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This conference was the sixth one on quadratic forms in Oberwolfach. It was orga-
nized by Knebusch (Regensburg), Pfister (Mainz) and Scharlau (Miinster).The most
interesting event probably was the historical discovery by J.Mina¢ and L.Hallock who
convinced the audience that the algebraic theory of quadratic forms had already
been known in the Middle Ages at famous Prince Hamlet’s court. This knowledge,
however, subsequently_ got lost by unfortunate circumstances until about thousand
years later it was discovered again by Witt and Pfister.
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Vortragsausziige

E. Bayer

Self-dual notmal bases (joint with J.-P. Serre)

Let K be a field of char # 2, and let G be a finite group. Let L be a G-Galois
algebra over K. Let ¢y : L — K, gqi(z) = Trr/k(z?), be the trace form. This
form is invariant under G. The problem considered in this talk is to determine the
isomorphism class of this form as a G-form. In particular, L/K is said to have a
“self-dual normal basis” if this form is the unit G-form; in other words, if there exists
a € L* such that g;(a,ga) = 1if ¢ = 1 and 0 otherwise. We solve this problem
when the 2- Sylow subgroups of G are elementary abelian or quaternionian of

order 8. :

E. Becker :
The trace formula and some geometric applications -

Let B be an A-algebra, f.g. projective as an A-module, (M, ¢) a bilinear B-space,

" possibly degenerate. In.this situation one has the following trace formula for-every
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‘o € SperA :

sgiatrya(p) = . sgus(y)
ﬂeiyerB

This formula and the ideas behind allow at least the following applications: ' v

1) Counting real points on 0-dimensional varieties (which can be considered as a
multivariate version of the classical Sturm’s theorem)

2) a constructive approach to the 0-dimensional case of the Brocker-Scheiderer
theorem about the description of basic-open semialgebraic sets

3) a short proof of Tarski’s quantifier elimination result in the theory of real
closed fields

4) a short proof of the open mapping theorem of Elman, Lam and Wadsworth.

J.-L. Colliot-Théléne (travail en commun avec A.N. Skoroboga-
tov) '

Groupe de Chow des zéro-cycles sur les fibrés en quadriques
Soit k un corps, car (k) # 2, puis C/k une courbe projective et lisseet p: X — C

un k-morphisme propre, avec X/k une variété projective et lisse. Supposons que la
fibre générique X,,/k(n) est une quadrique lisse sur le corps k(C), corps des fonctions
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HKE,CK J(K*)?is surjective, where the “sheaf product” erch */(K*)? is the sub-
group of Miex K*/(K*)? consisting of all “locally constant” elements. We prove

(with I'[ denoting the appropriate sheaf products):
Theorem: The following conditions are equivalent:
A —
(a) W(K) = [gexW(K) naturally

(b) VI‘\’(K ) = ﬁ Re;ﬁ’(f( ) naturally

(c) The maximal pro-2 Galois group G(K(2)/K) of K is the free pro-2 product of
the groups G(K(2)/K),K € K;

(d) K has the SAP with respect to K and every K-quadratxc form which is K-
isotropic for -all Ke IC is K-isotropic.

This is used to classify the quadratic forms over the field of totally rea.l numbers
and, more generally, over fields K with cd K(v/-1) < 1.

A.J. Earnest
‘Developments in the spinor genus theory for integral quadratic

forms

For n = 2,3 and 4, examples of positive definite integral quadratic forms of rank n
are known for whlch the spinor genus and class coxnclde, but for which the genus
and class do not.

Theorem: Let f be a positive definite integral quadratic form of rank exceeding 4.
Then the spinor genus and class of f coincide if and only if the genus and class of f
coincide.

For forms of rank 3, the theory of spinor genus representations in some cases plays
a key role in determining which integers are represented by a given form. Explicit
computations of certain local spinor norm groups are given which make possible
‘the determination of all integers which are primitively represented by a genus of
ternary forms, but are not primitively represented by every spinor genus in that
genus. These results are applied to analyze the primitive representation properties
of an interesting list of positive definite ternary quadratic forms first found by Jones
and Pall. Some of the results prwented here were obtained in joint work with J.S.
Hsia and D. C Hung.
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de C. Soit d la dimension de cette quadrique. On suppose d > 1.

Soit CHy(X), resp. CHy(C), le groupe de Chow des 0-cycles de degré zéro modulo
I’équivalence rationnelle sur la variété X, resp. C.

On donne une formule pour le groupe

CHy(X/C) := ker p. : CHy(X) — CHy(C).

Cette formule identifie C Ho(X/C) & un sous-quotient du groupe multiplicatif k(C)*.

o Lorsque k est de dimension cohomologique < 1, cette formﬁle identifie
CHop(X/C)=0

| o .

| e Supposons d = 1. Dans ce cas, une formule essentiellement équivalente est
apparue dans des travaux antérieurs de S. Bloch (1981), Sansuc et ’auteur
(1981), P. Salberger (1985) (lorsque C est la droite projective), puis de M.Gros
(1987) et Okachi (1987) (lorsque C est une courbe quelconque). Si de plus k est
un corps p-adique, ou un corps de nombres, cette formule a permis d’établir la
finitude du groupe C Ho(X/C) (résultat que I’on sait aussi maintenant obtenir
par des méthodes plus générales de K-théorie algébrique).

e Supposons d = 2. Dans ce cas, on peut associer & X/C une fibration Y/D
de dimension relative 1, avec D/C le revétement discriminant associé & X/C.
Notre formule permet d’établir une injection

CHo(X/C) — CHy(Y/D).

De ceci résulte, lorsque k est un corps p-adique ou un corps de nombres, la
finitude du groupe CHy(X/C). _

(Dans une autre direction, rappelons le théoréme de finitude obtenu par Sal-
berger (1985) pour les fibrations en variétés de severi-Brauer au-dessus de la
droite projective.)

Lorsque d > 3, et k est un corps p-adique ou un corps de nombres, il est
trés vraisemblable que C Hy(X/C) est toujours un groupe fini, et que dés que
la dimension relative d est assez grande, ce groupe est nul si k est p-adique,
et controlé par les complétions réelles si k est un corps de nombres. Mais
notre formule ne permet pour I'instant d'obtenir ce résultat que dans des cas
particuliers.

I. Efrat
Local-global principles for quadratnc forms and Galois groups

Let K be a collection of pro-2 extensxons of a field K of characteristic # 2 which
is closed in the inverse limit topology. We say that K has the strong approx1-
mation property (SAP) with respect to K if the natural homomomorphism K*
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Proposition: There exists a s.s. ©q,... ,9, for ¢ such that p = dima.

Corollary :*  sg(p) < dime=1
Remark: 1. The corollary tells us that if ¢k is isotropic there exists an isotropic
vector (over K) of the form

P P .
v=1p+ 2:1.1.-st"_1 + Zu;t'

=0 =0

'w1th p <2dimyp - 2.

2. There is another way to 1nterpret the si. of o : sp(p) =n iff o contains a

2n + 1 dimensional K-minimal form and no K-minimal form of smaller dimension. -

(For the definition of K-minimal form cf. D. Hoffmann’s talk).

O. Heddinga
Residue and transfer maps

Let R be a discrete valuation ring with maximal ideal p, prime element 7, residue
field £ and quotient field F. Let L : F be a finite extension s.t. the integral closure
D of Rin L is finitely generated over R. Let qy, ... ,q, be the prime ideals of D with
prime elements II; and residue fields k(q;) (i = 1,... , 7). Denote by 92(resp. 82) the
second residue map with. respect to 7 (resp. II; ) Let S: L - F be a nontnvml
F-linear map and define Dy := {y € L| S(yD) C R} = zD. .

Define S; : k(q;) = kbya+r— S (7!’11' lzpry 1(a)) mod p, where pr; (a) is any
element @ € L s.t. a mod q; = a and alI;! € q7'. Then S; is a well defined
nontrivial k-linear map. Using WT-groups one can prove the commutativity of the
following diagram

wr) 25 & W k)
Sll ) 125{.
wF) & W(k)

where 8;, = 8}, 0 m,> and m, is the multiplication by < z > .

D. Hoffmann _
Isotropy of quadratic forms over the function field of a quadric

Let F be a field of char.# 2 and let K be an extension of F.

Definition: An anisotropic quadratic form ¢ over F is called K-minimal if i)
¢k = ¢ ®F K is isotropic i) Any proper subform ¥ of y stays anisotropic over K.
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R.W. Fitzgerald
Graded Wittrings and Ext-algebras

Let F be a field with Char F' # 2. We prove:

Theorem: If F*/F*? is finite then Milnor’s map ¢, : k.F — H*(G,Z/[2) is injeé-
tive.

Corallary: If F*/F*2 is finite and the map e* : grWF — H*(G,Z[2)is well-defined
then e* is injective. Here G is the Galois Group of a quadratic closure F, over
F, H*(G,Z/?2) the Galois cohomology algebra, k.F Milnor's med 2 k-groups and
grWF the graded Witt ring. The proof involves computations with Ext-Algebras,
particulary the subalgebra of Extewr(Z/2, Z/2) generated by Ext!.

- J. Van Geel (joint work with D.W. Lewis)

Let F be a field of char # 2, and K the generic splitting field of a conic < 1, —a, —b >
defined over F. Then K is isomorphic to the field of fractions of the domain R =
F[s,]/(s2—as1-3). M. Rost proved the following result:

Proposition: Let ¢ be an anisotropic form over F. If px = ¢® K is isotropic then
there exists a sequence of forms over F, ¢;,i =0,... ,p, satisfying : (1) ¢ = ¢y,
2) pi ®ca <l,—a>L P, (3) pip1 = b < 1,—a >L ¥, (4) ((Pp)k)an =
((vP)an)K .

Rost’s proof of the proposition is based on the filtration of R = F[t] @ sF[t] defined
by : deg (P + sQ) = max {deg P, 1 + deg Q} for P,Q € F[t].

Definition :

1. Let ¢ be as in the proposition. A sequence o, ¢, ... , ¥, of smallest length
satisfying (1) — (4) is called a splitting sequence for ¢ (s.s.).

2. Let ¢o,... ,pp be a s.s. for . Let I be the smallest number such that ¢ is
isotropic. Then ! is called the splitting index (s.i.) of ¢, denoted by sg(yp). -

3. Let (V,y) be a quadratic space over F such that ¢g is isotropic. Then the
splitting degree (s.d.) of ¢, 5k(yp), is the smallest number n such that v €
V®R,:p(v)=0.

Lemma: sk(p) = 5k(p).

Let ¢ be a form over F as before. By the exellence property there exists a form x
over F such that (¢k)an = Xk-

Therefore ¢ L —x ~ @ << a,b >> with a anisotropic.

4

Forschungsgeméinschaft

.




°

UFG

Deutsche

D.G. James
Representations by unimodular quadratlc forms

" Necessary and sufficient conditions were given for the primitive repraentatxon of a

lattice by a unimodular quadratic lattice over the p-adic integers, and the number of
inequivalent representations determined under the action of the orthogonal group.
Global results over Z, for forms corresponding to the Dynkin diagrams, and their
orthogonal sums, are then obtained via strong approximation. -

P. Jaworski :
Quadratic field extensions and residue homomorph.isms

It is well-known that with every quadratic field extension F[z] F, 2% = f, there is
associated an exact triangle of Witt groups

W(F)

e
W(F[2]) 1 <1L-f>
, W(F)
The residue homomorphisms induce. the morphisms of this diagram to an exact
triangle of Witt groups of residue fields.
Using this technique we obtain exact triangles for function fields of a.lgebra.lc curves
and- algebroid surfaces, of the following type: -

eW(K,)
/
W(F[2]) !

OpesW (K5)

where F is a rational functions field K(z) (resp. the field of quotients of the ring
of formal power series in two variables K((z,y))) over the field K of characteristic
different from 2, A is a sum of second residue homomorphisms and may be one or
two first, K, are the associated residue fields and S is the set of ramification points
(resp. curves). Moreover in special cases A may be an isomorphism, for example
for quasihomogenous surfaces.

N. Karpenko
Filtrations on the Grothendieck group of a quadric

For a rondegenerate quadratic form ¢ consider the Gropﬁendieck group of the pro-
jective quadric ¢ = 0. Although this group is known from Swan’s work and looks

7
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Definition:

tmin(K/F) M
. ‘tmt.x(K/F).:

If there are no K-minimal forms over F we define tpin(K/F) = tnax(K/F) = 1.

min {dim ¢ | ¢is K — minimal}

sup {dim ¢ |-¢is K — minimal}.

Of particular interest is the case K = F(3%) with 3 an anisotropic form over F. In
this case we have

" Theorem: i) If dim ¥ = 2 then tnin(K/F) = tnax(K/F) = 2. 4) If dim ¢ > 3

Deutsche
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then tmin(K/F) > 3. 4ii) If dim ¢ > 5 then tmin(K/F) > 5. tv) If dim ¢ > 9 then
tmin(K/F) > 7. If dim ¢ € {2,3,5}, dim ¢ =4 and ¢ ¢ I’F, dim % =6 and
¢ not a Pfister neighbor, then tnis(K/F) = dim 9. A
Definition: An anisotropic form 1 has property (I') (resp.(I)) if
tmin(F(Y)/F) > 3dime (resp. tmin (F(¢)/F) > 2"} for each n > 0 s.t. dim % >
2"~1). F has property (I’) (resp. (I)) if each anistropic form 4 over F has property
(I") (resp.(I)). F has property (IP) if each anisotropic Pfister form 7 over F has
property (I).

The above theorem implies for anisotropic ¢ :

Proposition: If dim ¢ < 13 then 4 has property (I'). If dim ¥ < 8 then ¢ has
property (I).

Remark: One easily verifies that (I) = (I') = (I P) for any F. A

Theorem: If %(F) < 6 or if F is linked then F has property (I).
(u(F) = Hasse number of F).

Theorem : Let 7 be an anisotropic n-fold Pﬁster_form. TFAE:
i) F(rm)/F is excellent

ii) ¢is F(7)-minimal over F = 37 € WF s.t. a) ¢ C 7®7 b) 7®7 is anisotropic
¢) dim ¢ > 1 dim7 ® 7 + 1. In this situation we have equality in c).

There are examples of F and 7 € PoF s.t. tma(F(7)/F) = 5 and, in another
example, s.t. tyax(F(7)/F) > 7. Furthermore we improve a result by Elman, Lam,
Wadsworth: :

Theorem : Let 7 € P,F be anisotropic and F linked or %(F) < 6, and suppdse
that if F' is linked and %(F) = dim7 = 8 then anisotropic 3-fold Pfister forms are
determined by their total signature. Then F(7)/F is excellent.
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In addition it can be proved that for any ideal a # o the group T(a) is generated
by the pure double transvections of order C a and that SSp(a) is generated by the
transvections of order C a.

M. Kriiskemper
Trace forms of Hilbertian Fields

The purpose of the talk is to introduce a theorem of Mestre and to give some

. applications of it. The theorem states that if F is a hilbertian field then any trace

form of some etale algebra is isometric to the trace form of some field extension. In
particular, if F' is a number field, any positive quadratic form ¢ over F' with
dim ¢ > 4 is isometric to the trace form of some field extension.

D. Leep
The u-invariant of a rational function field

Let F be a field, char F ;6 2. Define up(2,1) to be the min n such that every pair

of quadratic forms gy, g2 defined over F' in more than n variables vanishes on an .

i-dimensional linear subspace over F.

Theorem: u(F(t)) = sgg{u;(li) -2(1-1)}

The proof depends on Amer’s theorem which sté.tes that ¢,¢; vanish on an i-
dimensional space over F if and only if g + tg; vanishes on an i-dimensional space
over F(t). - '

"D.W. Lewis

Trace forms and splitting fields of central simple algebras

The reduced trace on a central simple algebra over a field gives rise to a quadratic
form known as the trace form. A criterion, in terms of the trace form, is given
which is necessary and sufficient for the central simple algebra to have a formally
real splitting field. Also for a cyclic algebra of degree four a criterion, using the
Clifford algebra. of the trace form, is given which is necessary and sufficient that the
algebra is also a biquaternion algebra (or equivalently that it is of exponent two).

L. Mahé
Pfister’s theorems for rings

K¥Ris a real closed field and K a field extension of transcendence degree d over R,
then Pfister proved that Vf € K, (f > 0 in every real closure of K) & f =

Forschungsgemeinschaft
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quite easy the topological filtration on it is not so. Some computations show that
it depends rather thinly on properties of the form ¢. Because factor groups of this
filtration contain an information about Chéw groups of the quadric the problem to
compute the filtration is still more interesting.

Being not able to solve this problem completely one can try to obtain some infor-
mation computing the other standard filtration namely the j-filtration (which is
contained in the topological one).

Some theorems on both filtrations are presented in the talk. In particular, j-filtration
is completely discribed for quadrics of dimension < 40.

O.H. Kérner
Symplectic groups over 2-adic rings

Let o be a local commutative ring with maximal ideal p and residue class field
k = afp. I consider a symplectic o-lattice L of dimension n. Let Sp(L) be the
symplectic group of L. For o € Sp(L) the order o(0) is defined to be the smallest
ideal @ of o for which there exists a unit o of a such that ¢ = eid; (moda). For
a subgroup G of Sp(L) its order o(G) is defined to be the ideal of o generated by

- the o(0’) with o € G. For any ideal a of o the general congruence subgroup modulo

a, defined as GSp(a) := {6 € Sp(L) | o(¢) C a}, and the special congruence
subgroup modulo a, defined as SSp(a) := {6 € Sp(L) | 6 = id;(mod a)}, are
known to be normal subgroups of Sp(L) of order a. I want to deal with the case
where L is unimodular, but o is 2-adic. By the latter I mean that o is a discrete
valuation ring statisfying 3 < |k| < oo, p = 20, in particular char k = 2. In this case
Lacroix’s results (1969) on GLy(o) imply that for n = 2 a subgroup G of Sp(L) is
normal iff G O SSp(a)wherea := o(G). In a paper from 1974 Chang asserts that
Lacroix’s criterion remains valid for n > 4. But I found counterexamples to his
assertion which show that for n > 4, the normal subgroups of Sp(L) cannot be
characterized by their orders alone. A second invariant is needed which I call lower
order. For o € Sp(L) the lower order lo(0) is defined to be the ideal of o generated
by the elements z(ox) with z € L. Then always lo(cr) C o(c). From now on let
n > 4. Then lo(o) # o(c) may occur for some o. For any ideal a # o-of 0 the set
GSp(a) := {0 € GSp(a) | lo(a) C 2a} is a normal subgroup of Sp(L) of order a and
of lower order 2a. Therefore, if a # o0 and a # (0), then GSp(a) 2 SSp(a) because
of lo(SSp(a)) = a. Thus GSp(a) is a counterexample to Chang’s assertion in this
case. Let T(a) := [Sp(L), GSp(a)].

Theorem: Let L be unimodular, n > 6, o be 2-adic, G a subgroup of Sp(L) of
order a and of lower order b. If a = 0 and G is normal, then G = Sp(L). If a # o
and a = b, then G is normal iff G 2 SSp(a). If a # 6 and a # b, then G is normal
iff G 2 T(a).
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2. If dim X7 = d < oo, then each basic closed S C Xr is expressible with m
inequalities f; > 0,... , fn 2 0, m < So+...4 54 Here dim X7 := supdim £ |
X1y # 0} and s; = sup{sr(,) | dim(%) <i, Xrp) #0},i=0,... ,dand sz,
is the stability index of the induced preordering T(p) on the residue field at p.

Using a generalization of a result of L. Brocker on the behaviour of the stability
index under field extension, we obtain the following application to real algebraic
geometry:

Theorem 2: Let (F, P) be an ordered field and let hy, ... ,hs € F[X1,... ,X,]. Let
V be the variety in R" defined by h; =0,...,h = 0, R any real closed extension
of (F, P). Then ’

1. Any basic open s.a. set in V defined over F is describable by m inequalities
f1i>0,...,fm>0, f1... ,fmGF[_]WIthm<d+s,,+6

2. Any basic closed s.a. set in V defined over F is describable by m mequa.lmes
120, fm 20, fi...,fm € F|X], with m < %45 4 (d + 1)(5p + ),
5p,0 are computable 6 € {0,i}. 5, = 0if P is archimedian, 5, = 6§ = 0 if
(F, P) is real closed or herethanly euclidean.

J. Mina¢( joint work with L. Hallock)
Hamlet and Pfister forms. A Tragedy in four acts

Let F be a field, 1 +1 # 0, K = F(X,,Xs,...,X2s), ¢ is an anisotropic. Pfis-
ter form < 1,4, > ®...® < 1,a, > over F,px extended form from F to K. A
classical result of Pfister shows that ¢x = ¢(Xy,... ,X2e)pk. Pfister found a very
. nice matrix proof and Witt later produced a very short and elegant proof. However
for n > 5 there wasn’t known a proof which uses some underlying algebra together
with its multiplication and “norm like map” as can be done in the casesn = 1,2, 3,4
- using quadratic field extensions, quaternion algebras and Cayley-Dickson’s algebras.

In this lecture it was observed that one can set L = K(‘/—a,, ‘/—az‘h,... ;‘/—a,,'ﬁ -|)"

where ¥y = 23+a12%; ¥y = 2340123 ¥y = £+ 6,53+ar73+a1007%; 9o = z2+a1zd+
077 + 010275; ... © = (21 + z2/~a1) (1+ -] .. (1 +yf-a2) e L,
w = @w;, where w; is the norm form L; to K. Then one can identify w with g
and show that the multiplication by the element © is the required isometry between
forms px and ¥(z1,... , 22 ). The proof is quite transparent.

The lecturers claimed that the main theorem was proved by Rosenkrantz and Guilden-
stern as well as many other surprising historical revelations concerning King’s Clau-
dius’s family attempts to solve the mystery of Pfister forms. Both authors died
during the lecture thereby bringing it to an abrupt end. These revelations were |
further discussed on the subsequent wine party.

11
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(sum of 2¢ squares). Here we try to push as far as possible this theorem in rings.
We obtain

.

Theorem 1: If R — A is an R-algebraof tr.d. d and f € A is totally positive, then

Liffeaandd<4 f[29]=1+[27-1]
2 iffeA andd>4 fl2]=1+[274a—4]

3.iffgAandd<3 fl2]=14[2%1_1] .

4 iff¢gA andd23 fl2047]=14[2"" +d—4f

Corollary: If R — A has tr.d. d and no real point then

-1= |2 1] df d<4
—-1= [2¢'4d—4| if d>4
Theorem 2: If R — A is a semilocal R-alg. of tr.d. d-and f €-A* then f totally
positive & f=

Theorem 3: If R — A is a Regular Function R_mg (1+XTz%C A" a.nd feA
then .

f totally positive & f = a

M. Marshall -

Minimal generation of constructible sets and semi-algebraic
sets '

The talk was a summa.ry of results from two papers which will appear in the pro-
ceedings of the Ragsquad special year at Berkeley 1989 - 90, and the proceedings
of the conference in La Turballe, Brittany in 1991. Part of this work is joint with

L. Walter. Several results are presented generalizing work of L. Brocker and C.
Scheiderer. In particular:

Theorem 1: For any commutative ring A with 1 and any preordering T C A

1. each basic open set § C X7 is describable with m inequalities f; > 0, ... s Jm >
0, m < sup{sr@), 1 : Xrp) # ¢} : :

10
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following

Theorem: Given f,9 € R[X],degg = deg f, f,g > 0. Then 'gL = )::l(-gﬁ:)z for some

n and fi,g; € R[X] with deg f; = degg;, f;, g: > 0 if and only if £ € Y R(X)* In
that case we can even restrict to n = 2. ’ - )
If R is non-archimedean and w > n for all n, 5 = izg_i‘_‘i" does .not admit such a

. )
representation. As a consequence we get that foralln € N 5:&"* ( )2 + (—h)"’
. with £™, g > 0 and deg f™ = degg , but deg f™ — 0o as n — oo.

V. Powers
Valuations and hxgher level orders in commutatlve rlngs

Over fields there is a close relationship between valuations and the reduced theory of
quadratic forms. As shown by the work of Becker and Rosenberg, this relationship
extends to the higher level theory. Our general question is whether we can use the
theory of valuation in commutative rings to extend results on higher level orders
and higher level reduced Witt rings from fields to commutative rings.

Let R be a commutative ring, we fix a preorder (of level n) and set Or = {ordersP|T -
P}. The crucial step is to replace R by (1 + T)~!R, i.e. we assume 1+ is a unit
in R for all t € T. Note that this does not change Or. With this assumption we
obtain the following results: For any P € Or,(A(P),I(P)) is a Manis valuation in
R, where A(P)={r € Rlgtr € Pforsomeqe Q*},I(P)={r € Rlgxr € P
for all ¢ € Q*}. We can define notions of compatibility between valuations and
orders (and preorders), and the equivalence relation of dependency on Or. Finally,
using a standard construction originally due to Brocker, we show that if the set
{A(P)|P € Or} is finite then (R, T) gives rise to a space of signatures (the higher
level analogue to a space of orderings). In fact we have that (R, T) is equivalent on
the level of T-forms and the reduced Witt ring to a preordered field.

i

‘ . M. Rost

| Galois cohomology of algebraic groups and principles of quad-
| ratic form theory

Let G be an algebraic group over a field F' and let K; be finite extensions of F' of
coprime degree. J.P. Serre asked whether for connected G the restriction map

i H'(F,G) — []H'(K;,G)
is injective. Although there seems to be no a priori reason for a positive -answer,

the question is a good guide for investigating a specific group G. One gives a survey
about classical groups G where one uses Hilbert 90, Witt cancellation and norm
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R. Parimala
Non-trivial G; - bundles on the affine plane

Let k be a field of characteristic not 2. Suppose k¥ admits a Cayley division a.lgebra
0. We construct non-trivial Cayley algebras over k[X,Y] with Op as the algebra
on the fibre, with norm form ¢, ¢ being an indecomposable rank 7 quadratic form
over k[X,Y]. This gives examples of principal G2-bundles on A? which admit no
reduction of the structure group to any proper, connected reductive subgroup, a
case left out by Raghunathan in his construction of non-trivial G-bundles on AZ, for
any connected reductive group. The main ingredient is to first construct a family
of Cayley-algebra bundles with norms < 1,A >1 g, where g are rank 6 quadratic
spaces with discriminant — ), g indecomposable. These give Go-bundles on A7 with
reduction of the structure group to SU;. Then, a patching technique is adopted to
produce Cayley algebra bundles of the required type.

W. Plesken
Finite unimodular groups and their invariant forms

. For finite rational matrix groups G of degree n two key structures have to be inves- -
tigated, namely the ZG-lattices in the natural QG-module Q" and the G-invariant
bilinear forms on Q. Some open problems are mentioned and two topics are dis-
cussed in detail. Firstly the positive semidefinite G-invariant integral forms on a
ZG-lattice L form a semigroup under addition. The additively indecomposable
forms ¢ are the ones which do not allow diagonal embeddings of L in orthogonal
sums of ZG-lattices with positive semidefinite G-invariant forms on them. Under
some restrictions one can show that Autzg(L) acts on the set of these forms with
only finitely many orbits. Secondly the interplay between the forms and the lattices
leads to the main tools for classifying maximal finite subgroups of Gl(n, Q). This has
been carried out up to degree n < 23 in collaboration with Gabriele Nebe. Many
new lattices with big automorphism groups arise this way.

A. Prestel

On a variation of Hilbert’s 17th problem

At the 1987 conference on real algebraic geometry Schiilting was stating the followmg
problem: Let f,g € R[X],deg f = degg, and f,g > 0. Is it possible to find f;,g; €
R[z] s.t. ﬁ = E(ﬁ)“’, deg f; = degg; and f;,g; > 07 Recently Joachim Schmid
solved this problem positively in the following generalisation: Let H(K) be the real

holomorphy ring of a formally real field K. Denote by U*(K) the group of totally
positive units of H(K). Then to every e € U*(K) there exists some n < P(K)+1

and ¢; € UH(K),1 <1 <nste= Z:e2 The case K = R(z) solves Schiilting’s
problem. Replacing R by a real closed ﬁeld R in Schiilting’s problem , we prove the

12
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We énd with an open question:

Suppose A is an algebra and K/F is a field extension of odd degree.
If o is an anisotropic involution on A then must 0 ® K be anisotropic? Springer’s
theorem says that this is true when A is split. Bayer-Lenstra (1990) proved that
o ® K cannot be hyperbolic.

N

R. Scharlau
Unimodular lattices over real quadratic fields

‘ We investigate integral even unimodular lattices L in a vector space with a totally
positive definite quadratic form, defined over a real quadratic field F. We give explicit
constructions of a number of such lattices in dimension 4, for indeterminate field dis-
criminant d (only depending on d mod 24, i.e. on the ramification of 2 and 3 in F).
The lattices we construct here have large automorphism groups. In most cases, the
full orthogonal group is known and essentially independent of the field. This is true
in particular for the so-called reflective lattices which have a “root system” of maxi-
mal rank. As an application we obtain the full classification (essentially independent

of the use of computers) of all even unimodular lattices in dimension 4 over the first

- 11 real quadratic fields with discriminants d = 5, 8,12,13,17, 21, 24,28, 29, 33, 37.

J.-P. Tignol
An elementary proof of the existence of fields with arbitrary
even u-invariant

The existence of fields of characteristic different from 2 with arbitrary even u-
invariant has been proved in 1989 by Aleksandr S. Merkurjev. The aim of this
talk was to outline Merkurjev’s construction and to give an elementary proof of the
following key result: ‘ : .

, Theorem (Merkurjev): Let D be a central division algebra over a field F of
‘ characteristic not 2 and let 1 be an anisotropic quadratic form over F of dimension
at least 2. The algebra D ® F() is not a division algebra if and only if D contains
a homomorphic image of the even Clifford algebra Co(%).
It follows from this Theorem that tensor products of (2n — 1) quaternion algebras
which are division algebras over F' remain division algebras over the function field
of every quadratic form of dimension 2n + 1. This observation provides a way of
constructing an anisotropic form of dimension 2n which remains anisotropic when
all the forms of dimension 2n + 1 are made isotropic in a generic way.

Berichterstatter: O. Heddinga
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principles due to Diedonné, Knebusch and Scharlau to give a positive answer in
many cases. Moreover the groups G = G2, F; were discussed.

D.B. Shapiro (Joint with J.-P. Tignol)
Hyperbolic involutions

F = field of char. # 2. Every algebra here is central simple F-algebra; every
involution is of first kind. Let (A,o) be an algebra with involution , define V' =

irreducible left A- module and' D = End,V. Then V is a right D-vector space -

and A = EndpV. Albert proved that D admits an.involution. Any nonsingular
A-bermitian form A : V x V — D (where A = 1) induces an adjoint involution
I, on EndpV, generalizing the transpose. Conversely, any involution o on A equals
I, for some A-hermitian form h, which is uniquely determined up to a scalar fa.ctor
from F*.

Lemma: Equivalence:

1. (V,h) is anisotropic (i.e. h(z, ) = 0 implies z = 0)

2. ifa € Athen: o(a) xa=0 impliesa=0.

3. ifJC Axs aright ideal then J = fA for some idempotent f with o(f) =
Proposition: Equivalence:

1. (V,h) is hyperbolic.

2. There exists a right ideal J C A with g(a)a = 0for @ € J and dimJ = } dimA.

3. There exists an idempotent € € A with o(e) =1 —e.

4. There is a o- invariant subalgebra M C A such that M = M,(F) and

. 01 a b d -b
ol Iy (Nol'.etha!;lHI«-—»(1 0) so that IH( d)-(—c a)

We use this “internal” characterization of hyperbolic spaces to investigate the be-
havior of forms under quadratic extensions.

Theorem: Suppose (A4,0) is anisotropic and K = F(v/d) is a quadratic ﬁeld ex-
tension of F. Then (A ® K, o ® k) is hyperbolic ¢ there exists r € A with r =d
and o(r) = —r1.

In the split case, A = EndrV and o = I, it is well-known that such r exxsts if and
only if ¢ %< 1,d > ®¢ for some ¢'.

Suppose A 2 M, (D) where D is a quaternion division algebra. This theorem has
an application to the question of when an involution ¢ on A admits an invariant
quaternion subalgebra.
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