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This conference was the sixth one on quadratic forms in Oberwolfach. It was orga­
nized by Knebusch (Regensburg), Pfister (Mainz) and Scharlau (Münster).The most
interesting event probably was the historical discovery by J.Minae and L.Hallock who
convinced the audience that the algebraic theory of quadratic forms had already
been known in the Middle Ages at famous Prince Harnlet 's court. This knowledge,
however, subsequently.got lost by unfortunate circumstances until about thousand
years later it was discovered again by Witt and Pfister.
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Vortragsauszüge

E. Bayer .
. SeIf-dual notmal hases (joint with J.-P. Serre)

. Let K be a field of char ~ 2, and letG be a finite group.· Let L be a G-Galois
algebra over K. Let qL : L --+ K, qL(X) = TrLfK(x2

), be' the trace form. This
form is invariant under G. Theproblem consldered in this talk is to determine the
isomorphism class of this form as a G-fortll. In particular, L/K .is said to have a
"self-dual normal basis" if this form is the unit G-form; in other words, if there exists
a E L* such that qL(a, ga) = 1 if 9 = 1 and 0 otherwise. We solve this problem
when the 2- Sylow subgroups of G are elementary abelian or quatemionian of
order 8.

E. Becker
The trace formulci and some, geometricapplic~tions

Let B be an A-algebra, f.g. projective as an A-module, (M, cp) a bilinear B-space,
possibly degenerate. In- this situationone has the fo~lowing trace 'formrila for-every
~'Q E SperA : .

sgllo tralA (cp) = E sgn,8(CP)
ßESperB

. IJlo

This fonnula and the ~oeas behind allow at least the following applications: .

1) Counting real points on O-dimensional varieties (which can be considered as a
multivariate version of the classical Sturm's theorem)

2) a constructive approach to the O-dimensional case of the Bröeker-Scheiderer
theorem about the description of basic-open semialgebraic sets

3) a short proof of Tarski's qtiantifier elimination result in the theory of real e
closed fields

4) a short proof of the open mapping theorem of Elman, Lam and Wadsworth.

J .-L.. Colliot-Thelene (travail en commun avec A.N. Skoroboga­
tov)
Groupe de Chow des zero-cycles sur les fibres en quadrique's

Soit k un corps, car (k) ~ 2, puis G/k une eourhe projective et lisse et p:, X --+ G
UD k-morphisme propre, avec X/k une variete projective et lisse. Supposons que la
fibre gen~rique X.,,/k(TJ) est une quadrique lissesur le corps k(C), corps des fonctions

                                   
                                                                                                       ©



e·

1\ . _ - . 1\ - -
fIke.cK * /(K*)2 is surjective, where the "sheaf product" ITkeK:K* /{K·)2 is the sub-
group of IIf<eK: [(* /([(*)2 consisting of all ~'loeally constant" elements. We. prove

1\
(with n denoting the appropriate sheaf products):

Theorem: The following eonditions are equivalen~:

1\ _

(a)' W(K) ~ IIke.cW(K) naturally

1\ 1\"_
(h) W(K) ~ IIke.cW(K) naturally

(e) The maxiinal pro-2 Galois group Q(K(2)/K) of K is the free pro-2 product of
tbe groups fJ(K(2)/K), [( E K,;

(d) K has the SAP with respect to K, and every K -quadratic .form which· is [(-
~otropic for'ap Ke K, is K -isotropie. ' .

This is used to classify the quadratie forms over thefield of totally real numbers
and, more generally, over fields K with cd K(ver) :5 1.

A.J. Earnest
·Developments in the spinor genus theory for integral quadratic
forms

For n = 2,3 and 4, examples of positive definite integral quadratic forms of rank n
are known for whieh the spinor genus and class coincide, but for which the genus
and class da not. .
Theorem: Let f be a positive definite integral quadratlc fonn of rank "exeeeding 4.
Then tbe spinor genus and class of f eoincide if and only if tbe genus and class of f
eoineide. .

For fonns of rank 3, tbe theory oi ,spinar genus representations in some cases plays
a key role in rletennining which integers are represented hy' a given form. Explicit
eomputations of certain Ioeal spinor norm groups are given whieh m~e possible
'the detennination of all integers wbieh are primitively represented by a genus of
temary fonns, hut are not primitively represented hy every spinar genus in ~hat

genus. These results are applied to analyze the primitive representation properties
of an interesting list of positive definite temary quadtatic·forms first faund by Jones
and PalI. So~e of tbe results presented here were obtained in joint work with J.5.
Hsia and D.C.Hung.

3
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de C. Soit d Ia dimension de eette quadrique. On suppose d 2: 1.
Soit CHo(X), resp. CHo(C), Ie graupe de Chow des O-eycles de degre zero modulo
I'equivalence rationnelle sur Ia variete X, resp. C.
On donne une formule pour Ie graupe

CHo(X/C) := ker p. : CHo(X) -t CHo(C).

Cette formule identifie CHo(X/C) aun sous-quotient du groupe multiplicatifk(C)* .

• Lorsque k est de dimension cohomologique ~ 1, cette formule identifie
CHo(XIC) =O. .

• Supposons d = 1. Dans ce cas, une fonnule essentiellement equivalente est
apparue dans des travaux anterieurs de S. Bloch (1981), Sansuc et l'auteur
(1981), P. Salberger (1985) (lorsque C est la droite projective), puis de M.Gros
(1987) et Ököchi (1987) (lorsque C est une eourbe quelconque). Si de plus k est
UD corps p-adique, ou UD corps de nombres, cette fonnule a pennis d'etablir la
finitude du groupe CHo(X/C) (resultat que 1'0n sait aussi maintenant obtenir
par des methodes plus generales de K -theorie algebrique).

• Supposons d = 2. Dans ce eas, on peut associer a X/C une fibration Y/ D
de dimension relative 1, avec D IC le revetement discrimina~t associe ä. XIC.
Notre formule permet d'etablir une injection

CHo(X/C) f-+ CHo(YID).

•

De ceci resulte, lorsque k est un corps p-adique ou un corps de nombres, la
jinitude du groupe CHo(X/C).
(Dans une autre direction, rappeions le theoreme de finitude obtenu par Sal~

berger (1985) pour les fibrations en varietes de severi-Brauer au-dessus de Ia
droite projective.)

• Lorsque d 2: 3, et k est UD corps p-adique OU un corps de nombres, il est •
tres vraisemblable que CHo(XIC) est toujours UD groupe fini, et que des que
Ia dimension relative d est assez grande, ee groupe est nul si k est p-adique,
et contröle par les completions reelles si k est un corps de nombres.Mais
'notre formule ne pennet pour I'instant d 'obtenir ce resultat que dans des cas
particuliers.

I. Efrat
Local-global principles for quadratic forms and Galois groups

Let K. be a collection of pro-2 extensions of a field K of characteristic "I 2 which
is closed in the inverse limit topology. We say that K has the strong approxi­
mation property (SAP) with respect to K:. if the natural homomomorphism f<. -+

2
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Proposition: There exists a s.s. cpo,... ,CPP for cp such that p = dirn Ct.

Corollary :' S K( cp) ~ ~imr-1

Remark: 1. The eorollary tells us that if cpK is isotropie there exists an isotropie
vector (over K) of the form

P P

" t i
-

1 +" t
i

V = Vo + L.,Vi S L., Ui
i=O i=O

'with p :5 2dimcp - 2.
2. There is another way to interpret the s.i. of cp : SK(<p) = n iff <p contains a
2n + 1 dimensional K-minimal form and no K-minimal form of smaller dimension..
(For the definition of K-minimal form cf. D. Hoffmann's talk).

o. Heddinga
Residue and transfer maps

Let R be a discrete valuation ring with maximal ideal p, prime element 1r, residue
field k and quotient field F. Let L :. F be a finite extension s.t. the integral closure
D of R in L is finitely geilerated over R. Let ql, ,qr be the prime ideals of D with
prime elements IIi and residue fieids k(qi) (i = 1, ,r). Denote by ai(resp. a:

i
) the

seeond residue map with. respect to 1r (resp. IIi ). Let S' : L -+ F be a nontrivial
F-linear map and define 'Ds := {y E LI S(yD) ~ R} = xD. '
Define Si : k(qi) -+ k. by a ........... S (1r~ilxpr;l(a») mod p, where pr;l(a) is any

element Ct E L s.t. 0 mod qi = a and Ctni~ E q;l. Tben Si is a well defined
nontrivial k-linear map. Using WT-groups one can prove the commutativity of the
following diagram

W (k(qd)

! ESä*

W(k)

where 8i,z = afi. 0 m<~> and m<z> is tbe multiplication by < x > .

D. Hoffmann
Isotropy of quadratic farms over the function Held of ~ quadric

Let F be a field of char.;e 2 and let K be an extension of F.

Definition: An anisotropie quadratic ~orm cp over F is ealled K-minimal if i)
epK = cp 0F K is isotropie ii) Any proper subform 1/1 of ep stays anisotropie over K.

5
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R."W. Fitzgerald
Graded Wittrings and Ext-alge~ras

Let F be a field with Char F i:- 2. We prove:

Theorem: H F* / F*2 is finite then Milnor's map t* : k*F -.. H*(G, Z /2) is injec­
tive.

Corallary: H F* / F*2 is finite and the map e* : grW F ~ H*(G, Z /2) is well-defined
then e* is injective. Here G is the Galois Group of a quadratic closure Fq over •
F, H·{G, Z/2) the Galois cohomology algebra, k.F Milnor's mod 2 k-groups and
grWF the gradedWitt ring. The proof involves eomputations with Ext-Algebras,
partieulary the subalgebra of ExtgrWF(Z/2, Z/2) generated by Ext1

.

"J. Van Geel (joint work with D.W. Lewis)

Let F be a field of char ~ 2, and K the generie splitting field of a eonie < 1, -a, -b >
defined over F. Then K is isomorphie to tbe field of fractions of the domain R ==
F[s, t]/(,,2-af~-b). M. Rost proved the following result: .

'Proposition: Let '{J be an anisotropie form over F. If 'PK = '{J®FK is isotropie then
there exists a sequence of forms over F, 'Pi, i = 0, ... ,p, satisfying: (1) '{J = '{Jo,

(2) '{Ji .~ Ci < 1, -a >..l "pi, (3) 'Pi+l ~ Cib < 1, -a >..l "pi, (4) «CPp)K)an ~

«'{JP)an)K.

Rost's proof-of tbe proposition is based on the filtration of R= F[t] e sF[t] defined
by: deg (P + sQ) = max {deg P, 1 + deg Q} for P,Q E F[t].

Definition :

1. Let '{J be as in the proposition. A sequenee 'Po, CPl, ... ,<pp of smallest length
satisfying (1) - (4) is called a splitting sequence for cp (s.s.).

2. Let <Po, ••• •<Pp be a 5.5. for <po Let I be the smallest number such that <PI is •
isotröpic. Then 1 is ealled the splitting index (s.i.) of <p, denoted °hy SK(CP).

3. Let (V, cp) be a quadratie space over F sueh that c.pK is isotropie. Then the
splitting degree (s.d.) of cp, SK(cp), is the smallest number n such that 3v E

V (8) Rn : 'P{v) =O.

Lemma:

Let cp be a fonn over F as before. By the exellenee property there exists a form X
over F such that (cpK)an ~ XK.
Therefore cp ..l -x f'V Ct « a, b» with Ct anisotropie.

4
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D.G. James
Representations by unimodul~quadratic forms

. Necessary and sufficient conditions were given for tbe primitive representation of a
lattice by a unimodulax quadratic lattice over the p-adic integers, and the number of
inequivalent representations determined. under the action of the orthogonal group.
Global tesults over Z, for forms corresponding to the Dynkin diagrams, and their
orthogonal sums, are tben obtained via strong a~proximation.

P. Jaworski
Quadratic field extensio~s and residue ho~omorphisms

It is well-known that with; every quaclratic field extension F[z] : F, z2 ~ /, there is
associated an exact triangle of .Witt groups

'W(F)
".
/

W(F[z)) 1 < 1,-/ >
i·

"'-
W(F)

The residue homomorphisms induce. the morphisms of this diagram .to an exact
triangle of Witt groups of residue fields. "
Using this technique we obtain' exact triangles for function fields of algebraic curves
and' algebroid surfaces, of the following type: .

EaW(Kp )

W(F[z)) 1

EBpesW(Kp )

where F is a rational functions field K(x) (resp. the field of quotients of the ring
of formal 'power series in two variables K ((x, y))) over the field "K of characteristic
different from 2, ß is a sum of second residue homomorphisms and may be one or
two first, K p are the associated residue fields and S is the set of ramification points
(resp. curves). Moreover in spe~~al. cases .6 may be an isomorphism, for example
for quasihomogenous surfaces.

N. Karpenko
Filtrations on the Grothendieck group of a quadric

For a nondegenerate quadratic form <p consider tbe Grothendieck group of the pro­
jective quadric cp = O. Although .this group is known ft?ffi Swan's work and looks

7
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Definition:

tmin{K/F) :
·tmax{K/F)':

min {dirn <p I 'cp is K - minimal}

~up {dim <P 1·<pisK - minimal}.

If there are no K-minimal forms over F we define tmin(K/F) = tmax{K/F) = 1.

Of partieular interest is the ease K = F{1/J) with 1/J an anisotropie form over F. In
this case we have

Theorem: i) Ifdim "p = 2 then tmin(KjF) = tmax(KjF) = 2. ii) If dirn 1/J ~ 3
then tmin(K/P) .~ 3. iii) If dirn 1/J ~ 5 then tmin{K/F) ~ 5.. iv) If dim 1/J ~ 9 then
tmin(.K/F)~7.Ifdim1/JE{2,3,5}, 'dim"p=4 and 1/JftI2P, dirn 1/J=6 and
<p not a Pfister neighbor, then tmin(K/F) = dirn 1/;.
Definition: An anisotropie fonn 1/J has property (I~) (resp.(I» if
tmin(F(t/J)/F) > ~dim1/J(resp. tmin (F(1/J)/F) > 2n- 1 for each n ?: 08.t. dirn t/J >
2n

-
1r F has property (I') {resp. (I» if each anistropie form 1/J over F has property

(I') (resp.(I». F has property (IP) if each anisotropie Pfister form 1r over P has
property (I).
The above theorem implies for anisotropie 1/J :

Proposition: H dirn 1/J :5 13 then 1/Jhas property (I'). If dirn 1/1 :5 8 then t/J has
property (I).

Remark: One easily verifies that (I) ~ (I') ~ (IP) for any F.

Theorem: If-ü( F) :5 6 or if F is linked then F has property (I).
(ü(F) = Hasse number ofF).

Theorem: Let 11" be an anisotropie n-fold Pfister form. TFAE:

i) F(tr)/F is excellent

ii) cp'is F(1I")-miriimalover F ~3r E WF 8.t. a) <p C 1r<8lr ,b) 1r<8lT is anisotropie
e) dirn ep ~ i dimtr@'T + 1. In thissituation we have equality in e).

There are examples of F and 11" E P2F S.t. tmax(F(1r)/ F) = 5 and, in another
example, s.t. t m8J(F(1r)/F) > 7. Furthermore we improve a result by Elman, Lam,
Wadsworth:

Theorem: Let 1r E PnF be anisotropie and F linked or ü(F) ~ 6, and suppo~e
that if F is linked and ü(F) = dirn 1r= 8 then anisotropie 3-fold Pfister forms are
determined by their total signature. Then· F(1r)/F is exeellent.

•

•
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•

In addition it can be proved tbat for any ideal a f; 0 the group T(a) is generated
by the pure double transvections of order ~ a and that SSp(a) is generated by the
transvectioIis of order ~ t:l.

M. Krüskemper
Trace forms of Hilbertiari. Fields

The purpose of the talk is to introduce a theorem of Mestre and to give .some
. applications of it. The theorem states that if F is a hilbertian'field then any trace
form of some etale algebra is isometrie to the tra.ce form of some field extension. In
particular, if F is a number field, auy positive quadratic form <p oyer F witb
dim cp ~ 4 is isometricto·the trace fo~ of same field extension.

D. Leep
The u~invariant of a rational function field

Let F be a field, char F :I 2. Define uF(2, i) to be the min n such that every pair
of quadratic forms. 91, 92 defined over F in more than n variables vanishes on an·
i-dimensional linear subspa.ce over F.

Theorem: u(F(t» =sup{uF(2, i) - 2(i - I)}
i~1

Tbe proof depends on Amer's theorem which states that ql, lh vanish on an i­
dimensional space Qver F if and only if ql + tq2 vanishes on an i-dimensional space
over F(t). .

. D.W. Lewis
Trace forms and splitting fields of central simple. algebras

The reduced trace on a central simple algebra over a field gives rlse to a quadratic
form known as tbe trace form." A criterion, in terms of the trace form, is given
which is necessary and sufficient for the central simple algebra to have a formally
real splitting field. Also for a cyclic algebra of degr~ four a eriterion, using the
Clifford algebra of the trace form, is given which is necessary and suffieient that the
algebra is also a biquatemion algebra (or equivalently that it is of exponent two).

L. Mahe
Pfister's theorems Cor rings

H R is areal closed field and K a field extension of transcendence degree d over R,

thep. Pfister proved that Vf E K, (f > 0 in every real elosure of K-) <=> . f ~~

9
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quite easy the topological filtration on it is not so. Same computations show that
it depends rather thinly on properties of the form cp. Because factor groups of this
filtration contain an information about Chow groups of the quadric the problem to
compute the filtration is still more interesting.
Being n~t able to ~olve this problem completely one can try to obtain some infor­
mation computing the other standard filtration namely the j-filtration (which is
contained in the topological one).
Some theorems on both filtrations are presented in the talk. In particular, j-filtration
is completely discribed for quadrics of dimension ~ 40. •

O.H: Körner
Symplectic groups over 2-adic rings

Let 0 b~ a local commutative ring with maximal ideal p and residu~ class field
k = alp. I consider a s~plectic o-lattice L of dimension n. Let Sp(L) be the
symplectic group of L.' For u E Sp(L) the order o(u) ~s defined to be the smallest
ideal a of 0 for whic~ there exists a unit Cl of. a such that q == 'aidL (~oda). For
a subgroup G of Sp(L) its order o(G) is defined to be the ideal of 0 generated by
the o(q) with q E G. For any ideal a of 0 ihe general congruence subgroup modulo
a, defined as GSp(a) := {q E Sp(L) I 0(0") ~ a}, and the special congruence
subgroup modulo a, defined as SSp(a) := {O" E Sp(L) I q == idL(mod a)}, are
known to be normal subgroups of Sp(L) of order a. I want to deal with the ease
where L is unimodular, but 0 is 2-adie. By the latter I mean that 0 is a discrete
V3.Iuation ring statisfying 3 < Ikl < 00, P~ 20" in.particular char k =2. In this case
Lacroix's results (1969) on GL2(o) imply that for n = 2 a subgroup G of Sp(L) is
normal iff G ;;? SSp(a)where 0 := o(G). In a paper from 1974 Chang asserts that
Lacroix's criterion remains valid for n ~ 4. But I found counterexamples tohis
assertion which show that for n ~ 4, the normal subgroups of Sp(L) cannot be
characterized by their orders alone. A second invariant is needed which I calliower
order. For U E Sp(L) the lower order 10(0") is defined to. be the ~deal of 0 generated
by the elements x(O"x) with x E L. Then always 10(0') ~ o(a). From now on let •
n ~ 4. Then lo{0") ~ o{q) may oecur for same 0". For· any ideal a ~ o· of 0 the set
GSp(a):= {er E GSp(a) 1/0(0")' ~ 2a} is a normal subgroup of Sp(L) otorder a and
of lower order 20. Therefore, if a ~ 0 and Q ~ (0), then GSp(o) ~ SSp(a) because
of 10(SSp(a) = a. Thus GSp(a) is a counterexample to Chang's assertion in this
case. Let T(a) := [Sp(L), eSp(a)].

Theorem: Let L be unimodular, n ~ 6, 0 be 2-adic, G a subgroup of Sp(L) of
order Q and of lower order b. If Q = 0 and G is normal, then G = Sp(L). If a ~ 0

and a = b, then G is normal iff G ~ SSp(a). If a :f; 0 and a :f; b, then G is normal
iff G ~ T(a). .

8
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. 2. H dim X T = d < 00, then ea.ch basie elosed S ~ XT is expressible with m

inequalities 11 ~ 0, ... , Im ~ 0, m ~ SO+· •. + Sd: Here dimXT := supdim ~_I

XT(p) ~ 0} and Si =SUp{ST(P) IdimCi) :5 i, XT{p) :j:. 0}, i = 0, ... ,d ä.nd ST(p)

is the stability index of the induced preordering T(p) on the residue field at p.

Using & generalization of a result of L. Bröcker on the behaviour of the stability
index under field extension, we obtain the following application to real algebraie
geometry:

Theorem 2: Let (F, P) be an ordered field and let h1, ••• , hlt: E F[X1, ••• ,Xn ]. Let
V be the variety in Rn defined by h1 = 0, ... ,hit: =0, R any real closed- extension
of (F, P). Then

1. Any basic open S.ß. set in V defined over F is describable by m inequalities
11 > 0, ... ,Im> 0, 11 ... ,Im E F[X] with m :5 d + Sp + 6.

2. Any basIC closed B.a. set in V defined over F is describable by m inequalities
11 ~ 0, ... ~ Im ~ 0, 11 ... , Im E F[X), with m :5 d(di

1) + (d + 1)(sp + 6),
sp,6 are computable: 6 e {O, il. s~ = 0 if P is archimedi8.P-, sp· = 6 = °if
(F, P) is re8.I closed or heredii~yeuclidean.

J. Minac( jo~nt work with L. Hallock)
Hamlet and Pfister farms. A Tragedy in four acts

Let F be a field, 1 + 1 :j:. 0, K = F(X1 , X 2 , ••• ,X2a ),. !(J is an anisotropie- Pfis­
ter form< 1, BI > ® ... 0 < .1, an > over F,!(JK extended form from F to K. A
classical result of Pfister shows that cpK ~ cp(X!, . .. ,X2a )!(JK. Pfister found a very

. nice matrix praof and Witt later produced a very short and elegant proof. However­
for n ~ 5 there W88n't known a proof which uses some underlying algebra together
with its multiplication and "norm like map" as can be done in the cases n =1, 2, 3, 4

. using quadratic field extensions, quaternion algebras and Cayley-Dickson's algebras.

In this lecture it was observed that one can se~ L =K (..I-al; J-ai;;; ... ;J-a..::=:);
where tPl ~ xf+alX~; ;PI =x~+alX~; tP2 = xi+alx~+a2X~+Bla2X~; ~ = xg.+alxä+

B2X~ + alB2X~; ... ; e = (Xl + X2Fä1) (1 + J-a2t) '" (1 + J-ant::;) EL,

w = ~Wi, where Wi is the norm fonn Li to K. Then one can identify w with CPK
and show that the multiplication by the element e is the required isometry between
farms CPK and tP(xl, ... ,X2a )!(JK. The proof is quite transparent.
The lecturers claimed that the main theorem was proved by Rosenkrantz and Guilden­
stern as well as many otJ:ler surprising historieal revelations coneeming King's Clau­
dius's family attempts to solve the mystery of Pfister forms. Both authors died
during the leeture thereby bringing it to an abrupt end. These revelations were ­
further discussed on the subsequent wine party.

11
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(sum of 2d squares). Here we .try to push as far as possible this theorem in rings.
-We obtain

Theorem 1: If R --+ A is ~ R-algebra of tr.d. d and 1 E A is totally positive, then

1. if f e A * and d :5 4 f~ = 1 +~

2. if f e A* and d ~ 4 I~ = 1 + 12d + d ~ 41

3. if f ~ A * and d :5 3 f 12d+~ I= 1+12d+1
- 11

4. iff~A·andd~3 112d +71=1+12d+1 +d-41

Corollary: If R --+ A has tr.d. d and no real point then

•
. -1 =

-1=
if d:5 4

if d ~ 4

f totally positive ~ i =[t] .

Theorem 2: If R --+ Ais a semilocal R-alg. of tr.d. d·~df e·A* then f totally
positive <=> f =~ .

Theorem 3: H R --+ A is a Regular Function Ring (1 + E x 2 ~ A*) and 1 E A
then

M. Marshall
Minimal generation of constructible. sets and' semi-algebraic
sets .

The talk was a summary of .results from two papers \Yhich will appear in the pro­
ceedings of the Ragsquad special year at Berkeley 1989 - 90, ~d the proceedings
of the conference in La 1\Irballe, Brittany in 1991. Part of this work is joint with
L. Walter." Several results are presented generalizing work of L. Bröc~er and C.
Scheiderer. In particular:

Theorem 1: For any commutative ring A with 1 and any preordering T ~ A

1. each basic open set S ~ X T is describable with m inequalities 11 > 0, ... , fm ;>
0, ~ < SUP{ST(P) , 1 : XT(P) =1= 4>}.

10
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following

Theorem: Given 1,9 E R.(X], degg = deg/, 1,9> O. Then L = .E(~)2 for some
• . 9 1=1

n and li,9i E R[X] with deg li = deg9i' li' 9i > 0 if and only if ~ E ER(X)4. In
that ease we ean even restri<;t to n =2. - l.

If R is non-archimedean and w > n for all n, ; = :~:r does _not admit suCh.- a
- "%2+.1 i a > 2 i a > 2

representation. As a eonsequen~e we get that for all n E No: %2+1 = (:tAT) + (:f;r)
" 91 - 92 •

With 11n), gfn) > 0 and deg li(n) = deg g~n), _but deg /1n
) --+ 00 as n ~ 00.

V. Powers
Valuations and higher level orders in commutative ~ings

Over fields there is a elose relationship between valuations and the reduced theory of
quadratic farms. As shown by the work of Becker and Rosenberg, this.relationship
extends to the higher level theory. Our general question is whether we can use the
theory of valuation in eommutative rings 0 to extend results on higher level orders
and higher level reduced Witt rings from fields-to eommutative rings.
Let R be a commutative ring, we fix a pre6rder (of level n) and set OT ={ordersPIT ~

P}. The erucial step is to replace !l by (1 + T)-1 R, Le.. we assurne 1 + t is a unit
in R for all t E T. Note that this does not ehange OT. With this assumption we
abtain the following reSults: For any P E OT,{A{P),I(P)) is a Manis-valuationoin ­
R, where A(P) = {r E Rlq ± r E P for some q E (Q+}, I{P} = {r E Rlq ± r E P
for all q E Q't}. We can define notions of compatibility between valuations and
orders (and preorders), and the equivalence relation of dependency on OT. Finally,
using a standard eonstruetion originallydue to Bröcker, we show that if the set
{A(P)IP E OT} is finite then (R, T) gives rise toa spa.ce of signatures (the higher
level· analogue to aspace of arderings). In fact we have that (R, T) is equivalent on
the level of T-forms and the reduced Witt ring to a preordered field.

M. Rost
Galois cohomology of algebraic groups and principles 'of quad­
ratic form theory

Let G be an algebraie group over" a field F and let K i be finite extensions <)f F of
coprime degree. J .P. Serre asked whether for eonneeted G the restrietion map

is injective. Although there seems to be DO apriori reason for a positive "answer,
the question is ~ good guide for investigating a speeifie group G. One gives a survey
about classical groups G where one uses Hilbert 90, Witt cancellation and norm
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R.-Parimala
Non-trivial G2 - bundles on the .affine plane

Let k be a field of characteristic not 2. SUPPQse k admits a Cayley division algebra
0 0 • We construct non-trivial Cayley algebras over k[X, Y] with 0 0 as the algebra
on the fibre, with norm form q, q being an indecomposable rank 7 quadratic fonn
over k[X, Y]. This gives examples of principal G2-bundles on ~ which admit no
reduction of tbe structure group to any proper,· connected reductive subgroup, a
case left out by Raghunathan in his construction of non-trivial G-bundles on Ai: , for
any connected reductive group. Tbe main ingredient is to first construct a family
of Cayley-algebra bundles with norms < 1,.-\ >1. qo, wbere qo are rank 6 quadratic
spaces with discriminant -"\, qo indecomposable. These give G2- bundles on ~ with
reduction of the structure group to 5U3. Then, a patching technique is adopted to
produce Cayley algebra bundles of the required type.

'W. Plesken
Finite unimodular groups and their invariant forms

. For finite rational matrix groups G of degree n two key structures have to be inves- .
tigated, namely tbe ZG-Iattices in the natural <QG-module Q' and the G-invariant
bilinear forms on qa. Some open problems are mentioned and two topics are dis­
cussed in detail. Firstly the positive semidefinite G-invariant integral forms on a
ZG-Iattice L form a semigroup under addition. Tbe additively indecomposable
forms 4> are the ones which do not allow diagonal embeddings of L in ·orthogonal
sums of ZG-lattices witb positive semidefinite G-invariant forms on them. Under
some restrietions one can show that AutZG(L) acts on the set of these forms with
only finitely many orbits. Secondly the interplay between the forms and the lattices
leads to tbe main tools for classifying maximal finite subgroups of GI(n, Q). This bas
been carried out up to degree n :5 23 in collaboration with Gabriele Nebe. Many
new lattices witb big automorphism groups arise this way.

A. Prestel
On a variation of Hilbert's 17th problem

At the 1987 conference on real algebraic geometry Schülting was stating the following
problem: Let /, 9 E lR[X], deg / = degg, and /, 9 > O. Is it possible to find Ji, gi E
lR[x] B.t. 5= E<:)2, deg/i = deggi and /i,gi > O? Recently Joachim Schmid
solved this problem positively in the following generalisation: Let H(K) be the real
holomorphy ring of a formally real field K. Denote by U+(K) the group of totally
positive units of H(K). Then to every e E U+(K) there exists some n :5 P2(K) + 1

and ei E U+(K),l :5 i ~ n S.t. e = Ee~. The case K = lR(x) solves Schülting's
i=1

problem. Replacing IR by areal closed field R in Schülting's problem, we prove the
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We end witb an open question:
Suppose A is an algebra and K / F is a field extension of odd degree.
H u is an anisotropie involution on A tben must (1 ® K be anisotropie? Sprihger's
theorem says that this is true when A is split. Bayer-Lenstra (1990) proved that
u ® K eannot be hyperbo~ie.

R. Scharlau
Unimodular lattices over real ·quadratic fields

We investigate integral even unimodular lattiees L in a vector space witb a totally
positive d.efinite quadratic form, defined over a real quadratie field F. We give explieit
constructions of a number of such lattices in dimension 4, for indeterminate field dis­
criminant d (only depending on d mod 24, Le. on the ramification of 2 and 3 in F).
Tbe lattices we construct here have large automorphism groups. In most c~es, the
fuH orthogonal group is known and essentially independent of the field. This is true
in particular for the so-called reflective lattices which have a "root system" of maxi­
mal rank. As an application we obtain the fuH classification (essentially ind~pendent

of the use of computers) of &11 even unimodular lattices in dimension 4 over the first
11 real quadratic fields with discriminants d = 5,8,12,13,17,21,24,28,29,33,37.

J.-P. Tignol
An elementary proof of the existence of fields with.ar~itrary

even u-invariant

The existence of fields of chara.cterlstic different from 2 with arbitraryeven u­
invariant has been proved in 1989 by Aleksandr. S. Merkurjev. Tbe aim of t~is

talk was to outline Metkurjev's eonstruetion and to give an elementary proof of"the
following key result:

Theorem (Merkurjev): Let D be a central division algebra over a field" F of
characteristic not 2 and let 1/J be an anisotropie quadratic form over F of dimension
at least 2. Tbe algebra D 0 F F(1/J) is· not- a division algebra if and only if D contains
a homomorphic image of the even Clifford algebra Co(1/J).
It follows from this Theorem that tensor products of (2n - 1) quaternion algebras
which are division algebras over F remain division algebras over the funetion fi~ld

of every quadratic form of dimension 2n + 1. This observation provides a way of
constructing an anisotropie form of dimension 2n which remains anisotropie when
all the forms of dimension 2n + 1 are made isotropie in a generie way.

Berichterstatter: O. Heddinga
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principles due to Diedonne, Knebusch and Scharlau to give a positive answer in
many cases. Moreover the groups G =(12, F4 were diseussed.

D.B. Shapuo (Joint with J.-P. Tignol)
Hyperbolic involutions

F = field of ehar. # 2. Every algebra here is central simple F -algebra; every
involution is of first kind. Let (A, q) be an algebra with involution, define V =
i~edueible left A- module and' D = EndAV. Then Visa right D-veetor space' _
and A ~ EndDV. Albert proved that D admits an. involution. Any no~singular .,
A-hermitian form h : V x V ~ D (where A = ±1) induees an adjoint involution
Ih on EndDV, generalizing the transpose. Conversely, any involution q on A equals
Ih for some A-hermitian form h, whieh is uniquely determined up to a sealar factor
frQm F*.
Lemma: Equivalence:

1. (V, h) is anisotropie (i.~. h(x, x) =0 implies x = 0)

2. if a E Athen: q(a) x a =0 implies a' = O.

3. if J ~ A is a right ideal then J == fA for some idempotent 1 with u(/) = I.

Proposition: Equivalence:

1. (V, h) is hyperbolie.

2. There exists a right ideal J ~ A with q(a)a.= 0 for a E J and dirnJ = ~ dimA.

3. There exists an idempotent e E A,with u(e) = 1 - e.

4. There is a q- invariant subalgebra M ~ A sueh that M ~ Mb(F) and'

UIM ~ IR (Note that lHl -( ~ ~) so that IR (~ :) = (!c ~b)

We use this "internat" char~terization of byperbolie spa.ces to investigate tbe be­
havior of forms under quadratie extensions.

Theorem: Suppose (A, u) is anisotropie and K = F(v'd) is a quadratie field ex­
tension of F. Then (A @ K, (1 ® k) is hyperbolie <=> there exists r E A with r 2 = d
and q(r) = -r. ..
In tbe split case, A = EndF V and (1 = Iq , it is well-known that such r exists if and
only if q ~< 1,d > ®r/ for some q. .
Suppose A e! Mn(D) where D is a quaternion division algebra. This theorem has
an application to the question of when ail involution (1 on A admits an invariant
quaternion subalgebra. '
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