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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH
Tagungsbericht 1/1993

' Grundlagen der Geometrie
3.1. bis 9.1.1993

Die Tagung fand unter der Leitung von W. Benz (Hamburg) statt. Im Mittelpunkt des Inter-
esses standen Fragen zur Theorie der Mobius— und Minkowski~Ebenen (miquelsch und auch nicht—
miquelsch), der kinematischen Gruppen, der Spiegelungsgeometrie, der Konstruktion von Spreads,
der Netze, der fraktalen Struktur von Kreisgeometrien. Die neuerdings interessierenden Probleme
iiber die Grundlagen der Lésungen der Einsteinschen Feldgleichungen wurden stark diskutiert. Ins-
besondere zur Einsteinschen Zylinderwelt und zur de Sitter-Geometrie wurden Vortrige gehalten.
Wie bei allen Tagungen iiber Grundlagen der Geometrie interessierten auch dieses Mal Fragen der
Verbindung von Schul- und Universititsgeometrie.

Die Qualitat aller Vortrage war sehr hoch. Allgemein bedauert wurde, daB wegen der nétigen Be-
grenzung der Teilnehmerzahl auf 25, etwa 50 Interessenten abgewiesen werden muSten.

Vortragsausziige
W. BENZ:
Characterizations of distances in Einstein’s Cylinder Universe
The following Theorem can be proved:
Let C be the set of points of n—dim Einstein’s Cylinder Universe and let d be a function from
C™ x C" into the set R»o of non—negative reals such that
(i) dis a 2-point-invariant of the group of motions of C",
(i) d is additive on admissible point triples,
(iii) d is locally Lorentz-Minkowskian.

Then d’(z y) = | farccos 30, ziw]? ~ (z,..” Yns1)? | for all z,y € C™ such that the angle between
(Z1y--+2Zn)s (¥15---, Yn) is less than 7. Here arccos has to be chosen in [0, x].
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V.G. BOLTYANSKI
On the Hanner numbers

A compact, convex body M C R is said to possess the (p,q)-intersection property (p < q), if
the following assertion is true: For every collection A, ..., M, of translates of M, if every p of. the
bodies M,,..., M, have a common point, then M; N nM ;é 0. O Hanner (a student of Professor
B. Szokefalvi-Nagy) has found all the bodies in R* w1th (‘2 3)-inversection property. For example,
in IR® only affine images of the cube and the regular otcahedron possess this property. Some other
results in this direction were obtained by Lindenstrauss, Hansen, Lima. So, Lima has established that
if M ¢ R®is a centrally symmetric, compact, convex body with (3,4)-intersection property, then
it possesses the (3, co)-intersection property, i.e., (in accordance with a result of the talker). M is a
direct vector sum of convex sets, each of which has a dimension < 2. In the talk the general necessary
and sufficient condition for (p, p + 1)-intersection property will be formulated (not published yet).
It follows from this condition that Lima’s Theorem can be generalized to non-symmetric cases, i.e.,
if a body M C IR had the (3,4)-intersection property, then it has (3, o0 )-intersection property. All
bodies of such a kind were described in a resent (1992) paper of the talker.

R. FRITSCH
Remarks on Bodenmiller’s Theorem

The original version of Bodenmiller’s Theorem states that the three circles with the diagonals of a
complete quadrilateral as diameters intersect in the same two points. We provide a simple proof of an
abstract version of this theorem containing several variations of the classical result as special cases:

The radical axes of the three Bodenmiller spheres of a complete quadrilateral in a (pseudo-)euclidean
space coincide.

H. HAVLICEK
Spreads of Right Quadratic Skew Field Extensions

Let L/K be a right quadratic {skew) field extension and let P be a 3-dimensional projective space
over K which is embedded in a 3-dimensional projective space P over L. Moreover let J be a line
of P which carries no point of P. The main result is that — even when L or K is a skew field
— the following holds true: A desarguesian spread of P is given by the set of all lines of P which
are indicated by the points of J. A spread of P arises in this way if, and only if, there exists an
isomorphism of L onto the kernel of the spread such that K is elementwise invariant. Furthermore
a geometric characterization of right quadratic extensions with a left degree other than two and of
quadratic Galois extensions is given.

H. KARZEL
Generalized kinematic groups

Let (G, -, F) be a kinematic space with thelineset £L:= {zF |z € G, F € F}l,let+: G — G;z — z°
be an involutory antiautomorphism of (G,-) and let P C Fix « such that Yz € G : zPz* = P. Then
(G,-, F,, P)is called a generalized kinematic group. (G, -, F; *, P) is a kinematic group in the sense
of IL. Hotje if « is the inverse map. By “(a,b) = (¢,d) : 3z,y € G : {¢,d} = {zay,zby}” we define
a congruence relation on G. With respect to the trace structures, P becomes an “absolute space”
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(P.Lp,=p)and G° := {9° = g1o(g°) | g € G} is a motion group of (P,Lp,=p). All absolute planes
and the 3-dimensional hyperbolic space can be denved in this way from a generalized kinematic
group. If further 1 € P and (+)Vp€ P 3,\/p € P: /P’ = p, then (P, ®) with a®b := \/aby/ais a K-
loop in the sense of W. Kerby and H. Wefelscheid and G° = p® x Q°withQ:={z€G|z*=z""}
is a quasidirect product (cf. e.g. {1}). This resuit can be applied on the proper orthochronous linear
Lorentzgroup G, where P is a set of pure boosts and Q the group of all rotations of the 3—dim.
euclidean space.

{1] Karzel, H. and Thomsen, M.J. Near-fields, Generalizations, Near-rings with regular elements and
Application, a Report. Contributions to General Algebra 8 (1992) 91-110.

'B. KLOTZEK
Spiegelungsgeometrie unendlich dimensionaler Riume

Nachdem in mehreren Jahrzehnten bedeutende Beitrige zur Spiegelungsgeometrie metrischer Ebe-
nen erschienen waren und von Bachmann in einer Monographie zusammengefat wurden, begann
die Ubertragung der Methoden auf den n—dimensionalen Fall (Ahrens 1959, Kinder 1965) Beson-
dere Probleme bestanden beim spiegelungsgeometrischen Aufbau unendlich dimensionaler RSume,
zu deren Lésung vom Vortragenden zwei Varianten vorgestellt wurden: 1) Zulassung gewisser un-
endlicher Produkte von Erzeugenden, 2) Verwendung geteilter Erzeugenden-Systeme (Anwendung
auf affine Riume beliebiger Dimension 1971). Daran schloB sich die entsprechende Kennzeichnung
euklidischer und nichteuklidischer Rdume beliebiger Dimension mittels eines geteilten Erzeugenden-
Systems (Ewald 1974; vgl. auch Smith 1974/75) sowie pseudoeuklidischer Riume (1983). Neuere
Untersuchungen beziehen sich u.a. auf die Tragfahigkeit der oben genannten Varianten und andere
modelltheoretische Fragestellungen (vgl. auch Quaisser); dariiber wird abschliefend berichtet.

A. KREUZER

Examples of K-loops

A K-loop (F,®) is a loop with the following properties for a,b,c € F: there exists an aitomorphism
8o with a® (0D c) = (a D) D das(€)s8ap = bapgas0ap = id if a®b = 0 and S(aDb) = (6a) B (S)).

These are the properties of the additive structure of a near domain (F,®, -), which was introduced
by H. Karzel in order to discribe sharply 2-transitively groups. A. Ungar showed 1988 that R? :=
{V € R®: [v| < ¢} (c = speed of light) with the relativistic velocity addition is a K~-loop. Further
examples are:

‘1. For a field (K,+,-) let F = K* and for z,y € F let (2;,23,Zs,24) ® (Y1, ¥s s, 4) := (21 +
Y1 + (22 + 2¥2)(ZaVa — Z4¥3), T2 + Y2, Z3 + Ys, Z4 + ya). Then (F, @) is a K-loop.

2. Foramap A: R = R", z — A(z) =: A, with A X, = Ay + Aoy let for (z,9),(2,w) €
R (2,9) @ (2,0) := (z+ 2,0(z, 2)y + ¥(2,2)w) with ¢(z,2) = AseAZ Am,x,ﬂ,,, ¥(z,2) =
A2:A742,- Then (R?, @) is a K -loop.

3. K.H. Robinson and H. Niederreiter gave for odd primes p,g with ¢ dividing p? - 1 examples
for Bruck-loops (L, ®) with |L| = pq. It turns out that these loops are K-loops.
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H.-J. KROLL
A characterization of miquelian Minkowski planes

An automorphism o of a Minkowski plane M is called a (pg)~homothety if the restriction of a to
the affine derivation A(g) at the point ¢ is a dilatation with fixed point p. The Minkowski plane
M is called (p, g)-transitive, if the group I'(p, g) of all (p, ¢)-homotheties of M acts transitively on
C\{p,q} where C is a cycle with p,q € C. M is called strongly g-transitive if it is (p, ¢)-transitive
for every point p of A(g). In 1982 E. Hartmann characterized the miquelian Minkowski planes M
by the property

(*) M is strongly g-transitive for all points q.

We will weaken this condition and obtain the Theorem: A Minkowski plane M is miquelian if and .)
only if there is a generator G such that M is strongly q-transitive for all ¢ € G.

AV. KUZ’MINYKH

Isometric and similarity mappings characterization and fractals with paradoxical
geometric properties

1) Let Q be a countable subset of the set of positive numbers, a,b € Q, a # b; and let f :
R" — R", n > 3, be an injective mapping such that the condition d(X,Y) € {a,b} (where
X,Y € R", d — Euclidean metric) always implies that d(f(X), f(Y)) € Q. Then the mapping
f is a similarity. (If Q is the set of all prime numbers, then f is an isometry.)

2) There is a curve M. C IR" (i.e., a subset of R” which is homeomorphic to-a straight line)
which has the following property: for every straight line A C IR” the intersection AN M has
the cardinality of the continuum.

3) There is a connection between the characterization of isometric (and similarity) mappings (see
1) and fractals which are analogous to the curve M (see 2).

J. LESTER

Centre functions of triangles

Identify the Euclidean plane with the complex numbers C; then for any triangle Aabe, the number .7
[00,a;b,¢] (brackets denote a cross ratio) is called the shape of Aabc, and determines Aabe up to

(direct) similarity. Shapes may be used to provide simnple analytic proofs of many theorems about
similar triangles.

With respect to a fixed reference triangle Aabe, the triangle coordinate of any point p is [p,a;b,c].
Il p is a special point of the triangle (i.e. if it is defined in terms of the vertices and is similarly
situated in similar triangles) then (Theorem) its triangle coordinate is a function of its shape. If the
special point is a centre, then its function satisfies several symmetry conditions.

These functions, together with the various properties of cross ratio, may be used to prove theorems
about special points. Example: the circumcentre, the nine-point centre and the two isogonic centres
lie on a circle.

DF Deutsche - :
Forschungsgemeinschaft ©



Complex triangle functions can be used to develop a theory of centres; the problem of finding all

triangle centres reduces to the problem of finding all functions satisfying a certain set of functional
equations.

H. MAURER

Non miquelian inversive planes with inversions for all circles

Let K be a field, 0,,0, € Aut K with (0y,0;) ~ Z; x Z; and with F; = Fix oi(i = 1,2). If
U:=F;-F;-{k*| k€ K} is a proper subgroup of K*, then

F={F-ulueUYU{FR |« € K\U}

is spread of K and

(KU {ooh {o(/U () | o € PSL(2,K), f € F) € )

B -

is a non miquelian inversive plane with an inversion for every circle.

M. MARCHI

" Automorphisms of Incxdence Loops

A fibered incidence loop with parallelism (P, L, ||,-) is an mcxdence space with parallelism (P L, -+

together with a loop structure (P, -) such that the set of left multiplications P’ := {a’ | a" : P —
P;z — az, Ya € P} is a set of translations acting regularly on P. If suitable conditions are fulfilled,
a family J of subsets of P, named “strings” (namely: J := {Mz | M € L(1),z € P}) can be defined
_such that any two distinct points belong to exactly one string and an equivalence relation “Il”
named “string-parallelism”, fulfilling the Euclid’s axiom, is allowed. This fact leads us to consider

also the set of right mappings ‘P := {'a| a: P — P;z — za, Va € P} which is still acting regularly
on P.

Now many different properties of the set P°,.as a subset of the group Aut (P, L, ||), and of the set
‘P,as a subset of the group Aut (P, J), are studxed

U. OTT

. Nets and Generalized Quadrangles
|

UFG

G -A We give a short report about a joint project with D. Ghinelli.
Let N = (Q,A,I) be a net with the parameters s and ¢. Thus N admxts $? points and each point
contains exactly 1+t lines. We choose a basepoint 0. Let K be a field.

Definition 1 A function F : Q x Q@ — K is called an area function on N with values in K if the
Jollowing conditions hold

Al if the points O, A, B are collinear then F(A,B) =0
A2 for collinear points A, B we have F(A,B) = - F(B, A)
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A3 if A, B,C are the points of a triangle then the equation F(A,B) + F(B,C)+ F(C,A) =0 is
equivalent to the fact that the points A, B,C are collinear.

In this notation we get the following theorem and conjecture

Theorem 1 If there ezists an area function on a net with parameters s and t (degree t + 1) with
values in GF(t), then there is a generalized quadrangle with parameters s, t.

Conjecture 1 Let N = A be an affine plane of prime order. If there is an area function with values

in GF(p) then the plane is desarguesian and the area function is (in a certain sense) equivalent to
the symplectic form. .

We have the question whether a translation plane of order ¢ can have an area function with values
in GF(q).

P. PLAUMANN
The lattice of connected subgroups of an algebraic group

In joint work with K. Strambach and G. Zacher we have studied the lattice A(G) of all closed
connected subgroups of an algebraic group (over some algebraically closed filed). Lattice theoret-
ical properties which interest us are those which are shared by projective spaces, like modularity,
atomicity, complementarity, the Jordan-Dedekind-condition etc. We classify the groups G for which

A(G) satisfies this properties; in prime characteristic some interesting phenomena arise. Here I want
to mention the following

Theorem: For an algebraic connected group G over an algebraically closed field its lattice A(G) is
complementary if and only if G splits over its solvable radical R angl R is a vector group.

S. PRIESS
Examples of spherically complete spaces
(joint work with Paulo Ribenboim)

Let (T, <) be a partially ordered set with 0 < « for each ¥ € T and let X # 0 be a set. A mapping
d: X x X — TU{0} is called an ultrametric, if it has formally the same properties as a metric, but
instead of the triangle inequality, the following one for all z,y € X, v € [:if d(z,y) < 7, d(¥,2) < 7,
then also d(z,2) < 7. The set By(a) = {z € X | d(z,a) < v} is a ball of X, and X is spherically
complete if B # 0 for every chain B # @ of balls. In a spherically complete space X, one has
a Banach-like Fixed Point Theorem (cp. Priess-Crampe, Ribenboim, Abhandlungen Math. Sem.
Hamburg 1993). Therefore, one is interested in examples of spherically complete spaces. Outside
of valuation theory, complete Boolean algebras (with the symmetric difference as a distance) and
function spaces RX (with d(f,g) = {z € X | f(z) # g(z)}) are such spaces.

E. QUAISSER
Investigations to the mapping geometrical representation

At first are proposed conditions at the conception of the mapping geometrical representation. Then
are given some results of the “complete” representation of the plane affine geometry (and the alfine
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geometry with arbitrary dimension 2 2) on basis of affine reflections resp. non involutory shears
resp. axial dilatations resp. skew reflections resp. m-reflections. In last case the necessary condition
for the representabilily results from the reflection geometrical language.-

In second part is given a characterization theorem for the respresentability of the plane parabolic
geometry: This theory is representable if all models are translation planes with char # 2 and (¢,¢)-
transitivity (with reference to incidence structure).

‘H.-J. SAMAGA

Are there fractal structures in circle geometries?

- Forz,,w € C, the iteration z,,; = 22 + w leads to the well known Mandelbrot set Mg and filled in

Julia sets Jg (w). From a geometrical point of view C fixes the miquelian M&bius plane. There are

further circle geometries over IR of dimension 2 and 3; to each of them belongs an algebraic structure. *

These structures are ID : {a+bs|a.b€lR.§es’=0}]R.leCle.lelR.xIR]Dle

RIX)/ x9), RIX. Y] x2 xy, vy e

~ Problem: What are the shapes of My, Jy(w),if L € {D,R x R,...}? Answer (roughly): Look at a

homeomorphic image of the “Feigenbaum”-function f(z) = z? 4 ¢ in the right way and you know
(nearly) everything you ‘want!

In detail, 2- and 3-dimensional Mandelbrot sets and all 2-dimensional Julia sets are dlustrated by
theorems and/or (computer) graphics.

M. SCAFATI—TALLINI
Topics on hypervector spaces

We define hypervector space over a ﬁeld K the quadruplet (V, +,o,K ) where (V +) is an abelian
group and
o: K xV — P(V)

is a mapping of K- x'V into the set P’(V) of non-empty subsets of V, such that: the following

conditions hold:

(1) Va,be K,Vz €V, (a+b)oz C(aoz)+(boz),

S (2)VeeK,V¥z,yeV,a0(z+y)C(aoz)+(aoy),
. (3)Vabe K,Vz €V, ao(boz)=(ab)oz

(4) Vae K,V¥zeV,a0(~z)=(—-a)oz = —(aoz),
(5) VzeV,z€loz.
Hlere we explain various properties of such spaces, the geometric structures that we associate with

them, and the cathegory of such spaces, once given in a suitable way the notions of factor space and
homomorphism.
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S.E. SCHMIDT

Foundations of a generalized affine geometry

(A) Concept: We develop an axiomatic structure theory of affine geometry which induces the
geometry of all affine submodules of unitary modules (over associative rings). We point out
that it is not intended to include “weak affine” geometries (as introduced by E. Sperner and
generalized by H.-J. Arnold), “skew-affine” geometries (as studied by J. André) or “generalized
(partial) affine” geometries (as investigated by W. LeiBner and F. Radé) — nevertheless the
latter occur as partial substructures in our set-up.

(B) Main results: : -.,

(1) Completion of “affine line systems” to “affine closure systems”.

(2) Algebraization of affine spaces (in our sense) by unitary modules.

E.M. SCHRODER
On 0-distance—preserving permutations of affine and projective quadrics

Let (V,IF,q) be a metric vector space. The set F, := {IFz | z € V\{0} A ¢(z) = 0} is the quadric
wrt. ¢ of the projective space Il := II(V,IF). In the affine space A := A(V,IF), the set Fy :=
{z eV ]gz)+r(z)+a =0} (k:V — IF linear, @ € IF) is an affine quadric wrt. ¢, and
Fii=Fau{(Fz)| | z € V\{0} A g(z) = 0} is a quadric of the projective closure II(4) of A.
Assume F, resp. F contains lines, but no double points. )

For F := F, resp. F := F,, points X,Y € F are called 0-distant (or conjugate or parallel), written
X =Y, iff the connecting line X,Y is contained in F.

Now assume 4 < dimIT < oo in case of F = F, resp. 4 < dim A < 00 A |IF| > 4 in case of F = F,.
Then the following theorem holds true.

If ¢ is a permutation of F with the property
(*) X=Y&XYxY® VX, YeF,

then there exists an a € IF\{0} and a semi-linear bijection (g, ¢) of (V,IF) such that goo = a-pog "
and X¥ = X°VX € F, resp. X¥ =0% + X° VX € F,. )

G. TALLINI

(n)—varieties in linear spaces

A (n)-variety Il in a linear space (P, L) is a subset of £ such that:
Ve L, cither LC Il or |In | € {0,1,n}

and n-secant lines do exist.
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H is called non-singular quasiregular if Yz € H the union of the lines through z either tangent
or contained in / is a subspace 7(z) # P (regular, strongly regular respectively if r(z) is either a
hyperplane or a prime). Here we outline the foundations of the theory of (n)-varieties, in particular
of quasiregular ones, in a linear space (P, L), pointing out the properties of a linear space containing
a (n)-variety and conversely. We explain several results and open problems on this subject.

H. TECKLENBURG
Low Order Projective Planes
It is well-known that there exists exactly one projective plane of order n for n = 2,3,4,5,7 (up to

‘-' isomorphism ), while a projective plane of order 6 cannot exist. Pure geometrically with short unified

proofs we show the uniqueness and existence or non-existence resp. of such planes.

Remark: Using a computer, M. Hall, J.D. Swift, and R.J. Walker (1956) proved the uniqueness of
the projective plane of order 8. It is assumed that this case can be treated directly with our method
so that the use of a computer is no more necessary.

B. WERNICKE

Moébius planes and geometry of reflections

At the beginning we refer to results of P. Dembowski, H. Maurer, and H. Karzel. Geometry of

reflections in Mobius planes was also investigated by E. Molnir (over pythagoreian fields) and
. K. Lang (over fields of char # 2). We give a group theoretical system of axioms for a miquelian

Mobius plane (independent of characteristic). We need for the proof of the “Beriihrsatz” one of the

two orthogonality axioms. So we have a system of three simple “incidence” axioms and one weak

“orthogonality” axiom for a group so that the group plane is a Mdbius plane with a reflection in

each circle (H. Mdurer)

H. ZEITLER =

A. Conjecture of A. ROSA, concerning systems §(2,4,v) :

A report about joint works with Shen Hao and furthermore an extension of a lecture given 14.12.1992
in Oberwolfach:

(1) Exactly Yv = 40,49(36) there exist systems 5(2,4,v) with ezactly one sub system 5(2,4, r=

® ..

UFG

(2) It’s possible that within the complement of 5(2,4,r) there exists an affine plane AG(2,3).
Adding a line from 5(2,4,r) to AG(2 3) in the usua.l way a projective plane PG(2,3) is
obtained.

Some results of Rees-Stinson are used.

(3) For all admissible numbers v,v # 13 there exists a $(2, 4, v) without any subsystem 5(2 4,r).
(The conjecture of A. Rosa.)

Berichterstatter: Hans - Joachim Samaga
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