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Die Tagung fand unter der Leitung von Herrn G. Huisken (Tübin­
gen), Herrn L. Simon (Stanford) und Herrn M. Struwe(Zürich) statt.
Die Teilnehmer kamen .aus der Bundesrepublik Deutschland, den
USA, Russland, Australien, Japan, Indien, Frankreich und anderen
Ländern. Sie vertraten einen breiten Thetnenkreis aus dem Gebiet
der partiellen Differentialgleichungen.

Die Ergebnisse \vurden in interessanter und verständlicher Weise
vorgetragen. Sicherlich gaben a.uch die fruchtbaren Diskussionen vie­
lerlei Anregungen..
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Vortragsauszüge:

Hardy Spaces and P.D.E.

by Stefan Müller (Bann)

We consider surfaces M immersed into IRn and we prove that the
quantity JM IAI 2 (where A is the second fundamental form) controls
in many ways the behaviour of conformal parametrizations of :.V[. In
the case when M is complete, connected and JM IAI 2 < 00 we obtain •
a more or less complete picture of the behaviour of the immersions. •
In particular we prove that under these assumptions the immersions
are proper. We also prove that confotmal parametrizations of graphs
of W 2 ,2 functions on m? exist, are bi-Lipschitzian and the conformal
metric is continuous. The work was inspired by recent results of
T. Taro.

Asymptotic Developments by r -Convergence

by Gabriele Anzellotti (Trento)

I consider the following situation: for each c > 0 let Je: Xe ~ IR be a
functional with intima m e = infxe: Je and corresponding minimizers
U g of Jg. I am interested in the problem of describing m e and u€

when c -+ o. I propose the following definition:

DEFINITION: Let (X, T) be a topological space with metrizable topol­
ogy. Let :1(0), :1(1), :1(2) , Je: X -+ lR, c > O. We say that the
r -development

holds, if

(i)

(ii)
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(iii) r · -) . 1 ( 1 )) ;")(T - hm - -(:Jf: - 'mo - ml = :7'.;..
e-O E c

\vhere ',n; = lniux :lei), 'i = 0,1,2.
(Siulilar definitions for developnlellts of any order. 4t\n extension is
possible for ..\::: varying \vith €.) One has the following

THE()REtv(: 4~SSllme that (*) holds and that {ue}E:>o is a compact
family of miniInizers. Then one has:

(2) {limit points of minimizers for c --+ O} C U(2) C U(l} C U(O)

\vhere 'm(i) = minx J(i), U(i) = {u E X IJ"(i}(u) = 'm(i)} =
{lninimizers of J{i)}. .
These' results and other applications to phase transitions are joinf>
\vork",vith Sisto Baldo (Trentö) [to appear Appl. Math. Opt.]. Other
applications to fine elastic structures are joint work with S. Baldo
and D. Percivale [ta appear in Asympt. Anal.].

Global Existence and Convergence of the Yamabe Flow

by Rugang Ye' (Santa Barbara)

The Yamabe flow is a canonical parabolic deformation of a Rieman­
nian metric into constant scalar curvature in its conformal'class. We
prove lang time.existence and convergence of the Yamabe flow. ~The ...
key ingredient is a Harnack inequality. Its proof reHes on same global
arguments.· No local version seems to hold. .

Computation of Surfaces of Prescribed Mean
Curvature

by Gerd Dziuk (Freiburg i. Br.)

i\ llew method to conlpute parametrie minimal surfaces is based on
the following formlliatian of Plateau's problem.

Let r he a Jordan curve in three dimensional space. We want to
COlupute a rniuimal surface 'Ü: B ---+ ffi,3 parametrized over the unit
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disc B in lR2 and spanned in r. If,: aB --4 r is a fixed parametriza­
tion of the boundary curve \ve compute zeros of the derivative of the
functional

E(u) = ~ rlV'ül2

2·JB
where u: aB ~ aB is any re-parametrization and ü is the harmonie
extension of ,(u):

10·

ßu=Q'

Ü =,(u)
in B

on aB
This is done numerically using piecewise linear Finite Elements and
Newton's method. H there are no Jacobi fields of a continuous so­
lution u, a unique discrete solution Üh nearby exists and the errar
estimate

Ilu - "ÜhIlHl(B) ~ eh
holds. The result is joint work with J. Hutchinson.

Multiple Surfaces of Prescribed Mean Curvature near a
Constant

by Norbert Jakobowsky (Aachen)

Let r be a rectifiable closed Jordan curve in BI (0) C lR3 and
H E CO,1(JR3

, IR). We pro~e the existence of at least two salu­
tions to Plateau's problem for surfaces of prescribed mean curvature
H parametrized over B 1 (0) C IR? provided H = Ho + H, Ho E
(-1, 1) \ {O} and 11 H11 L 00 is sufficiently small. This extends the
corresponding results of Brezis-Coron, Struwe, Steffen and Wente
concerning Rellich's conject~re.

Our praof is given in two parts: First, following Struwe, we apply
minimax methods in W 1t2 far smooth r (or polygons) and deduce a
Palais-Smale condition using methods due to Struwe, Brezis-Coron
and myself. Having established the existence of two different so­
lutions in this case we then derive the statement by approximation.
As an essential tool in both steps we involve a precompactness result
in W 1t2 (B \ {ql' ... ,qn}); moreover, we use W 1,2 and Loo apriori
hounds for solutions due to Struwe and .'Griiter respectively.
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Sillglliar Perturbation of Dirichlet Eigenvalues

hy i\·Iart.ill Flucher (Bann)

Givell t.hc solut.ions of the Dirichlet eigenvalue problein

in n
on 8ft

\ve provide asymptotic formulas for the solutions ..\T, ({JT on the per­
turbed d0111ain flT = n \ Br(x). The first order expansion with re­
spect to the capacity cap!? Br(x) = fnrlV"url2 (uT = 1 on 8B r (x),
'Ur = 0 on an) is given by ,~:'

Ar = /\ + )02(X) capn Br(x) + o(eapn Br(x))

-yr = ~ _ tp(x)u T + O(capn Br(x))

unifornlly onf2 T
•

Using the minimax characterization of eigenvalues this is an ex­
ample of a r-asymptotic development (see G. Anzellotti's talk). To­
gether with an asymptotic formula for the capacity of small balls [1]
we obtain the following approximation for the perturbed eigenvalues:

for n = 2

where Tn denotes the harmonie radius ([2] and [1]). Numerical ex­
periments confirm the praetieal usefulness of this formula. One strik­
ing feature of the harmonie radius is that its slope at the boundary
is al\vays 2. This property is equivalent with C. Bandle's result
on the boundarv behaviour of maximal solutions of ßu = eU and

n~2 ....

~'U = ·u~.

[1] NI. Flucher: i\n asymptotic formula for t.he minimal capacity
al110ng sets of equal area (Cale. Var. 1 (1993), 71-86)
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[2] M. Flucher: Harmonie radius, conformal radius, and Robin
constant (in preparation).

Boundary Regularity of Area Minimizing Currents
with Prescribed Volume

by Frank Duzaar (Bonn)

We consider rectifiable 'n-currents T in IRn which minimize area sub-
jeet to a volume eonstraint whose boundary 8T is represented by an •
oriented smooth submanifolds r of dimensions n -1 in :IRn+1 without
boundary. We prove the following loeal boundary regularity result:

THEOREM,: Suppose T is an integer multiplicity rectifiable n-current
in ffin whieh is area minimizing with respeet to volume preserving
variations in an open neighborh~od of a point a E spt 8T and B =
8T is represented in this neighborhood by an n - 1 dimensional
submanifold r of class C1,Q, (0 < Q :5 1) with multiplieity one.
Then either:

(1) T has density ~ at a and there exists r > 0 such that spt T n
Br(a) is a submanifold of class C1,ß in lRn +1 far any 0 < ß <
~a with boundary rn Br(a) and TLBr(a) is represented by
multiplieity one integration over this submanifold,

or

(2) T has density m - ! at a for some m ~ 2, mEIN and there ex­
ists r > 0 such that spt T n Br(a) is a submanifold of class
C1,ß in lRn + 1 for any 0 < ß < ~a with empty boundary
spt T n Br{a) \ spt ßT has exaetly two components. More­
over, TLBr(a) is represented by this submanifold taken with
orientation f witli multiplicity m on one of these components
and with multiplicity m - 1 on the other component.

In addition spt T n Br{a) has constant Inean curvature with respect
to the orientatioll induced by f at any point x E spt T n B r (a)
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Uniqllelless of Global Positive Solutions Branches of
Seillilillear Elliptic Problems with Symmetry

by Ha.ll~jörg I~ielhöfer (.A.ugsburg)

vVe consider the problen1

\vhere f2 is same symmetrie domain in lR2 and I: IR+ ~ IR fulfills
1(0) ~ O. We prove: to any c > 0 where I(c) i= 0 there is a
unique solution (A,u) of (1) with signA = signf(c) and lIullex>-.: c.
This ,solution is on aglobai smooth curve {(A, u)} of solutions qf~(l)

\vhich can be parametrized by Ilull oo E (a, b) with 0 ~ a < b ~ 00,

charaeterized by f (c) i= 0 for c E (a, b). The eondition f (0) 2::-~ 0 is
sharp. The behaviour at lIull oo = 0 is discussed as wen. .

•
(1)

~u + AI('U) = 0

'U = 0

'U > 0

in n
on BQ

in Q

A Nonlinear Evolution Problem in Hermitian
Geometry

by Jürgen Jost (Bochum)

The following evolution problem for maps from a Hermitian manifold
...Y" \vith metric C....(o,ß)a,ß=l, ... ,dimev x into a Riemannian manifold N
with Christoffel 'symbols rjk is studied:

(P)

\vhere -i == 1, ... ~ dimIR lV. (P) differs from the standard harJ!lonic
Inap evolution problem in the linear second order term. In particular,
it does not have a variational or divergence strl~cture. If lV has non­
positive sectionü.l curvature, solutions uf (P) exist for all time with
tinle independent (~stirnatcs. They cOllverge to a solution of the
correspondillg elliptic .problelll nnless !fit conv~rges to a nontrivial
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parallel section of the pull back of T lV. In particular the elliptic
problem is solvable if there are Da such parallel sections. 4t\.n example
shows that the nonexistence of such sections is indeed necessary, for
the solvability of Dirichlet problems.

The results will appear in:
J. Jast - S. T. Yau: A nonlinear elliptic system for maps from Her­
mitian to Riemannian manifolds and rigidity problems in Hermitian
geometry. Acta"Math.

Generalized Evolution of Phase Boundaries

by Yoshikazu Giga (Sapporo)

We continue to study generalized evolutions (obtained by level set
m~thods) of a hypersurface moved by its mean curvature. If the
initial hypersurface encloses a bounded open set, it becomes extinet
in a finite time. We are interested in estimating the extinetion time
from below by geometrie quantities of the initial data. Our main
result says that the extinction time is dominated by two times square
of the volume of the set enelosed by the hypersurface over its area.
The constant two is optimal. This estimate is easy to obtain at least
formally. We adapt the formal praaf to level set equations. This
work is a joint work with my student K. Yama-uchi.

Viscosity Solutions for a Parabolic Mean Cu.rvature
Equation

by Bernd Kawohl (Erlangen)

In the lecture Ireport .on joint work with N. Kutev. We study the
problem Ut - div(DujJl+ I Du 12 ) = 1 in [} x IR+, u = 0 on the
parabolic boundary, for domains Q for which no stationary solution
exists. Otherwise 'U converges ~o those non-parametric solutions.
Numerical evidence suggests (and we prove) that Ut is bounded and
that the asymptotic profile of Ut attains its maximum in a set S?
which solves the geometrie variational prohlem minccn If~1 =: c.
We perturb the differential equation by a -€6.n t.erm and show that

8

•

•

                                   
                                                                                                       ©



•

t.he Solllt.ions 1Lf: converge in a suitable sense to a weak viscasity 50­

lur.ioll in the sense oE CrandalL Ishii and Lioos. We derive conlpar­
ison result.s for lt ~hich allo\v for apreeise description of its growth
on sppcial clOlllains f2, such as balls or cubes. In fact. as t ~ 00,
lt ( t ~ :c) ~ (1 - c) f on fl*, so that in general 'u violates the boundary
conditioil anti goes to infillity even on parts of the boundary.

Global Stability of Large Solutions to the
Tllree-Dimensional- N avier-Stokes Equations

by Reinhard Racke (Bonn)

\Ve cliscuss -the ·H1-stability of mildly decaying global strang 80­

lutions to the Navier-Stokes equations in three space dimensions.
Combined \vith previous results on the glo1Jal existence of large so­
lutions \vith variou~ symmetries, this gives the first global existenee
theorem for large solutions with non-symmetrie initial data ifl- gen­
eral domains. The stability of unforced two-dimensional ßO\ys:'under
three-dimensional pertur~ations is also abtained. (Joint wor~k~ with
G. Ponce, T .. C. Sideris, E. S. Titi) .-

Local existence for solutions of fully noillinear wave
equations

by Peter Lesky jun. (Stuttgart)

Let n- c IRn and mEIN. We study the initial boundary value
problem for

B;u(t, x) + ~4(t, x )u(t, x) + B(t, x )8t u(t, x) ==
2 - -2J(t, x) + g(t, x, Bt u, D:atu, Dxm u )

with homogeneaus Dirichlet boundary condition. Here A(t, x) de­
not~s a llniformly strongly elliptic differential operator of order 2m,
B (t, x) denotes a differential operator -of order 1n, an~

fJ;- = {a~: tal ~ m}.

\,TC prove the existence of a T > 0 arid the existence of a unique
elassical solution 1t up to T.
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Flow Near the Equilibrium of Quasilinear Hyperbolic
Equations

by Herbert !(och (Heidelberg)

The linearization of a differential equation donlinates the behavior
of ~olutions near an equilibrium-at least locally in time. ,A. Hüpf
bifurcation is an example of a global in time property, which can be
deduced from the properties of the linearization.

Any quasi-linear hyperholic equation

Utt - 8a Ff(x, U, V'U) = w~(x, U, V''U)

u·=o

where U ~ (:), with linearization

in f2

on an

Utt - ~u + 2(1 + '\)Ut + (1 + ,\)2 + e)u - 2v = 0

Vtt - ~v +2(1 + ,x)Vt + {(I + ,\)2 +e)v - 2u = 0

satisfies the assumptions on the spectrum of the generator for a Hopf
bifurcation theorem. The flow, however, is not differentiable with
respect to initial data.

Nevertheless it can be proved that an implicit function theorem
holds, without assuming uniform continuity of the flow. This is the
essential step in proving Hopf bifurcation.

Periodic \Vigner-Poisson System

by Horst Lange (Köln)

The periodic Wigner-Poisson system is the problem to find 1-periodic·
solutions wm(x, t), (x E Q = [0,1]3, t E IR), of

(WP7r)

8wm .
-a- + 'Um . \7 xWfn + fJh(V)lVm == 0t .
~V = 1 - 'n{x, t), 'n{x, t) == L 'IV rn (x, t)

mE ;;zJ
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plus :3-tliuleusionall-periodic boundary conditions on Q; here EJh(V)
is t.hp pselldoclifferential operator givell by

d .) E713 .an Um = ~jT"Tn~ 'm •

By using the equivalence of (vY P1T) to an infinite order cqupled
syst.enl of nonlinear Schrödinger equations ,vith potential V we can
show. t.hat (l'VPrr) has a strang global I-periodic solution sequence
W = (1V1n ) in Cl([O, Tl, W), MT = [1(L2 (Q)) (any T > 0), assuming
initial data to be in W (no smallness candition).

On tlle Solutions of Quasilinear Elliptic Equations with
Boundary Blow U p

by Catherine Bandie (Basel)

Quasilinear equations of the type ~u = eU or uP , p > 1 are studied.
They admit solutions tending to infinity at the boundary. The exact
asymptotic behaviour is established near the singularities o( such
solutions..

It turns out that the solutions and their gradients are asymp­
totically independent of the geometry of the boundary. The method
developed uses a coordinate system which Battens the boundar~~ and
is based on a scaling argument.

Existence and Multiplicity of Positive Solutions for
Nonlinear Elliptic Problems in Exterior Domains

by Gi<?vanna Cerami . (Palermo)

The prohlem considered is the following one: find solutions of

(P)

-~'U + AU == u p
-

1

u>o

u E HJ(S?)

11
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·where [} C IR
N

, N' ~ 3, is an unbounded domain having smooth
boundary an f. 0, IR

N
\ n is bounded, A E (0, +00), p E (2, iJ~2)'

More precisely the object of the interest is the study. of the eifect
of the topology of the domain on the number of solutions of (P).

Problem (P) admits a variational formulation. In fact the solu~

tions of (P) can be related to the critical points of the functiollal

UEHJ({})

constrained to He on the manifold

and to 'belang to the positive cone of HJ (Q). However, the lack of
compactness of the enibedding

gives rise to serious difliculties when one tries to use variational meth­
ods in a standard way.

After a careful analysis oi the compactness question, it is possible
to prove the following

THEOREM: For any p E (2, ~~2) there exists -X(p) such that VA ~

~(p) problem (P) has at least (catn[ä, lRN \ B§(O)]) + 1 distinct
solutions. Moreover, 'V).. > 0 there exists at least one 'solution of (P).
Note that in the above Statement

g = inf {U E lR: IRN \ f} C Be (0) }

and

denotes the relative category (in the sense of Fadell) in t2 of t2 with
respect to lRN

\ Bg(O).

12
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on aa

in· f2

in [}

Weak Solutions of -.6.u = uO: in IRn, Partial Regularity
ReSlllts alld Existence of Solutions witll Prescribed
Singular Set

. "by Fra.nk Pacard (Noisy-le-Grand)

First we give same a-priori regularity for positive weak solut.ions of
-~'lL = 'UD: in bounded domains of lRn. Then we introduce the
nation of statio"nary weak salutions of -uu = uD: and prove that
the Hausclorff diluension of their singular set is less -than or equal to
. _ '2(0:+1) -l·f n±2 ~ ~ -s::. n+l
n (0-1)' n-2 ,,\.A.,",-, n-3·

For exponents a = n~2 \ve build solutions with prescribed singu-
lar set and explaill how to extend the results to exponents Q > n~2.

Semilinear Elliptic Equations with Neumann Boundary
Conditions

by ..L\din1urthi (Bangalore) -""

Let n C lRn (n ~3) be a bounded domain with smooth boundary.
Let ,\ > 0 and consider

-du + AU =.u~

u>o
8u
-=0
8v

The problem is to find conditions on A and n such that {F.x} admits
a non constant solution and to study the asymptotic behaviour of
miniInal energy solutions of (PA). We have:

THEOREM: 3'\* = '\*(D) > 0 such that for all ,\ > A*(Q), (I?A)
adulits a non constant minimal energy solution.

THEOREM: Let U A he a minimal energy solution. Then 3"\0 > ,\*

such" that V,\ > Ao
(a) There exists a unique PA E an such that maxii UA = UA(PA).
(h) .A.s A~ 00, cluster points of {PA} are points of maximal mean

curvature.

13
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Closed Hypersurfaces of Prescribed Curvature

by Claus Gerhardt (Heidelberg)

Asymptotically Periodic Solutions of Conservative
Wave Equations

.by Fred Weissler (Villetaneuse)

A famaus result of P. Rabinowitz says that the nonlinear wave equa­
tion Wtt - W xx + w3 = 0, where w(t, x) E IR, t E IR, x E [0,7r],
w(t,O) = w(t,1r) = 0, has nontrivial time-periodic solutions. We
would like to understand the behavior of the non':"periodic solutions.
In particular, are they almost periodic, or recurrent; or can they
decay weakly?

.~s a' simpler model equation, we have studied solutions to Wtt ­

W xx + Ilw(t)112 w = 0, with the same boundary conditions, and where
11 . 11 is the (spatial) norm in L2 (O,7r). For this equation we can
show that no nontrivial solution can decay to 0 weakly in L2 (0, 7r),
and that trajectories (w, Wt) are always precompact in HJ x L2

.

Moreover, there exist nonrecurrent solutions of the form w(t, x) =
u(t) sinx + v(t) sin 2x where v(t) ~ 0 but v(t) --+ 0 as t --:-" ±oo.

For more general powers ( Ilwllaw ), we can show the existence
of solutions of the same form with v(t) ~ °but v(t) ~ aast ~ +00.
These solutions are asymptotically periodic and hence nonrecurrent.

This is joint work with A. Haraux and T. Cazenave.

Local Estimates and Boundary Behavior of Solutions of
Elliptic Mange-Ampere Equations

by Erhard Heinz (Göttingen) ,

We consider solutions z(x, y) E C 2 (H) n CO(H) of elliptic Monge­
Ampere equations Ar + 2Bs + Ct + (Tt - 82 ) - E = 0, D = AC ­
B 2 + E ~ J.L > 0, where H = [} n 0, and [}, 0 are bounded open sets
in IR2

. The boundary condition ZlaH = h is imposed on aQ n O.
Furthermore, A, B, C satisfy certain structural conditions, and a

14
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convexit.y condition is inlposed on an n O. Set H(d) = [} n Od
alld aSSUllle that. sup H (izi + Iv.:l) $ " < 00. Then it is shown
t.hat : belongs to C 2

,v (H(d)) for d > 0, v E (0,1)- and satisfies an
estiIllate af the form 11=llc 2.V(H(d») :5 e < 00, where e only depends
Oll ;' ~ IL, v~ d and the data. A detailed presentation will appear in
~~.Journal für die reine und angewandte rvlathematik".

Homogenization of Fl~w through Porous Media

by vVilli Jäger (Heidelberg)

The results reported here are contained in a joint paper \vith
.f\. jVlikelic (to appear).

Consider a domain [2~ = [}l U E u Q~, where Ql is the "free"
part~ Q2 is the "parOliS" part~ and E is the interface between Qf and
[}2. The parous part can be generated by translations of cells "or size
E containing a hole ("grain") in the c~nter. We consider a solution
(1.L€ ~ p~) of the Stokes equation: ~ ~

The limit ~ 1 0 ("homogenization" limit) is studied and an expansion
of the solution is derived in the form .

u~(x) = -u°(x) + 'lL~(X,E)c'+ (u2(x) + u~(x,c)) c2 + O(c5/ 2 r··
Pt:(x) = pO(x) + O(e) ~_

\vith respect to L 2 (Q), where (uc ' Pe:) are .natural extensions to p, and
n is the domain obtained from [lc by filling in the holes. (u~:'pO) is
a solution of the original Stokes problem in S]l where uD vanishes on
E. pO is a solution of Darcy's law in the paraus part [}2 of [}:

div(K(\7pO - f)) = 0

and is continuous on E. u 2 is a solution of a Stokes problem in .01

\vit.h prescribed divergence, satisfying the boundary condition

ulL' = vC(\7po - f) on E, v normal.

In .ft2 holds
n'2 = JC(vpo - f).

15
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JC and.C ean be eomputed by solving Stokes equations in t~le standard
cello ug and u~ are boundary layer terms satisfying ui (x, c) . --1- 0
exponentially for c 1 0 and x ~ E.

Existence of Solutions far Nan-Isothermal Phase
Separation

by Hans-Wilhelm Alt (Bonn)

We consider the following system for an order parameter 'U~ the chem­
ical potential v, and the inverse temperature w > 0:

-v + ~u - "V . <p'p = 0

8t u - \7. (m"Vv) = 0

. 8t E + 'V . (lVw) = 0,

where q>(u, Vu, w) =. wF(u, \7u, w) with Helmholtz free energy F.
From the entropy principle we derive Gibb's relation

S + <P = wE with E = t.P,w

for the interna! energy E and the entropy S. We then sketch the
proof for the existence of a weak solution as described in a joint
paper with I. Pawlow in Ady. Math. Sei. Appl. 1, 319-409 (1992).

Same Implicit Parabolic Free Boundar.y Problems

by Wolfgang Walter (Karlsruhe)

The following problem is considered:

(P)

U xx - Ut = f(t, x, u, u x )

au(t,O) - bux(t, 0) = a(t)

u(O,x) = uo(x)

u(t,s(t)) = ltx(t, s(t))

for 0 < t ::; T,

and 0 < x < set)

for 0 < t ::; T

for 0 ~ x ~ So

for 0 < t ~ T

Here a, b ~ 0 with a+b=l, initial values 'u,o(x) with "Uo(x) > 0 in
[0, so), uo(so) = 0, the input rate a(t) > 0, and the decay rate

16
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! = !(f ..l:.n. ll.z) are given. lEthe fight hand boundary x = s(t) we~e

given~ t.he problein would be overdetermined. The problem is to find
a ';free hOllndary" s(t) such that a corresp·onding solution of (P)
exists. Problenl (P) is a sinlple physical model for the penetration
of a. sllhstanc~ illt.O a (one-dimensional) body lying on the positive
x-axis. The substance enters the body at x = 0 and is ;oeaten up"
in the body by a physical, biologieal,. or other process at the rate f .
per tinle unit and length unit. At time t, the part of the body on
~he left of.c = s(t) is contaminated, while on the right of this point
the body is clean.

- The results include existence, uniq~eness and continuous depen­
dence on t.he data-in short, (P) is a well-posed problem. Für the
existence proof, the Rothe method (discretization in t) is employed.
This procedure is also used for numerical calculations. The cases
~'f (\veakly) decreasing in t", which results in an increasing ~free

boundary, and also "/ increasing in t", \vhich gives a decreasing free
boundary up to extinction time T* where s(T*) = 0, are consiq:e~ed
separately. \ -

Isolated Singularities of Monge-Ampere Equations

by Ralf Beyerstedt (i\achen)

Let f2 be the unit disc in IR? and z E C 2 (.a \ {O}) a solution of the
Ivlonge-Ampere equation ~4r + 2Bs +.Ct +Tt - 8

2 = E.Assume that
.A., B, C, and E are of class C1,/-L(st) and satisfy AC - B 2 + E~ ~

const > 0, C + r > Q. This talk is conc.erned with the behaviour
of the .solution z at the isolated s~ngular point x == y = O. The
main result is the following: If the singularity is not removable, then
liIu-r LO p(T cos a, T sin a) and limT 10 q{ 'T COS (l, r sin a) are 'continu­
<JUS, non-con~tant functiolls of Q and lim(x,y)_(O,O)(r + t) = +00.

Weak Solutions to the Evolution Problem of
p-llarmonic Maps inta Spheres

hy Norbert HUllgerbühler (Zürich)

Let lVI be a compact Riemannian mallifol<l without boundary with
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metric g. We consider the deformation of a given map Uo: lvI ~
sn C lRn +1 under the heat flow related to the energy E(u) ==
JM*(go.ß g;~ ~ )p/2 dM, i.e. we study the following evolution prob-
lem: '

{

8tU + .QM,pU = lV'ulpu in M x IR+

-u(·,0) = 'UQ on ]\;I

lu(x, t)1 = 1 a.e. on M x lR+

where

_ 1 8 (( ea 8u
i

8u
i
)f.- 1 .~ aß 8u )

L!~.pu - - ..;g 8xo. 9 8xl! 8x tr 2 V gg 8x ß .

We show the existence of aglobai weak solution of (*) by using
Galerkin's method for the penalized energy

Minty's trick, a compactness result and a ma..ximum principle for the
solutions of the penalized equations.

This is joint work with Yunmei ehen and Min-Chun Hang.

Regularity of Solutions ror Parabolic Systems and some
Applications

by A. 1. Koshelev (Berlin) •

The regularity of solutions for parabolic systems in higher dimen~ions
depends not only on parabolicity hut also on the dispersion of the
spectrum of the parabolicity (ellipticity) matrix. The conditions are
unavoidable and in the case of elliptic systems sharp. The sufficient
conditions of regularity lead ta necessary conditions far "blowing up~'

of the solutions. The regularity theory far general quasilinear elliptic
and parabolic systems will be discllssed.
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Maxilnllill Principles at Infinity and a Uniqueness
Theorelll far tlle Helicoid

hy Friedrich Tomi (Heidelberg)

Let 1111 , JE"2 be t.\VO properly immersed minimal surfaces in lR,3 such
that 1111 n J12 == 0. Then the maximunl principle at infinity states
that d(1111 . 2"/2) 2: min{d(81\!I1 ,1\tf2 ),d(1'v11 ,ßM2 )} where d(A, B) de­
notes tohe nlinimal Euclidean distance of subsets J.!, B of IR? This
nlaxinlunl principle has been proved by Nleeks and Rosenberg (1990)
nndel' t.he assumption that 81\11 and 8fvI2 are compact, but without
further assumptions on 1\11 , 1\112 than already mentioned above. In a
joint \vork with J. Ripoll I have investigated the case of noncompact
boundaries. "One of our results is as folIows: "Let us assume thatiW1 ,

1\1[2 are disjoint properly immersed minimal surfaces with bo~~'~ded
curvature. and :.1J1 is abandlike", i.e. the intrinsic distance of ppints
of 1\-11 to 8J11 is bounded from above. Then, d(M1 ,lVI2 ) is posItive,
provided ll1in{d(81\11 , J.\;[2), d(1\11 , 8M2 )} is positive. This maximum

- prillciple can be used to prove a uniqueness theorem for certain por­
tions of the helicoid with a douqle helix as boundary curve: Let S be
a line segment through the origin in the (x,y)-plane with endpoints
PI, P2 \vhere Ipll, Ip21 ~ co = sinh uo, and Uo is the positive root
of the equation cash Uo = 'Uo sinh Uo· Let H s denote the orbit of 5
nnder the scre\v motion group

cI> t ( x, y ~ z) == (x cos t - y sin t, x sin t + Yeos t, Z + t), - (tE IR).

Then H s is unique within the class of minimal surfaces of bounded
curvature with boundary ßHs and satisfying the asymptotic condi­
tion

(x, y, z) --+ 00.

In particular, Hs is the only stable mininlal surface with boundary
DHs satisfying (*).
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Reaction-Diffusion Pracesses of Electrically Cllarged
Species

by Konrad Gröger (Berlin)

Same steps in the manufacturing af semiconductor devices can be
understood as reaction-diffusion processes of electrically charged spe­
cies. In the lecture a class of initial bounclary value problems mod­
eling such processes will be presented. It will be shown that on the
basis of an estimate for the free energy same questions concerning
existence, uniqueness, and further properties of solutians can be an­
swered. lYIa.ny physically relevant questions, however, remain open.
For example, in three space dimensions even existence of solutions
is proved under severe restrietions with respect to the data.

Decay Estimates far Nonlinear Parabolic Equations

by Michael ~iegner (Bayreuth)

If u solves a general nonlinear parabolic equation

Ut - aij(x, t, u, \7U)Uij = f(x, t, u, vu)

on a bounded domain [} with u ~ 0 for t ~ 00, 'U lanx(o,<x»= 0,

~(x, 00,0, 0) ~ 0, then we show that without any growth restrie­
tions the following estimates hold: .

i) lu(x, t)1 ~ Ce- AoL , t 2: 0, x E Q

ii) There is same Ta > 0 such that l\7u(x, t)1 ~ Ce-Aat for
t ~ Ta, x E an.

iii) If for t ~ Tl a gradient bound l\lul ~ Cl is known, then
even l\7u(x, t) I ~ Ce- Aat , x E Q.

Here Aa > 0 is the first eigenvalue of the linearization, LG + Aoe = 0
with La = aij(X, 00,0, O)Bij + !ff:(x, 00, 0, O)8i + ~(x, 00, 0, 0)8.
As an application this improvcs decay res1l1ts for nonparametrie
mean curvature flow by V. ()liker and N. Uralt~H~va.

20
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Qllasili11ear Sillgular Degenerate Parabolic Equations

by A:\l{!Xalldre V. Ivanuv (St. Petersburg)

,v~ prove pxistence of llonllegative Hölder continuous weak solutions
01' C~a,uchy- Dirichlet problenls for sonle classes of singular degenerate
parabolic equations. The prototypes of this class of equations are

1. the Leibenson equation

8u .
-a - div(volul'lvul m

-
2 \7u) = 0t .

Va > O. l > 0, 1 < -m < 2, n~ 1;

.2. the equation of the fiow through parous medium in tur­
bulent regiIne

Va > 0, 1 > 0, 1 < m < 2, n = 3; where CO > 0, k ~ 1,
Z = (0,0,1). .

Nloreover~ \ve establish Hölder estimates for weak· solutians of equa­
tions of the mentioned classes as weH as some uniqueness theorems
of the Cauchy-Dirichlet problem. --

Diffusion Problems in Electrolysis

by Hermann ~-\m·ann (Zürich)

In the lecture, \ve treat questions on the wellposedness of equations
occurring in the mathematical model of electrolytic processes. These
equations form a system 01 coupled reaction-diffusion equations with
nonlinear boundary conditions~ which satisfies a nonlocal sidecondi­
tion. It is shown that the original system is equivalent to a system
of qllasilinear reaction-diffusion equations with nonlinear boundary
conditions, coupled with a quasilinear ellipt.ic boundary value prob­
leIn \vith nonlinear boundary conditions. Under certain conditions,
t.his '~nonstandard" ellip~ic-parabülic systenl adlnits a Ioeal solution.
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Leider waren Frank Merle und Gabriella Tarantella verhindert an der
Tagung teilzunehmen; von ihnen sind aber ebenfalls Vortragszusanl­
menfassungen eingegangen, die wir nachstehend a~drucken.

Blow-up Points for Nonlinear Heat Equations

by Frank Merle (Paris)

We consider the nonlinear heat equation of the type

Ut = .du +-uP

u(O) = 'P.

For same initial data the solution blows up at a time t = T. We are
·interested in the~ localization and the "number" of blow up points.

Existence and Multiplicity far Semilinear Elliptic
Equations with Changing Sign N onlinearities with
Possible Critical Growth

by Gabriella Tarantella (Pittsburgh)

Motivated by the assigned scalar curvature problem in Riemannian
geometry, we study semilinear elliptic equations with nonlinear term
of the for.rn W(x)f(u). W is a given function that changes sign.
The existence of positive solutions and relative multiplicity is estab­
lished under a condition on W (involving the total curvature), which
turns out to be also necessary in the case f is homogeneous. Other
existence and multiplicity results are also discussed.

Berichterstatter: Lutz Wilhelrny
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