commercial) work: in­
vestigation of frames of the affine group, irregular and efficient sampling of the
wavelet transform, analysis cf isotropie processes on the homogeneous tree, time­
frequency representation of stochastic self-similar processes and bidimensional
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signals. The lectures on image understanding, image eompression and neural
networks were more applied. The presentation of a eommereially distributed soft­
ware package for image processing, which only uses wavelet techniques, showed
the possibilities and efficiency of such methods.

The organizers and participants thank the 'Mathematisches Forschunsinstitut Oberwol­
fach' to malte the 'conference possible in the usual comfortable and inspiring setting.

Abstracts:

Y. Meyer: e
Wavelets, chirps and the Riemann senes 2:~ n-2 sin(n2z)

B. Eseudie and B. Torresani studied asymptotic signals with the help of the wavelet
transform. We are using wavelets for studying a class of chirps denned as follows. We
eonsider functions g(z) of the real variable z which ar~ T -periodic (T > 0) and satisfyJ: g(z)dz = 0 and 9 E C"(lR) , the Bälder class. A (generalized) chirp is defined as
j(z) = IzIOg(lzlß) where ß > 0 and a E IR (if er ~ -1, /(z) is distribution). The
wavelet transform J /(z)1/1a,&(z)dy, 1/1a,&(z) = :tPC~~&),a > 0, of a chirp attains its
maximum on the 'ridge' (defined by a = IbIß+1

) and its restrietion to the ridge is called
the 'skeleton'. The skeleton is an improved chirp.

Applications are given to the behavior of the Riemann function near the regular points
(where the derivative exists).

L. Auslander:

M -Expansions and Geometrie Invariants

Let H be the Hilbertspace of funetions on IR2 satisfying the functional equations
1 1

F(z,y + 1) = F(z,y);F(z + 1,y) =: e21ritlF(z,y) and JJF(z,y)dzdy < 00." We
o 0

deseribed some of the continous functions in H and discussed the winding ~umber of
functions. That are eontinuous and in H. We will say that G has an M-expansion
relative to F if G = Ln Lm F(:r:, y)e21ri(....+nIl). We showed that if F is continuous the e
M -expansion is never orthonormal. We defined the eoncept of approximate orthonor-
mal bases and constructed examples o~ such. Some discussion of the use of approximate
orthonormal basis in radar and soner was discussed.

S. J affard:

Wavelets and Hausdorff dimension of singularities of signals

The characterization of functional spaces on wavelet coefficients allows to obtain re­
fined sobolev imbeddings. For instance, we .prove, that if F E W·,p and s > ;, then,
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the Hausdorff dimension of the set where F is C a
( s - ~ < a < s) is at most n - (s - a)p

(f is ca at Zo iI there exists a polynomial P such that If(z) - P(x - xo)1 :::; clx - xola).
The characterization of pointwise regularity (the belonging to ca at xo) on the wavelet
coefficients allowes to obtain other applications. For instance, a function belangs to
ra(zo) iI it is essentially Ga at Xo and not better. The spectrum of singularities of f is
the function which maps to a the Hausdorff dimension of the point Xo when f belongs
to ra(zo). WaveI.ets allow to construct a function f whieh has a prescribed spectrum
of singularities.

A third exampie is given by analyzing by adapted wavelets a large class of gaussian
proeesses that include fractional brownian motion, but also processes with non­
stationary incements. The wavelet coefficients, for this paritucular choiee of wavelets.
become i.i.d. gaussians. Then the Ioeal and global moduli of eontinuity of the process
are obtained.

S. Da.hlke:

Wavelets adapted to differential operators

We use wavelets as basis funetions for a Galerkin approach for the numerical solution
of partial differential equations in IR2. Sinee the structure of the resulting stifl'ness
matrix depends on the basis functions and on the differential operator, we adapt the
wavelets to a given problem such that the stiffness matrix has a simple structure, and,
in some cases, a uniformly bounded condition number.

One approach constructs wavelet bases directly from a generalized orthogonality con­
dition induced by specific differential operators. To be able to treat a wider class of
problems, we construct in a different approach an adapted biorthogonal wavelet basis.

W. Dahmen;

Multilevel preconditioning and wavelet computations

This talk is concemed with a general multilevel setting for preconditioning linear sys·­
tems arising from Galerkin schemes for elliptic boundary value problems. The general
results imply, in particular, that the BPX scheme (also for nonuniform adaptive re­
:finements) as well as orthogonal and biorthogonal wavelet bases give rise to uniformly
bounded condition numbers. The results are based on Besov space characterizations
in terms of sequences of linear projectors onto nested approximation spaces satisfying
appropriate Bernstein and J ackson estimates, which in case of scaling functions for
wavelets already follow from their smoothness and re:finability. It is also pointed out,
that re:finability leads to a unified treatment of the basic computational tasks, such as
computing stifl'ness matrices, in that these computations can be reduced to an eigenvec­
tor/moment problem whose size depends only on the support of the scaling functions
and wavelets.
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A. Rieder:

Semi-algebraic multi-level methods based on wavelet decompositions

For the iterative solution of a linear system we present a multi-level method based on
a wavelet approximation of the successive err9rs of a classical iterative metho~i. The
resulting iteration is a hybrid between a pure algebraic multi-level technique and the
usua! multi-grid technique related to a discretization of an elliptic differential operator.
The methods inherits its mean feature, i.e. the eoarse grid correction term from the

. 'continous' multi-grid iteration hut it despenses with geometrie considerations to define
the coarse-to-fine and the fine-to-eoarse transfer. Furthermore the restriction and pro-
longation operators of the method can be adapted well to' the smoothness of the error. •
Moreover, we are also ahle to solve linear equations ansing from the discretization of
integral operators of the first kind.

T. Yserentant:

Subspace decompositions nom the view of partial differential equations

Stable subspace decompositions of finite element 8paces (and wavelet-spaces) have de­
veloped into an important tool for the eonstruction and analysis of fast solvers for
elliptic partial diffenrential equations. For multigrid methods, this approach com­
plements the classical interpretation, especially as it concerns nonuniformely refined
meshes.

The talk gave an review to recent theories of fast solvers based on such subspace
decompositions, its applications, the hierarchical basis decompositions and L 2-like
decompositions (leading to classical multigrid methods) have been considered. The
relations to approximation theory have been discussed.

A. Benveniste:

Multiscale system theory

Orthonormal wavelets are generated by filters H(ei6 ), G(ei6 ) satisfying the standard
QMF property. Combining these operators with decimation, we get operators 'J-l"g :
12(2nzt) -+ 12(2n+l~) for each n , and it holds that 12(7Z) = Im'H.* EB ImY*.' So it is •
natural to consider 'H., y as acting from I2(C) into itself, where C is the dyactic tree.
We study the multiplicative algebra of linear combination of monomials into such 4-
tuples {'H,Q, 'H*,Q*} where it holds that 12(C) = Imfi* EB Img·. Rationality of such
systems if defined. Charactenzation of stationary systems (systems commuting with
translations of C) is given, and stationary gaussian tandom fields on C are studied.
Such stochastic processes exhibit a behaviour of fractal type.
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I. Daubechies:

Nonsepa.rable two-dimensional wavelet bases

The standard construction of (orthonormal. or biorthogonal) wavelet bases in 2 dimen­
sions uses a tensor product strueture, invol~g I-dimensional wavelets and sealing
functions. One can also make a 'genuinely' 2-dimensional eonstruetion, in which the
dilation is given by a 2 x 2 matrix D. In general one then needs to find (det D )-1
wavelets; the case det D = 2 is therefore especially simple. Two possible choices of

such D are R =:0 (~ -~) and S = ( ~ ._~). They correspond to the same

subsampling lattiee Dzt2 , hence to the same equation for mo, the trigonometrie poly­
nomial underlying the multiresolution analysis to be eonstrueted. An infinite family
of solutions for mo leads to arbitrarily high regularity for 4>, t/J if S is used but not if
D = R. Similar (hut symmetrie) eonstructions can be made for the biorthogonal case,
where S and R give the same resuIt. Nonseparable wavelet hases of this type are used
in image compression.

A. Cohen:

Wavelet bases adapted to a.il interval and applications

Wavelet bases and multiresolution analysis are usually defined in the framework of
.funetions defined on the whole real axis. In many praetical situations, the function
to he analyzed is known (or restricted) on an interval, say [0.1]. Wavelets have to be
adapted at the edges if one wants to avoid 'horder effeets' in the algorithms.

In this talk, I reviewed same methods to eonstruct wavelet hases on the inverval and
finally deseribe a eonstruetion by I. Daubechies, P. Vial. and myself (which was inde­
pendently found by B. Jawerth) that preserves the main properties existing in L2(IR)
- loealieation, regularity, eancellation - and allow to derive a simple algorithm.

The applications presented are image coding (removed of the horders artefacts) and
an inverse problem in geoseismie in whieh one wishes to isolate in the high scales, the
diseontinuities in the underground without being infiuenced by the limit of the image.

• P.Maaß:

Families of orthogonal 2D wavelets

We consider wavelets related to two dimensional muItiseale analysis with a dilation ma­
trix A, Idet(A) I= 2. The Fourier filters of orthogonal wavelets satisfy the orthognality
relation

IH(wW + IH(w+1T (~ ) 1
2 = 1 (*).

We observe that /Corth = {qlq = jHI 2
, H solves (*) } has a Hat subspace, namely the

set of induced I-dimensional filters /Cl' Moreover the extremal points of the convex set
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Jel are known to be the Daubechies-wavelets DN . The construction of I-dimensional
wavelets utilizes a factorization technique for positive triginometric polynomials. An
equvialent technique is not known in higher dimensions. The starting point for our
construction is an explicit description of the tangent space of JeOf'th at DN. Starting at
DN we can trace JCOf'th along its tangents ~hich gives a variety of families of orthogonal
wavelets. Examples for the quinconx grid are given.

C.K. Chui:

On Frames of the Affine Group

Thjs is a joint work with X.L. Shi. Under a very mild condition on the decay at· •
infinity and either the assumption of piecewise Lip (k, some a > 0, continuity, or a
very mild assumption on the control of the variation of 1/;, where 1/; E ~2( -00,(0), we
prove that {tPbi.i,Ie} is a Bessel family, if and only if.,p has zero mean. Here, tPb;j,Ic(Z) :=
ai / 2tjJ(ai z - kb), where a > 1 and b > o. We also prove that the same conclusion can
be made if ~(w) is dominated by some e(lwl), where e(z)/z is integrable at 0 and
8(z)z integrable at 00. Hence, for a = 2 and b = : where n is auy positive integer,
all the known wavelets give rise to frames. On the other hand, sufficient conditions for
frames are also derived. We also study the problem of preservation of frame bounds in
the oversampling process. In this direction, we have shown that if a ;::: 2 is a positive
integer and {.,pb;;,Ic} is a frame, then {n-1/2.,pb/n;;,h} is agam a frame with the same
frame bounds, provided thai (a, n) = 1. Consequently, under this condition, a tight
frame remains tight in oversampling. However, this conclusion is not valid in general
if (a, n) 1:- 1. We also extend this result to preservation of frame senes representations
for frarnes with duals, again by oversarnpling.

A. Benveniste:

Wave1et networks

Functions of the form
J(z) = L wlc1{J(akZ + blc )

Ie

aie studied, were.,p is a wavelet. Such fes can be used as universal approximants for
functions, note that both wes, a's and b's are adjusted. Experiments of fitting such
models !rom noisy data using stochastic gradient techniques are reported, very much
likewise neural networks. Then both synthesis and decomposition formulae af continu­
aus wavelet transform are used to derive tight bounds for both the approximation and
fitting-frame-data problems. The idea is to draw translations and dilations at random
from some 'probability' exhibited by the wavelet decomposition formula.
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A. Grünbaum:

Loeal vs. global operators: translations, dilations and beyond...

I diseuss the eonsequenee of insisting that a eertain natural family of integral operators
should aetually be given by differential operators. This problem makes sense for any
manifold, like the sphere, where one does not have a niee theory of wavelets. Problem: .
Under what eonclitions on the differential operator L in IR ean one find nontrivial
differential operators e such that e-tLeetL is a differential operator in IR . Among the
solutions one ean find manifolds of potentials V with L = D 2 +V, such that translations
and clilations, as wen as a whole infinite hierarchy" of other operators (ineluding the
K dV ftow), aet nieely.

T. Beth:

Fast algorithms for the feature transform

It is argued that wavelet transforms are special kinds of correlations of signals ~ with
a test feature r.p being moved, sealed ete. nnder a group G.
This group GiSgenerally the holomorph

Hol(N) = AutN X N

of a translation group N, which, if it is loeally eompa.et and possibly abelian, allows
direct eompansons between the wavelet transform

V(A, b) E Hol(N) T.(A, b) = J8(~Jcp(A~+b)~
Ef.U

and the Fourier-Transform for which fast algorithms are available. Wavelet-transforms
in tbis sense are feature transforms from finite energy signals. to the group algebra

~ : L2(IlF) -+ CV[G] .

In order to do proper eomputations, we only consider the representation on L2( N) of
QJ[G].
Generalized Wedderbun-Direchlet-transforms give the equivalent to the Fourier­
transform. It is shown that the W DT of a picture g(~) = E Wir,o(Ai~ + ~) gives

i=1
N

9 = tP . L: Wi~ where Pi = p(A.;., bi ) are the representations of the 'motions' (~,bi ).
i=1

Thus we have obtained a position deseriptor in the representation domain, from whieh
picture processing and understanding ean be derived.
This talk is concluded with a suite of transparencies of the mechanisms applied to
implement the motion transform using Mackey's theorem, (joint work with H. HartU.
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B.G. Feichtinger:

Wiener amalgam spaces with applications to (irreg.) sampling of Wavelet

Transforms and band-limited functions

Given 2 suitable Banach spaces B, C, ego B == lJ', F LI", B;,g, Co, M or C ==' L:, or
mixed norm weighted spaees, we define

W(B, C) = {/II E B1oc , F : z --. II(T;a:k) . Ills belongs to C}

is the Wiener amalgam space with loeal component B and global eomponent c. There
Me natural results on duality, multiplication, eonvolution (just do it seperately for •
the loeal and global eomponent). There are also· Hausdorff-Young inequalities (cf.
Oberwolfach, Hutzer-Konf., 1980). Here we present applietion to the following eases:

i) LP-convergence of usual Shannon-series for LP , 1 < P < 00 :

(*) I = L l(o:n)Tan9 for 9 = sine.
nE2Zm .

ii) jitter error estima~es, of I(Cln +1'n) or TQQ+6Q9 is used.

üi) convergenee of (*) in ~, if 9 E L~ with compact spectrum, for I E .L:, (band­
limite<!).

iv) (LiEllf(Zi)IP)l/P ~ Cllfllp for band-limited funetion, if (Zi) is relatively sepa­
rated (= finite union of separated sets).

There is an analogy for wavelet transforms:
F(z) := (1r(z)g, I), where 9 is the analyzing wavelet, also satisfies a similar convolution
relation: F = F * G, with convolution on the I az + b'-group (1r being the natural
representation on L2(1R"'). Therefore jitter errors (for example) can be estimated in a
similar way.

K. Gröchenig: •

Irregular Sampling of Wavelet Transforms

We discuss the problem of irregular sampling for wavelet transforms Wgf(z, s) =
(9z•• , I) , where 9z.•(t) = S-l 9 (t:a:) , for z E JR., s > o.
H the wavelet 9 is band-limited and satisfies supp 9 c [-n, -w] u [n, w] for some
o < w < n and Ig(e)1 2:: c > 0 on a subinterva! of the support, then any set of the
form. (Zjlc' si) in the upper half plane is a set of sampling for Wgf under the natural
assumptions

8j+l. n
sup -- ~ ~ < - and
jE:E 8j W

Z . Ic+l - Z - j k 1r
sup ). == 5 < - .
~~:E ~ n

8
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This means that L ~(Zj+l.1l - Zjlc) In~ 1Wgf{Zjll , 8;)1 2 defines a norm equivalent
;,lce7Z J

to 11/11 2 • Here the occuring constants can be estimated explicitly. The oecuring weights
balance local variations of the sampling density and are a new feature of irregular sam­
pling.

J. Byrnes:

A Low erest Factor Complete Orthonormal ~et

We construct a sequence of polynomials {Pn,m(z)}, n 2:: 0, 0 ~ m ~ 2n
, each of which

is a quadrature mirror filter, and eaeh of which also represents an antenna array with
erest factor V2. (The crest factor, im mathematical terms, is the ratio of the sup
norm to the L2 norm of a polynomial on yhe unit circle). Furthermore, by defining
Qn.~ = (1 ~ z) Pn.m(Z2), and then taking the sequence of piecewise constant functions
on (0, 2pi) whose values are the ±1 eoefficients of the Qn, m's, there immediately results
a complete orthonormal set (CONS) for the space L 2 (0, 21r) (and, in fact, for G[O, 21r]).
Finally these· 'Walsh-like' (but definitely not Walsh!) functions, when eombined with
wavelet-like dilations and translations, give a CONS for L 2(JR) which is optimal with
respect to the uncerta.mty principle.

w. Hackbusch:

Panel Clustering

The boundary element method (BEM) in JR:i leads to large full matrices and therefore
to the disadvantages of a high amount of work for the assembling of the system matrix
and for the matrix-veetor multiplication. The panel clustering method involves an ex­
pansion of the kernel into Taylor's series of a eertain length and a tree of clusters. It
is essential that the surface ean be represented as a disjoint union of O(log n) clusters
where n is the number of panels. This leads to a work of O(n logd+l n) operations per
matrix-vector multiplieations. Also the storage turns out to need O(n logd+1 n) data.

A. K. Louis:

Wavlets and Inverse Problems

In inverse and ill-posed problems typically the high frequency components are strongly
affeeted by data noise. The standard methods for regularization of these problems
which is a trade-off between aecuraey and damping of the noise need apriori infor­
mation and a selection of a parameter depending on the smoothness of the solution
and the data error. The wavelets provide a tool to seperate the different frequencies
in the solution. The deeay rate of the wavelet eoefficients give the possibility to insure
the smoothness of the approximations. The wavelet decomposition is formulated as an
iterative proeess with stopping rule leading to an order-optimal regularization method.

9
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D. Walnut:

Wavelets &Ud the Radon transform

Recently Holschneider, Kaizer, Streater, Louis, Donohue and others have pointed out
a eonneetion between wavelets and the Radon transform. We investigate this relation­
ship and derive an inversion formula for the Radon transform based on the eontinuous
wavelet transform:. These formulas give direct reeonstruction of f or l!:. -1/2f can be
recovered from tms data. We show that these fonnulas can be applied to the problem
of local inversion of the Radon transform in even dimensions, as studied by Smith,
Faridani, Natterer, Keinert and Ritman.

R. Schneider:

Wavelet Approximation Methods for Periodie Pseudodifferential

and Calderon Zygmund Operators

General Petrov Galerkin methods for the numerieal solution of periodie pseudodiffer­
tial equations based on a multiresolution analysis for trial functions and· admissible
distributions as test functionals are investigated. A convergence theory is established
in a framework of a symbolic calculus for the corresponding family of finite dimensional
operators. Necessary and sufficient conditions for quasi optimal convergence are formu­
lated. The perspective of a wavelet basis for efficient numerical calculation is discussed.
In particular, preeonditioning and eompression of the ansing stiffness matrices up to a
fixed error bound or to obtain optimal eonvergence rates are investigated.

P. Flandrin:

•

Time-Scale Analysis of Stochastic Self-Similar Processes

Time-seal analyses are we11-suited for analyzing nonstationary proeesses which exhibit
self-similarity struetures. Globally self-similar proeesses, such as fractional Brownian
motions, can be approximately 'whitend' by wavelet (orthogonal) decomposition~ pr~
vided that a sufficient &mount of moments is vanishing. In the case of loeally self-similar
processes (e.g. variations on fraetional Brownian motions on the Weierstraßfunction
with time dependent index), instantaneous sealing laws can be recovered from time- •
seal energy distributions generalizing in a bilinear way the classical continuous wavelet
transforms. .

B. Claus:

Isotropie processes on the homogeneous tree

The coefficients of the (ID) wavelet-transform live on the dyadic tree, while in image
processing we encounter a pyramidal index-strueture, i.e. a homogeneous tree of or­
der 4. This is the motivation why we develop as a counterpart to the (deterministic)

10
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wavelet-transform a theory of stochastic processes indexed by the nodes of a homoge­
neous tree of order q.
The simplest concept which eomes to mind are isotropie processes, i.e. proeesses which
covariance function depends only on the distance on the tree. We introduce generalized
Levinson- and Schur-reeursions, and we obtain thus two equivalent characterizations of
the process: The covananee sequence r which admits a generalized Bochner-like repre­
sentation (due to Amaud), and the refiection coefficient sequence k, with -1 ~ kn ~ 1
for n odd, -1/q ~ kn ~ 1 for n even (recall that q is the order of the tree).
One defines AR(n)-processes by the condition kn f. 0, km = 0 Vm > n. We adressed
tbe following identifieation problem: Fix an AR(n)-model (on the tree) to a standard
ID-signal, whieb is supposed to be tbe restrietion of the tree-process to one level of .
tbe' tree. Via a maximum likelihood crition one computes the optimal position of the
signal with respect to the indexing tree, and we obtain estimates of the even-indexed
covariances r(2i). H the process is supposed to be AR(n), then we have only two valid
interpolations of the sequence T(2i). Having thus obtained the convariance sequence T,
we 'reconstruct' the process by calculating the conditional expectation ofthe process
on the subtree above the level on which the signal was observed.

H.-G. Stark:

Aremark on image understanding and invaria..nce groups

An outline of knowledge based on computer vision, leading to a picture description as
attributed relational graphs, is given. The nodes are labled by 'property values' of the
image parts. Those properties actually are (realvalued) functionals in the image space.
Position and scale invariance of the objects is related to invariance of the properties
under the adjoint representation of IG(2) on the linear space of the functionals. It is
argued that linear properties cannot be invariant i~ the above sense and examples of
nonlinear invariant properties are given.

J. P. Antoine:

The scale-angle representation in image analysis with 2D wavelet transforms

The 2D continuous wavelet transform (CWT) of a signal 8 is given by 5(a,~,b) =
{t/JaiJb, 8), i.e the L2 inner product of the signal with the wavelet tPo."b, obtained
from 1/J through translation by b E 1R2

, dilation by a > 0 and rotation by angle iJ:
tPaiJb(Z) = a-1tP(a-1R-iJ(z-b», R! the usual2 x 2 rotation matrix. Whereas the
CWT is usually used in the position representation, i.e. for fixed a, ~, the scale-angle
representation consits in analyzing the transform. 5 as a function of (a, iJ) for Cl: fixed
(observation) point b. The interest of this representation is illustrated on the following
two problems:

• evaluating the performance of the wavelet 1/J through its reproducing kernei, in
particular its selectivity in scale and direction (as needed for discretizing the

11
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reconstruction formula), the standard examples treated being the mexican hat
and the Morlet wavelet .

• °determining all the parameters of a linear superposition of damped plane waves
(this is the 3D analog of the detection o! spectral lines).

Additional information on the angular selectivity of a given wavelet may be obtained by
computing the CWT of a simple signal with an intrinsie orientation, e.g. a half infinte
segment. We analyze the lattice with the two wavelets mentioned above. The result
suggest a quantitative definition of the angular resolving power of a given wavelet .

Referee: Andreas Rieder
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