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Die Tagung stand unter der Leitung von E. Kunz (Regensburg), H.-J. Nastold (Miinster)
und L. Szpiro (Paris).

In den Vortrigen wurde iiber neuere Ergebnisse aus der kommutativen Algebra und al-
gebraischen Geometrie berichtet. Unter den verschiedenen Themenkreisen, die diskutiert
wurden, sind folgende besonders hervorzuheben: Eine Reihe von Vortragen beschiftigte
sich mit 0-dimensionalen Unterschemata des P", insbesondere mit der Frage, wie sich

'Koordinatenringe widerspiegeln. Einen weiteren Schwerpunkt bildeten Referate iiber neu-
ere Entwicklungen in der Residuen- und Dualititstheorie. Reges Interesse fand dabei der

_ Vortrag von A.N. Parshin (Moskau) iiber Beilinsons Residuenkonstruktion. Auf Wunsch

des Auditoriums gab Herr Parshin in weiteren informellen Vortrigen Gelegenheit, sich
dariiber eingehender zu informieren. Ferner berichteten mehrere Redner {iber Resultate
und Fragen aus der arithmetischen algebraischen Geometrie. Von den iibrigen Einzelthe-
men seien noch erwihnt: Logarithmische Strukturen auf Schemata, Fundamentalgruppen
von Varietaten, Raumkurven, Chernklassen.

Die hohe Zahl auslindischer Géste unterstreicht das weltweite Interesse an der Tagung;
so kamen -neben den 15 deutschen Teilnehmern- 16 aus europaischen Landern (davon
4 aus Osteuropa), 17 aus Nordamerika, 2 aus Japan und je einer aus Israel, Brasilien,

~ Saudi-Arabien, Indien und Vietnam. ) o

Vortragsausziige

S.S. Abhyankar
More about Galois Theory on the Line :
In my 1957 paper in the American Journal, I considered the algebraic fundamental group
"ma(Li) of the affine line L; over an algebraically closed ground field k of characteristic
p # 0, and I conjectured that ma(Li) = Q(p) where Q(p) is the set of all quasi p-groups.
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Here m4(Ly) is defined to be the set of all finite Galois groups of unramified coverings,
and by a quasi p—group we mean a finite group which is generated by all its p—Sylow
subgroups. -

In support of this conjecture, in the 1957 paper, I considered the unramified covering of

' Ly given by

Frngsa=Y"—0aX°Y'4+1withO#a€kandn—1t=gq=a powerof p
199,

where s and n > t # 0(p) are positive integers, and I suggested that its Galois group
Ghn,q,5,a should be computed. Now, with inspiration from Serre and sometimes using CT
(=the Classification Theorem of Finite Simple Groups), I have proved the following
(1) t=1=Gngsa =PSL(2,9). .
(2) g=p>2<tand pt) #(7,2) = Gn,g,s,a = 4n-
8) g=p>2<tand (p,t) =(7, 2)=>G' J0.0,0 = PSL(2,8).
(4)q—P 2=>G,q,au—s
(5) g<tand p>2= Gaygya = A4n-
(6) p=2<g<t=Gngsa=An.
(M p=2<g=4andt=3 (and n =7)= Gnq,s ..—PSL(3 2).
8)p=8<g=9andt=2 (and n =11)=> Gp g4 = M11.

Out of this, (6) was proved in collaboration with Ou and Sathaye, (1) and. (7) are -
collaborative work with Serre, and (8) was proved in collaboration with Popp and Seiler.

- Note that A, is the alternating group, S, is the symmetric group, Mj; is the Mathieu
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group of degree 11, and PSL(m,q) = SL(m,q)/(scalar matrices) where SL(m,q) = the
group of all m by m matrices whose determinant is 1 and whose entries are in the field
GF(q) of q elements. '

A.G. Aleksandrov -
Residuen und Dualtidt fiir nichtisolierte Singularititen

Sei X C (C™*!,0) der Keim einer n-dimensionalen Hyperfliche, Sing(X) der Keim
der singuldren Punkte von X. Wir betrachten die Garbe 0% der Keime von holo-
morphen Differentialformen vom Grade p auf X, die Ox-Torsionsuntergarbe Tors Q% ‘
von Q% und den Raum T'(X) der infinitesimalen Deformationen von X. Weiter sei
codim (Sing X, X) = 1. In diesem Fall sind die Dimensionen der C —Vektorraume Tors Q)
und T?(X) unendlich.

Hier wird erklirt, wie man mit Hilfe des Grothendieckschen Residuensymbol im Sinne
von [E.Kunz. Math. Zeit. 152 (1977)] die vollstandige Paarung erhalt, die analog zu be-
kannten nicht ausgearteten bilinearen Formen auf Hyperflichen mit isolierter Singularitat
ist:

resrt

Tors QY x THX) — Q','/'é

2

gsgemeinschaft © @



UFG

Hierbei sei 7 ein C umfassender Vertreterkorper in éX,Sing x - Es werden die Poincaré-
Reihen P(Tors(€2%);t) und P(T'(X);t) fir quasihomogene Hyperflichen berechnet.

D. Eisenbud
Higher Castelnuoyo Theory and a theorem of Macaulay
I described recent work with Mark Green and Joe Harris on a new series of conjectures
which would extend Castelnuovo theory (“curves of rather large genus for their degree
are quite special”) on one hand and Macaulay’s Theorem (“characterization of Hilbert
functions™) on the other. An easy piece of these conjectures-to state concerns the possible
Hilbert functions of graded ideals containing a maximal complete intersection of quadrics:
Let S = k[zo,-..,z,] be a polynomial ring over a field k, and let I C S be an ideal
sucht that I 3 @Qy,...,Q,, a regular sequence of quadrics. Suppose that -

fiimk(é/l)d+1 < (d,rl) +'(hti—l) ++(h21) 'l

i h o
dimk(S/I)4=(I:;)+(Z“_’_11)+---+(11) Cwith hg>- i3 hy 20

Conjecture:

G. Frey
Curves of genus two covering elliptic curves

First we made the following remarks about curves C covering the projective line over
a global field K: Assume that the d—fold symmetric product of C has infinitely many
K -rational points then a result of Faltings implieé that there is a K-rational covering
@:C — P! of degree < 2d. It follows that for a prime N > 120d there are only finitely
many elliptic curves defined over number a field K of degree < d having a K -rational
isogeny of degree N . » )

Next (joint work with E.Kani) we described the moduli space of curves of genus 2 cove-
ring an elliptic curve of (minimal degree) N. It is an open part of X(N)xX(N)/SK(2, Z /N)
where Y(N) is the modular curve parametrizing elliptic curves with canonical level- N-
structure. It is possible to describe the boundary of the moduli space, and especially it
follows that for any elliptic curve E and any N 2> 2 there are many curves C of genus 2
covering E of degree N. We showed how this can be used to estimate the height of elliptic
curves E by the self-intersection number of the relative canonical sheaf of the arithmetical
surface related to curves C of genus 2. ‘
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A. V. Geramita (joint work with A. Gimigliano (Genova))
Rational Surfaces and Points in P ? . :
Let X = {P,...,P,} CP?*k), k=% (chark =0), Y =P%(P,,...,P,) the blow-up
of P2 at the points Pi,... ,Py, m: Y = P? the blow-up morphism. Let »~(P;) = E;,
7~Y(L) = Ep (L a line missing X). ) : '
Let I=p"N-..Np% Ck[z,y,z] = R. Then I, is the linear system of plane curves

_ of degree d which have, at P;, a singularity of multiplicity > a;. Let H(R/I,—) denote

ai+1

the Hilbert function of R/I, then for t >> 0, H(R/I,t) = )3,(
integer t for which AH(h/I,t) =0.
¥ Dy = dEy — Sa;E; € Div(Y) then dim Iy = h%(Oy(Dg)) and
L] .
£ (%7) - HRILO = 1 (Ov(Da) (W(Ox(Da)) = 0 in say case)
i;ll-oposition (Davis-Germita) i) Dy is very ample for ¢ > o + 1.
ii) D, is very ample < for E the proper transform of a line in P2, then D, - E > 0.
Now suppose D, is very ample for t > o and let N +1 = h%(Oy(Dy)). Denote by V;
the image, in PV, of the embedding determined by D;. Then Jy, C k[zo,...,zn] = S is
the homogeneous ideal of V; and A = S/Jy, the homogeneous coordinate ring. Then
Theorem: A is arithmetically Cohen-Macaulay.

One also proves that dim(Jy,); = z': (O;) and each set of (c;")—quadrics (one
=1 .

). Let o(I)=least

set for each i), corresponds to a rational normal scroll of dimension d — a; + 1 (with

(d — a;)—dimensional fibres) containging V;.

D. Goldfeld

Special values of derivatives of L—functions )
Let E be an elliptic curve defined over Q with conductor(E) = N. We assume

E is modular for T'e(N) = {(: 3) ‘€ SI(2,Z) | ¢ = O(N)} which is eqmvalexit to

saying that there exist automorphic forms a(z), B(z) for To(N) (i.e. a(:—:—ﬁ) = a(z),

a(%ﬁ) = ﬂ(z)v for all (: :) € To(N)) .such that B(z)? = 4a(z)® — g2a(z) — g3 where ‘

y? ='42% — g2 — g3 is the Weierstra8 form for E. Then %‘! = f(z)dz is the pullback of
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the canonical differential "T’ on E. Define F(z) := —2n: ‘}o f(w)dw. Then F(gz) — F(z)

is independent of z for g € To(N). Define o(g) := F(g2) z F(z). Then

o: To(N) — (period lattice of E9 is a homomorphism o(g192) = o(g1)+0(g2) with ker (o)

generated by the elliptic, parabolic, and commutators of I'y(N). Manin proved that there
r

exist finite sets g1,92,...,9- € To(N), c1,¢2...,¢, € @ s.t. Lg(1) = 3 cio(gi). We gene-
=1

.4
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ralize Manin’s theorem to derivatives of the L—function Lg(s) associated to E. We show
that there exists a 1—cocycle o(g, z) for I‘o(N ) satisfying o(g1,92,2) = 0(91922)+0(g2,2)

such that if Lg(1) = 0 then L5(1) = E cio(gi, i) where
€1,62,..-,6r €Q, 91,92,---,9r € I‘o(N) 'and 215000520 € Cusps(Ty(N)).

S. Goto

Non-Noetherian symbolic blow-ups for space monomial curves
Let k be a field and let n;,n,,n3 be positive integers with GCD(nl,ng,ha) =1. Let
A = k[[X,Y, Z]] be a formal power series ring over k and let ¢: A — k{[t]] denote the
k-algebra map defined by ¢(X) = t™, p(Y) = ™, ¢(Z) = t". Let p = p(n1,n2,n3) be
the kernel of .. Then it remains open whether the symbolic Rees algebra R,(p) = @ p™
n>0

is a Noetherian ring for any such prime ideal p of A. The purpose of my talk is to construct
counterexampleés to the above question. My theorem is

Theorem (joints with K.Nishida and K.-1. Watanabe) Let n>4 and 2m >n+1 and
ny=Tm—3, n; =5mn—m—n, n3 = 8n — 3 and assume that GCD(ny,nz,n3) = 1.
Let p = p(ny,n2,n3). Then we have
(i) if chk =p >0, 3k € pCP s.t. h = ZU"~)P mod(X,Y?). Hence R,(p) is a Noetherian
ring but not a Cohen-Macaulay ring.
(ii) If chk =0, then R,(p) is not a Noetherian ring.

The simplest example obtained by this theorem is the ideal

p = p(lS, 53,29) =1

Xx3y2z7
(Y Z4 X5

) = (Zs _X7y2’xll -—st,Ya —X‘Z:’)A

If we consider the same ideal P inside B = Q[X,Y,Z], then R,(p) is not a finitely
generated Q-algebra. .

G. Gotzmann

Invariants of Hnlbert-schem&e a few examples

Let Hyy = HilbP(P %), P(T) = dT — g+ 1 denote the Hilbert scheme of space curves.
Only the first two cohomology groups are known in general:
H°(Hy4y;2) = 7,H'(Hyy; 1) =0 (and in the case chark=p >0
HL(Hag; Z/nZ) = 0 if we further suppose p > d). So it is natural and interesting to
ask what the group H?(Hg,, Z) might be. In the talk a method was presented which
enables one to show (by direct computation) that H2(Hyq; Z) is equal to Z* and that
H’(H,.,, Z) isequal to Z° or to Z4.
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R. Hartshorne

Algebraic Space Curves
We study algebraic curves in a projective 3—space P § over an algebraically closed field
k. While the original curves of interest are the irreducible non-singular curves, it has

become clear from recent work that the natural context for the problem is to study all .

curves which are equi- 1 -dimensional closed subschemes of P without embedded points.

- In the same way by surface we will mean an equi- 2—dimensional closed subscheme of P 3

without embedded components.

It is convenient to regard a curve on a surface as a divisor. Our curves need not, of
course, be Cartier divisors. So we introduce a theory of generalized divisors. For any
locally Gorenstein scheme X (or more generally a scheme X satisfying G; (“Gorenstein
in codimension one”) and S; (condition S; of Serre) we define generalized divisors, in such
a way that every pure codimension 1 closed subscheme without embedded points becomes
an effective generalized divisor. One must be careful only that generalized divisors do not
form a group. However one has a large subgroup of “almost Cartier divisor” which acts
on the set of generalized divisors. Otherwise the familiar theory extends to generalized
divisors: associated sheaf £(D) to a divisor D, which is a reflexive sheaf on X; for an
effective divisor D, the exact sequence i

0—-£L(-D)—-Ox >0p—0

linear equivalence, etc.
Now one can conveniently define liaison (linkage) of curves as follows: C and C' are
linked if they lie on a surface F, and as divisors on F, C' ~ mH — C, for some m > 0,

" where H denotes the hyperplane section.

In my talk I reviewed the results over the last ten years or so about hnkage classes of cur-
ves determined by the Rao module M¢ = @ HY(Oc¢(n)), and the results of Deschamps,

Perrin, Ballico, Bolondi, Migliore giving the structure of the even liasion classes of curves
in P? in terms of their minimal curves.

These results suggest that the problem of determining the postulation of all possible

. curves in P? is perhaps not as impossible as it seemed before.

As a modest beginning, I mentioned my recent calculations of the postulation of all
possible curves on surfaces of degree 2. Of course curves-on the nonsingular quadric
surface and on the quadric cone are well-known, so it is the curves on the union of two
planes H, U H; or a doubled plane 2H which are of new interest. Here also the theory of
generalized divisors becomes useful.
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C. Huneke )
Uniform Artin-Rees
We talk about the following two theorems:
Theorem 1: Let R be a noetherian ring which satisfies one of the following three condi-
tions:

i) R is essentially of finite type over a noetherian local ring or over Z.

i) char R =p > 0 and R is finite over RP.

iii) R is an excellent domain and dim R < 3.
Then for all finitely generated R-modules N C M there exists a K = K(N,M ) such
that
I"MONCI**N foralln> k

and for all ideals I C R.
We say that R has the uniform Artin-Rees property in this case.
The proof needs other information about uniform behaviour and in particular we also
prove:
Theorem 2: Let R be a reduced ring satisfying one of the following cond.\tlons
i} R is essentially of finite type over an excellent local ring or over Z .
ii) char{R) = p > 0 and R is finite over RP. '
iii) R is a domain, is excellent, and dim R < 2.
Then there exists a k such that for all ideals I C R,

F g In—k

Here I™ = integral closure of I"™.

The techniques to prove these two theorems come from a variety of sources, but mainly
one from tight closure theory, resolution of singularities, and work related to the Briancon-
Skoda theorem, especially that of Lipman and Sathaye.

A. Iarrobino
Graded Ideals in K[z, y] and Ramification (joint work with J.Yameogo
We consider X = P!, the projective line, and graded ideals I in
R =k[z,y] = @ I'x(Ox(i)). The ramification sequence p(I;,z) is a sequence of integers
=0 .

specifying the order of ‘vanishing of a well-chosen basis of I; at z = 0 on P!. The
ramification p(I,z) = (--+ ,p(I;,z),---), is the collection of ramification sequences of I;
at z, for all i. There is a unique monomial ideal .E; with the same ramification sequence
as I at z. Welet V(E) = {IdealsI C R| E; = E}. Our goal is to study V(E) = V(E,z)
(at the point z = 0) and the intersections V(E z)NV(E', z') of ramification conditions
at different points z,z’ of P
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L.Gottsche determined the dimension dimV(E), and showed that V(E) is an affine
cell, using the method of Bialynicki-Birula. J.Yameogo has noted that V(E) is also a
“vertical cell” of the family Gt of graded ideals in R, sucht that the Hilbert function
T(R/I) = T(R/E) - a concept studied previously by J.Briancon et al.

Our first main result is to determine the dimension dim V(E) in a more natural manner,
using a sequence of partitions that encodes how one constructs the standard cobasis EC

for E. As a consequence, we show that the homology H* (GT) satisfies, there is an additive .

isomorphism

p: H (GT) HH (small Grassmanians)

But ¢ is not an isomorphism of rings.

Our second main result is-to determine the ring H- (GT) for Hilbert functions
T =(,2,...,d,d,...,d,1). As a consequence, we can determine the homology class
dimension a.nd multiplicity of the intersection of ramification conditions V(E,z)NV(E',z')
for E, E' monomial ideals in Gr.

Although such Gt are well behaved, when T = (12321), the cells do not satisfy the
frontier condition, do not intersect property, and are not dual bases in complementary
dimensions.

L. Tllusie

An Introduction to logarithmic algebraic geometry

Logarithmic algebraic geometry arose from the work of Hyodo-Kato on the Fontaine-
Jannsen conjecture on the structure of the de Rham cohomology of X /K for proper
schemes X over a complete discrete valuation ring A of mixed characteristics, with frac-
tion field K, having semistable reduction. A log scheme is a scheme X endowed with
a sheaf of monoids M and a homomorphism a: M — Ox (multiplicative) such that
a: a~}(O%) = O%. Maps are defined in the obvious way. There are nice finiteness con-

ditions ( “fineness™) giving rise to a notion of smoothness extending the range of smoothness
in classical algebraic geometry. For example, an affine toric variety X/k is log smooth for a

‘natural log structure on X. A map X/S with semistable reduction as above is log smooth

for certain canonical log structure on X/S. There is a theory of differential calculus in this
context, and of crystalline cohomology developed by Hyodo-Kato. Recent developments

 of the theory include Dieudonné theory for “log” degenerating p-divisible gorups and the
" description of Chai-Faltings compactifications as solutions of certain log moduli problems.

The basic facts on logarithmic algebraic geometry are in K. Kato, Logarithmic structu-
res.of Fontaine-Illusie, in “Algebraic Analysis, Geometry and Number Theory”, The John
Hopkins University Press (1989).
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C. Ionescu
Symbolic powers of prime ideals in polynomial rings

Let k be a field, R = k{z;,...,Za] be the polynomial ring over k, P a prime ideal in R.
For f € P it is interesting how to decide when f belongs to a symbolic power P*) of P,
In the case of k being of characteristic zero or the power being less than the characteristic
one can use a filtration given by ordinary derivations, otherwise one should use a filtration
obtained by high differentials. Then f € P(® if all partial derivatives of f, until order
k — 1, belongs to P. Similar results are known from Zariski, Tognoli, Seibt.

F. Ischebeck

A principal ideal domain A such that SL(A) is not generated by elemantary matrices
SL(A) := ulgx:o SL,(A), E(A) is the subgroup generated by elementary matrices,

SK,(A) := SL(A)/E(A). (SK, is a direct summand of K;.) If A is a Euclidean domain,

then (trivially) SK;(A) = 0. This need not be so, if A is a general principal ideal

domain; the first example was given by Bass. The example given here is the following:

A:=S"1R[X,Y], where S is generated by

{ all f without real zeroes }U{X?2+Y? —a|a > 0}. (One may also choose S generated

by

{all f without real zeroes} U {(X —n)? + (¥ —m)® |n,me€ Z}U{X —ala€c R\ Z}
u{Y -b5|beR\1Z}

In this case one even has SKy(As) =0 for all f € A - {0}.).

J.P. Jouanolou
Inertia forms and applications

First we define the notion of inertia forms in the weighted case and show that it ap-
pears naturally on apparently not related cases of elimination (embeddings, reduced re-
sultants,...). Giving an explicit version of the local duality for homogeneous complete
intersections, we can exhibit in certain general cases a complete list of the inertia forms. It
permits us to give explicit formulas for multivariate resultants (for instance for three poly-
nomials of any degree), and parallely for the Grothendieck residues. It works also in some
weighted cases, covering the geometric problems mentioned at the beginning (equations of
the image of embeddings P? — P 3 for instance).
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Let X C P? be a 0-dimensional scheme, R its homogeneous coordinate ring, and wg
the canonical module of R. We examined the question how geometrical properties of
X are reflected by the algebraic structure of wg. In particular, using the multiplication
maps R, ® (Wr)-n — (wR)o we characterized the following geometrical notions: Cayley-
Bacharach schemes, locally Gorenstein Cayley-Bacharach schemes, A x —uniform schemes,
schemes with higher uniformities (including schemes in uniform position), schemes in Li-
nearly general position, schemes in higher order general position, and cohomologically
non-split schemes. Applications included inequalities for the Hilbert functions of zero-

M. Kreuzer .
On the Canonical Module of a Zerodimensional Scheme
dimensional schemes, and a characterization of schemes with almost linear resolution.

C. A. Laudal
Kodaira-Spencer classes for modules and Lie algebras

Let S be any k-algebra, k a field. Consider an S—algebra A, an S-module M or a
Lie algebra g defined on S. There are Kodaira-Spencer classes C(A4) € H!(S; A; A®Qs),
C(M) € ExtL(M,M®sQs), C(g) € H*(S; g; 8) defining corresponding Kodaira-Spencer
maps, and giving birth to Chern classes and Gau8-Manin connections etc.
(1) If m: S — A is the versal family of an isolated hypersurface singularity the isomorphism
relation & on Spec S is defined by the integral subvarieties of V = kernel of the K-S. map.
(2) There is a corresponding result for Lie algebras. This is used to prove the existence of
a fine moduli space for Lie algebras of with fixed dimensions of H(g,8), i =0,...,dim g
and to prove that in special cases there is an immersion of the moduli space of hypersurface
singularities into the moduli space of Lie algebras.

The goal of this research is to gain some insight in the global structure of the “Moduli
Suite” of singularities, see L.Pfister. SLN 1310 and Bjas-Laudal: Compositio 75 (1990).

J. Lipman
Pseudofunctorial structure on modules with 0—dimensional support

For each complete local ring R, let Zr be the category of R-modules supported at .
the maximal ideal. A pseudofunctor assicates to each local homomorphism f: R — S

a functor f.: Zrp — Zs, and to each composition R —,v $§ 2 T a functorial isomorphism
crg: (9f). = g9.f., with natural compatibility properties relative to a composition of three
maps. For example, restricting to residually finite maps (i.e., {S/ms : R/mpg] < 00), we
can set fyM := Hom%x(S, M), the homomorphisms whose kernel contains a power of
mg, with obvious ¢f4. Or, for formally smooth f of relative dimension d and residual
transcendence degree t, we can set fxM = HE _(Q%4 ®r M), with less obvious cy,q.

10
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Both fyz and fx take injectives to injectives, and, in particular, injective hulls of R/mg
to injective hulls of S/mg. For residually finite smooth maps, the functors fg and fx are
canonically isomorphic, compatibly with the respective cj,4’s (a form of Local Duality).

The main result of the recent thesis of I.-Chan Huang is that there is an essentially unique
pseudofunctor on all residually finitely generated (r.f.g.) maps, restricting to fg and fx
on residually finite and formally smooth maps respectively. (Uniqueness holds because
any r.f.g. map factors as “surjection o formally smooth”. The existence comes by pasting
f# and fx via such -non-unique- factorizations. There are many compatiblities to be
checked in doing so, and this involves a good deal of the theory of residues.)

It is expected that a similar process will yield a purely local pseudofunctorial structure
. on Cousin complexes with acyclic (for local cohomology) terms, corresponding to the global
theory of f' which underlies Grothendieck Duality.

W. Lutkebohmert
Riemann’s Existence Problem for a p-adic Field

Riemann posed the problem if any finite étale morphism from a Riemann surface to an
(affine) algebraic curve over C is induced by an algebraic morphism. Nowadays it is well-
known that this question has an affirmative answer. In their paper “Komplexe Raume”
Grauert and Remmert settled this problem in higher dimension. It could be solved due
to Serre’s GAGA-principle by an extension theorem for finite étale coverings. A crucial
point in their proof is the fact that any étale covering of a pointed disc extends to a finite
covering of the whole disc.

In the talk I treated a similar question for rigid-analytic coverings in the sense of Tate.
This problem has an affirmative answer without further restrictions on the covering in the
case where the base field has characteristic zero and residue characteristic p. The problem
can be reduced to the following theorem:

Let ¢: X — A(r,R) = {z € K*,r < |z| £ R} be a finite étale covering of degree
‘ d. Then there exists a number b = b(d,p) € N depending only on the degree d of ¢
and on the residue characteristic p such that ¢ is of Kummer type over A(r', R’) where

r' =r/|p|* and R’ = |p|’R.

In positive characteristic, char K > 0, there exist examples of non-extendable finite étale
coverings of a pointed disc. But Riemann’s existence problem has an affirmative answer
in positive characteristic if one sticks to Galois coverings whose degree is prime to the
characteristic. Such a result is of interest for Drinfeld’s work, since it implies a comparison
theorem between the rigid étale and the algebraic étale cohomology of an algebraic variety
over a p-adic field in positive characteristic.
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T.C. Nguyen
Macaulyfication of Noetherian schemes
Let X be a Noetherian scheme. By Macaulyfication we mean a pair {X,7} of a Cohen-
Macaulay scheme X and a birational proper morphism m: X — X. This problem has
been studied first by M. Brodmann and G. Faltings. Faltings proved that if X is a quasi-
projective scheme over a Noetherian ring R, where R has a dualizing complex and the
non-Cohen-Macaulay locus of X is of dimension < 1, then X admits a Macaulayfication.
Now our main result is to give a generalization of Faltings’ result as follows:
Theorem: Let X be a Noetherian scheme of finite dimension satisfying the following
conditions:
(i) X admits a dualizing complex;
(ii) dimOx, . = dim X for all closed points of X.
Then X admits a dualizing complex.

A.N. Parshin

Beilinsons’s approach to the residues
Let K = k((t1))---((tn)) be an n—dimensional local field of equal characteristics. The
author has defined a residue maps Q%/, — k which generalize a classical definition for

. n = 1. J. Tate has expressed the residue map (for n = 1) in terms of traces of linear

Deutsche

operators belonging to End;(K). Beilinson has got a generalization of this construction
to the case of arbitrary n. We describe the ingredients of his construction: some Lie
algebra decompositions inside Endg(K'), complexes related with Koszul complex of infinite-
dimensional Lie algebra, chain complex of local systems over n—dimensional cube (defined
in terms of cubic structure).

P. Roberts
Chern Classes of Matrices

The theory of “localized Chern characters” of Baum, Fulton and MacPherson has been
an important tool in answering several homological questions in Commutative Algebra.
However, they have been difficult to compute in an algebraic context. We present a
method of computing the Chern character of a complex of free modules with support in the
maximal ideal of a local ring, using the Rees ring of an ideal defined by the determinants
of each matrix of the resolution. There are several questions which arise and involve the
contributions of the individual matrices of a resolution, including whether the contributions
of a resolution of a module of finite length over a regular local ring are positive, and
questions on a closure operation on ideals defined by requiring that the Chern characters
take on the maximum possible value.
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P. Sastry
Residues and Duality (joint work with Yekutieli)

For each reduced scheme 7: X — k, of finite type over a perfect field k, Yekutieli defines
a complex Ky living in degrees [- dim X,0]. K is a complex of injectives, in fact it is a

“residual complex”,i.e. @ K?P = @ J(z) where J(z) is the sheaf which is the constant
PEZ

sheaf consisting of the injective hull of k(z) over O, x on {z}, and zero outside {z}, and
further Ky has coherent cohomology sheaves.

Moreover Yekutieli in his thesis (and in a forthcoming publication) shows that for each
closed point z € X, there is a natural map 7.: [';(K]) — k, such that if X is proper,
the resulting map Trxr = I7,: I(X,Kx) — k gives a map of complexes m. Ky — k.
This leads one to believe that Ky =+ E(n'k) where n' is the duality functor defined
in-Hartshorne’s book “Residues and Duality” [RD]. Yekutieli shows this is true if X is
quasi-projective. In our joint work we show this to be true for all X, using arguments
from Deligne’s appendix to [RD], and a version of “local duality”. Moreover Yekutieli’s
map Tr, (for m proper), is shown to play the role of of.

. B ~

R.Y. Sharp
‘Bass Numbers of Local Cohomology Modules

This lecture reported on récent work (joint with C.Huneke) about the local cohomology
modules of a regular local ring (4, m) of characteristic p > 0 with respect to an arbitrary
proper ideal I of A. _

Results about the effect of the Frobenius functor on injective A-modules were used to
prove the following two theorems.

Theorem. For all 7,5 > 0 and for alle P € Spec(A), the Bass number p(p, H’(A)) is
finite. In fact, u'(p, Hi(A)) < p'(p,Ext’ 2(A/1A)).

Theorem. If, for some j > 0, the local cohomology module H}(A) is Artinian, then it is
injective.

A consequence of the first theorem is that Ass(H }(A)) is finite for all 7 > 0.

The special case of the second theorem in which A contains its residue field which is
perfect was proved in 1977 by Hartshorne and Speiser. The methods used in this lecture
can also be used to prove the followmg
Theorem. For all ¢,j > 0, H: (H’(A)) is injective; for all j > 0, Tm(Hi(A)) is an
injective direct summand of H? 1(4).
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J. Strooker

On_the Monomial Conjecture
Let A be a Noetherian local ring and z1,...,z4 be a system of parameters. The

™=~

monomial conjecture asserts that there is no identity zj -...-z% =
and t > 1.

Theorem. The nionomial con]ecture holds for all d-dimensional local ring A in a cer-
tain characteristic if and only if for no d-dimensional complete intersection in the same
characteristic there is a component of zero contained in a parameter ideal.

The lecture ended with questions on parameter ideals, Auslander’s delta invariant and
linkage. : :

i=1

G. Valla

Bounds for the regularity index of fat pointsin P™ :
Let X C P" be a set of points, X = {Py,...,P,}. If p,,...,p, are the correspon-

ding prime ideals in R := k[Xo,...,Xn}, the 0—dimensional scheme defined by the ideal

Ii=p N---Np7i is called a set of “fat” points with multiplicities the given integers

my2>2my 2 - 2m; 2 1. If Z is a set of fat points, the regularity index of Z is defined

to be the least integer t such that Hz(t) = deg(Z) and written as r(Z). In this talk I

report on joint work with M.V.Catalisano and N.V.Trung where the following results have

been proved:

1. If the points P,,..., P, are in linear general position, then

r(Z) < max{m; + my — 1,[('.2l m;+n—2): n]}

2. The bound is sharp. Every set of points on a rational normal curve in P " reaches the
bound.

3. The bound is sharp also for points with the Uniform Position Property.
4. If the points are generic and ¢ ist the least integer such that

gm0 <)

m(Z) < max{m; + my — 1, + muq3 — 1}

then
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U. Vetter

Generic maps
Let B a noetherian ring, X = (Xj;;) an m x n matrix of indeterminates X;; over B, ‘

and r an integer, 0 < r < min (m,n). Put R = R4y = B[X]/I41(X) where I,;,(X)
is the ideal in B[X] generated by the (r + 1)—minors of X . Consider the “generic map” - ‘
z: R™ — R" induced by X: B[X]|™ — B[X]".
Theorem. Let 1 < g < r, and denote by C(9 the cokernel of the g—th exterior power of ‘
z. Then
(a) C@ is an almost perfect B[X]—module (i.e. pdpx)(C?®) < gradeB[x](C(’)) +1). ‘
(b) C® is perfect if and only if m > n.

’ Special cases of the theorem are due to Buchsbaum and Eisenbud (m > n = r) and
Bruns (g = 1) respectively. The proof uses the Hodge-algebra structure of R.

J.F. Voloch
The conjectures of Mordell and Lang in positive characteristics
The Mordell-Lang conjecture in characteristic zero states that if X is a subvariety

of a semiabelian variety A which is not a translate of .a subgroup variety and T' is a
subgroup of 4 with dimgI'® Q finite, then X NT is not Zariski dense in X . In positive
characteristics one should add the condition that X is not weakly isotrivial (that is it is
not purley inseparably covered by a variety defined over a finite field) to hope that the
conjecture is valid.

~ I'reported on joint work with D. Abramovich where we tackle the above conjecture in
characteristic p > 0 under the hypothesis that rkz ) T ® L () is finite. With this condition
we can prove that the conjecture is true in many (e.g. if X is a curve or if A is ordinary)
but not all cases.

A. Yekutieli :
An Explicit Construction of Grothendieck’s Residue Complex
‘ Let k be a perfect field, X a reduced k-scheme of finite type, with structural morphism
7. The residue complex is by definition the cousin complex associated to 7'k (in the sense
of “Residues and Duality”). We construct a complex Ky, which in the affine case is shown
to be isomorphic to 7'k. Together with P. Sastry we produce a canoncial isomdrphism for
all X. -
The construction uses the following methods: Beilinson’s completions, semi-topological
| rings and Parshin-Lomadze residues. A very brief sketch: For z € X set w(z) := Qf(,) i,
the top degree differential forms. A saturated chain ¢ = (zo,...,%5) is a chain of im-
mediate sepcializations. For a coefficient field o: k(z) — Ox . set
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K(z) = Hdmi?';;'(@x,,,w(z)). Given a saturated chain £ = (z,...,y) and a coefficient
field o for y, we have the Parshin residue map Res¢,o: w(z) — w(y). Now suppose 7,0 are
coefficient fields for z,y resp., which are compatible. We get a map §¢,r.0: K(7) — K(0o).
The various K(o), o coefficient field for z, can be identified to give a module K(z).
} For a chain { as above, we have §¢: K(z) — K(y). We get a complex by setting
| K3 = . D K(z); 8§@z) := (2)6(,,,) is the coboundary. Using its intrinsic proper-
im r=¢ z, - .
} ) ties (for X smooth, for finite mor;hisms, e.t.c.), we show that K is a residual complex
| in the sense of “Residues and Duality”.
\
|

Berichterstatter: R. Waldi ‘
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