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The 1993 meeiing dedicated to the area of Applicable Algebra was the third on
this topic held at Oberwolfach after the first: conference " Anwendbare Algebra ~
in January 1983 and the second conference " Applicable- Algebra " in January
1989.

This year's conference was planned by the three organizers Thomas Beth
(Karlsruhe), Bruno Buchberger (Linz) and Heinz Liineburg (Kaiserslautern) to
address areas from Algebra and its applications, like Coding Theory, Crypto-
graphy, design of computer algebra systems, digital signal processing, robot
programming, geometrical modelling and abstract data types. The emphasis was
on such applications which require solution methods: from typical algebraic
areas such as: Arithmetics in real, complex, p-adic ‘and finite fields, discrete
- mathematics, number theory, group theory, representation theory, algebraic
logic and algebraic geometry. )

The positive atmosphere of Mathematisches Forschungsinstitut Oberwolfach
supported by the well - known hospitality of all stuff and the dedication of
Professor Dr. Barner, the director.-of the institute, has made it posslble to
conclude this conference with an extremely positive feelmg by all partncnpants
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Vortragsausziige

R M. BEA1Ls.
Las Vegas Algorithms for Matrix Groups.

We consider the following type of problem: given a finite group G of matrices
by a list of generators, determine the order of G, decide membership in G,
find Sylow subgroups and composition factors of G.

For the case of finite matrix groups over the rationals (and over algebraic -
number fields) we solve all these probléms in polynomial time by randomized
algorithms. The algorithms are of the "Las Vegas™ type: they use randomiza-
tion along the way but the output is certified correct. (There is a negligible
chance that the output will be an honest failure report.)

These results considerably extend previous results on permutation group
computations into the potentially more significant domain of matrix groups.
Such an extension has until recently been considered intractable.

In the case of. finite characteristic one faces problems like the discrete
logarithm and factoring integers even in the 1-dimensional case. With some
caveats, our results extend to this case as well and give further evidence to
the conjecture»thét'these number theoretical obstacles are the only obstacles
to much more efficient handling of matrix groups. Although we have not im-
plemented the algorithms yet, our results seem to have the potential of consi-
derably increasing the parameters of matrix groups that can be handled by .
current computers ( dimension, order of field of definition). (Existing packages
represent matrix groups as permutation groups, causing an immediate fatal
blowup in the input size unless the parameters of the group are very small.) . |

T

Our algorithms built on a variety of recent randomization techniques, inclu-
ding refined random walk techniques, as well as a statistical analysis of various
classes of finite simple groups. The classification of the finite simple groups
is extensively used, even when the objective is merely to determine the order
of the given matrix group. ’

This is joint work with L. BABAIL

DF Deutsche
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P. CAMION.

Towards a Better Complexitly Algorithm to Compute the Minimal Polynomial
of a Matrix.

We are given any matrix A of size nxn over a field K together with the fac-
tors in K[x] of its characteristic polynomial y ,(x) = £(x)Tt ... Fi(x)Tk. Then two
algorithms are given to compute the minimal polynomial g , (x) = l"l(x)st ("k(x)sk
of A.

Both algorithms pass through a block-diagonal form of the matrix. This is
done by successive evaluations of polynomlals to matrices of decreasing sizes,
the two first ones bemg H) f)(A) n, 1'[ fj(A) ), for a well chosen partition
of [1,k] into J and [1,k]- J A lemma leads to the successive refmement.s of
the partition. .For the whole computation the complexity is shown to . be the
one of evaluating a polynomial of degree n to matrix A. For the fxrst algo-
rithm it is O(n3Yn) and for the second it is O(n3c(n)) where c(n)”is the
expected number of factors ry+rp+ ...+r, of the characteristic polynomial.

For the first algorithm, let U(A) = ugl + ujA + upA? + ... + u A* to be

evaluated, where, for simplicity, t =22 _ 1. Denote by B the matrix A2k, Thén
we write

, .
U(A) = Ug(A) + BUy(A) + ... + BZ U, (A)

It is then seen that U(A) can then be computed with 3(2K-1) matrix multipli-
cations of size n and n2t elementary products. e

For the second algorithm, then U(A)B is first computed for a well chosen
invertible matrix B. Passing from U(A)B to U(A) is O(n3). We take for B the
matrix formed by the independent columns

1 1
{xt,Ax,,...,A'x‘, Xo, AXz, ..., A2 x5, ..., xm,Axm,....Al’“xm'}

where 1 + 1 + ... +1, = n and where each |; is the largest integer for which
the set of columns of B formed by Al‘x, and the previous ones is independent.
The vectors xy, Xz, ...,Xmy are taken at random under those conditions. The
function c(n) is the expected number of factors of a characteristic polynomial.
Clearly the expected number for m is bounded from above by c(n). The cost

of constructing B is O(n3) as we have to be able to select the successive x;'s
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G. E. COLLINS.
Some Aspects of Univariate Integral Polynomial Factorization.

Topics considered include the utilization of special programs for every small
primes and the use of arrays for distinct-degree factorization and Berle-
kamp s algorithm, optimal use of Musser's factor degree sets, several enhance-
ments of Wang's early factor detection method, a Lehmer-type version of
the modular residue to rational number conversion algorithm, and utilization of
the partial factor coefficient bound of Beauzamy, Trevisan and Wang.

G. FrEY.
On the Discrete Logarithm in Jacoblans of Curves.

We are discussing realizations of the cyclic group Cn (m a prime power)
inside’ the group of rational points of Pic®(C) where C is a curve with arith-
metical genus g defined over-a finite field IF, with q elements. To make this
realization interesting for public key cryptosystems two conditions have to be
satisfied:

1.) Given two rational positive divisors A;, A, of degree g of C one has to be
able to find a divisor A3 with the same properties and a function h of C with
Aj+Ap-Az = (h) + gPg where Pge C(IF)) is fixed. If this can be done, we
have a fast exponation in PicQ(C).

2.) There must not exist a fast inverse function "log” of the exponation.

It is easy to see that condition 1 is satisfied for curves C of genus 1 (hence
Pic®(C) = G,, Gy, or an elliptic curve); by work of Cantor and more recently
by Kampkotter and Spallek one sees that hyperelliptic curves (and especially
curves of genus 2) can be handled, too. It is obvious that G, does not satisfy

. condition 2, and the use of G,, (which leads to the classical discrete loga-

rithm in lF;) is at least dubious because of work of Odlyzko.

So the most interesting curves are elliptic curves and curves of genus 2.
The construction of such curves with suitable group of rational points in Pic®
can be done by random choice and counting points by a Schoof -type algorithm
(till now only tolerably fast for elliptic curves) or by using the theory of
CM - varieties over number fields (implemented for elliptic curves and in pre-

"

paration for curves of genus 2), and it is very easy to find a lot of good .

candidates by these procedures.
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Concerning condition 2: In a joint paper with H.-G.RUCK we show that for
any curve C and any natural number m there is a non degenerate pairing from

Pic(C) (g (Tm)) = HYUGR (g ). Pic%F))  to By (Cp)/ Fg (5™

which can be computed in O(log m) steps of the type described in 1.). So if
Cm ¢ IE,, the log in Pic®(C) is reduced to the logarithm in FS, and C should
be avoided. This applies for instance to supersingular curves.

Behind the pairing mentioned above is the Tate pairing for Abelian varieties
of p-adic fields K'P'which has values in the Brauer group of K,, and so it
seems to be necessary to -study those Brauer groups both over K, (and be-
cause of the sum formula for invariants) over number fields more closely.

J. VON ZUR GATHEN. ' i
Factoring Polynomials over Finite Flelds. -

The factorization of polynomials is a fundamental problem in Computer Alge-
bra. This talk considers polynomials in one variable over-a finite field. The
important (probabilistic) algorithm of Cantor and Zassenhaus (1981) can (probably)
factor a polynomial of degree n in IFg [x] with an essentially cubic number
O(nZ2logq) of operations in F. 1 present an algornthm that uses an essentially
(i.e., disregarding factors of logn ) quadratlc number of O(n2+ nlogq) of opera-
tions.

This is joined work with V. SHoup.

Ww. GWANN.
Selfdual Bases In IF,

In this talk weakly selfdual bases and selfdual bases of the field extension
[Fgn over [, are characterized. An equivalence of the symmetry of the nxn-
matrices (the matrix representations of the multiplication- with elements in
[Fan with respect to the basis used) and the (weakly) selfduality of the basis
is shown.

This concept of duality is used to analyze normal basis multiplication in finite
fields.

Deutsche
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W. GLEISSNER.
Chaos in p -adic Flelds.

The convergence of a sequence (xl}“NO defined by the " chaotic equation
Xjeq = x,z +c’is investigated using the p-adic norm. It is assumed that xg,cC ¢
Q- One has to distinguish the following cases.

(1 PQ-I (xg,c), k maximal
= Ixlp = p ko ¥ i>iq, where pko| c, kg maximal.

(2) (xg,c)=1 and p“0|c, - ko maximal
= Ixlp =1 VieNg

(3)  (xgc)=t and pfe.

The sequence {x; mod P}“'No is eventually cyclic. Let | denote
the length of the cycle. Choose ig such that x;.; = x; mod p
for all izio. If the cyclic part of {x; mod p}l‘No does not
contain zero then Ix,lP =1 Vi2ig. If zero is in the cyclic part
of {x, mod p}; (N, then ig is chosen such that x;,=0. Let k
.be maximal with respect to pkl i, The sequence (xi)“No has
1 distinct cluster points, namely

Yo = limj . (x'o*ﬂ) with IYOlp'= p kK

yy = limyj o (Xg45 401 with Jy;lp=1 tsj<L

Furthermore, one can derive that for all prime numbers p, q, (p,q) =1, and
for all m « N 3 n¢ N such that p™| (q™-1).

J. GRABMEIER.

Genetics In AXIOM.

Non-associative algebras appear in applications e.g. as Lie algebras of symme-
tries of partial differential equations. Another interesting class of such alge-
bras appear if one wants to model Gregor Mendel s laws of genetic inheritance:

Aa.an=i-AA*'§Aa* aa.

N b
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In gametic algebras the different éametes ay...a, of a population constitute
a basis (over R or C). The segregation rates in sufficiently large random ma-

ting populations for the zygots (= products of basis elements) are just the

structural constants:

: ()
3ay = Zk Yu(k) ay (0= Yl](k)‘ L, ZkYu =1 )

Vectors of weight 1 describe populations, the product x*y describes the filial
generation of mating populations x and y. If there are no sexual dependencies

_these are commutative and non-associative algebras. Typical problems to be

studied are: idempotents (equilibrial states), convergence of powers of various
kinds of weight 1- vectors and classification of such algebras for sniall.fgnks.

“In a joint work with R. WISBAUER we have implemented a non - associative
“"world” in the computer algebra system. AXIOM providing . categones like
Monad, NonAssociativeAlgebra and domains as AlgebraGlvenByStructuralCon-
stants and GenericNonAssociativeAlgebras and functions which allow to- solve
typical problems (Is an identity like Jacobi's valid ? Construct a__ba@sis-of the
middle nucleus). ‘ :

This setting allows to easily define arbitrax;y algebras of finite rank and
compute with them in AXIOM, and - of course- can be used to study also the
genetic algebras. :

A. GUTHMANN.
Primality Testing Algorlthms for Integer Approxlmt.lon to 1-adic Roots of Unity.

Effective tests for primality are given for integers N satisfying IN- 1||| s 1"
(1>2 a prime, n an (l-1)st root of umty in Z)). .

D. HACHENBERGER.
On the Existence of Completely Free Elements in a Finite Fleld.

Let q > | be a prime power, m >1 an integer and [F;m and I[F; the Galois fields
of order q™ and q, respectively. In 1986, Journal of Algebra 103, 141-159,
D. Blessenohl and K. Johnsen have proved that there exists an.element w in Fym
such that w generates a normal basis over any intermediate field Fyr of Fym
over IF;. Such elements are called completely free in [F;m over [F,.
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The existence of such an element is easily reduced to the special case where
m is a prime power. In order to settle the problem in this special case,
Blessenohl and Johnsen mainly use representation theory of finite abelian
groups. Although their proof could slightly be condensed in a supplement by
D. Blessenohl in Jourhal of Algebra 132, (1990), 154 - 159, it is still involved.

The aim of my talk is to present a detailed and constructive proof of the
theorem of Blessenohl and Johnsen by using essentially some basic properties
of cyclotomic polynomials over finite fields. Furthermore, we give a recursive
formula for the number of completely free elements in: [Ffym over IF; in the
case where m is a prime power.

H. HONG.
Topology Analysis of Plane Real Algebraic Curves.

We give an efficient algorithm which, given a bivariate polynomial, constructs -

a planar graph topologically equivalent to the plane curve defined by the poly-
nomial.

The algorithm follows the general structure:

1) finding all “interesting " points,
2) counting the numbers of left/right branches,
3) connecting up the points accqrding to the branch counts.

The efficiency of the algorithm is due to elimination of expensive opera-
tions with real algebraic numbers such as gcd, division, and root bound compu-
tation. This is achieved by the theory of subresultants and Sturm sequence.

The current implementation can handle dense polynomials of total degree 16
within 1 minute.

T. JEBELEAN.
Systolic Multiprecision Arithmetic.

This is an overview of a research aimed at speeding -up Computer Algebra
systems by systolic parallelization of the arithmetic of long integers and long
rationals. This is important because long integer arithmetic tends to consume
most of the computation time in large applications (e.g. Grobner bases).

v
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A new algorithm for exact division (i.e. division with null remainder) was
designed which is also suitable for systolic implementation in the least-signi-
ficant digits first (LSF) pipelined manner. After binary-shifting the operands
until they become.odd, qo (the LS digit of the quotient) can be found from
co and ag (the LS digits of the dividend and divisor) by:

bo = (co* ag' ) mod B.

The process is iterated after subtracting from the dividend by multiplied with
the divisor.

A generalization of the binary GCD algorithm was found, which ‘is also sui-
table for'systolic parallelization in LSF pipelined manner, and is also faster
than the currentiy used GCD algorithms even in the sequential implementation.
After binary-shifting the operands until they become odd, one takes a, E"Kthe
least - significant double-words of the operands), and one finds two “modular
conjugates” x, y which are at most one word long, with the property -

(x*a * y+*b) mod B2 = 0.

By this process, one opefand is reduced by one word, and then the other ope-
rand can be reduced by one word by using the "exact division” scheme. Hence,
all the important algorithms required by multiprecision rational arithmetic can

v

J. JoHNSON. ’ : v
The Coefficlent Sign Variation Method for Real Root Isolation.

An algorithm for isolating the real roots of a polynomial is discussed.” The al-
gorithm is based on Descarte's rule of signs and a sequence of polynomial
transformations. The transformations correspond to the continued fraction ex-
pansions of the roots. This algorithm was originally presented by Vincent
(1836), and modified by Akritas (1978). However, both of those algorithms have
exponential computing time. We modify 'Vincent's algorithm to obtain a
polynomial computing time bound, and compare it to a similar algorithm with
polynomial computing time due to Collins and Akritas. The behaviour of the
algorithm is related to the distribution of partial quotients.
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D. JUNGNICKEL.
Almost Perfect Binary Sequences.

Let a::(al\,,)m,,,, be a binary sequence with period v. The autocorrelation coef-
ficients c, are defined as the number of agreements minus the number of
disagreements of a with the t-fold shifted sequence (a,..),.n- For appli-
cations in signal processing, one would like to have perfect binary sequences,
i.e., ¢g = O whenever t is not a multiple of v. Unfortunately, only the case v=4
is known; in fact one generally conjectures non-existence for all larger v. This is

""equivalent to the non -existence of cyclic Hadamard matrices and known to be

true for v<12100. Recently, J. Wolfmann studied almost perfect binary sequen-
ces where one allows to have c,# O for one non-trivial congruence class
modulo v. With the help of some theoretical observations, Wolfmann con-
structed such sequences with exactly 2m-1 entries +1 per period for all v=4m
(v has to be divisible by 4) with v<100, v # 32, 44, 68, 72, 80, 92. The purpose
of this talk is to report on the followmg nice observation by my former
doctoral student A. POTT:

Theorem. An almost perfect binary sequence with f entries +1 per period exists
if and only if there exists a cyclic divisible difference set with parameters

y -y -¥ -y
(3.2, 6, (- E-F 40 £-%).

Corollary. The case f=1 corresponds to cyclic relative difference sets with pa-
rameters

By a classical construction of Bose, the affine geometry AG(2,q) can be
represented by a cyclic relative difference set with parameters (q+1, q-1,q,1).
A projection argument gives the desired examples for L -1 an odd prime power.
Delsarte, Goethals and Seidél (1971) conjectured that these are the only possible
parameters and verified this for v<452 (using algebraic techniques). Hence:

Corollary. Almost perfect binary sequences with period vs452 and L -1 entries
+1 per period exist if and only |f — -1is an odd prime power.

Hence Pott answered the questions posed by Wolfmann.

o




-1 -

E. KALTOFEN.
Parallel Solution of Sparse Linear Systems with Symbolic Entries.

We discuss a variant of Wiedemann's "coordinate recurrence” method, due to
Coppersmith, that allows the solution of a linear system on n processors in
O(NZ2logN) parallel time, N the dimensions of the coefficient matrix, and
. 2N/n + O(1) parallel multiplications of that matrix by vectors. The algorithm
uses randomization and computes the solution exactly. All these precise com-
plexity measures follow from our probabilistic analysis of Coppersmith’s
method. ’ ’

M l“é‘n

" We also report on experimental results when executing this algorithﬁ on a.
network of computers. E.g., we can solve a 20000 by 20000 system'.with =~
1300000 non-zero entries from the finite field GF(2!5-'19) on 8 SUN-4*com-
puters (rated 28.5 MIPS) in about 57 hours. We propose the challenge of
solving a 100000 by 100000 system with 10 million non-zero entries from the
field GF(232-5) on a network of computers in a reasonable amount of time,
say one week. ' o :

A. KBERBER.
Algebraic Combinatorics via Finite Group Actlons.

This talk was a report on joint work ~with R.LAUE, R.GRUND and

B.SCHMALZ on the constructive theory of discrete structures (e.g. graphs,

molecular graphs, t-designs). Emphasize was laid on basic methods which

. are particular cases of the Homomorphism Principle: Blocks and orbit transversals

as well as double coset methods. As an application of this to t-designs it

" was pointed to the results of B. Schmalz, who obtained complete lists of

designs’ with prescribed automorphism group as well as to our program system

| MOLGEN that allows to generate the molecular graphs that correspond to a
given brutto formula.

DF Deutsche
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M. KLIN.

Schur Rings over Cyclic Groups and Automorphism Groups of Circulant Graphs.

Let T =T(Z,,X) be an n-vertex circulant graph with a connecting set X cz,.
This means that [ has vertex set Z, and a set { (a,a+x)|ac Z,, xe¢ X } of
arcs. T can be treated as undirected graph if -X=X. We consider the problem
of description of automorphism groups of circulant graphs. Here the case
n=p3 p a prime is considered. We use results on enumeration of S-rings
(Schur rings) over cyclic groups. The description is recursive and uses infor-
mation about the cases n=p, p2 (Klin/Péschel).

All uniprimitive permuation groups of degree p (Frobenius groups) and the
symmetric group S, are called p-atoms. The symmetrlc group S,2 and the
Frobenlus overgroups of (Zy2,Z,2) form the set of p2-atoms.

Theorem. Every automorphism group of a p3-vertex circulant graph (p an odd
prime) belongs to one of the following types:

a) a wreath product of a p-atom and a pZ-atom or vice versa;
b) a wreath product of three p-atoms;

o S§,3;

d) a Frobenius group of degree p3;

e) a 2-closure (in the sense of H.Wielandt) of the permutation group
(G,Zy3), where G=Z,32H, H<Zg3, (1+p2)eH, (1+p)£ H.

There are altogether lw‘l»u‘,'ZuP +up different groups (here u, is a num-
ber of divisors of p-1). The structure of 2-closures in the case e) is also
obtained. The case n=8 requires special consideration, there are 10 automor-
phism groups in this case.

W. KRANDICK.
High Precision Calculation of Real and Complex Polynomial Roots.

A straightforward implementation of Newton's method for polynomial real root
calculation using exact arithmetic on rational numbers is unacceptably slow,
because in each step the length of the iterate multiplies by the degree of the
polynomial. We present an infallible algorithm which keeps the length of each
approximation proportional to its accuracy. The resulting spéed—up is dramatic.
A further speed-up is obtained by using a heuristic scheme involving floating
point arithmetic and interval arithmetic; the exact algorithm then serves as a
backup.

o
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Next we show how real root calculation can be used for complex root cal-
culation. A rectangle which contains exactly one complex root of a univariate
polynomial has to be refined in highly-convergent steps.

The 'complex root is the unique point inside the rectangle where a certain
pair of plane algebraic curves intersect. Each curve will usually intersect the
rectangle in exactly two points. These points can be found by real root calcu-
lation. The tangents to the curve in those points will in most instances form
a triangle with the secant connecting the points, and the triangle will contain
the part of the curve which lies inside the rectangle. The intersection of the
two triangles for the respective curves will then contain the complex root. A
new rectangle is constructed which contains this intersection. After eachwsuch
refinement step an infallible winding number computation decides whether this
rectangle does indeed contain the root. These verification steps spend almost
all of their time computing the points where the curves intersect the new
rectangle, i.e. they effectively prepare the next refinement step. Hence, only
the time for the last winding number computation is extra time. If the tan—
gent - secant heuristic fails, bisection is used for refinement.

K. LEHB.

Natlirliche Konstruktionen.

Nach einigen historischen Bemerkungen iiber einerseits - Kollraidev, Robfeiapo.
Saito et al., Maltsiniotis und andererseits Foata, Garsia-~Milne, Stanley, Paule,
Feldman - Propp gebe ich einen Vergleich der alten Kiirzungsmethode von Tarski,
die eine Priorititsordnung und einen vollstrukturierten Faktor erfordert, mit
der neuen von Feldman-Propp, die auf endliche Objekte zugeschnitten ist, da-
fiir aber nurmehr die Punktierung des zu kiirzenden Faktors braucht.

Mit den klassischen Ideen im Rlicken und Feldman-Propps neuer Methode
kiirze ich Potenzen mit vollstrukturiertem Exponenten, eine Aufgabe, die Feld-
man- Propp mit Bedauern nicht bewiltigten. Daneben betrachte ich Analoga in
anderen Kategorien (z.B. Vektorriumen). Dabei stellt sich Banascharskis
CSB-Banach-Satz als im “natiirlichen” Sinne falsch heraus. Algorithmisch
interessant erscheint die Frage nach der Anzahl der in den Konstruktionen
erforderfichen “Zellen".

Forschungsgemeinschaft
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T. MORA.
Gribner Basis and the Word Problem.

If computable, Grobner bases in a non-commutative free algebra allow to solve
the real membership problem and so the undecidable word problem.

It can be seen that the only obstruction to computability of Grobner bases
is that they can be infinite. In fact, there is a procedure which halts if and

only if the Grobner basis is finite, in which case it returns it.

A same ideal has different Grébner bases, according to an ordering imposed
on the free semigroup. If a dense set of orderings exists (i.e. a set P of
orderings such that if an ordering exists satisfying finitely many given dise-
purtion then there is such an ordering in P), then if an ideal has just a single
finite Grobner basis, its membership problem is solvable.

There are, however, instances of a solvable word problem, whose corre-
sponding ideal has no finite Grobner basis at all.

0. MORENO.
Improvements on the Ax- Katz Theorem, a p-adic Serre's Bound and Weights
of Duals of BCH Codes.

Research Problem 9.5 of MacWilliams and Sloane's book The Theory of Error
Correcting Codes asks for an improvement of the minimum distance bound of
the duals of BCH codes, defined over IFm, m odd. The objective of the pre-
sent talk is to give a solution to the above problem by: '

(i) obtaining an improvement to the Ax theorem, that we prove is best
possible for many classes of examples,

(ii) establishing a sharp estimate for the relevant exponential sums which
implies a very good improvement for the minimum distance bound,

(iii) providing a doubly infinite family of counter examples to Problem 9.5
where both the designed distance and the length increase independently,

(iv) verifying that our bound is tight for some of the counterexamples, and

(v) in the case of even m we give a doubly infinite family of examples
where the Carlitz - Uchiyama bound is tight, and in this way determine
the exact minimum distance of the duals of the corresponding BCH
codes.
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J. MULLER- QUADE.
Parallel Decomposition of ()-Algebras.

Motivated from divide .and conquer and product automata I introduce a .very
general parallel decomposition of Q-Algebras. It even allows the parts to
grow bigger than the orlglnal In spite of the many new chances some (1-Al-
gebras, like natural numbers or finite simple groups, remain undecomposable.

I conclude with an outlook to parallel products that allow the parté to
communicate.

i

U. OBERST.
The Solvability and the’ Constructlve Solution of Linear Systems of *Partlal
Difference Equations with Constant Coefflclents ~ A Survey.

ln the talk I discussed. the problems of the title. The lecture was based on
the work-of the Multidimensional System Group, Innsbruck, consisting of the
speaker and the graduate students °S. KLEON, S. RXTKEAO S.WALCH and E.
ZERZ, and in part:cular on the following. papers:

(1) U.O.: Multidimensional Constant Linear Systems,
Acta Appl. Math. 20 (1990), 1-17S..

(2) U.O.: Finite Dimensional Systems of Partial Differential or Différ;née
Equations, submitted to Adv. of Maﬁh., June 1992.

(3) U.O.: Variations on the Fundamental Principle for Linear ‘Systems of

Partial Differential or Difference Equations with Constant Coef- .

ficients, subm to AAECC, January 1993

(4) E.Zerz, U.O.: The Canomcal Cauchy Problem ‘for Linear Systéems of
Partial Difference Equations with Constant Coefficients
over the Complete Integral Lattice Z".

A written report on the results was handed out to several interested colleagues.
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The problems are both canonically formulated and algorithmically solved by
means of Grobner basis methods. The solution of the Cauchy or initial value
problem is significant for various applied fields, in particular for digital image
processing, and also for the numerical solution of hyperbolic systems of par-
tial differential equations by the method of finite differences. A look into
recent books on difference equations, for instance Kelley-Peterson, Difference
Equations, Academic Press 1991, shows that even for a single equation in two

dimensions the hitherto existing results in this area were very rudimentary
_contrary to the huge body of results on partial differential equations. -

J. OXNINSKI
Linear Semigroups. Results and Applications.

A structure theorem for an arbitrary subsemigroup-S of the full linear monoid
Mn(K) over a field K is given. It associates to S a collection of at most 27
linear groups G, and as many " sandwich matrices” P, over these groups. The
strategy is then to study S via the group actions of the G_,'s on themselves
and on the matrices P,. As an application we discuss the growth problem for S.

The class of (finite) monoids of Lie type, built on a group G of Lie type,
is presented. The basic example being M=M,(IF,) with G = GL,(IF). Such
monoids can be locally “covered” by a universal monoid IM on G, that admits
a very nice linear representation theory. Moreover, combinatorics on M can

often be reduced to combinatorics on G. This leads to several consequences that

had not been known even for M = M, (IF,).

V.PAN.
Supereffective Slow-Down of Algebraic Computations.

It is customary to measure the complexity of parallel computatiohs by time
and number of processors used. To resolve the problem of thé trade-off
between these two measures, we adapt the policy suggested by practice of
computations: we devise the algorithms whose potential work (that is, the product
of time and processor bounds) stays at the level of the best available sequen-
tial time bound. and we minimize the parallel time under this assumption.
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We reach these goals or achieve a substantial progress in thxs direction for
several fundamental problems of matrix and polynomial computations, inclu-
ding solving linear systems and matrix inversion over fields and semirings
(with further applications to computation of paths in graphs). in the cases of
general, triangular and structured matrices, as well as polynomial division and
computation of the square or the m-th root of a polynomial modulo a power.
This is achieved by combmlng the techniques of stream contraction, recursive
restarting of computations and effective slow-down of parallel computations,
which we make supereffective, that.is, we decrease the processor bound by the
factor of s by means of the slow-down by o(s) times. Part of the work was
done in cooperation with F.P.PREPARATA (on matrix computations) and with
D.BINI (on polynomial computation) -

D. POLEMI.
Slngnhr Algebralc Curves.

We analyze and compare dxfferent. methods to resolve the singularities of an
algebraic curve (classical method accessnble geometric method algebraic me-
thod).

Based on the Brill- Noether theorem we descnbe two polynomial algorlthms
for effectively constructing the Riemann- Roch .theorem, finding the genus.
adding points on the Jacobian of a smgular curve, constructing algebralc geo-
metric Goppa codes from singular curves.

A. PoLL
Another Mnnner to Enumerate SCN Basges.

In the Proceedings of the AAECC 4 Conference (Karlsruhe, 1986) we develop a
method to construct and enumerate Self Dual Multicirculant Codes over TF,
and IF;. We used n-variable polynomials. In "Error Correcting Codes: Theory
and Applications” (by A.Poli and Ll.Huguet, Masson 1989 and Prentice Hall
1992) we generalize these results.
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Here, we apply our formulas to the elementary case (one variable) which
corresponds to self normal bases. That the enumeration of SCN bases can be
expressed in terms of one variable -polynomials comes from a result of Wang
(1989).

The enumeration of these SCN bases is already published in 1990, by Jung-
nickel et al., but in a different way.

F. Scm - LORINSER. ‘ - R
Construction of Elliptic Curve Cryptosystems.

Elliptic curves over finite fields are proposed for the construction of one-way
functions. To avoid the efficient applicability of the fastest known discrete
logarithm algorithms, one is interested in the construction of elliptic curve
groups with certain properties.

Several algorithms to count the number of points on elliptic curves based
on the algorithm of Schoof are considered. An alternative approach using the
Weyl - conjecture to find examples of curves with coefficients from small sub-
fields is proposed.

Final remarks consider the possibilities ‘to implement the arithmetic on
elliptic curves over finite fields of characteristic 2 in hardware.

W. SCHARLAU.
Construction of Good Binary Codes.

We report on various methods to construct binary linear codes of moderate
length (ns127, or ns255) explicitely. These methods include improvements of

well known constructions in coding theory, e.g. punchering, shortening, X- ‘
construction, tran_sfer. Blokh -Zybalov construction. Extensive use of computers |
leads to many improvements in the tables of the best known codes. The re- |
sults are due to my students WIRTZ, SCHOMAKER, BERNTZEN, GRONEICK,

GROSSE. KEMPER. ’
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W. SCHEMPP.
The Heisenberg Lie Algebra and Neural Network Computations.

The purpose of this lecture is to indicate the role of the Heisenberg nilpotent
Lie algebra in computational tomography, computational holography, and neural
network computations. In particular its role for fast algorithms implementing
adaptive filter models of neural network engineering are described. A video tape
will dispfay the underlying hyperbolic geometry.

A. SCHONHAGESE. -

Sharp Bounds for the Perturbation of Polynomial Zeros. -

Given monic complex polynomials . f(z)—l'[“ (z-u;), glz)= I'Ij , (z- vj) wn,h

lugl, Ivjl < 1 and ;- norm deviation | f-g |1 = e, the problem is to find a

sharp bound for 5(f,g)= min, max; |u;-vy,|. £ = z% g = z°-¢ amounts to
= ‘Mg, Ostrowski’s bound 8$(2p-l)"’~/?-was improved by my 1982 result

3< (4+0(1))"™¢. Here I present work of my student R. SCHATZLE (1990).

Theorem. 8(f,g)-sn(1+-!-n+-l-n2), where 7 = “J( Ln l_]) 1f-gl

for £<27 %", the extra factor (14-0(1])) is less than 1.06S.

RS :
Sharpness of this estimate is obt.ained by examples like a, b with |al, [bf <1,
la-bi{ =38, then define p(t) = n(t-a)k~! (t-b)™~! where k+m = n+1, and
set f(z) = f: p(t) dt, g_'(z) =f; ®(t) dt. Then f has k zeros in a, g has m zeros
: - _g _ (b W -1
in b, thus 3(f,g) = 8, and ¢ = g-f = - tp(t)dt.. = #8"/(:_1).

S.A. VANSTONE.
Group Fact.orlut.lom and their Cryptographic Significance.

Let G be finite group and F={A;cGltsjst t221A]22} Fis called a
factorization of G if :

(i) G = AA, ... A, and

Gy 161 = Y, 1Al

DFG Deutsche
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Group factorizations were introduced in the early 1940°s as a tool to solve
a famous conjecture of Minkowski and then reintroduced in the mid 1980's as
an algebraic structure on which to base a private key cryptographic scheme.
Our interest is to try to construct a public key system on these structures. In
this lecture we give a brief survey of knapsack "like” schemes and then dis-
cuss some recent work with M.QuU on group factorizations and how they can
be applied to public key cryptography.

K -H. ZIMMERMANN.
On the Decoding of Modular Group Codes.

Given. K (finite field of characteristic p) and G ( finite p-group). Then the
augmentation ideal -

k(G = { T g kg8 ¢ KG I Z kg =0}
of KG equals the jacobsoh radical of KG. '

Given. A filtration of Ix(G):
IK(G) = 112 122 e 2 11-2 e
i.e., 1j is an ideal of KG and IjI; C Ij.i forall j,k21.
By considering I; as a linear code in the ambient space KG, we obtain the

following

Result. If p=2 then each code I, is completely majority decodable.
(This was known before only for binary Reed - Muller codes.)

In case of p > 2 we can provide' a lower bound on the number of errors which
can be corrected by majority decoding.

Berichterstatter: D. Hachenberger.
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