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Die Tagung stand unter der Leitung von E. Kunz (Regensburg), H.-J. Nastold (Münster)
und L. Szpiro (Paris).

In den Vorträgen wurde über neuere Ergebnisse aus der kommutativen Algebra und al­
gebr.aischen Geometrie berichtet. Unter den verschiedenen Themenkreisen, ~e diskutiert
wurden, sind folgende besonders hervorzuheben: Eine Reihe von Vorträgen beschäftigte
sich mit O-dimensionalen Unterschemata des P n , insbesondere mit der Frage, wie sich
geometrische Eigenschaften der unterliegenden Punktmengen ~n den Hilbertfunktionen der .

.Koordinatenringe widerspiegeln. Einen weiteren Schwerpunkt bildeten Referate über neu­
ere Entwicklungen in der Residuen- und Dualitätstheorie. Reges Interesse fand dabei der
Vortrag von A.N. Parshin (Moskau) über Beiiinsons Residuenkonstruktion. Auf Wunsch
des Auditoriums gab He~ Parshin in weiteren inform~llen Vorträgen Gelegenheit, sich
darüber eingehender zu informieren. Ferner berichteten mehrere Redner über R~sultate

und Fragen aus der arithmetischen algebraischen Geometrie. Von den übrigen Einzelthe­
nien seien noch erwähnt: Logarithmische Strukturen auf Schemata, Fundamentalgruppen
von Varietäten, Raumkurven, Chernklassen.

Die hohe Zahl ausländischer Gäste unterstreicht das weltweite Interesse an der Tagung;
so kamen -neben den 15 deutschen Teilnehmern- 16 aus europäischen Ländern (davon
4 aus Osteuropa), 17 aus Nordamerika, 2 aus Japan und je einer aus Israel, Brasilien,

. Saudi-Arabien, Indien und Vietnam.

Vortragsauszüge

s.s. Abhyankar
More about Galois Theory on the Line

In my 1957 paper in the American Journal, I considered the algebraic fundamental group
'1rA(Lk) of the affine line Lk over an algebraically closed ground field k of characteristic
p t= 0, and I conjectured that '7TA(Lk) = Q(p) where Q(p) is the set of all quasi p-groups.
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Here 1l"A(Lk) is defined to be the setof all finite Galois groups of unramified coverings,
and by aquasi p-group we mean a. finite group which is generated by all its p-Sylow
subgroups.".

In support of this conjecture, in the 1957 paper, I considered the unramified covering of
LI; given by

F n,9,8,4 ~ yn - aX"yt + 1 with 0 =1= a E k and n - t = q = apower of p

where sand. n > t ~ O(p) are positive integers, and I suggested that its Galois group
Gn ,9,8,4 should be computed. Now, with inspiration from Serre and sometimes using CT
(=the Classification Theorem of Finite Simple Groups), I have pr~ved the following.

(1) t = 1 =? Gn,g,S,G = PSL(2,q). e
(2) q = p > 2 ~ t and p,t) =1= (7,2).=? Gn,9,8,4 = An·
(3) q = p > 2 ~ t and (p"t) = (7,2) =?Gn ,9,8,4 = PSL(2,8).
(4) q = p = 2 =? Gn,9,8,4 = Sn. .
(5) q < t and p> 2:::> Gn,9,8,~ = An.
(6) p = 2 < q < t => Gn,9,8,4 = An.
(7) p = 2 < q = 4 and t = 3 (and n = 7):::> Gn ,9,S,4 = PSL(3, 2).
(8) p = 3< q = 9 and t = 2 (md n = 11)=? Gn ,9,8,4 = Mu .

Out of this, (6). was proved in collaboration witb" Ou and Sathaye, (1) and (7) are
collaborative work with Serre, and (8) was proved in collaboration with Popp and Seiler.
Note that An is the alternating group, Sn is the symmetricgroup, M u is tbe Mathieu
group of degree 11, and PSL(m,q) = SL(m,q)/(scalar matrices) where SL(m,q) ~ the
group of all m by m matrices whose determinant is 1 and whose entries are in the field
GF(q) of q elements.

A.G. Aleksandrov
Residuen und. Dualtiät für nichtisolierte Singularitäten

Sei X C (C n+1 ,O) der Keim einer n-dimensionalen Hyperfläche, Sing(X) der Keim
der singulären Punkte von X. Wir betrachten die Garbe n~ der Keime von holo­
morphen Differentialformen ~om Grade p auf X, die Ox-Torsionsunt~rgarbe Torsn~e
von n~ und den Rauln TI(X) der infinitesimalen Deformationen von X. Weiter sei
codim (Sing X, X) = 1. In diesem Fall sind die Dimensionen der C -Vektorräume Torsnk
und Tl (X) unendlich.

Hier wird erklärt, wie m~ mit Hilfe des Grothendieckschen Residuensymbol im Sinne
von [E.Kunz. Math. Zeit. 152 (1977)] die vollständige Paarung erhält, die analog zu be­
kannten nicht au'sgearteten bilinearen Formen auf Hyperfiächen mit isolierter Singularität
ist:

Tors n1 x Tl(X)-~ nn-l
X r/C
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Hierbei sei Tein C umfassender Vertreterkörper in OX,Sing x. Es werden die Poinca.re­
Reihen P(Tors(n~);t) und P(T1(X);t) für quasihomogene Hyperftächen berechnet.

D. Eisenbud
Higher Castelnuoyo Theory and a theorem of Macaulay

I described recent work with Mark Green and Joe Harns on a new senes of conjectures
which would extend Castelnuovo theory ("curves of rather large genus for their degree
are quite special") on one hand and Macaulay's Theorem ("characterization of Hilbert
functions") on the other. An easy piece of these conjectures"to state concerns th~ possible
Hilbert functions of graded ideals containing a maximal complete intersection of quadrics:

Let S = k[zo, , zr]. be a polynoInial ring over a field .k, and let I C S be an ic:Iea1
sucht that I 3 Ql, , Qr, a regular sequence of quadrics. Suppose that ,..

Conjecture:

•

G. Frey
Curves of genus two covering elliptic curves

First we made the following remarks about curves C covering the projective line over
a global fiel.d K: Assume that the d-fold Symniet.ric productof C has infinitely many
K -rational points then a result of Faltings implies. that there is a K -rational covering
'P": C -+ pI of degree ~ 2d. It follows that for a prime !V > 120d there ar~ only ßnitely
many elliptic curves defined over number a field K of degree ~ d having a K-rational
isogeny of degree N. .

Next (joint work with E.Kani) we described the moduli spa.ce of curves of genus 2 cove­
ring an elliptic curve'of (minimal degree) N. It is an op~npart of X(N) xX(N)/SI(2, Z IN)
where Y(N) is the modular curve parametrizing elliptic curves with canonicallevel-N­
structure. It is possible to describe the boundary of the moduli space, and especially it
follows that for any elliptic ~urve E and auy N ~ 2 there are many curves Cof genus 2
covering E of degree.N. We showed how this can be used to estimate the heig.Qt of elliptic
curves E by the self-intersection number of the relative canonical sl;leaf of the arithmetical
surface related to curves C of genus 2.

3
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A. V. Geramita (joint work with A. Gimigliano (Genova»
Rational Surfaces and Points in P 2

Let X = {Pt, ... ,p.} ~ P 2(k), k = k (chark = 0), Y = p2(Pt, ... ,P.) the blow-up
of p 2 at the points Pt, ... ,p. ,. 1r: Y -+ P 2 the blow-up morphism. Let 1r- t (Pi) = Ei,
1r-

1 (L) = Eo (L a line missing X),. .
Let I = p~t n ... n p~. ~ k[x, y, z] = R. Then Id is the linear system of plane curves

of degree d which have, at Pi, a singularity of multiplieity ~ Qj. Let H(R/I, -) denote

the Hilben function of RfI, then for t >> 0, H(RfI, t) = ~"( Oti ; 1). Let u(I) =least

integer t for which ~H(h/I,t) =O.
H Dd = dEo - EaiEj E Div(Y) then dlmld = hO(Oy(Dd» and· (0)+1)i~ • 2 - H(R/I,d) = ht(Oy(Dtl.» (h2 (Oy(Dd» = 0 in any case).

Proposition (Davis-Germita) i) D t is very ample for t ~ u + 1.
ii) D" ia very ample <=> for E the proper transform of a line in P 2 , then DtT • E > O.

Now suppose De is very ample for t ~ u and let N + 1 = hO(Oy(Dt ». Denote by Vt

the image,.in P N ,.of the embedding determined by De. Then Jv, ~ k[xo, ... , ZN] = S ia
the homogeneous ideal of Ve and A = S/Jv, the homogeneous coordinate ring. Then
Theorem: A is arithmetic8Jly Cohen-Macaulay.

One also proves that dim(Jv. h = i~ (~i) and each set of (~i) "-quadrics (one

set for each i), corresponds to a rational normal seraIl of dimension d - Qi + 1- (with
(d - oj)-dimensional fibres) cont.ainging V,.

D. Goldfeld
Special values of derivatives of L-functions

Let E be an elliptic curve defined over Q with conductor(E) = N. We -assume

E is modular for ro(N) = {(: ~)"E 81(2, Z) I c == O(N)} which is equival~t to

saying that there exist automorphic forms o(z), ,8(z) for ro(N) (i.e. Ot( ~:t:) = o(z),

Ot(~:t:) = ,8(z) for all (: ~) E ro(N»such that ,8(z)2 =40(z)3 - 920(Z) - 93 where e
y2='4z3 - 92 X - 93 is the Weierstraß form for ,E. Then 7 = J(z)dz ia the pu11back of

'00
the canonica1 differential ~ 9D E. DeHne F(z):= -211'i J J(w)dw. Then F(gz) - F(z)

ia independent of z for 9 E ro(N). Define u(g) := F(gz):' F(z). Then
u: ro(N) ~ (period lattice of E9 is a homomorphism U(9192) = U(gl)+U(g2) with ker (u)
generated by the elliptic, parabolic, and commutators of ro(N). Manin proved that there

exist finite sets 917 92,···, 9r E ro(N), cI, c2 ... ,cr E Q s.t. LE(l) = t ciu(9')' We gene-
i=1

, 4
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ralize Manin's theorem to derivatives of tbe L-function LE(S) associated to E. We show
that there exists a 1-cocycle u(g, z) for r 0 (N) satisfying u(gl ,.92, z) = U(9t 92 z) +U(92 , z)

such that if LE(l) = 0 then L~(l) = t CiU(9i, Zi) where
i=1

Ct,C2, •.• ,cr E Q, 9t,92, ... ,gr E ro(N) and zt, ..• ,zr E Cusps(ro(N».

s. Goto
Non-Noetherian svmbolic blow-ups for spare monomial curves

Let k be a field and let n., n2, n3 be positive integers with GCD(nt, "2, n3) = 1. Let
A = k[[X, Y, Z)) be a formal power series ring over k and let VJ: A -+ k[[t]] deilote the
k-algebramap defined by ",(X) = t nl

, VJ(Y) = t n2
, VJ(Z) = t n8

• Let p = p(nl,n2,n3) be
the kernel of.VJ. Then it remains open whether the symbolic Rees algebra R.(p) = (f) 'p(n)

n>O

is a Noetherian ring for any such prime ideal p of A. The purpose of my talk is to construct
counterexamples to the above question. My theorem is

Theorem (joints with K.Nishida and K.-I.Watanabe) Let n" ~ 4 and 2m > n + 1 and
nl = 7m - 3, n2 = 5mn -m - n, n3 = 8n - 3 and assume that GCD(nt,n2,n3) = 1.
Let , = p(nl,n2,n3). Then we have
(i) if chk = p > 0, 3h E p(3p) s.t. h = z(7n-3)p mod(X, y 3 ). Bence R.(p) is a Noetherian

ring but not a Cohen-Macaul~y ring.

(ii) ,H chk =0, then R.(p) is not a Noetherian ring.

The simplest ex~ple obtained by this theorem is the ideal

If we consider the same ideal P inside B = Q [X, Y, Z], then R.(p) is not a finitely
generated Q -~gebra.

G. Gotzmann
Invariants of Hiibert-schemes - a few examples

~t Hd,g = HilbP (P ~ ), P(T) = dT - 9 + 1 denote the Hilbert scheme of space curves.
Qnly the first two cohomology. groups are known in general:
HO(Hd,g; Z) = Z, Ht(Hd,g; Z) = 0 (and in the case chal' k = P > 0
H:t.(Htl,~; Z In Z) = 0 if we further suppose p 2: d). So it is natural and interesting to
ask what the group H2(Hd,g, Z) might be. In the talk a method was presented which
enables one to show (hy direct computation) that H 2(H4 ,2; Z) is equal to Z· and that
H2(H3 ,o, Z) is equal to Z3 or to Z4. "
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R. Hartshorne
Algebraic Soace Curves

We study algebraic curves in a projective 3-space P ~ over an algebraically closed field
k. While the original curves of interest are the irreducible non-singular curves, it has
become clear from recent work that the natural context for the problem is to study all
curves which areequi-l-dimensional closed subschemes of P 3 without embedded points.

. In the same way by surface we will mean an equi-2-dimensional closed subscheme of P 3

without embedded components.
It is convenient to regard a curve on a surface as a divisor. Our curves need not, of

course, be Cartier divisors. So we introduce a theory of generalized divisors. For any
locally Gorenstein scheme X (or more generally a scheme X satisfying G1 ("Gorenstein
in codimension ~ne") and 52 (condition 52 of Serre) we define generalized divisors, in such •
a way that every pure codimension 1 clos~d subscheme without embedded points becomes
an effective generalized divisor. One must be carefulonly that generalized divisors da not
form a group. However one has a large subgroup of "almost Cartier divisor" which acts
on the set of generalized divisors. Otherwise the familiar theory extends to generalized
divisors: associated sheaf .c(D) to a divisor D, which is a reflexive ~heaf on X; for an
effective divisor D, the exact sequence

0-+ .c(-D) -+ Ox -+ OD -+ 0

linear equivalence, etc.
Now one can conveniently define liaison (linkage) of curves as follows: -e and C' are

linked if they lie on a surface F, and as divisors on F, C' "'oJ mH - C , for some m ~ 0,
where H denotes the hyperplane section.

In my talk I reviewed the results over the last ten 'years or so about linkage classes of cur­
ves determined by the Raa module Me = E9 Hl(Oc(n», and the results of Deschamps,

nEZ
Perrin, Ballico, Bolondi, Migliore giving the structure of the even liasion classes of curves
in P 3 in terms of their minimal curves.

These results suggest that the problem of determining the postulation of all possible
. curves in P 3 is perhaps not as impossible as it seemed before.

As a modest beginning, I mentioned my recent calculations of the postulation of al1 •
possible curves on surfaces of degree 2. Of course curves ·on the nonsingular quadric
5urface and on the quadric cone are well-known, so it is the curves on the union of two
planes H1 U H2 or a doubled plane 2H which are of new interest. Here also the theory of
generalized divisors becomes useful.

6
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c. Huneke
Uniform Artin-Rees

We talk about the following two theorems:
Th~orem 1: Let R be a noetherian ring which satisfies one of the following three condi­

tions:
i) R is essentially of finite type over a noetherian loeal ring or over Z.
·ii) char R = p > 0 and R is finite over HP.
iii) R is an exeellent domain and dimR ~ 3.

Then for all finitely generated R-modules N ~ M there exists a K = K(N, M) such

that
1"M n N .~ 1"-1:N for all n ~ k

and for all ideals 1 ~ R.
We say that R has the uniform Artin-Rees property in this case:
The proof needs other information about uniform behaviow: and in particular we also

prove:
Theorem 2: Let R be a reduced ring satisfying one of the followiIig conditions:
i) R is essentially of finite .type over an exeellent loe~ ring or over Z.
ii) char(R) = p > 0 and R is finite over HP.
iii) R is a domain, is excellent, and dim R ~ 2.

Then there exists a k such. that for all ideals 1 ~ R,

Here In = integral elosure of In.
The techniques to prove these two theorems come from a variety of sources, but mainly

one from tight elosure theory, resolution of singularities, and work related to the Briancon­
Skoda theorem, espeeially that of Lipman and Sathaye.

•
A. Iarrobino
Graded Ideals in K[x, y] and Ramifieation (joint work with J.Yameogo)

We consider X = pI, the projective line, and graded ideals 1 in
00

R = k[x, y] = EI) rx(Ox(i». The ramifieation sequence p(Ii, x) is a sequence of integers
i=O .

speeifying the order of' vanishing of a weH-chosen basis of Ii at x = 0 on .P 1. The
ramification p(1, x) = (... ,p(Ii , x), ... ), is the collection of ramification sequences of Ii
at x, for all i. There is a unique monomial ideal .EI with the same ramification sequence
aß 1 at x. We let V(E) = {Ideals 1 c RI EI =.E}. Our goal is to study V(E) = V(E,x)
(at the point x = 0) and the intersections V(E,x) n V(E', x') of ramification conditions
at differe~t points x, x' of pI.

7
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L.Göttsche determined the dimension dim V(E), and showed that V(E) is an affine
cell, using the method of Bialynicki-Birula. J.Yameogo has noted tbat V(E) is also a
"vertical cell" of the family GT of graded ideals in R, sucht that the Hilbert function
T(RfI) =T(RfE) - a concept studied previously by J .Briancon et al.

Dur first main result is to determine tbe dimension dim V(E) in a more natu.ral manner,
using a sequence of partitions that encodes how one constructs the standard cobasis EC

for E. As a consequence, we sbow that the hoinology H" (GT) satisfies, there is an additive .
isomorphism

<p: H"(GT) ~ TIH"(small Grassmanians)
add

But <p is not an isomorphism of rings. e
Our second main result is· to determine tbe ring H" (GT) for Hilbert functions

T = (1,2, ... , d, d, ... , d, 1). As a consequence, we can detennine the homology class
dimension and multiplicity of the intersection oframification conditions V(E, x )nV(E' ,x')
for E, E' monomial ideals in GT •

Although such GT are well behaved, when T = (12321), tbe cells do not satisfy the
frontier condition, do not intersect property, and are not dual bases in complementary
dimensions.

L. Illusie

An Introduction to logaritbmic algebraic geometry

Logarithmic algebraic geometry arose. from tbe work of Hyodo-Kato on the Fontaine­
J a.nnsen conjecture on tbe structure of the de Rham cohomology of X K IK for proper
schemes X over a complete discrete valuation ring A of mixed characteristics, with frac­
tion field K, having semistable reduction. A log scheme is a scheme X endowed with
a sheaf of monoids M and a homomorphism 0: M ~ Ox (multiplicative) such that
Q: 0-

1(Oxr -=4 0x· Maps are defined in the obvious way. There are nice finiteness con­

ditions ("fineness") giving rise to a notion of smoothness extending the range of smoothness
in classical algebraie geometry. For example, an affine torie variety X / k is log smooth for a e
natural log structure on X. A map XIS with semistable reduction as above is log smooth
for certain canonicallog structure on X / S. There is a theory of differential calculus in this
context, .and of crystalline cohomology developed by HyodcrKato. Recent developments
of the theory include Dieudonne theory for "log" degenerating p-divisible gorups and the
deScription of Chai-Faltings compactifications as solutions of ~rtain log moduli problems.
The basic facts on logarithmic algebraic geometry are in K. Kato, Logarithmic structu­
res.of Fontaine-ßlusie, in "Algebraic Analysis, Geometry and Number Theory", The Jobn
Hopkins University Press· (1989).

8
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C.lonescu
Svmbolic powers of prime ideals in polynomial rings

Let k be a field, R = k[Zl' ... ' zn] be the polynomial ring over k, P a prime ideal in R.
For f E P it is interesting how to decide when f belongs to a symbolic power pe!;) of P.
In the case of k being of characteristic zero or t~e power being less than the characteristic
one can use a filtration given by ordinary derivations, otherwise one should use a filtration
obtained by high differentials. Then f E pe!;) if all partial derivatives of f, until order

k - 1, belongs to P. Similar results are known from Zariski, Tognoli, Seiht.

F. Ischebeck
A principal ideal domain A such that SL(A) is not generated by elemantary matrices

SL(A):= lim SLn(A), E(A) is the subgroup generated by elementary matrices,

SK}(A) := 5L(A)/E(A). (SK} is a direct summand of K}.) If A is a Euclidean domain,
then (trivially) SK1(A) = O. This need not be so, if A is a general principal ideal
domain; the first example was given by Bass. The exampie given here is the following:
A := S-1 R [X, Y], where S is generated by
{ all f without real zeroes } U {X2 + y2 - a I a ~ O}. (One may also choose S generated
by

{all f without real zeroes} U {(X - n)2 + (Y - m)2 In,mEZ} U {X - a la E R \ Z}

U {Y - b I b E R \ Z}

In this case one even has SK1(A/) = 0 for all fE A - {O}.).

J.P. Jouanolou
Inertia forms and applications

First we define the notion of inertia forms in the weighted ease and show that it ap­
pears naturally on apparently not related cases of elimination (embeddings, redueed re­
sultants,... ). Giving an explieit version of the Ioeal duality for homogeneous complete
interseetions, we ean exhibit in certain general eases a eomplete list of the inertia forms. It
penillts us to give explicit formulas for multivariate resultants (for instanee for three poly­
nomials of auy degree), and parallely for the Grothendieek residues. It works also in same

weighted cases, eovering the geometrie problems mentioned at the beginni!lg (equations of
the image of embeddings P 2 --+ P 3 for instance).

9
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M. Kreuzer
On the Canonieal Module of a Zerodimensional Scheme

Let X ~ pd be a O-dimensional scheme, R its homogeneous eoordinate ring, and WR

the eanonieal module of R. We examined the question how geometrical properties of
X are reflected by the algebraic structure of W R. In particular, using the multiplication .
maps Rn <8> (WR)-n ~ (WR)O we eharacterized the following geometrical notions: Cayley­
Baeharach schemes, locally Gorenstein Cayley-Bacharach schemes, 6x-unifonn sehemes,
schemes with higher unifonnities (including schemes in uniform position), schemes in li­
nearly general position, schemes in higher order general position, and eohomologically
non-split schemes. Applications included inequalities for the Hilbert functions of zero­
dimensional schemes, and a characterization of schemes with almost linear resolution. •c. A. Laudal
Kodaira-Speneer classes for modules and Lie algebras

Let S be any k-algebra, k a field. Consider an S-algebra A, an S-module M or a
Lie algebra 9 defined on S. There are Kodaira-Spencer classes C(A) E HI(S; A; A<8>Os),
C(M) E Ext~(M, M<8>sOs), C(g) E H 2 (S; g; g) defining corresponding Kodaira-Spencer
maps, and giving birth to Chern classes and Ga~Maninconnections etc.
(1) If 11": S -+ A is the versal family of an isolated hypersurface singularity the isomorphism
relation ~ on Spec S is defined by the integral subvarieties of V = kernel of the K-S. map.
(2) There is a corresponding result for Lie algebras. This is used to prove the existence of
a fine moduli space for Lie algebras of with fixed dimensions of B i ( g, g), i = 0, ... ,dim 9
and to prove that in special cases there is an immersion of the moduli spare of hypersurface
singularities into tbe moduli space of Lie algebras.

Tbe goal of this research is to gain some insight in the global strueture of the "Moduli
Suite" of singularities, see L.Pfister. SLN 1310 and Bjas-Laudal: Compositio 75 (1990).

J. Lipman
Pseudofunctorial structure on modules with o-dimensional support

For each complete local ring R, let ZR be the category of R-modules supported at •
the maximal ideal. A pseudofunctor assicates to each loeal homomorphism f: R ~ S

a functor f.: Z R ~ Zs, and to each composition R ~ S ~ T a functorial isomorphism

cl,9: (gf)· ~ g·f·, with natural compatibility properties relative to a composition of three

maps. For example, restricting to residually finite maps (i.e., [SIms: RlmR] < 00), we
ean set f#M := HomR(S,M), the homomorphisms whose kernel contains apower of
ms, with obvious c1,9. Or, for formally smooth f of relative dimension d and residual
transcendence degree t, we can set fxM = H:"s(f'l'StA. ®R M), with less obvious CI,g.

10
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Both 1# and Ix take injectives to i~jectives, and, in particular, injective hulls of RlmR
to injective hulls of Sims. For residually finite smooth maps, the functors 1# and Ix are
canonically isomorphie, compatibIy with the respective c/,g 's (a form of Local Duality).

The main result of the recent thesis of I.-Chan Huang is that there is an essentially unique
pseudofunctor on all residually finitely generated (r.l.g.) maps, restrieting to f# and Ix
on residually finite.and formally smooth maps respectiveIy. (Uniqueness holds because
any r./.g. map factors as "surjection 0 formally smooth". The existence comes by pasting
f # and / x via such -non-unique- factorizations. There are many compatiblities to be
checked in doing so, and this involves a good deal of the theory of residues.)

It is expected that a similar process will yield a purely Iocal pseudofWlctorial structure
• on Cousin complexes with acyclic (for loca1 cohomology) terms, corresponding to the gl~bal

theory of f! which underlies Grothendieck Duality.

w. Lütkebohmert

•

Riemann's Existence Problem for a v-adic Field.

Riemann posed the problem if auy finite etale morphism from aRiemann surface to an
(affine) algebraic eurve over C is induced by an algebraic morphism. Nowadays it is well­
known that this question has an affirmative answer. In their paper "Komplexe Räume"
Grauert and Remmert settled this problem in higher dimension. It eould be solved due
to Serre's GAGA-principle by an extension theorem for finite etale coverings. A crucial
point in their proof is the fact that auy etale covering of a pointed disc extends to a finite
covering of the whole disco

In the talk I treated a similar question for rigid-analytic coverings in the sense of Tate.
This problem has an affirmative answer without further restrictions on the covering in the
ease where the base field has characteristic zero and residue characteristic p. The problem
can be reduced to the following theorem:

Let <p: X --+ A(r, R) = {z E K., r ::; Izi ::; R} be a finite etale covering of degree
d. Then there exists a number b = b(d, p) ENdepending only on the degree d of C(J

and on the residue characteristic p such that C(J is of Kummer type over A(r', R') where

r' = r/lplb and R' = IplbR.

In positive characteristic, char K > 0, there exist examples of non-extendable finite etale
coverings of a pointed disco But Riemann's existence problem has an affirmative answer
in positive characteristic if one sticks to Galois eoverings whose degree is prime to the
characteristic. Such a result is of interest for Drinfeld's work, since it implies a comparison
theorem between the rigid etale and the aIgebraic etale cohomology of an algebraic variety
over a p-adic field in positive characteristic.
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T.e. Nguyen

Macaulyfication of Noetherian schemes

Let X be a Noetherian scheme. By Macaulyfication we mean a pair {X, 7r} of a Cohen­
Macaulay scheme X and abirational proper morphism 7r: X --+ X. This problem has
been studied first by M. Brodmann and G. Faltings. Faltings proved that if X is a quasi­
projective scheme over a Noetherian ring R, where R has a dualizing complex and the
non-Cohen-Macaulay locus of X is of dimension $ 1, then X admits a Macaulayfication.

Now our main result is to give a generalization of Faltings' result as follows:

Theorem: Let X be a Noetherian scheme of finite dimension satisfying the following

conditions:

(i) X admits a dualizing complex;

(ii) dimOx,% = dimX for all closed points of X.
Then X admits a dualizing complex.

A.N. Parshin
Beilinsons's approach to tbe residues

Let K = k((tl»··· ((t n » be an n-dimensionallocal field of equal eharacteristics. The
author has defined a residue maps f'l'kl" ~ k whieh generalize a classical definition for
n = 1. J. Tate has expressed tbe residue map (for n = 1) in terms of traces of linear
operators belonging to Endl; (K). Beilinson has got a generalization of this construction
to the case of arbitrary .n. We deseribe the ingredients of his construction: some Lie
algebra decompositions inside End,,(K), complexes related with Koszul complex of infinite­
dimensional Lie algebra, chain eomplex of Ioeal systems over n-dimensional cube (defined
in terms of eubic structure).

P. Roberts

Chern Classes of Matrices

The theory of "localized Chern characters" of Baum, Fulton and MaePherson has been
an important tool in answering several bomologieal questions in Commutative Algebra.•
However, they have been difficult to compute in an algebraie context. We present a
method of computing the Chern character of a complex offree modules with support in the
maximal ideal of a loeal ring, using tbe Rees ring of an ideal defined by the determinants
of each matrix of the resolution. There are several questions whieb anse and involve the
contributions of the individual matriees of aresolution, including wbetber the contributions
of a resolution of a module of finite length over a regular Ioeal ring are positive, and
questions on a closure operation on ideals defined by requiring that the Chern characters
take on the maxim\UIl possible value.
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P. Sastry
Residues and Duality (joint work with Yekutieli)

For each reduced scheme 11": X ~ k, of finite type over a perfect field k, Yekutieli defines
a complex K"x living in degrees [- dimX, 0]. Kx is a complex of injectives, in fact it is a
"residual complex", i.e. E9 K~ ~ E9 J(x) where J(z) is the sheaf which is the eonstant

pE Z %EX

sheaf consisting of the injective hull of k(x) over 0% IX on {x}, and zero outside {x}, and
further K x has coherent cohomology sheaves.

Moreover Yekutieli in his thesis (and in a forthcoming publication) shows that for each
closed point x EX, there is a natural map r%: r %(K~) ~ k, such that if X ia proper,
the resulting map Tr.. = Er%: r(X,Kx)~ k gives a map of complexes 1r.KX ~ k .
This leads one to believe that Ki< ~ E(1r'k) where 1r! is the duality functor defined

in" Hartsho~e'a book ."Residues and Duality" [RD]. Yekutieli shows this is true if X ia
quasi-projective. In our joint work we show this to be true for all X, using arguments
!rom Deligne'a appendix to [RD], and aversion of "Ioeal duality". Moreover Yekutieli's
map Tr.. (for 1r proper), is sbowll to play the role of "J .

" ..

R.Y. Sharp .
·Bass Numbers of Local CohomologyModules

This lecture reported.on receilt work "(joint with C.Huneke) about the loeal cohomology
modules of a regular loeal ring (A, m) of characteristie p > 0 with respect to an arbitrary
proper ideal 1 of A.

Results about the effe~t of the Frobenius funetor on injective A-modules were used to
prove the following two theorems.
Theorem. For all i,j ~ 0 and for alle P E Spec(A), the Bass number lJ i(p,H1(A» is
finite. In faCt, JJ i ( p, H: (A» :5 IJ i ( P, Ext~(All, A)) .
The~rem. H, for some j ~ 0, the Ioeal cohomology module H:(A) is Artinian, then it ia
injective.

A eonsequenee of the first theorem is that Ass(H1(A» is finite for all j ~ o.
Tbe special case of the second theorem in whieh A contains its residue field whieh is

perfect was proved in 1977 by Hartshome and Speiser. The methods used in this lecture
can also be used to prove the following.
Theorem. For all i,j ~ ~, H~(Hl(A») is injective; for all j .~ 0, rm (Hl(A» is an
injective direct summand of H:(A).
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J. Strooker
On the Monomial Conjecture

Let A be a Noetherian local ring and Xl, .•• , Xd be a system of parameters. The
d

monomial conjecture asserts that there is no identity xl ..... x~ = E aix 1+1 with aj E A
. i=l

and t ~ 1.
Theorem. The nionomial conjecture holds for al1 d-dimensionallocal ring A in a cer­
tain characteristic if and ooly if for no d-dimensional complete intersection in the same
characteristicthere is a component of zero contained in a parameter ideal.

The lecture ended with questions on parameter ideals, Auslander's delta invariant and
linkage.

G. Valla
Bounds for the regularity index of fat points in P n

Let X ~ P n be a set of points, X = {Pt, ... ,p.}". H PI' ... ' P. a.re the correspon­
ding prime ideals in R := k[X0, ••• , Xn], the 0-dimensional scheme defined by the ideal
I := p~l n n pji is called, a set of "fat"poirits with multiplicities the given integers
fit" ~ fi2 ~ ~ mj ~ 1. H Z is a set of {at points, the regularity index of Z is defined
to be the least integer t such that Hz(t) = deg(Z)a.nd written as r(Z). In this talk I
reporton joint work with M.V.Catalisano and N.V.~gwhere the following results have
been proved:
1. ~H the points Pt, ... , p. are in linear general position, then

•
r(Z) ~ max{ml +m2 -l,[(E mj + ri -2): n]}

i=I

2. The bound is sharp. Every set of points on a rational ~ormal curve in P n . reaches the
bound.

3. The bound is sharp also for points with the Uniform Position Property.
4. H the points are generic and t ist the least integer such that

OE (mj +n-1) < (n + t)
1=1 n n

then

r(Z) ~ max{ml + m2 -l,t + m n +3 -I}

14
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u. Vetter
Generic maps

Let B a noetherian ring, X = (Xij) an m x n matrix of indeterminates Xij over B,
and r an integer, 0 :5 r :5 min (m,n). Put R = R r+1 = B[X]/Ir+l(X) where I r+1(X)
is the ideal in B[X) generated by the (r -+ l)-minors of X. Consider the "generic map"
x: Rm -+ Rn induced by X: B[x)m -+ B[x]n.
Theorem. Let 1 :5 9 .:5 r, and denote by C(g) the cokemel of the 9 -th exterlor power of
x. Then
(a) C(g) is an almost perfect B[X]-module (i.e. pdB[X](C(g»:5 gradeB[X](C(g» + 1).
(b) C(g) is perfect if and only if m ~ n. "

Special cases of the theorem are due to Buchsbaum and Eisenbud (m ~ n = r) and
Bruns (q = 1) respectively. The proof uses the Hodge-algebra structure of R.

J.F. Voloch
The conjectures of Mordell and Lang in positive characteristics

TheMordell-Lang conjecture in characteristic zero states that if X is a subvariety
of a semiabelian variety A which is not a translate of·a subgroup variety and r is a
subgroup of A with dimQ r ~ Q finite, then X n r ia not Zariski dense in X. In positive
characteristics one should add the condition that X is not weakly isotrivial (that is it ia
not purley inseparably covered by a variety defined over a. finite field) to hope that the
conjecture is valid.

I reported on joint work with D. Abramovich where we tackle t~e above conjecture in
characteristic p > 0 under the hypothesis that rk z (p) r® z(p) is finite. With this eondition
we can prove that the conjecture is true in many (e.g. if X is a. eurve or if A is ordinary)
but not all eases.

A. Yekutieli
An Explieit Construetion of Grothendieek's Residue Complex

Let k be a perfeet field, X a reduced k-scheme ~f finite type, with struetural morphism
1r. The residue complex is by definition the" cousin eomplex assoeiated to 1J"! k (in tbe sense
of "Residues and Duality"). We construet a complex K x,which in the affine ease is shown
to be isomorphie to 1r! k. Together with P. Sastry we produce a canoneial isom~rphismfor
all X.

The construetion uses the following methods: Beilinson's completions, semi-topological
rings and Parshin-Lomadze residues. A very brief sketch: For x E X set w(x) := n~(:r)/I:'

the top degree differential forms. A saturated chain e= (xo, ... , xn) is a ehain of im­
mediate sepcializations. For a coeffieient field (1: k(x) ~ 6X ,z set
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K(x) = HOmk(:)"(OXtz,w(x». Given a saturated chain e= (x, ... , y) and a coefficient
field u for y, we have the Parshin residue map ReS(,~: w(x) --+ w(y). Now suppose T, u are·
coefficient fields for x, y resp., which are compatible. We get a map 6(tTt~: K(T) --+ K(u).

The various K (q ), u coefficient field for x, can be identified to give a module K (x) .
For achain e as above, we have 6(: K(x) -+ K(y). We get a complex by setting
Kiq := E9 K(x); 6(x):= E 6(ztfl) is the coboundary. Using its intrlnsic proper-

dim z=q (Z,1')

ties (for X smooth, for finite morphisms, e.t.c.), we show that Kx is a"residu8.1 complex
in the senSe of "Residues and Duality".

Berichterstatter: R. Waldi
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