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Curves, Images, Massive Computation

"21.-27.2.1993 |

Die Tagung fand unter der Leitung von Prof. Dr. L. Devroye (Montreal), Prof. Dr.
W. Hardle (Berlin) und Prof. Dr. I. Johnstone (Stat;ford) statt. Im Mittelpunkt des Inte-
resses standen Ffa'.ggn zu aktuellen Entwicklungen im Bereich der Funi(tic;nenscﬁaf.tzung,
deren Aj:wendunQ bei der Image-Analyse und der massive Einsatz von Computern, den
diese Verfahren zum grofen Teil bendtigen. .

Als Einfiihrung wurden am 'Monta.gvo-rmittag- Vortrage zu Funktionenschatzung in an-
gewandten Si‘.udjgn von B. Silvermann, S. Leurgans, A. _Kneip, C.J. Stone und J.S. Ma.rron
gegeben. In diesem Feld, wie etwa Hazardstudien, treten Funktionen in na’tﬁﬁicher
Weise als Schatzziel auf. Am Nadmﬁttag standen Funktionenschitzungen in bestimmten
Nichtstandard-Situationen (Abhingigkeit, zensierte Daten) im Mittelpunkt. Hierunter
fallen die Vortrage von P. Doukhan, A. Tsybakov, J. Fan und I Cijbels. Dabei wurde
auch ein neueres Verfahren zur nicht-parametrischen Schatzung vorgestellt', das darauf
beruht, lokal gewitéhtete Polynome anzupassen. Hier ist auf die Vortrage am Dienstag zu
verweisen, die die R/edﬁktion des numerischen Aufwands dieser Verfahren behandelten.

Der Dienstagvormittag war einer Reihe von Vortrigen iiber Wa.velets\gewidmet (I. John-
stone, D. Picard, D. Dofloho. M. Neumann), einer neuen und vielversprechenden Metho-
dik im Bereich der Signalverarbeitung und Funktionepschitzung. Aus dieser Sitzung

entwickelte sich fir Mittwochabend eine informelle Diskussion iiber (bzw. Einfihrung in
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die:'l’ll'éSfiT-: '(lci")"\'Vavclvét.s, dic fir alle Teilnehmer sehr fruchtbar war. Ein weitercer Vortrag
(M. Nussbaum) beschaftigte sich mit der Aquivalenz von Dichteschitzung und WeiBem
Rauschen. Der Dienstagnachmittag behandelte die Implementation nicht-parametrischer
Funktionenschatzer, so daB sie schnell berechnet werden und der intensive Rechenzeit-
einsatz reduziert wird (Th. Gasser, K. Messer). Daneben wurden weitere Verfahren zur
Funktionenschitzung und Imageanalyse vorgestellt und ihre Anwendung in Semiparame-
trischen Modellen gezeigt (E. Mammen, K.-C. Li, Ph. Vieu, B. Turlach). .

Die Frage des massiven Computereinsatzes in der Statistik war Hauptthema des Mitt-

wochs. Es wurden verschiedene Aspekte von Markov-Chain-Samplers diskutiert, sowie

deren Anwendung in Monte-Carlo-Studien und Image-Analyse demonstriert (D.D. Cox

P. Green, F. Gétze, L. Tierney). Die Sitzung endete mit dem Vortrag von O. Bunke iiber
Bootstrap, ein rechenintensives Sichpfobenwiederholungsverfa.hren.

Verschiedeﬁe Fragen zur Image-Analyse, wie z.B. Rekonstruktion und effiziente Spei-
cherung, standen im Mittelpunkt der Donnerstagvormittag-Sitzung (R. Olshen, L. Schu-
maker, C. Jennison, L. Younes, F. Natterer, P. Clifford). Den Nachmittag erdffnete der
Vortrag zu Sieves und Maximum-Likelihood von S. van de Geer, danach wurden nichtli-
neare und nicht-parametrische Kalibrationstechniken vorgestellt (E. Jolivet, M.A. Gruet).
Weiterhin wurde die (fir alle nicht-parametrischen Methoden wichtige) Frage der Wahl
des Glattungsparameters diskutiert (D. Girard, B. Grund).

Der Freitagvormittag begann mit einem Vortrag von P. Hall iiber die Schitzung von
fraktalen Dimensionen. Dies ist ein neues und hochinteressantes Gebiet in der Statistik
mit vielen praktischen Anwendungen, die ebenfalls vorgestellt wurden. Weitere Themen
waren die multivariaten Dichteschatzung in den Vortragen von C. Huber, W. Polonik und

Ph. Stark sowie die Regressorwahl in parametrischen und nicht-parametrischen Modellen

(G. Eagleson, M. Miiller). Die Tagung endete mit einer weiteren Sitzung uber massi.
ven Computereinsatz am Freitagnachmittag. In dieser letzten Sitzung wurden nochmals
Aspekte der nichtparametrischen Funktionenschatzung behandelt (G. Golubev, M. Low)

sowie Bootstrap-Anwendungen vorgestellt (R. Beran, W. Stute).
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Stein Confidence Sets
R. Beran
University of California, Berkeley

In the simplest general trend model, .t.he observations X = (Xi,... , X,)T satisfy the

.relation X; = & + E;, the {E;} being i.i.d. standard normal random variables. Estimators -

of £ = (&,...,&)7 include the classical estimator X, smoothed curve estimators, model
selection estimators and the Stein estimators such as £, = (1 — t})X Our results

concern the constructlon and asymptotic properties of Stein conﬁdence sets for £ of the
form C, = {f € R%: Iﬁ, fl £ 7,}. We discuss:

1. Asymptotic and bootstrap constructions of #, such that P[C, 3 {] = a + O(q".l ).
Improved bootstrap constructions of 7, such that Z[C, 3 €] = a + O(q™!).

Risk superiority of C, over the classical confidence sets centered at X. S
Failure of natural bootstrap algorithm that resample from N(X,I) or N (E,: I )

Asymptotic geometry of Stein confidence sets.

Bootstrappmg in Small Sample Regression Problems
O. Bunke .
Hilmboldt University, Berlin %

We investigate the small sample behavior of bootstrap procedures in parametric, se-
miparametric and nonparametric regression problems. The approach is based on’ exact
calculations or a small variance approximation of the biases in the moments of the boot-
strap distribution of the interesting estimator. We show that even if a parametric model
for the regression model is known, there will be an essential bias in the 3rd— and 4th-order
bootstrap moments. Moreover, we calculate additional bias terms in the case of bootstrap
procedures based on residuals after fitting by an incorrect linear or nonlinear -parametric
regression model or by a nonparametric estimator.

A typical example exhibits the possibly disturbing magnitude of such terms in the
case of the variance of the bootstrap distribution.

We discuss modification of bootstrap procedures that may diminish the above men-
tioned errors in approximating the true distribution of an estimator by bootstrapping.
They are based on estimates of the first four central moments of the error distribution
that have small biases or, in case of the error variance, have additionally mean square
error optimality properties.
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Polygonal Models for Spatial Pattern
P. Clifford
Oxford University

Let T be a 2-D region, and let x be a surface defined on T. The values of x on T
constitute an image or pattern. The true value of x at any point on T cannot be directly
observed, but data can be recorded which provide information about x. The aim is to
reconstruct x using the prior knowledge that x varies smoothly over most of T', but may
exhibit jump discontinuities over line segments. This information can be incorporated
via Bayes’ theorem, using a polygonal Markov random field as a prior distribution. In
a similar fashion linear structure in 2-D images can be modeled as a random graph. In
this case the statistical problem is that of efficiently estimating the defined parameter. A
probabilistic basis for such discussions is outlined using base measures which are either
spatial point or line processes. o ‘ -

Monte-Carlo Approximation of Posterior Distributions in
Nonparametric Logistic Regression
Dennis D. Cox
Rice University, U.S.A.

A prior for nonparametric logistic regression is constructed by assuming the logit is a
Gaussian process plus a standard regression model with an improper prior on the compon-
ents. Many authors have proposed approximate inference using a Gaussian approximation
of the posterior. We wished to assess the accuracy of this approximation. Analysis of the
posterior tails leads to an importance sampling density which is a mixture of the Gaussian
approximation and the tail dominating density. Our calculations show the Gaussian ap-
proximation works reasonably well for marginal inferences about the logit (or probability)
function at a point. Also demonstrated were simultaneous credibility bands for the logit.

Massive Adaptation
David Donoho
Stanford University

Let yi = 0; + zi,i = 1,...,n,z i.i.d. N(0,1). Let 65 ; = . (y:), where t, = /2 log(n,

and 7(g) = sgn(y)(ly| — t)+. Now for almost any reasonable loss which is bowl-shaped
and symmetric, and almost any a priori class © which is bowl-shaped and symmetric

sup R.(83,0) <™ log n-terms” inf sup R,(6,6).
- 0€® ¢ oeo

Implications include the fact that wavelet estimators based on \/2log(n) thresholding
achieve within the log factors of the minimax risk over all Triebel and Besov classes.
Since this changes the picture of adaptive estimation - making it seem almost trivial
if we are willing to accept log terms and Gaussian white noise assumptions, we-discuss
the problem of adaptively selecting a basis. Adopting the approach of Coifman, Meyer, |
Quake and Wickerhauser, we select a basis by adaptively tiling the time-frequency plane,
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and threshold in that basis. Denoising of Doppler and other mult-frequency chirps works
well when the basis is selected using Stein’s unbiased risk estimate.

The use of simple thresholding for estimating quadratic functionals is also briefly
discussed, along with adaptivity results in inverse problems.

Minimax Rates for Weakly Dependent Regression Estimates
Paul Doukhan
Université d’Orsay, France .

Regression estimation is a main tool for the general predictor problem. We estimate a
regression function r in a mixing stationary model (X, ¥)n=1.2... [r(z) = E(Y | X = z)]
using §-sequence estimates (Walter, Blum (1979)) which include the use of convolution
kernels, wavelets (Doukhan (1988)) and other projections techniques. Some explicit mo-
dels are explicited by their mixing properties (Doukhan L.N.S. (to appear)).

Extending optimal equivalents for variance of kernel density estimates (Tran (1990))
to our framework yields the MINIMAX bounds for the MISE of estimates of f and r.
A simple by-product is the \/n-consistent estimator of quadratic integral functionals of
f and rf under restrictive assumptions. Berbee Reconstruction Lemma (1979) allows
to prove uniform MINIMAX rates of this large class of estimates of a f-mixing process
(in the a.s. and mean senses). In the weak dependent case the only result of this class
was in Birgé (1986) concerning Dereblm recurrent Markov chains (this heavy . condltlon is
omltted here).

Cow

Va.rlable Selectxon in Nonparametric Regression .
- Geoff Eagleson
University of New South Wales

As well as new methods of estimating response surfaces, attention needs to be paid to
the consequent inferential problems. This point will be illustrated with a simple example.
Analyzed by an automatic application of the additive nonparametric regression program
ACE, the results obtained are spurious. To understand why this might be so we study
the behavior of the selection criterion, R?, under two extreme null models. Appropriate
permutation tests provide one way of assessing the fits obtained. It may well be that
smoothing should be used to assess goodness-of-fit; different to that which is used for
estimating the response.

Localization: A Useful Principle
Jianging Fan i
University of North Carolina and Chapel Hill

The traditional statistical model selection is based on largely "trials-and-errors”. In
this talk, we introduce a simple and useful idea for model fitting. The smoothing para-
meter that governs the model complexity is estimated based on the idea of localization:
one models locally the unknown function by a linear function and uses different order
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of approximation to assess the bias of the approximation. The variance of estimate can
easily be determined by the usual least squares theory. In comparison with traditional
approaches, our method is more efficient and has wider applicability. The idea can be
used to determine the order of approximation at various points and can also be applied
to all likelihood based model. These models can be in one case the partial likelihood from
survival analysis data, and in another case the quasi likelihood function from generalized
linear models. This new idea gives more strength to the statistical "maximum likelihood
principle” via automatic model selection.

Fast Local Polynomial Fitting
Theo Gasser ‘ ’
Abteilung Biostatistik, Universitat Ziirich

Among the many methods proposed for non—parametric curve and surface fitting, lo- -
cal polynomial fitted by least squares turned out recently to have a number of optimality
properties (in a minimax sense). There are a number of other advantages, such as au-
tomatic boundary correction. We have developed a fast algorithm for computing these
estimates. It works in O(n) operations, whereas the conventional algorithm needs O(n$)
operations. Typically half a second is needed on a SUN Sparc IPX to fit 1000 points,
irrespective of the design. Due to an add-substract procedure, numerical stability is a
problem, in particular for small bandwidths. This problem is dealt mainly by checking a
stability factor, defined to be the smallest (standardized) Cholesky factor in the normal
equation.

Nonparametric Regression Based on Censored Data
Irene Gijbels _
Institut de Statistique, Université Catholique de Louvain

There are a variety of statistical tools available for modeling the relationship between
response and covariate if the data are fully observable. In the situation of censored data
however, those tools are no longer directly applicable. We provide an easily implemented
methodology for modeling the regression relationship based on censored data, without
making any assumptions about its form. ' Basic ideas behind the methodology are to -
transform the data in an appropriate simple way, and then to apply a locally weighted least
squares regression. The proposed kernel type estimator involves an appealing variable
bandwidth, and as a consequence the procedure automatically adapts to the design of
the data points. The bandwidth depends on a tuning parameter which can be selected
using cross-validation techniques. The methodology tis illustrated via simulation studies
and analysis of real data sets. Some basic asymptotic results are established.
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On the Randomized Smoothing Parameters Choices
D. Girard )
CNRS, University of Grenoble

We describe how and when we may use the fast randomized versions of the GCV and
Cy-criterions (resp. RGCV and RCp). Even for finite sample sizes, a simple heuristic
argument shows that, if we are confident that C; can work for the problem at hand,
then RCy, works too! We show that this can be extended to GCV and RGCV. Next we
describe how a few runs of RCy, (or RGCV) can produce inferences about the validity of
the final choice. This is illustrated by some simulations in a two-dimensional setting.

Sequentlal Desxgn for Inhomogenous Sobolev Class
G. Golubev . )
Institute for Prpble'ms of Information Transmission, Moscow

- We are given noisy data ¥; = f(t;) +¢;;1 < j < n,t; € [0,1], where f, are nd
Gaussian variables and the regression function f(e) belongs to a certain inhomégeneous
Sobolev class. Our aim is to recover the regression function minimum IMSE. It isiassumed
that knots may be sequentially chosen. It is proved that optimal rate of convergence of
IMSE cannot be improved.by means of sequential design. Nevertheless it is pomted out
the 'sequential design when we don’t know the parameters of the Sobolev class. -

Stochastic Search in Imagé Reconstruction
Friedrich Gétze -
Universitat Bielefeld

We investigate the behaviour of MAP-estimators in statistical models for noise de-
graded images. Starting from a white roise model on pixel errors and a Bayesian prior
(Gibbs-measure) on the set of images which uses a nearest neighbor interaction we give
an estimate for the accuracy of the MAP-estimate for uniformly colored original i images.

Furthermore, stochastic search algorithms approximating the MAP-estimate are con-

sidered. It is shown that in case of a unique and stable MAP-estimate (in the sense of -

Peierls) a logarlthmlc cooling schedule ylelds a polynomla.l relaxation time until the pro-
bability of having met the optimal i image is larger than }, say using simulated a.nnea.lmg
These bounds diverge when the amount of smoothing increases..

In case of an Ising-type of every function with symmetri¢ ground states it is shown
that an appropriate Cluster algorithm of FKSW type admits a polynomial running time
too. This is a result of E. Weineck which is part of his PhD-thesis.
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Markov Chain Monte Carlo: Posterior Risk, Over-Relaxation
and Sensitivity Analysis
Peter Green
University of Bristol

Two variants of basic MCMC methods were first introduced: Hastings methods using
randomized proposal distributions, and methods based on partial conditioning. To quan-
tify the statistical performance of MCMC estimators, the concept of relative increase in
posterior risk was advocated: this is the excess in risk of the MCMC estimator over the
corresponding one based on the exact posterior distribution. To investigate the merits
of over-relaxation and of grouping the variables, the Gaussian case, with deterministic
sweeping, was discussed, where an exact representation of the autocorrelation time is
available. This can be used to guide the design of efficient sampling methods, even in the
non-Gaussian case. Among general conclusions are that autocorrelation time (i) is redu
ced by over-relaxation; (ii) is unaffected by the sweep schedule, given the grouping; an
(iii) is reduced by grouping in the case of strong positive association and a non-negative
linear objective functional. Finally, a key application of MCMC was discussed: sensiti-
vity to the prior in Bayesian analysis. Importance sampling ideas are useful here, and the
infinitesimal version is easy to apply: the change in an estimated posterior expectation
can be approximated by the empirical covariance between the function of interest and the
log prior ratio. ’

Nonparametric Calibration
M.A. Gruet
INRA, Biométrie, Jouy-en-Josas

Statistical calibration analysis provides a way to predict a quantity £ which is not
directly observable from the observation of another easily measured quantity Z related
to the just one by some dose-relationship. In many situations, the knowledge of the
experimental process can hardly be translated into some parametric model. A tempting
alternative may be provided by a nonparametric modelisation. Let Z = r(£) + e when e is
a centered random variable. The unknown regression function r is supposed to be smooth
and strictly monotone. The available information about r is given by experimental data

Y; = r(&) + € obtained from a calibration experiment. The ¢;’s are i.i.d. with zercb

mean and the training sample {X;,Y;} is independent of Z. A nonparametric method i
proposed for estimating directly the parameter of real interest £, r being here considered
a nuisance parameter. We propose to estimate £ by a solution of the estimating equation

Hy(§) = %Z%K (%) Y(Y.-2)=0

where K is a convolution kernel, & the smoothing parameter and ¥ an odd function.
The asymptotic properties of the estimate are discussed. Calibration intervals of the type
{€, |Ha(€)| < c} are constructed. This nonparametric technique is applied to an important
biological problem, that of estimating the relative potency of a new product relative to a
known one.
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Loss and Risk in Bandwidth Selection
Birgit Grund
University of Minnesota

Currently, there is considerable disagreement whether "loss” ISE or “risk” MISE
should be used in kernel bandwidth selection. In this talk, we contribute two new ar-
guments to the ISE vs. MISE discussion. First, we demonstrate that MISE measures
"risk” in the classical decision theoretic framework; this contradicts the common argu-
ment that expected ISE is the only proper decision theoretic risk in bandwidth selection.
Second, we show that bandwidth procedures may display opposite relative performance
with respect to expected ISE and MISE. This defends the commonly adopted viewpoint
that MISE optimal bandwidths are good estimates for the ISE optimal bandwidth.

On the Statistical Estimation of Fractal Dimension
Peter Hall
Australian National University/CSIRO ~
#

Fractal models for surfaces form a convenient and readily interpretable way:of descri-
bing roughness. Practical examples include metal surfaces (e.g. prior to painting), plastic
wrap (roughness influences the tendency of bacteria to adhere), bearing-and-shaft inter-
face (lubrication qualities are affected by roughness), etc.. Methods for gathering data
about surface roughness will be described, and new developments of data enhancements
will be discussed. Stochastic process models for rough surfaces will be suggested, "and
statistical methods for estimating fractal dimension be outlined. The properties-of those
methods, when applied to stochastic process models for surfaces, will be noted- o

Esti'mating Densities on the Plane: Optimal Balloon Estimates
. ' C. Huber =S
University of Paris V, France
Joint work with Peter Hall, Art Owen, and Alex Covertey

Given a sample of n observations from a density f on IR?, a natural estimator of f(z)
is formed by counting the number of points in some region R around z and dividing
this count by the d-dimensional volume of R. An asymptotically optimal choice for R is
presented here, with respect to L% norm risk. The optimal “balloons” turn to be ellipsoids
with shape depending on z. An extension of the idea, that uses a kernel function to put
weight greater on points nearer z is given. Among non negative kernels, the familiar
Epanechnikov kernel used with an ellipsoidal region is optimal. When using higher order
kernels, the optimal regions shapes are related to L? balls for even positive p.
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Stochastic Optimisation: The Genetic Algorithm, Simulated Annealing
and Applications in Image Analysis
Chris Jennison:
University of Bath, UK

The Genetic Algorithm (GA) has been proposed as a method for optimising functions
f(z) of many variables, z = (z,...,z¢), with multiple local optima. It operates by
creating a population of vectors z and letting these evolve over time in a manner similar
to natural evolution. In choosing parents for future generations, priority is given for those
with high values of f(z). A “crossover” operation is used in producing some offspring —
the two parent vectors are broken at a randomly chosen point, the first part of parent A
and the second part of parent B are combined to form one offspring, the remaining parts
are combined to form the other. A small amount of random mutation is also introduced
into each new generation. The vector z with largest f(z) seen in a certain number of' )
generations is returned as the solution. :

The algorithm defines a complex stochastic process which is difficult to characterize.
On close examination, the customary theoretical justifications of the GA are seen to
lack rigour. In contrast to the successes claimed in many papers, our empirical studies
have shown that the GA can perform poorly on very simple problems. In a more complex
problem, searching for a MAP image estimate, the GA is seen to work as a very inefficient
analogue of Simulated Annealing.

On a positive note, we believe that the problems for which the GA is designed to
be important — even if the GA is not the right method for these problems. There
is a-need for general-purpose methods to find near-optima of functions with structure
f(z) = 3. Ve(z) where each V,(z) depends only on {z; : i € ¢} for a small set c. The
treatment of main effects and low—order interactions in classical experimental design is
relevant here, but dealing with a very large set of variables and the presence of local
optima poses new challenges.

Wavelet Shrinkage: Ideal Spatial Adaption and Denoising
I. Johnstone
Stanford University
Joint work with David Donoho, Gérard Kerkyacharian and Dominique Picard

We give first an overview of the method of soft thresholding of wavelet coefficients in.
the idealized setting of non-parametric regression on the interval with equally spaced data
and Gaussian white noise errors. Use of a threshold at \/2log n standard deviations of the
noise yields estimates that adapt spatially to oscillation and discontinuities and have a
high degree of visual smoothness. Some supporting theorems are presented in connection
with spatial adaption: wavelet thresholding can be tuned to come within a logarithmic
multiplicative factor of an ideal risk attained by an oracle who knows the optimal set of
coefficients to estimate. This result, valid for L? global average risk for arbitrary functions,
can be sharpened over estimation spaces of functions, can be estimated at a given rate
by other spatially adaptive procedures such as piecewise polynomial fits. This exploits
oracle inequalities over weak- L, balls along with characterisations of approximation spaces
developed by De Vore, Jawerth and Popov. Finally, we present some results concerning
"denoising” and universal near-minimaxity (in L;) properties of the estimates over certain
Besov and Triebel scales of function classes.
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Calibration in a Nonlinear Setting
E. Jolivet )
INRA, Laboratoire de Biométrie, Jouy-en-Josas
Joint work with M.A. Gruet

Let observe the following data (Y;,z:),i = 1,...,n, (Z;),j = 1,...,m such that
Y: = f(2:,0)) + &, Z; = f(20,0) +71;,0 € ©, E(e;) = E(n;) = 0.
We want to estimate zo using the training set (Y;,z;) and the response Z,-; We are

interested in set estimates: No consistent asymptotic framework is directly obtainable
for this problem. We propose to consider m = 7,0 < § < 1;n — oo. Under these

assumptions, various asymptotic pivots can be denved and Edgeworth expansions can

‘be computed. On the other hand simulations can be performed. Although no one of these

two methods provide a definitive answer concerning the actual level of the prediction sets
derived, we remark some convergences of the results obtained by both ways.

Nonparametrlc Estxmatlon of Common Regressors
for Slmllar Curve Data

. Alois Kneip- ‘ S

ertscha.ftstheone 11, Umversnat Bonn ’

el :

The talk is coucerned w1th data from a collectlon of dlEerent but related f regressxon
curves (m;)j=1,.. NN >> 1. In statistical practlce analysis of such data is most frequently
based on low dimensional linear models. It is then assumed that each regressxon curve
m; is a linear. combma.tlon of a small number L' << N of common functions §,::.,9rL.
For example, if all m;’s are straight lines this holds with L =2, g; = 1 and gg(z) =z.
In this paper the assumption of a prespecified model is dropped. A nonpa.ra.metnc me-
thod is presented which allows to estimate the smallest L and corresponding functions

" g1,...;9; from the data.. The procedure combines smoothing techniques thh ideas re-
" . lated to Principal Component Analysis: An-asymptotic theory is presented which yields

Deutsche
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detailed insight-into properties of the resultmg estlmators An application to household
expenditure data. 1llustra.tes the approa.ch :

Smooth Curves in Blomechamcs
- Sue Leurgans’
Rush—Presbytenan—St Luke s Medical Center, Chicago, IL, USA

Many biomechanical measurements are smooth curves recorded on a fine mesh. Ex-
amples include joint angles in gait analysis, foot pressures from pedabarographs, and lum-
bar sphere position from Lumbar Motion Monitors. Even though the curves are known

‘to be smooth, some data sets contain sample’ curves that are not smooth,- because the

computations are not entirely wellposed. Some simple plots can assist in the identification
of curves that cannot correspond to actual motions. The most.important plot superposes
all trials from one subject on one plot. '

Although smooth principal components are a natural method for such data, the Rice &
Silverman (1991) estimators are not robust to unusual (smooth) curves. Sample influence
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functions for smooth ecigenvalues and eigenvectors can be used to locate unusual curves
when multiple trials are available for each subject, smooth extension of random effects
multivariate analysis of variance can be applied.

Helices in High Dimensional Regression
Ker-Chau Li
Math Department, UCLA, USA

The shape of 14-dimensional Boston housing data looks like a helix or slide when
viewed from a three dimensional scatterplot of the output variable (median house price)
against the two projected regressors found by SIR (sliced inverse regression). From the
first viewing angle, a linear fit seems appropriate. But as we spin the data, a nonlinear
trend begins to emerge. These patterns are further confounded with the curvilinear ass
ciation between the two projections shown on the screen as the output axis is turned off
the sight. The helix-like shape of a data cloud highlights a typical nonlinear confounding
problem in regression, rarely addressed in the literature. These are four questions to ask:
How often does a helix occur? How to expose a helix in a high dimension setting? How
seriously does a helix impair regression analysis and modeling? How to repair it? Stra-
tegies based on SIR type analysis are suggested. Demonstration on Mac Powerbook is
given.

A Constrained Risk Inequality with Applications to Adaptive Estimation
Mark Low
University of Pennsylvania

A general constrained minimum risk inequality is derived. Given two densities f and
fo we find a lower bound for the risk at the point 8 given an upper bound for the risk at
the point 0. The inequality sheds new light on adaptive estimation problems arising in
nonparametric functional estimation.

Locally Adaptive Regression Splines

E. Mammen .

Humboldt-Universitat, Berlin
Joint work with S. van de Geer

A penalized least squares estimate is considered for nonparametric regression. The
penalty is the total variation of a (higher order) derivative of the regression function.
It turns out that the estimate is a spline with data adaptive chosen knot points. An
algorithm is presented which shows that the estimate is based on stepwise addition and
deletion of knot points and soft thresholding of empirical spline coefficients. Global and
local asymptotic results are presented. In particular when the total variation of the func-
tion itself is used as penalty, the estimate is at monotone pieces asymptotically equivalent
to the least squares monotone estimate.
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Visual Error Criteria from Qualitative Smoothing
J. S. Marron
University of North Carolina

An important gap between the classical mathematical theory and the practice and
implementation of nonparametric curve estimating is due to the fact that the usual norm
on function spaces searches something different from what the eye can see visually in a
graphical presentation. Mathematical error criteria, which more closely follow "visual im-
pression” are developed, and analysed from both graphical and mathematical viewpoints.
Examples from wavelet regression and kernel density are considered. ‘

A Fast and Easy Smoothing Algorithm with an Application
' to Environmental Monitoring Data
Karen Messer
California State University

Soil sampling data from the Nevada Test Site for nuclear weapons are presented.
Observations of CS—-137 concentration were taken over a nearly regular grid, with variable
grid size over an irregular, non—convex sampling region. It is desired to estimate'the total
inventory of CS-137 present, and to estimate a specific concentration contour {“isopleth™)
of the CS-137 concentration profile. Originally these data were analysed using Kriging
with a parametric model for the covariance, with unsatisfactory results. A fast and easily
implemented kernel smoothing ‘algorithm was presented, and used to-give a boundary

- corrected kernel smooth of the data. Error bounds were presented. The smoother is well

behaved, and has to recommend it that it is easy to code and to analyse.

© Asymtotic Properties of Model Selection Procedures
" Marlene Miiller
Humboldt University, Berlin e

The talk concerns the asymptotic properties of a class of criteria for model selection in
linear regression models, which covers the most well known criteria as e.g. MALLOWS’
Cp, CV (cross-validation), GCV ( generalized cross-validation), AKAIKE's AIC and
FPE as well as SCHWARZ’ BIC. These criteria are shown to be consistent in the sense
of selecting the true or larger models, assuming i.i.d. errors and the possible inadequacy
of the linear model. Additionally we prove that BIC-type criteria select the true model
if the-sample size is converging to infinity. These consistency properties are completed by
convergence results for the risk and loss of the estimated regression functions.
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On the Smoothness of Stochastic Image Models
Frank Natterer
Universitat Miinster

Let Ef(z) =0and Ef(z)f(y) = K(z —y) describe an imge f. A 1-D image f is said
to be scale invariant if

B3 (2 + f(aee)) 3 (F(25) + f(zi2)) = cEf (@) (z;)

for some constant ¢. One can show that f is scale invariant iff K(z) = e~**| with some
constant A > 0. An image in IR? is scale invariant if K(z) = e~ with some norm |z|
in [R%. It is shown that E||f||ge < oo iff @ < 3» where H® is the Sobolev space of order
a. By computer simulations it is shown that the covariance K (z) = e~**! in fact leads
to images which are more pleasing than images with other choices of K. .

H

On the Asymptotic Efficiency of Wavelet Estimators
- under Arbitrary Error Distributions
Michael H. Neumann
Institute for Applied Analysis and Stochastics, Berlin

We assume a nonparametric regression model with fixed, not necessarily identically
distributed errors and regular design. Further, we suppose that the unknown regression
function f lies in a certain ball F of some Besov space W,,1 <p<2,p<q.

We show that under the above restrictions the minimax risk can be bounded below
by the minimax risk under Gaussian errors and equidistant design. Here the Fisher

_informations of the location families derived from the error distributions enter into the
formula of the variance of the Gaussian errors. If, additionally, the error distributions
vary in certain Hellinger neighborhoods of fixed, not necessarily identical distributions,
the inverses of the Fisher informations will be replaced by the respective variances of the
central measures. ' -

We prove that the optimal rate is attained by wavelet estimators with nonrandom
thresholds. We adapt these thresholds by some cross-validation technique and show that
these (random) thresholds are asymptotically as good as the optimal ones. The corre-
sponding estimator attains the lower bound within certain analytical constants, which
depend on the particular shapes of the error distributions. .

Asymptotic Equivalence of Density Estimation and White Noise
M. Nussbaum
Institute for Applied Analysis and Stochastics, Berlin

)

Consider the problem of estimating a density f, defined on the unit interval, from n
i.i.d. observations y;,z = 1,...,n. Suppose f is a priori known to be in a set £. We show
that the corresponding experiment is asymptotically equivalent in the sense of Le Cam’s
deficiency distance to an experiment

dy(t) = f2(t)dt + %n"/de(l), te(o,1), fex,

14

o0&



' DFG

if ¥ = E.as, where E.ar is the set of densities bounded below by ¢ and having a 4th
derivative bounded in Lz-norm by M?. Equivalence means that A(.,.) — 0 as n — oo
for the deficiency distance A between the experiments. This generalizes a result of Le Cam
(1985) to the infinite dimensional case (£ nonparametric) and has various implications
for asymptotic decision theory in the i.i.d. model.

Binary Tree-structured Methods for Image Compression
Richard Olshen
Division of Biostatistics, Stanford University .

Applications of CART ideas to clustering concern what in the engineering literature is
termed pruned, tree-structured vector quantization (PTSVQ); it is used for compressing
images. The basic idea is that of “two-means” clustering algorithms applied successively,
that is, in a binary tree-structured manner. The “predictor” at each terminal node is
the centroid of the learning sample vectors in the node. The depth of the tree averaged
over a suitable learning or test sample of vectors is the “bit rate.” The talk was in part a

- discussion of algorithms and in part a report on medical experiments with the algorithms.

Original and compressed CT and MR i images were shown. The work is a collaboration
among engineers, radiologists, and statisticians led by Robert Gray. There was some
exposition of asymptotic properties of the algorithms, both their almost sure consistency

"~ in a described sense, and an empirical study of the rates of convergence of “distortions”
- of “codebooks” to their asymptotic values. . <
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Wavelet Shrinkage: Density Estimation in Nonlinear Cases
D. Picard
Paris VII -
Joint work with D. Donoho, I. Johnstone, G. Kerkyacharian

We present different problems in density estimation of nonlinear type where a wavelet
shrinkage procedure (or other nonlinear wavelet treatment) achieve the minimax rate of
the problem or some time at least nearly (up to-a log n-term), whereas it can be proved
that all the linear procedures fail to have the proper rate:

1. Estimate f, f € B,p, with loss function || f — e, ot > p.

)

Estimate f, f € |J,, Bspg With loss function I - Fill#
3. Estimate [ f3.

In the first two questibns the proposed estimate is:

Ja(n)

Z Gnmabnmk + I 9 Soati)(Bos)ux

Ji(n) k

where ¢, are father, mother wavelet

.1 A
Gk =~ Z ak(x:), Bk = ;Z Yak(zi),  S5.0)(T) = Thzyssa()-
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It is worthy to observe that the last part of the sum is a nonlinear improvement of the
first part which behaves just like a classical kernel or orthogonal series method.

Random Sets and Density Estimation
Wolfgang Polonik
Institut fiir angewandte Mathematik, Heidelberg

By using empirical process theory we study random sets in R? which we call "empirical
generalized A-clusters”. These sets can be used for estimating the density contour clusters
of an underlying density and also for estimating the density itself. Let F be a distribution
on IR? which has a Lebesgue density f and let X;,..., X, be i.i.d. observations drawn
from F. Let F, denote the empirical measure of the n observations. For any class.
C of measurable subsets of IR? the "empirical generalized A-clusters in C”, denoted by
T,c(A), are defined as those sets in C where the supremum of F,(C) — ALeb(C) over C
is attained. Here Leb denotes the Lebesgue measure. We give' consistency results and
rates of convergence. Moreover, if "I'(A) € € for all A > 0", then the underlying density
f can be estimated by means of the sets I';¢(A),A > 0. Consistency results and rates
of convergence of the corresponding density estimator will be given. The assumption
"I'(A) € C for all A" can be used for modeling qualitative aspects of the underlying
distribution, as for example modality, symmetry, monotonicity. For a special choice of C,
our density estimator equals the Grenander estimator, which is the maximum likelihood
estimator of a monotone density.

Data Dependent Triangulations and Applications
to Surface Fitting and Image Compression
. Larry Schumaker
Vanderbilt University, Nashville, Tenessie

We consider the space of bivariate Splines S;(A) = {f € C" : f|, € P4} where P, is
the set of polynomials of degree d and A is a triangulation in [R®. The idea is to adjust A
to the data being fit. This can be done by swapping edges in A to improve some criterion
of interest. For example, using SP(A), we can interpolate at the vertices and adjust to
minimize smoothness of the surface. Alternatively, we may seek to minimize Zg-goodness.
of fit assuming we are given data at points other than the vertices. To apply these ideas
to image compression, we simply observe that the image can be regarded as a large (say
512 x 512) set of data (z;; € {0,...,255}) on a regular grid. To fit the image we begin
with an initial A, the adjust it. The fit can be further improved by adding new vertices,
and further compressed by deleting vertices (on triangles). To reconstruct the image, one
simply evaluates the spline on the grid.
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What can we do when the Data are Curves?
Bernard Silverman
University of Bath, England

An increasing number of problems involve functional data analysis where the data.

points are "curves” or functions rather than numbers or vectors. Extensions of principal
components analysis and canonical correlation analysis to the functional context (Rice and
Silverman, 1991; Leurgans, Moyeed and.Silverman, 1993; both JRSS-B) are described. In
PCA, a method involving smoothing is desirable but not essential; in CCA smoothing, in

_ the same form, is essential. Both PCA and CCA can be used, in different ways, to analyse

"bivariate” data of the form {(Xi(s),¥(s)),i = 1,...,n}. The methods were illustrated
by reference to two sets-of data, one on human galt and one on ozone levels. There are
many other important potential applications.

Conservative Finite-Sample Confidence Enve.lqpes"
in Density Estimation
: P.B. Stark
Depa:tment of Statistics, UC, Berkeley, CA 94720
Joint work with N W. Hengattner

If a den51ty is known to be monotone or to have K or fewer modes, a conservatlve
finite-sample confidence region for the density can be found by solving & finite set of

finite-dimensional linear programs.” The method requires no conventional smoothness

Deutsche
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assumptions, but if the density is Lipschitz (p) in a neighborhood of the point = contai-
ning no modes, the bounds at z converge at the rate n” 1+ .. The method also: gives

constructive nonparametric lower conﬁdence intervals for the number of modes of the
densxty : :

Hazard Regression
Charles J. Stone
Department of Statistics, UC, Berkeley, CA 94720
Joint work with Charles Kooperberg and Young Truong

A version of hazard regression is discussed in which the log-haza.rd functlon is modeled
as a sum of functions of at most two variables (covarla.tes and/or time) with polynomial
splines and their tensor products being used to fit the various functions in the model.

Maximum likelihood, stepwise addition, stepwise deletion and BIC are combined to obtain -

the final fit. Rates of convergence for nonaptlve versions of this methodology are also
presented.
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Improved Estimation under Random Censorship
W. Stute
University of Giessen, Germany

We briefly review the (very short) history of "Mean lifetime” estimation under ran-
dom censorship. Bias considerations lead one to modify the Kaplan-Meier estimator. In a
simulation study it is demonstrated that for small to moderate sample sizes the new esti-
mator outperforms Kaplan-Meier (though the asymptotics are the same). Also confidence
intervals for the mean lifetime are constructed which work pretty well.

Regeneration in Markov Chain Samplers

Luke Tierney .

School of Statistics, University of Minnesotaj, Minneapolis, MN 55455

Markov chain sampling has received considerable attention in the recent literature, in
particular in the context of Bayesian computation and maximum likelihood estimation.
This talk discusses the use of Markov chain splitting, originally developed as a tool for the-
theoretical analysis of general state space Markov chains, to introduce regeneration times
into Markov chain samplers. This allows the use of regenerative methods for analyzing
the output of these samplers, and can also provide a useful diagnostic of the performance
of the samplers. The general approach is applied to several different samplers and is
illustrated in a number of examples.

Asymptotically Minimax Estimation of Sets and Boundaries
Alexander Tsybakov
Université Catholique de Louvain

The problem of estimating an unknown set G from the data driven from the distri-
bution indexed by this set is considered. The two particular setups are treated: The
“regression” setup and the “density” setup. For the regression setup the pairs (X;,Y;),
t = 1,...,n are sampled such that, conditionally on X; € G, Y; has the density p;(e|X;),
and conditionally on X; ¢ G it has the density p,(e|.X;), such that the Hellinger distance

between p; and p; is bounded away from zero uniformly in X;. For the density setup it is.

assumed that G is a support of unknown probability density, and the sample X;,..., X,
is taken from this density. It is shown that, under general conditions, there exist two
types of estimators which achieve minimax rates of convergence to the true G in Haus-
dorff metric and in measure-of-symmetric—difference metric. The rates of convergence
are related to the entropy properties of the classes of sets G.
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Discretized Version of Average Derivative Estimators
Berwin A. Turlach
C.0.R.E. & Institut de Statistique, Université Catholique de Louvain

Average Derivative Estimation is a nonparametric method which may be used to
estimate the unknown parameter § in the single index model E[Y|X = z] = ¢(z7g).
Like most nonparametric methods it depends on the choice of a smoothing parameter.
Analyzing samples will include a variation of this smoothing parameter which may lead
to an enormous amount of calculations which make an interactive analysis impossible. In
this talk we demonstrate how the computational burden can be reduced by discretization
methods, i.e., binning the data. A simulation study shows that in the multivariate settmg
histogram bmmng is preferable over linear binning.

Sieves and Maximum Lii(elihood
Sara van de Geer
University of Leiden

We consider independent observations Xj, ..., X, with distribution depending on some
unknown parameter 6, € ©, where © is a given parameter space. The sieved: estimator

b € Oy is obtained by minimizing a loss function L(8) = 35, fo(z:) over a sieved para-

meter space Oy. Entropy methods are used to establish umform probability inequalities
for L(0). As example, we show that a rate of convergence in Hellinger distance for the
sieved maximum likelihood estimator follows from the entropy with bracketing of the class
of densities endowed with Hellinger metric.

Addltlve Model for Repeated Measurements: A Nonparametnc Point of
View
Phlllppe Vieu
Université Paul Saba.tler, 39062 Toulouse

s

The aim of this talk is to present a recent paper by Joel Baula.ran, Louis Ferre and

~myself (JSPI, 1993, in print). In this paper we develop a non-parametric approach, based

Deutsche

on kernel estimation, to deal with a two-stage model for repeated measurements. .One
of the main interest of the proposed method is that it works well for unbalanced data
as for balanced ones, while previous non-parametric two-stage approaches need crucially
a balanced data set. The use of a two-stage model allows to get, in a first stage, an
estimated "mean” curve which is obtained as if all the data where collected from a single
individual. Then, in second stage, we can estimate individual curves by using not only
the data collected for each individual but also the "mean” estimated curve. In fact, each
individual is used to estimate the mean curve, and so information for each individual can
be used for the other ones.

In this work we present asymptotics (including L, L2 and Lo, rates of convergence
and optimal smoothing parameter selection). Then two examples are presented. The
first one is a classical growth curve situation, which is a balanced data set. The second
one is a geophysical data set and our method is particularly relevant on it because it is
unbalanced.
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L. Younes
Université Paris Sud

We investigate a class of random fields on a finite lattice which are invariant under
the action of a synchronous probability kernel, i.e. a transition P(z,y) which factorizes
under the form

H 7°(g,,),

€S
where S is the given lattice. After reviewing the necessary and sufficient condition for
P to be reversible w.r.t. its invariant distribution, we present an extension of the model
by considering P-dependent Markov-chain with some properties generalizing reversibility
in a proper way. It is then shown how this class of model may be used in practical
applications, namely Bayesian reconstruction of images, even in the presence of blu
results of experiments are finally given for this last context.

Berichterstatter:

Sigbert Klinke, Marlene Miiller, Berwin Turlach

» .
Synchronous Random Fields for Image Reconstruction
|
|
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