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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 1/1993

Grundlagen der Geometrie

3.1. bis 9.1.1993

Die Tagung fand unter der Leitung von W. Benz (Hamburg) .statt. Im Mittelpunkt. des Inter­
esses standen Fragen zur Theorie der Möbius- und Minkowski-Ebenen (miquelsch und auch nicht­
miquelsch), der kinema.tischen Gruppen, der Spiegelungsgeometrie, der Konstruktion von Spreads,
der Netze, der fraktalen Struktur von Kreisgeometrien. Die neuerdings interessierenden Problem~

über die Grundlagen der Lösungen der Einsteinschen Feldgleichungen wurden stark diskutiert. Ins­
besondere zur Einsteinschen Zylinderwelt und zur de Sitter-Geometrie Wurden Vo~träge gehalten.
Wie bei allen Tagungen über Grundlagen der Geometrie interessierten auch dieses Mal Fragen der
Verbindung von Schul- und Universitätsgeometrie.

Die Qualitä.t aller Vorträge war sehr hoch. Allgemein bedauert wurde, daß wegen der nötigen Be­
grenzung der Teilnehmerzahl auf 25, etwa 50 Interessenten abgewiesen werden mußten.

Vo~tragsauszüge

W. BENZ:'

CJtaracterizations of distances in Einstein's Cylinder Universe

The following Theoremean' be proved:

Let C n be the set of points of n-dim Einstein's eylinder UDiverse and let d be a function from
Cn x Cn into the set lR~o of non-negative reals such that

(i) dis a 2-point-invariant of the group of motions of C n
,

(ü) d is additive on admissible point tripies,

(iii) dis locally Lorentz-Minkowskian.
5

Then tfl(:c, y) = I [arccosI::7=1 XiYi]' - (Zn+l - Yn+d' (for all x, y E Cn such that the angle between
(rh'" ,Zn), (Ylt.·. ,Yn) is less than 1r. Here Mecos has to be chosen in [O,r).
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V.G. BOLTYANSKI

On the Hanner numbers

A compact, convex body AI C m.d is sald to possess the (p, q)-intersection property (p < q), if
the following assertion is true: For everycollection Alt , •.• , M q of translates of M, if every p of. the
bodies Mt, ... ,J.\tJq have a. common point, then Mt n ... n M q f; 0. 0 Hanner (a student of Professor
B. Szökefalvi-Nagy) has found a1l the bodies in m.d with (2,3)-inversection property. For example,
in m.3 only affine images of the cube and the regular otcahedron possess this property. Same other
results in this direction were obtained by Lindenstrauss, Hansen, Lima. So, Lima has established that
if 1.\1 C IRd is a centrally symmetrie, compact, convex body with (3,4)-intersection property, then
it possesses the (3,00)-intersection property, Le., (in accordance with a result of the talker). Al is a. ..
direct vector SUffi of convex sets, each of whieh has a dimension $ 2. In the talk the general necessary ..
.and sufficient condition for (p,p + l)-intersection property will be formulated (not published yet).
It follows from this condition that Lima's Theorem can be generallzed to non-symmetrie cases, Le..
if a body lvI C m.d had the (3,4)-intersection property, then it has (3,00 )-intersection property. All
bodies of such a. kind were described in a resent (1992) paper of the talker. .

R. FIUTSCH

Remarks on Bodenmiller's Theorem

The original version of Bodenrniller's Theorem" states that the three cirdes with the diagonals of a
eomplete quadrilateral as diameters intersect in the same two points. We provide a simple proof of an
abstract version of this theorem containing several variations of the .classical result as special cases:
The radical axes of the three Bodenmiller spheres of a complete quadrilateral in a (pseudo-)euclidean
space coincide.

H. HAVLICEK

Spreads of Right Quadratic Skew Field Extensions

Let LIJ( be a right.quadratie (skew) field extension and let P be a 3-dimensional projective space
over [( which is embedded in a 3-dimensional projective space P over L. Moreover let :J be a line
of 'P which carries no point of P. The main result is that - even when L or J( is a skew field
- the fol1owing holds true: A desarguesian spread of 1> is given by the set of all lines of 1> which
are indicated by the points of :J. A spread of Parises in this way if, and only if, there exists an
isomorphism of L onto the kernel of the spread such that !( is elementwise invariant. Furthermore~
a geometrie characterization of right quadratic extensions with a left degree other than two and of .,
quadratic Galois extensions is given.

H. KARZEL

Generalized kinematic groups

Let (G, ·,T) be a kinematic space with the line set.c := {xF I x E G, FE Tl, let * : G - G; x-x·
be a.n involutory antiautolßorphism of(G,·) and let Pe Fix .. such that 'Vx E G: xPx· = P. Thcn
(G,·, F, *, P) is callcd a gcneralizcd kinematic group. (G,·, F; *, P) is a kinematic grollp in thc sense
of H. lIotje if .. is the inverse maI>. Ily "(a,b) =(c,(L):~ 3x,y E G: {c,rL} = {xay,xoy}" wc deHne

a. congruence relation on G. With rcspcct to the trace ~tructurcs, P becolnes an "absolute spacc"
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A.KREUZER
Examples oe K -loops

A K -loop (F, EB) is aloop with the following properties for a, b, c E F: there exists an automorphism
00 ,6 with a~(bec)=(aEBb)e 00.6(C), 00 ,6 = 00 ,6$0,60 •6 =id if aeb =0 and e(affib) =(Sa)EB(8b).

These are the properties of the additive structure of a nea.r doma.in (F, EB, .), which was introduced
by H. Katze! in order to discribe sharply 2-transitively groUp8. A. Ungar showed 1988 that m.~ :=
{V E m.3 : IvI< c} (c = speed of light) with the relativistic ve10city addition ia a K -loop. Further
examples are:

'1. For a field (K,+,·) let F = K4 and for x,y E Flet (Zlt%2tZ:hZ.. ) EB (1'1,712,'3,1'.. ) := (Xl +
Yl + (X2 + 2Y2)(X3Y4 - %4Y3),X, + Y2,%3 +Y3,%4 +Y.. ). Then (F,~) is a K-loop.

2. For a map A: m. ~ m.., x ....... >.(z) =: >-~ with '\~'\, = '\~+,.+'\~_, let for (z,y),(z,w) E

IR? (x,Y)EB(z,w):= (x+z,<P(x,z)Y+tb(x,z)w) with <p(x,z) ='\b,\;1>'z+2">'~+2'" tb(x,z) =
A2.. A2"zl+2J:' Then (ffi?, ffi) is a J(-leep.

3. K.M. Robinson and H. Niederreiter gave ror odd primes p, q with q dividing p"J - 1 examples
for Bruck-loops (L, EB) with ILI =pq. It turns out that these loops are K-loops.

3
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H.-J. KROLL

A characterization of miquelian Minkowski planes

An automorpbism er of a Minkowski plane M is called a (pq )-homothety if the restriction of er to
the a.ffine derivation A(q) at the point q is a dilatation with fixed point p. The Minkowski plane
.IVf is called (p, q)~transitive, if the group r(p, q) of all (p, q)-homotheties of .1\.1 acts transitivelyon
C\{p,q} where C is a cycle with p,q E C. M is called strongly q-transitive if it is (p,q)-transitive
for every point p of A(q). In 1982 E. Hartmann characterized the miqueli~n ~\'linkowski planes M
by the property

(*) M is strongly q-transitive for all points q.

We will wea.ken this condition and obtain the Theorem: A Minkowski plane J\.1 is miquelian if and e l
only if there is a generator G such that M is strongly q-transitive for all q E G.

A.V. KUZ'MINYKH

Isometrie and similarity mappings characterization and fractals with paradoxical
geometrie properties

1) Let n be a countable subset of the set cf positive numbers, a, b E 11, a 1: b; and let f :
IR" - Rn, n ~ 3,be an injective mapping such that the condition d( ..~,Y) E {a,b} (where

)(, Y E IR", d - Euclidean metric) always implies that d(f(X), f(}'")) E n. Then the mapping

f is a similarity. (If n is the 'set of 3011 prime numbers, then f is an isometry.)

2) "There is a curve M c m." (Le., a subset cf IR" which is homeomorphic to·3o straight line)
which has the following property: for every straight line A eR" the interseetion An J\.1 has
the cardinality of the continuum.

3) There is a connection between the characterization of isometrie (and simil3ority) mappings (see
1) and fractals which are analogous to the curve- M (see 2).

J. LESTER

Centre functions of triangles

Idcntify the Euclideall plane with th~ complex numbers C; then for any triangle ~abc, the number .A.}
[00, a; b, cl (brackets denote a. cross ratio) is called the shape of 6.abc, and determines 6.abc up to ..
(dircct) similarity. Shapes Inay be used to provide simple analytic praofs of many theorems about
similar triang~es.

With respcct to a. fixe<! refcrence triangle ~abc, the triangle coordinate of any point p is [p, a; b, cl.
Ir 1) is a special point of thc triallglc (i.e. if it is defiued in terms of the verticcs and is similarly
siluated in similar triaugles) then (Thcarelo) its triallglc coordinate is a function of its shape. Ir the
special point is a centre, then its function satisfies several symmetry conditions.

These functions, tagether with the various propcrtics of cross ratio, may be used to provc theorcms
abaut special points. Example: thc circumcellLrc, thc llillc-point centre and the two isogonic centres
He Oll a. circle.
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Complex triangle functions can be used to develop a theory of c~ntres; the problem of finding all
triangle centres reduccs to the problem of fhuling all functi~ns satisfying a certain set of functiona.l
equations.

H.MÄURER
Non miquelian inversive planes with inversions tor a1l circles

-Let [( be a. field, U1, U2 E Aut ]( with (al, (2) ~ 712 X, 712 and with Fi = Fix a,( i = 1,2). H
U := Fi . Fi . {k 2 I k E ]{.} is a. proper subgroup of. K* , then

:F:= _~Fl . u I U.EU} U {F2 • U' I u' E K*'U}

(I( U {oo}, {CT(fU {co}) J q E PSL(2,~),f E F},E)

is a non miquelian inversive plane with a.n inversion for every circle.

,'1" .

~~"'. d

"'j~~•

;~-~

~. }J{~

.~

Now many- different properties of the set p. ,.as a subset of the group Aut (P, L, I)), a.nd of the set
.p, as a subset of the group Aut (P, J), are studied.

M. MARCHI

- Automorphis~~' of Inci~ence Loops

A fibered incidence loop wi th parallelism (P,.c, 11, .) is a.n incidence spa.ce with pa.rallelism (P,.c, 11> - ,"
together with a loop structure (P,·) such that the 'set of left multiplications p,. := {aO I a· : P ~
P; x ~ ax, VcE P} is a set of translations acting regula.rly on P. If suitable conditions are fulfilled,
a f~ily J of subsets of P, named "strings" (namely:'J ::{M% I M E L(l), x E P}) ca.n be defined

. such that any two distinct points belong to exactly one string and an .equiva.lence relation "'"",
named "string-parallelism", fulfilling the Euclid's axiom, is allowed. This fact leads us to consider
also the set of right mappings .p := {·al ·a: P ~ P; % ~ xc, Va E P} which is still acting regularly
on P.

U.OTT
Nets and G'eneralized Quadrangleser.We give a. short report a.bout a. joint project with D. Ghinelli.

.Let N = (n, A, I) be a net with the parameters s and t. Thus N admits 82 points and each point
contains exactly 1 + t lines. We choose a basepoint o. Let K be a field.

Definition 1 A function F : n x n ~ [( is called an area function on N tDith volues in K i/ the
/ollowing conditions hold

Al if the points 0, A, B are collin'ear then F(A, B) = 0

A 2 for collinear points A, B we have F( A, B) = - F( D, A)

5
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A3 il A, B, C are the IJoints 01 a triangle then the equation F(A, B) + F(B, C) + F(G, A) = 0 is
equivalel1t to the fact that the points A, B, C are collinear.

In this notation we get the following theorem and conjecture

Theorem 1 lf there exzsts an area function on a nei with parameters sand t (degree t + 1) with
values in GF(t), then tllere is a generali:ed quadrangle with parameters s, t.

Conjecture 1 Let N = .4 be an affine plane 0/ prime order. lf there is an area function with values
in G F(p) then the plane is desarguesian and the area function is (in a certain sense) equivalent to
the symplectic form.

We have the question whether a translation plane of order q can have an area function with values e
in GF(q).

P. PLAUMANN

The lattice of connected subgroups of .an algebraic group

In joint work with K. Strambach and G. Zacher we h~ve stuwed the lattice A( G) of all closed
connected subgroups of an algebraic group (over same algebraically closed filed). Lattice theoret­
ical properties which interest us are those which are shared by projective spa.;:es, like modularity,
ato~city, complementarity, the Jordan-Dedekind-condition etc. We classify the groups G for which
A(G) satisfies this properties; in prime characteristic same interesting phenomena arise. Here I want
to mention the following

Theorem: For an algebraie eonnected group G over an algebraically closed field its lattice A(G) is
complementary if and only if G splits over its solvable radical R an~ R is a vector group.

S. PRIESS

Examples of spherically complete spaces

(joint work with Paulo Ribenboim)

Let (r,:5) be a partia.lly ordered set with 0 < '"'f for each "'1 E rand let ~r :f:. 0 be a set. A mapping
d : ~"'( X X -1> ru {O} is called an ultrametric, if it has formally the same properties as a metric, but
iustead of the triangle inequality, the following ane for all x, y E X, i E f: if d(x, y) ~ 7, d(y, z) ~ 7,
then also d(x, z) :$ 1. The set B1{a) = {x E X I d(x, a) :5 1'} is a ball of X, and X is spherically
completc if nB # 0 for every chain B # 0 of balls. In a spherically complete space X, one hase l
a Banach-like Fixed Point Theorem (cp. Priess-Crampe, Ribenboim, Abhandlungen Math. Sem.
Hamburg 1993). Therefore, one is interestcd in exalnplcs of sphcrically complete spaces. Outside
af va:Iuation theory, complcte Boolean algebras (with the symmetrie difference as a distallce) and
fUllction spaces RX (with d(/, !I) = {x E )( I J(x) -# g(x)}) are such spaces.

E. QUAISSER

Investigations to the lnnpping geometricnl representation

At first a.re proposed conditions at thc conccptioll of thc ma.pping geomctrical reprcscntation. 'T'hcn
are given some rcsults oe thc ~~complclc:' rcprcsentalion of lhc plane a.mne ~cametry (and lhe affillc

Ci
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geometry with arbitra.ry dimension ~ 2) on basis of ·affine reftections resp. non involutory shears
resp. axial dilatations resp. skcw reßections resp. m-reftections. In last case the necessary condition
for the represcnta.bility results from the reflection geometricallanguage..

In second part is given acharacterization theorem for the respresentability of the plane parabolic
geometry: This theory is representable if all models are translation planes with char #:- 2 and (t, t)­
transitivity (with ~eference to incidence structure) .

.H.-J. SAMAGA

Are there fractal structures in circle geometries? .

For -Zn, W E C, the iterat.ion Zn+l = z~ + w leads to the well known Ma.ndelbrot set Me and filled in
Julia sets JC{w). From a geometric~ point of view C fixes the miquelian Möbius plane. There are
further circle geometries over m.. of dimension 2 and 3; to ea.ch of them belangs an algebraic structure..
These structures areID :={a + bt I a,b E IR. 1 t,e2 = O},lR X nl,C x nt,lR x IR x nl,ID x IR,
IR.[X]/ (X3), IR[..-t, Yl/ (X 2 , XY, y 2):-' 'i'~" .

Problem: What are theshapes of ML,JL(W), if L E {ID,lR x IR, ...}? Answer (roughly): Look at a
homeomorphic image of the "Feigenbaum"-function fez) = Z2 + c in the right way and you know
(nearly) everything you 'want! - .

. .

In detail, 2- and 3-dimensional M:andelbrot set~. and ~ 2-di~ensionalJulia sets are illustrated by
theorems andfor (computer) graphics.

M. SCAFATI-TALLINI

Topics on hypervector spaces

We define hypervector spac~ over a fteld K the quadroplet (V, +,0, K), ~here' (V, +) is an abelian
group and

o : K xV ~ P'(V)

is a mapping of K·x·V into the set pi(V) of non-empty subsets of V, such that:the following
canditions hold:

. :(1) Va,bE l(, '1% E V, (a+b)ox ~ (a9 z )+(60%),

e ;.' (2) Va E K, Vx,y E V, ao (~+ y) ~ (ao.x) + (ao y),

.(3) Va,~E l(, '1x E V,.a~{box) = (ab)oz .

(4) Va E K, Vx E V, a 0 (-x) = (-a) 0 x = -(a 0 x),

(5) '1% E V, x E 1 0 x.

Here we explain various properties of such spaces, the geometrie stnictures that· we associate with
them, and the cathegory of such spaces, once given in a suitable way the nations of factor spac;.e and
homom~rpJlism.

7
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S.E. SCHMIDT

Foundations of a genernlized affine geometry

(A) Concept: We develop an a..x.ioma.tic structure theory of affine geometry which induces the
geometry of all affine submodules of unitary modules (Qver associative rings). We point out
that it is not intended to include "weak affine" geometries (as introduced by E. Sperner and
generalized by H.-J. Arnold), "skew-affine" geometries (as studied by J. Andre) or "generalized
(partial) affine" geometries (as investigated by W. Leißner and F. RadeS) - nevertheless the
latter occur as partial substructures in our set-up.

(B) Main results:

(1) Completion of "affine line systems" to ~'a.ffine c10sure systems".

(2) Algebrai~ation of affine spaces (in our sense) by unitary modules.

E.M. SCHRÖDER .

On O-distance-preserving permutations of affine and projective quadrics

Let (V,lF,q) be a metric vector space. The set:Fr := {IFx I X E V\{O} 1\ q(x) = O} is the quadric
wrt. q of the projective space II := II(V, lF). In the affine space A := A(V, lF), the set :FA :=

{x E V I q(x) + K(X) + a == O} (~ : V .....;. IF linea.r, a E IF) is an affine quadric wrt. q, and

F~ :=:FA U {(IFx) 11 Ix E V\{O} 1\ q(x) = O} is a quadric of the projective closure Il(A) of A.

Assurne :Fr resp. F': contains lines, hut no double points.

For:F:= :Fr resp. :F := FA, points ~\, Y E F are called O-distant (or conjugate or parallel), written
·X ~ Y, Hf the connecting line "Y, Y is contained in :F.

Now assume 4 ~ dirn Il $ 00 in case of :F = Fr resp. 4 ~ dirn A :5 00 1\ IIFI ~ 4 in case of F = :FA'

Then the following theorem !lolds true.

If e.p is apermutation of F with the property

(*) 4Y ~ Y {::> ~1;1p ~ Ylp V~Y, Y E :F,

t hen t here exists an Cl E JF\{O} and a semi-Iinear bijection (<7,!?) of (V, IF) such that q 0 <7 =Cl • !? 0 q el

and )(VJ = X(7 V)( E Fr resp. )('P = OVJ + )«(7 VX E :FA. .

G. TALLINI

(n )-varieties in linear spnces

A (n)-variety 1/ in alillcar space (P, L) is a. subset of P such tha.t:

VI E I~, cithcr I C JJ or Iln III E {O, l,n}

an<.! n-sccant lincs <.10 cxist.

CI
<:'
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/1 is callcd non-singular quasiregula.r if \lz E H the union of the liDes through % either tangent
or contained in 11 isa. subspace rex) #: P (regular, strongly regular respectively if rex) is either a
hyperplane or a prime). Here we outline the foundations of the theory of (n)-varieties, in particular
of quasiregular ones, in a.linear space (P, L), pointing out the properties of alinear space containing
a (n)-variety and conversely. We explai~ several results and open problems on this subject.

H.TECKLENBURG

Low Order Projective Plane~

It is well-known that there exists exacdy one projective plane of order n ror n =2,3,4,5,7 (up to
isomorphism), while a projective plane of order 6 cannot OOst. Pure geometrically with short unified
praofs we show the u~iqueness and existence or non-existence resp. of such planes.

Remark: Using a computer, M. Hall, J.D. Swift, and R.J. Walker (1956) proved the uniqueness of
the projective plane of order 8. It is assumed that this case can be trea.ted directly with our method
so that the use of a computer is 00 more necessary.

B. WERNICKE

Möbius planes and geometry of refiections

At the beginning we refer to results of P. Dembowski, H. Mäurer, and H. Karze!. Geometry of
reflections in Möbius planes was also investigated by E. Molncir (over pythago~eia.n fields) and
K. Lang (over fields of char ~ 2). We give a group theoretica1 system ofaxioms for a miquelian
Möbius plane (independent of chara.cteristic). We need for the proof of the "Berührs~tz"one of the
two orthogonality axioms. So we have a system of three simple "incidence" axioms and one weak
"orthogonality" axiom for a group so that the group plane ia a. Möbius plane·with a reflection in
each circle (H. Mäurer)

H. ZEITLER

A. Conjecture of A. ROSA, concerning systems S(2,4,v)

Areport about joint works with Shen Hao and furthermore an extension of a lecture given 14.12.1992
in Oberwolfach: .

(1) Exact1y '111 == 40,49(36) there exist systems 5(2,4,11) with eztJctlll one sub system S(2,4,r =
1(v- 1)). .

(2) It's possible that within the complement of 5(2,4, r) there exiBts an affine plane AG(2, 3).
Adding a line from 5(2,4, T) to AG(2,3) in the U8~al way a. projectil1e 'plane PG(2,3) is
obtained. ..

Same results of Rees-Stinson are used.

(3) Forall admissible numbe~s v, v f; 13 there exists a S(2, 4, 11) without any subsystem 5(2,4, r).
(The conjecture of A. Rosa.)

Berichtersta.tter: Hans ~ Joachim Samaga.

9
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