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The 1993 meeting dedicated to thearea of Applicable Algebra was the third0rt
thls -topic held at Oberwolfach after the first~conference .. An~endbare' Algebra ..
in January 1983 and thesecond conferen~e ~. Applicable-At'gebra .. in Jan~ary

1989.

This year' s confer~nce was pl~nned by the three org.anizers Thomas Bet.h
(Karlsruhe), Bruno Buchberg,er (L~nz) and Heinz Lüneburg (Kaisersl~u~ern) to
address areas from Algebra an'd its appHcation~, like Coding Theory, Crypto­
graphy, design of. computer algebra syst~ms, digital signal processing, robot
programming, geometrical modelling and abst;act data types. The' e~pha$is. ~as
on such appHcations which require solution methods from typical algebraic
areas such as: ~ithmetics in real, complex, p - adic .and finite fields, discrete
mathematics, number theory, group theory, representation theory, algebraic
logic and algebraic geometry.

The positive atmosphere of Mathematisches Forschungsinstitut Oberwolfach
supported by the well- known hospitality of all stuff and the dedication of
Professor Dr. Barner, the director' of the inst!tute, has made it possible to
conclude this conference with an extremely positive feeling by all participants.
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Vortragsauszüge

R.M. BBALS.
Lu Veca AJgorlthma for Matrix Group•.

We consider the following type of problem: given a finite group G of matrices

by a list of generators, determine the order of G, decide membership in G,

find Sylow subgroups and composition factorsof G.

For the case of finite matrix groups over the rationals (and over algebraic
number fields) we solve all these problems in polynomial time by randomized
algorithms. The algorithms are of the .. Las Vegas" type: they use randomiza­

tion along the way but the output is certified correct. (There is a negligible

chance that the output will be an honest faHure report.)

These results considerably extend previous results on permutation group
computations into the potentially more significant domain of matrix groups.
Such an extension has until reeently been considered intractable.

In the case of· finite characteristie ODe faces problems like the diserete
logarithm and factoring integers even in the 1 - dimensional case. With some
caveats, our resul ts extend to this case as weil and give further evidence to
the conjecture· th~t . these number theoretical obstacles are the only obstacles

to much more effieient handling of matrix groups. Although we have not im­

plemented the algorithms' yet, our results seem to have the potential of consi­
derably increasing the parameters of matrix groups that can be handled by

current computers (dimension, order of field of definition). (Existi~g packages
represent matrix groups as permutationgroups, causing an immediate fatal

blowup in the input size unless the parameters of the group are very small.)

Our algorithms b~ilt on a variety of recent randomization techniques, inclu­
ding refined random walk techniques, as weil as a statistical analysis of various

classes of finite simple groups. The classification of the finite simple groups

is extensively used, even when the objective is merely to determine the order
of the given matrix group.

This is joint work with L. BABAI.

- !
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P. CAMION.

Towards a Setter Complexltly AJgorlthm to Compute the Minimal Polynomial
of a Matrix.

We are given any matrix A of size nxn over a field K together with the fac­
tors in K[x] of its characteristic polynomial 'XA(x) = f t (x)rl .... fk(x)rk. Then two
algorlthms are given to compute the minimal polynomial ~A(x) = f 1(x)St ... fk(x)Sk.

of A.

Both algorithms pass through a block-diagonal form of the matrix. This is
done by successive evaluations of polynomials to matrices of decreasing sizes,
the two first ones bei'ng TIjt'J fJ(A)rJ, ,TIjEJ fj(A)Tj, for a weIl chosen.~::titi~n
of [1, k] into J and [1, k] - J. A lemma leads to the successive refine~r.~nts of
the partition...For the whole computation the complexity is shown to~:.be the
one of evaluating a polynomial of degree n to matrix A. For the fir~t' algq­
rithm it is O( n3 1n) and for the second it is O(n3 c(n» where c(n)l:.1o is the

expected number of factors rl ~ r2 + •.• + rk ofthe characteristic polynol'l1.ial.

For the first algorithm, let U(A) = Uo I + ul A + U2A2 + ... + utAt to qe

evaluated, where, for simplicity, t =22k - 1. Denote by B the matrix A2k . Th~n
we write

U(A) =.Uo(A) + BUt(A) ...... + B2k_tU2k_t(AL

It is then seen that U( A) can then be computed with 3( 2k - 1) matrix mültipl~-

cations of size n and n2 t elementary products. 't>-;_

For the second algorithm, then U(A) 8 is first computed for a weIl chosen
invertible matrix B. Passing from U(A)B to U(A) is 0(n3 >. We take far B the
matrix formed by the independent columns

_ {XI,AXI, ... ,Kl xl • x2'Ax2 •... , A12x2' xm.Axm •...• A1mxm ·}

where 1I + 12 + ... + Im = n and where each I, is the largest integer far which
the set of columns of B formed by A11Xt and the previous ones is independent.
The vectors Xl' x2' ... , Xm are taken at random under those conditions. The
function c( n) is the expected number of factors of a characteristic polynomial.
Clearly the expected number for m is bounded from above by c{ n). The cast
of constructing 8 is O( n3 ) as we have to be able to select the successive xi' s
not in the span of the previous vectors.
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G. E. COLUN's.
Some, Aapeeu of Unlvariate Integral Polynomlal Factorlzatlon.

Topics considered include the utilization of special programs for every small
primes and the use of arrays for distinct - degree factorization and Berle­
kamp · s algorithm, optimal use of Musser· s factor degree sets, several ~nhance­
ments of Wang' s early' factor detection method, a Lehmer - type version of

the modular residue to rational number conversion algorithm, and utilization of ~
the partial factor coefficient bound of Beauzamy, Trevisan and Wang. ..

G. FlmY.
On the Dl8crete LoCarithm In Jacoblau of Curve8.

We are discussing realizations of the cyclic group Cm (m a prime power)

inside' the group of rational points of Pico( C) where C is a curve with arith­
metical genus g defined over· a finite field IFq with q elements. To make this
realization interesting for p'ublic key cryptosystems two conditions have to be

satisfied:

1.) Given two rational positive divisors At, A2 of degree g of C one has to be
able to find a divisor A3 with the same properties and a function h of C with
At + A2 - A3 = (h) + gPo where Po ( C(lFq ) is fixed. If this can be done, we
have a fast exponation in Pic~(CL

2.) There must not exist a fast inverse function ··log" of the exponation.

It is easy to see that 'condition 1 is satisfied for curves C of genus 1 (hence
Pico( C) = Ga' Gm or an elliptic curve); by work of Cantor and more recently
by Kampkötter and Spallek one sees that hyperelliptic curves (and especially e
curves of genus 2) can be handJed, tao. lt is obvious that Ga does not satisfy

. condition 2, and the use· of Gm (which leads to the classical discrete loga­
rithm in IF:) is at least dubious because of work of Odlyzko.

So the most interesting curves are elliptic curves and curves of genus 2.
The construction of such curves with suitable group of r~tional points in PicO
can be done by random choice and counting points by a Schoof - type algorithm
(till now onty ta(erably fa~t for elliptic curves) or by using the theory of
CM - varieties Qver number fields (implemented far elliptic curves and in pre­
paration far curves of genus 2), and it is very easy to find a lot of good .
candidates by these procedures.
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Conceming condition ?: In a joint paper with H. - G. RUCK we show that for
any curve C and any natural number m there is a non degenerate pairing from

Pi~O(C) (IFq<Cm » x Hl(GlFq(C
m

)' Pico(lFq » to 1F:(Cm)/lFq(~m)·m

which dan be computed in O( log In) steps of the type described in L). So if
em. ( IFq , the log in Pico(C) is reduced to the logarithm in IF:, and C· should
be avoided. This applies for instance to supersingular curves.

Behind the pairing mentioned above is the Tate pairing for Abelian varieties
of p-adic fields KOp ' which has values in the Brauer group of K p • _and so it

seems to be necessary to ·study those Brauer groups bo~h over Kl" (and be­
cause of the sum formula for invariants lover number neIds' more closely.

J. VON zuR GATHBN.
Factort.nc Polynomlals over Flnlte Plelds.

The factorization of polynomials .·isa fundamental problem in Computer AIg~­

hra.. This talk considers polynomi~s in one variable over-.a finite field.. tlle
important ( probabilistic ) algorithm of Cantor and Zassenhaus (1981) can (probably)

factor a polynomial of degree n in IFq[x] with ·an essentially cubic nu:~b~r

O( n2 10g q) of operations in IFq . I present an algorithm that uses an essentiaqy
<Le., disregarding factaTs of' log n ). quadratic number of O( 0 2 + n log q) of opera-
tions. . .

This is joined work with V. SHOUP.

w. GBJSBI MANN.

Selfdual Bues In lFqa.

In this talk weakly selfdual· bases and selfdual bases of the field extension
IFqn over IFq are characterized. An.equivalence of the symmetry of the nxn­
matrices (the matrix representations of the multiplication· with elements in
IFqn with respect to the basis used) and the (weakly) selfduality of the basis
is shown.

This concept of duality is used to analyze normal basis multiplication in finite
fields. .
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W. GLBISSNBIL

Chaos in p - adle Fleida.

The convergence of a sequence {Xi} i E lNo defined by the II chaotic equation "'

Xi'" 1 = Xi2 + c' is investigated using the p- adic norm. It is assumed that xo, C E

Qp' One has to distinguish the following cases.

(1) p~'1 (xo,c), k maximal

==) IXi Ip ::: p-ko Vi> io, where pko Ic, ko maximal. •
(2) (xo,c) = 1 and pko Ic, k o maximal

=) Ixll p = 1 V iE lNo.

(3 ) (xo,e) = 1 and p{c.

The sequence {Xi mod p} I (lNo is eventually eyclic. Let 1 denote
the length of the cycle. Choose io such that xI ... t = xI mod p

for all i ~ io. If the cyclic part of {xI mod p} I (No does not
contain zero then Ixll p =1 V i 2: ia. If zero is in the cyclic part
of {Xl mod p} i (lNo then ia is chosen such that xlo =O. Let k

. be maximal with respect to pk Ix1o' The sequence {Xi} I E!NO has
1 distinct cluster points, namely

Yj

with Iyo Ip ·= p-k

with IYJ Ip =1, 1'~ j < 1.

Furthermore, one can derive that far all prime numbers p, q, (p,q) =1, and
for all mEIN 3 nEIN such that pm I (qn - l).

J. GRABWBlBR..

Genet1a In AXIOM.

Non-associative algebras appear in applications e.g. as Lie algebras of symme­

tries of partial differential equations. Another interestin~ class of such alge­

bras appear if one wants to model Gregor Mendel' s laws of genetic inheritance:

Aa x Aa = ~ AA .. i Aa + ~ aal
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In gametic algebras the different gametes at ... an of a population constitute
a basis (over IR or C). The segregation. rates in sufficiently large random ma­
ting populations for the zygots (= products of basis elements) are just the
structural constants:

( k) ~ (k)
(0 :s: Ylj ~·1, 4.k Ylj =1 ~.

Vectors of weight 1 describe populations, the product x. y describes the filial
generation of mating populations x and y. If there are no sexual dependenci~s

these are commutative and non -.associativealgebras. Typical problems to Qe
studied are: idempotents (equilibrial states)~ 'convergence of powers of various
kinds of weight 1- vectorsand classification ~f such algebras for s~all.t~nks.

. In a jC!int work with R. WISBAUER we have implemented a non:~ associ~ti~e

··world" in the computer algebra system. AXIOM· providing ._ca~egorie.s liJ<e
Monad, NonAssociativeMgebra 'and domains as AlgebraGivenBYStructur'älCo~­
stants and GenericNonAssociativeAlgebras cind functions which al10w to:'-' solye
typical problems (I~ an identity like Jacobi· s valid? Constr!lct ~.basis '--~f the
middle nucleus).

Trus setting ~llows to easily qefjne arbitrary algebras -of finite rank and
compute with them in AXIOM, and - of -course - can be u5ed to study also t~'e

genetic aIgebra~.

A. GtrnIMANN.
Prlmallty TestlDg Algori~ for Integer Approximation to I-adle;: Roots of Uidty.

Effective tesls for primality aregiven "forintegers N sa~isfying IN -." 11 .s: I-n
( I > 2 a pri~e, 1) an (1- 1) 5t root of unity in Zl).

D.HACHBNBBRGBR.

On the Existence oE Comple~ly Free Elements In it FlnlteFleid.

Let q > I be a prime powert m > I an integer and IFqrn and IFq the Galois fields
of order qm and q, respectively. In 1986, journal of Algebra 103, 141 - 159,

D. Blessenohl and K. Johnsen have proved that there exists an .element w in IFqrn

such that w generatesa normal basis over ~ intermedrate field IFqr of IF... m

over IFq . Such elements are called completely free in IFqm over IFq .
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The existence of such an element is easily reduced to the special case where
m is a prime power. In order to settle the problem in this special case,
Bless~'nohl and Johnsen mainly use representation theory of finite abelian
groups. Al though their proof could slightly be condensed in a supplement by
D. Blessenohl in Jour~al of Algebra 132,· (1990), 154 - 159, it is still involved.

The aim of my talk is to present a detailed anrl constructive proof of the
theorem of Blessenohl and lohnsen by using essentially some basic properties
of cyclotomic polynomials over finite fields. Furthermore, we give a recursive ...
formula for the number of completely free elements 'in, IFqrn over IFq in the .,

case where m is a prime power.

H. HONG.

Topolol)' Analysis of Plane Real Alpbraic C1ln'e8.

We give an efficient algorithm which, given a bivariate polynomial, constructs
a planar graph topologically equivalent to the plane curve defined by the poly­

nomial.

The algorithm follows the general structure:

1) finding all .. interesting" points.
2) counting the numbers of left / right branches,
3) connecting up the points according to the branch counts.

The efficiency of the algorithm is due to elimination of expensive opera­
tions with real algebraic numbers such as gcd, division. and root bound compu­
tation. This is achieved by the theory of subresultants and Sturm sequence.

The current implementation can handle dense polynomials of total degree 16 •
within 1 minute.

T. JBBBLBAN.

Syatollc MultlpredsloD Artthmetlc.

This is an overview of a research aimed at speeding - up Computer Algebra

systems by systolic parallelizatian of the arithmetic of lang integers and lang

ratianals. This is important because lang integer arithmetic tends to consume

most of the computation time in large applications (e. g.GrÖbner bases),
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A new algorithm for exact division (i. e. division with null remainder) was

designed which is also su~table for systolic implementation in the least - signi­
Ejcant digits first (LSF) pipelined manner. After binary - shifting the operands
until tl,ey ·become. odd, qo (theLS digit of the quotient) can be found from
Co and ao (the ~ digits of the dividend and 'divisor) by:

bo = {co· aö 1 } .m~d ß·

The process is iterated after subtracting. from the dividend bo multiplied wi~h

the divisor.

A gene.ralization oE the binary GCD algorithm was found t which ;is' also su~­

table far systol~c parallelization in LS~ pipelined "manner, and is" also faster
than the currently used GCD algorithms even i~ the sequeh~ial implemeDl:atio~.

After binary" shifting the operands until they become oddt one takes a, b~" ~ t~e
least - significant double - words of the operands ), and ODe finds two .. modul~r
conjugates" x, y which are at most one ward long, with the property _::.t

By this process, one oper~nd is reduced by one word, and then the other ope­
rand can he reduced by one word :t>y using the·~·exact division·' scheme. Hencet

all the important algorithms required by multiprecision rational arithmetii:: can
. be aggregated in systolic LSF pipelined manner. "-

J. JOHNSON.

The Coeffldent ,SIgn Varlation Method for Real Root Isolation.

An algorithm far isolating the real roots of a polynomial is discussed".· The al­
gorithm is based on Descarte· s rule of signs and a sequence of polynomial
transformations. The transformations correspond to the continued fraction ex­
pansions of the raots. This algorithm was originally presented by Vincent
(1836), and modified byAkritas (1978 >. How:~ver, bath of those algorithms have
exponential computing time. We modify Vincent" s algorithm to obtain a
polynomial computing time bound, and compare it to a similar algorithm with
polynomial comp'uting time' due to Collins and Akritas. The behavio~r of" the
algorithm is related to the distribution of partial quotients.
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D. JUNGNICJCBL

Almoat perfect Blnary Sequencea.

Let a:= (an)n c IN bea binary sequence with period v. The autocorrelation coef­
ficients C t are defined as the number of agreements minus the number of
disagreements of a with the t-fold shifted sequence -(Cin+t)nclN' For appli­
cations in signal processing, ORe would like to have perfect binary sequences,
i. e., c t = 0 whenever t is not a multiple of v. Unfortunately, only the case v = 4

is known;' in fact one generally conjectures non - existence far all larger v. This is
. equivalent to the non - existence of cyclic Hadamard matrices and known to be
true for v< 12100. Recently, J. Wolfmann studied almost perfeet binary sequen­
ces where one allows to have C t I o· for one non - trivial congruence class
modulo v. With the help of some theoretical observations, Wolfmann con­
structed such sequences with exactly 2m - 1 entries + 1 per period for all v = 4m
(v has to be divisible by 4) with v ~ 100, v I 32, 44, 68, 72, 80, 92. The purpose
of this talk is to report on the following nice observation by my former
doctoral s tuden t A. POTT:

Theorem. An almost perfect binary sequence with f entries ..: 1 per period exists
if and only if there exists a cyclic divisible difference set with parameters

( y 2 f (f- ~ )(f _.!. +1) f- Y )
2' " 2, 2 ' 4'

Corol1sry.. The case f =1 corresponds to cyclic relative difference sets with pa­

rameters

( ~ , 2 , i - t , ~ - 1 ).

•

'"

By a classical construction of Base, the affine geometry AG( 2 , q) can be
represented by a cyclic relative difference set with parameters (q + 1, q - 1. q, 1),

A projection argument gives the desired examples for ~ - I an odd prime power. e
Deisarte, Goethals and Seidel (1971) conjectured that these are the only possible .
parameters and verified this far v ~ 452 (using algebraic techniques). Hence:

Corollary. Almost perfect binary sequences with period v ~ 452 and i-I entries
+ 1 per period exist if and only if ~ - I is an odd prime power.

Hence Pott answered the questions posed by Wal fmann.
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E. KALTOFBN'.

Parallel Solution of Sparse Unear Syatema with Symbollc Entrles.

We discuss a variant of ~iedemann's "coordinate recurrence" method, due to
Coppersmith, that' allows the solution of a linear system on n processors in
O(N 2 1ogN) parallel time, N the dimensions of the coefficient matrix, and
2NIn + O( 1) parallel multiplications of that matrix by vectors. The algorithm
uses randomization and computes the solution exactly. All these precise com­
plexity measures follow fromourprobabilistic analysis of Coppersmith · s
method.

. ~~~

We also report on e'xperimental results when executing this algorithrii~·on a·
network of· computers. E. g. " we can ·solve a 20000 by 20000 system"~~ith ~

1300000 non - z~ro entries from the finite· field GF( 215 - . 19) on 8 SUN - 4;:'com­
puters (rated 28.5 MIPS) in about 57 hours. We propose the challenge of
solvinga 100000 by 100000 system with 10 million no~ - zero· entries from the
field GF(232

- 5) on a network of computers In a reasonable' amoun-t 6f time,
say one week.

A. ltmtBBL
Algebrale Comblnatorlca via Flnlte Group Act10DS..

i -

I

•
This talk was areport on joint work with R. LAUE, R. GRUND and
B. SCHMALZ on the constructive theory of discrete structures (e. g. graphs,'
molecular graphs, t - designs). Emphasize was laid on basic methods which
are particular cases of the Homomorphism Principle: Blocks and orbit transversals
as weIl as double coset methods. As an application of this to t - designs i t
was pointed to the results of B. Schmalz, ~tJo obt.ained complete lists of
designs' with prescribed automorphism group as weH as tri our program system
MOLGEN that allows to generate the molecular graphs that correspond to a
given brutto formula.
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M.IC:uN.
Schur :RIngs over Cycl1c Graupe and AutomorPh18m Graupe oE Clrcu1antGrapha.

Let r =r (Zn t X) be an n - vertex cireulant graph with a eonneeting set X .f. Zn·
This means that r has vertex set Zn and a set { (ata+ x) I a E Zn t XE X } of
ares. r ean be treated as undirected graph if - X =X. We consider the problem
of description of automorphism groups of cireulant graphs. Here the case

n,=p3t p a prime is eonsidered. We use results on enumeration of S-rings .-
(Schur rings) over cyelic groups. The description is recursive and uses infor- .!
mation about the cases n =Pt p2 (KUn / Pöschel)'

All uniprimitive . permuation groups of degree p (~robenius groups) and the

symmetrie group Sp are ealled p - atoms. The symmetrie group Sp2 and the

Frobenius overgroups of (Zp 2 t Zp 2) form the set of p2 - atoms.

Theorem. Every automorphismgroup of a p3 - vertex circulant graph (p an odd

prime) belongs to one of the following types:

a) a wreath product of a p - atom and a p2 - atom or viee versa;

b) a wreath product of three p - atoms;

c) -Sp3;

d) a Frobenius group of degree p3;

e) a 2-closure (in the sense of H. Wielandt) of the permutation group
(G tZ p

3L where G=Zp 3AHt H <Zp 3, (1+p2)EH, (l+p)JH.

There are altogether 1+ 4up + 2u; + u; different groups (here up is a num­

ber of divisors of p -1), The strueture of 2 - closures in the ease e) is also
obtained. The ease n =8 requires special consideration t there are 10 automor­

phism groups in this case.

w. ICRANDICX.

HIgh PreclIl10D CalculatloD of Real and Complex Polynomlal Roota.

A straightforward implementation of Newton·s method far polynomial real raat

calculation using exact arithmetic on rational numbers is unacceptably slowt

because in each step the length of the iterate multiplies by the degree of the
polynomial. We present an infallible algorithm which keeps ~he length of each

approximation proportional to its accuracy. The resulting speed - up is dramatic.

A further speed - up is obtained by using a heuristic scheme involving floating

point arithmetic and interval arithmetic; the exact al~orithm then serves as a

hackup.
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Next we show how real root calculation can be used for complex root cal­
culation. A rectangle which contains exactly one comp!ex root of a univariate
polynomial has to be refined in highly· convergent steps.

The 'complex root is the unique point inside the rectangle where a certain
pair of plane algebraic curves intersect. Eachcurve will usually intersect "the
rectangle in exactly two points. These points can be found by real root cal~u­

lation. The tangents to the curve in those points will in most instances form
a triangle with the secant connecting the points, and the triangle will cont~in

the part of the curve w.hich lies inside the rectangle. The intersection of the
two triangles for the respective curves will then contain the complex root." A
new rectangle is construc.ted which contains this intersection. After eacltt-:.such
refinement step an infallible winding number computation decides whether tpis
rectangle does indeed contain the root. These verification steps spend _almost
all of their time computing the points where the curves intersect th~ n~w

rectangle, i. e. they effectivelyprepare the next refinement step. Hence,' only
the time for the last winding number computation is extra time. If the t~n­

gent - secant heuristic fails, bisection is used for refinement.

LLmm.
NatUrllche Konat:nlktlonen.

Nach einigen historischen Bemerkungen über einerseits Kollraidev, Robleiap.o,
Saito et al., Maltsiniotis und andererseits Foata, Garsia - Milne, Stanley, Paule,
Feldman - Propp gebe ich einen Vergleich der alten Kürzungsmethode von Tarski,
die eine Prioritätsordnung und einen vollstrukturierten Faktor erfordert, ~it

der neuen von Feldman - Propp, die auf endliche Objekte zugeschnitten ist, da-e für aber nurmehr die Punktierung des zu kürzenden Faktors braucht.

Mit den klassischen Ideen im RUcken und Feldman :. Propps neuer Methode
kürze ich Potenzen mi~ vollstrukturiertem Exponenten, eine Aufgabe, die Feld­
man - Propp mit Bedauern nicht bewältigten. Daneben betrachte ich Analoga in
anderen Kategorien (z. B. Vektorräumen ). Dabei stellt sich Banascharskis
CSB - Banach -Satz als im .. natürlichen" Sinne falsch heraus. Aigorithmisch
interessant erscheint die Frage nach der Anzahl der in den Konstruktionen
erforderlichen .. ZeUen ",
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T. MoRA..
Gröbner Baals and the Ward Problem.

I.f computable, Gröbner hases in a non - commutative free algebra allow to solve

the real membership problem and so the undecidable word problem.

It can be seen that the only obstruction "to computability of Gröbner bases
is that they can be infinite. In fact, there is a procedure which halts if and _

only if the Gröbner basis is finite, in which case it returns it. .,

A same ideal has different Gröbner bases, according to an ordering imposed
on the free semigroup. If a dense set of orderings exists (i. e. a set p of
orderings such that if an ordering exists satisfying finitely many given dise­
purtion then there is such an ordering in pl, then if an ideal has just a single

finite Gröbner basis, its membership problem is solvable.

There are, however, instances of a solvable ward problem, whose corre­

sponding ideal has no finite Gröhner basis at all.

o. MoltBNo.
Improvementa OD the Ax- Katz Theorem, a p-adlc Serre's Bound and WeiChte
of Duala of BeH Codes.

Research Problem 9.5 of MacWilliams and Sloane· s book The Theory oE Errar
Correcting Codes asks for an improvement of the minimum distance bound of
the duals of BCH codes, defined over ~m. m odd. The objective of the pre­

sent talk is to give a solution to the above problem by:

( i ) obtaining an improvement to the Ax theorem. that we prove is best e
possible far many classes of examples,

( ii) establishing a sharp estimate for the relevant exponential sums which
implies a very good improvement for the minimum distance bound,

( iii) providing a doubly infinite family of counter examples to Problem 9.5
where both the designed distance and the length increase independently,

(iv) verifying that our bound is tight far same of the counterexamples, and

( v ) in the case af even m we give a doubly infinite family of examples
where the Carlitz - Uchiyama bound is tight. and in this way determine

the exact minimum distance uf the duals of the correspon~ing BCH

codes.
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J. MUJ..LIm-QuADs.
:Parallel Decompoalt1on of 0 - Algebru.

M~tivated from divide .and conquer and pro~uct automata I introduce a .very
general parallel decomposition of n - Aigebras. It even allows the' parts -to
grow bigger than the' original. In spite of the many new 'chances samen - AI­
gebras, like natural numbers or finite simple groups, remain undecomposable.

I conclude with an outlook to parallel products that allow the parts to
communicate.

~~%~..
. ~~.

.ll. OBlDlST. ;~
The Solvabillty and the' Constructlve Solution of Unear Systems of·~Part1al

Dlfference EquatJons with ConataDt Coefflclenu - A Survey.

In the talk I dis~ussed. the problems of 'the title. The lecture was pased on
the work- of the Mult1dimensional System Group,. Innsbruck, consisting' of the
speaker and the graduate students "S. KLEON, S. RITKEAÖ, S. WALCH and E.
ZERZ, and in particular on the foUowing. papers' :

(1) U. 0.: Multidimensional Constant. Linear Systems,
Acta Appl. Math. 20 (1990), 1-175.·

.~ . .s .

(2) u. 0.: Finite Dimensional Systems of Partial Differential or Difference
Equations, submitted to Adv. of Math., June 1992.

(3) U. 0.: Variations on the Fundamental Principle for Linear "Systems of
Partial· Differential or Difference Equations with Constant Coef- .
ficients, subm. to AAECC, January 1993.

( 4) E. Zerz, U. 0.: The Canonical Cauchy Problem for Linear Systems of
Partial Diff~rence Equations with Constarit Coefficient~

over the Complete Integral Lattice Zr.

A written report on the results was handed out to several interested colleagues.

                                   
                                                                                                       ©



- t6 -

The problems are both canonically formulated and aigorithmically solved by
means of' Gröbner basis methods. The solution 'of the Cauchy or initial value
problem is significant for various applied fields, in particular for digital image
processing, and also for the numerical solution of hyperbolic sY,sterns of par-:
tial differential equaÜons by the method of finite differences. A look into
recent books on difference equations, for instance Kelley - Peterson, Difference
Equations, Academic Press 1991, shows that even for a single equation in two
djmension~ the hitherto existingresults in this area were very rudimentary _

.contrary to the huge body of results on partial differential equation~. •

J. OJCNJNSICI.
llnear Semlgroupa. Result8 and Appllcatlou.

A structure the~rem for an arbitrary subsemigroup- S of the fuH linear monoid
Mn ( K) over a field K is given. It associates to S a collection of at most zn
linear groups Ga: and as many .. sandwich' matrices .. Pa: over these groups. The

strategy is then to study S via the group actions of the Ga:· s on themselves
and on' the matrices Pa:. As an applieation we discuss the growth problem for S.

The elass of ( finite) monoids ofUe type, buHt on a group G of Ue type,
is presented. The basic example being M =Mn(IFq > with G = GLn<IFq )' Such
monoids can be locally .. covered" by a universal monoid IM on G, that admits
a very niee linear representation theory. Moreover, combinatorics on IM can
often be reduced to combinatorics on G. This leads to several consequences that

had not been known even for M = Mn (JFq).

V.PAN.
SupereffectJve Slow - Down of Algebralc Computatlona.

It is customary to measure the complexity of parallel computations by time
and number of processors used. To resolve the problem of the trade- off
between these two measures, we adapt the policy suggested by practice of
computations: we devise the algorithms whose potential work (that is, the product
of time and processor bounds) stays at the level of the best available sequen­
tial time bound. and we minimize the parallel time under this assumption.
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We reach .these goals or achieve .a substantial progress in this direttion far
several fundamental problems of matrix and polynomial computations, inclu­
ding solving linear systems and. matrix inversion ove~ fields and semirings
(with further applications to computation of paths in graphs), in' the c~ses of

general. triangular and s~ructured matrices, as weIl as p.olynomial division al1d

computation of the square or the .m - th root of a polynomial modulo' apower.
Trus is achieved by ~ombining the tech.ni,ues of stream contractiori, recursive
restarting of computations and' effective slow - down of parallel computations,
which we make supereffective, that. is, we decrease the processor bound hy t~e

factor of s by means of the ,slow - down by 0 ( s) times. 'Part of the work w~s

done in cooperation with F. P. PitEPARATA (on matrix computa~ions) and with
D. BINI (on polynomial computation).

D. PoLBMI.

SIngular Algebralc Curves.

We analyze and compare different met~ods to resolve the ~ingularities" of an
a!gebraic curve (classical method, accessible geometrie method, algehraie lYle­
thodL .

Based on the Brilf- Noether theorem we descril-?e two polyn~mial algorithms
for effective~y constructing the Riemann - Roch .theorem, finding the ,~~~n~s,

adding points ,on ,the Jacobiait of a singular curve, construeting algehralc geo­
metric Goppa codes' from singular curves.<

A.Pou.
Another Manner to-Enumerate SCN' Baaes.

In the Proceedings of the AAECG 4 Canferenc:e (Karls'ruhe, 1986) we develop a
method to ,canstruct and enumerate Self Dual Multicircularit 'Codes ove'r, ,'~
and ~. We used n - variable polynomials. In .. Error. Carrecting ead'es : Theory
and Applications" (by A. Pali and LLHuguet. Massan 1989 andPrentice Hall
19q2) we generalize these results.
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Here, we apply our formulas to the elementary case (one variable) which
corresponds to self normal bases. That the enumeration cf seN bases can be

expressed in terms cf one variable .polynomials comes from a result of Wang

(1989 ).

The enumeration cf these SeN bases is already published in 1990, by Jung­
nickel et al. t but in a different way.

F. SCHASPBIl - LoRlJ'lSJDL
COUtnlct10D of EWptJc Cune Cryptoeyatem8.

Elliptic curves over finite fields are proposed for the construction of one- way
functions. To avoid the efficient applicability of the fastest known discrete
logarithm aigorithms, one is interested in the construction of elliptic curve

groups with certain properties.

Several algorithms to count the number cf points on elliptic curves based
on the algorithm of Schoof are considered. An alternative approach using the
Weyl- conjecture 'ta find exampies of curves with coefficients from small sub­

fields is proposed.

• I

Final remarks consider the possibilities to implement· the arithmetic
elliptic curves over finite neids of characterisUc 2 in hardware.

Vi: SCHA.RJ...AU

Conatnlct1oD of Good BlD8l')' Codes.

on

We report on various methods to construct binary linear codes cf moderate
len"gth (n s 127, cr n S 255) explicitely. These methods include improvements of

weil known constructions in coding theorYt e. g. punchering t shortening, X­
construction, transfer, Blokh - Zybalov construction. Extensive use of computers
leads to many improvements in the tables of the best known codes. The re­
sults are due to my students WIRTZ, SCHOMAKER, BERNTZEN. GRONEICK,

GROSSE. KEMPER.
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The Helaenberg Ue Algebra and Neural Hetwom ComputatJona.
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Let G be finite group and F = {A j f. G I 1 s j s t. t 2;" 2; lAi I ~ 2 .}. F is called a
factorization of G if

Sharpness of this estimate is obtctined by examples" like a; b with Ial, Ib I .< ~,

la-bi =8, then define ep(t) = n(t-a)k-l (t-b)m-t, where k+m = 0+1, and

set f{ z) = f: ep( t) dt, g-( z) = f~ «p( t) dt. Then f has k zeros in a, g h~s m zeros

in b, thus 8(f,g) :2: S, and E = g - f = Jabep(t) d"t_ = jo 8n/(~=~).

~m. SCf,g)q(t +t 11+*11
2

), where lJ =nl (l~~ ~j ) I f - gl ;

for E:S: 2- 4n
, the extra factor (1'" O<"l)) is less than -1.065.

A. SCHÖNHAOB.·

Sharp Bounda for the PerturbatloD of Polynomlal Zero•.

Given manie complex polynomials . fez) = IT1': 1 (Z - Ul)' g{z) = Ilt= 1 (z ~ vj )} with
I u11 t IVjl :s: 1 and 11 - norm deviation I f.--gI 1 = E, the problem is to ~i!,d a

sharp bound for ~(f,g)::: min 1t maxi I Ul - V~(i) r. f = in, g = zn - E amounts to
S = ·rvE. Ostrowski's" bound S~(2n-l"'VE -was improved by my 1982 resuJt
S:s: (4 + 0(1» 'VE. Here I present wo~k of!ßY student R. SCHÄTZLE (1990),

s. A. VANSTONB.

Group FactortzatloDs" and th~lr Cryptographlc Slgnlflcance.

The purpose of this leeture is to indieate the role oE the Heisenberg nHpotent

Ue algebra in computational tomography, eomputational holography, and neural
netwo~k computations. In particular its role fo~ fast algorithms implementing
adaptive filter models of neural network engineering are described. A video tapee! will display the underlying hyperbolic geometry.
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Group factorizatians were intraduced in the early 1940' s as a tool to salve
a famous conjecture of Minkowski and then reintroduced in the mid 1980' s as
an algebraic structure on which to base a private key cryptographic scheme.
Our interest is to try to construct a public key system on these structures. In
this lecture we give abrief surveyof knapsack ulike" schemes and then dis­
cuss some recent work with M. Qu on group factorizations and how they can
be applied to public key cryptography.

IC. - H. ZIMMIDtMANN.
On the DecodlDg ·of Modular Group Codes.

Glven. K (finite fjeld of characteristic p) and G ( finite p - group >. Then the

augmentation ideal

IK(G) = { ~gEG kgg E KG I L gEG k g O}

of KG equals the Jacobson radical of KG.

Glven. A filtration of IK(G) :

IK(G) = It .2 12 .2 ... .2 IT .2 ...

Le., I j is an ideal of KG and I j Ik ~ IJ+ k for all j, k ~ 1.

8y considering 1jas a linear code in the ambient space KG, we obtain the
following

Reault. If p = 2 then each code I t is completely majority decodable.
(This was known before only far binary Reed - Muller codes.)

In case of p > 2 we can provi~e a lower bound on the number of errors which _

can be corrected by majority decoding. •

Berichterstatter: D. Hachenberger.

                                   
                                                                                                       ©



l'agungs teilnellm~r

Dr. Robert Seals
Department of Math~matic5 and'
Computer Science~ University of
Chicago, Ryerson Hall '
1100 East 58th St.

Chicage., IL 60637
USA

Prof.Dr. Themas Beth
Institut für Algorithmen und
Kognitive Systeme
Universität Karlsruhe
Am Fasanengarten 5~ Ge~. 5034

W-7500 Karlsruhe 1
GERMANY

Prof.Dr. BrunoBuchberger
RISC (Research Institute far
Symbolic Computation)
Universität Linz

- ~ I -

Prof.Dr. George E. Col1in5
Research Institute Far Symbolic
Computation
Schloß Hagenberg

A-4232 Hagenberg

Prof.D~. Gerhard Frey
Insti tut für Expe~imen~~lle

Mathematik "\".
Universität-Gesamthochs~hule Essen
Ellernstr. 29 ." .

W-43QOEs~et' 12
GERMANY

Prof.Dr. Joachim von zur-Gathen
Department,of Computer Scie~c~
University of 'Toronto
10 Kings College Road

A-4040 Linz Toronto, Ont~rio

CANADA
MSS·-reft

~Prof.Dr. Jacques Calmet
~Institut fUr Al~orithmen und

Kognitive Systeme
Universität Karlsruhe
Am Fasanengarten 5, Geb. 5034

W-7500 ~(arlsruhe

GERMANY

Prof.Dr. Paul ~amion

INRIA RocQuencaurt
Domaitle de Voluceau
8. P. 105

F-73153 Le Chesnay Cedex

Willi 6eiselmann
Institut fUr Algorithme"n' und
Kognitive Systeme
Universität Karlsruhe
Am Fasanengarten 5~ Geb. 5034

W-7500 Karlsruhe
GERMANY

Dr. Winfried· Gleissner
Sch.leitHleimer Str. 209

W-8000 MUnchen 40
GERMANY

                                   
                                                                                                       ©



Dr. Jahannes Grabmeier
iBM OelJtschland Infarmatiotls­
::systeme GmbH
Wissenschaf'tliches Zentrum
Vangerowstr. 18. PF 1U3068

W-6900 Heidelberg
GERMANY

Dr. Andreas Guthmann
Fachbereich Mathematik
Universität Kaiserslautern
Postfach 3049

W-6750 Kaiserslautern
GERMANY

Dr. Oirk Hachenberger
Fachbereich Mathematik
Universität Kaiserslautern
Postfach 3049

W-67sa Kaiserslautern
GERMANY

Dr. Hoon Hang
RISC (Research Institute for
Symbolic Computation)
Universität Lin:

A-4040 Li,,:

fudor Jebelean
r~esearcl·) Ins t i tL~ t f"or Symbol i::
'~ompu ta t lOtl

Schloh Hagenberg

~-42J~ Hagenberg

I; I

Prof.Dr. Jeremy R. Johnsan
Department of ~athematics
and Computer Science
Dre~el University

Philadelphia ~ PA 19104
USA

Prof.Dr. Dieter Jungnickel
Institut für Mathematik
Universität Augsburg
Universitätsstr. 8

W-8900 Augsburg
GERMANY

Prof.Dr. Erich Kaltofen
Department of Computer Science
Rensselaer Polytechnic Institute

Troy , NY 121~O-359a

USA

Prof.Dr. Adalbert Kerber
Fakultät für Mathematik und Physik
Universität Bayreuth
Postfach 10 12 51 ~

W-8580 Bayreuth
GERMANY .

Prof. Dr. Mikhail H. r(llrl

Department af Mathematics and
Computer SClence
Ben-Gurlon Universltv of the Negev
P.O.B. 653

84105 8eer-Sheva
ISRAEL

                                   
                                                                                                       ©



'" ,

Dr. Werner Krandick
RISC (Research Institute ior
Symbolic Camputation)
Universität Linz

A-4040 Lin:

~rOf.Dr. Klaus Leeb
Institut-fUr Informatik
Universität Erlangen
Martensstr. 3

W-8520 Erlangen
GERMANY

Prof.Dr. "Rüdiger Laos
Fakultät für Informatik
Universität TUbingen
Sand 13

- 23 -

Dr. Hel:11ut i'~eyn

Institut FUr Mathematische
Maschinen und Datenverarbeitung
Universität ~rlangen

Martensstr. 3

W~8520 Erlangen
GERMANY

Prof.Dr. Teo Mora
Istituto di Matematica
Universita di Genova
Via L. B. Alberti, 4

1-16132 Genova

Prof.Dr. Os2ar Mo~eno

Dept. af Mathematics
Faculty of Natural Sciences
University of Puerto Rieo
Box 23355

W-7400 Tübingen
GERMANY Rio Piedras

USA
PR 00931

Prof.Dr. Heinz Lüneburg
Fachbereich Mathematik

_niversität Kaiserslautern
~ostfach 3049

W-6750 Kaiserslautern
GERMANY

Martin U.ineolH'9
Fakultät fUr Mathematik
Universität Bielefeld
Postfach 10 01 31

W-4800 Bielefeld
GERMANY

Jörn Müller-Quade
Institut für Algorithmen und
Kognitive Systeme
Universität Karlsruhe
Am Fasanengarten S. Geb. 5034

W-75CO Karlsruhe
GERMANY

Prof.Dr. Ulricil Oberst
(nsti tut Flir Mathemati~.

Universlt~t ~nn5br~ck

Technikerst~. 1S

                                   
                                                                                                       ©



Prof.D~. Jan Okninskl
Mathematisches Institut
Universität Freiburg
i~lbertstr. 23b

W-7800 Freiburg
GERMANY

Prof.Dr. Winfried Scharlau
Mathematisches Institut
Universität Münster
Einsteitlstr. 62

W-4400 Münster
GERMANY

Pro"f. Dr. Vi etar Y. Pan
Lehmatl College
The City University of New York
Bedford Park Boulevd., West

Bronx
USA

NY 10468-1589

Prof.Dr. Walte,. Schempp
Lehrstuhl für Mathematik
Universität Siegen
Postfach 10 12 40
Hölderlinstr. J

W-5900 Siegen
GERMANY

Prof.Dr. Despina Polemis
Mathematics Department
Barl~ch College
City University of New York
17, Lexington Avenue

New York
USA

N. Y. 10010

Prof.Dr. Arnold Schönhage
Institut für Informatik 11
Universität 80nn
Römerstraße 164

W-5300 Bonn
GERMANV

Prof.Dr. Alain Poli
Laboratoire AAECC-IRIT
Universite Paul Sabatier
118, route de Narbonne

Prof.Cr. Scott A. Vanstone
Department of Combinatorics and ~
Optimization _
University of Waterloo

F-31062 Toulouse Cedex Waterloo
CANADA

Ot"lt. N2L 3Gl

Frank Schaefer-LOt~inser·
irlstl hit fl~r Alger i thmen und
hcgnlti'le Sy:teme
Universität Karlsruhe
I~m Fasanengarten S. Geb. 5034

l-J-7500 har lsr'.n"l'?
GERMANY

Dr. Karl-Helnz Zimmermann
Mathematisches Institut
Universltät Bayreuth
Postfach 10 12 51

W-8580 8ayreuth
GERMANY

                                   
                                                                                                       ©


