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•
Curve~, Ima~es, Massive Computation

-21.-27.2.1~93

Die Tagung fand unter der Leitung von Pr~f. I?r. L. Devroye (Montreal), Prof. Dr.

W. Härdle (Berlin) und Prof. Dr. 1. Johnstone (Stanford) statt. Im Mittelpunkt des Inte­

resses standen Frag~n zu" aktuellen EntWicklu~gen im Bereich-der Funktionenscliätzung,

deren A.nwendung bei der Image-A~alyseund der massive Einsatz von Computern, den

diese Verfahren zum großen Teil benötigen.

Als Einfü~rung wurden am 'Montagvormittag Vorträg~ zu ~unktionenschätzung in an­

gew~dten Studien von B. Silvermann, S. Leurgans, A. ~neip, C.J. Stone und J.S. Marron

gegeben. In diesem Feld, wie etwa Hazardstudien, treten Funktionen in natüi~icher

Weise als Schätzziel auf. Am Nachniittag standen Funktionenschätzungen' in bestimmten

Nichtstandard-Situationen (Abhängigkeit~ zensierte Daten) im Mittelpunkt. Hierunter

fal~en die Vorträge von P. Doukhan, A. Tsybakov, J. Fan und I. Gijbels. Dab~i wurde

auch ein n_eueres Verfahren zur. nicht-parametrischen Schätzung vorgestellt, das darauf

beruht, lokal gewic_htete Polynome anzupassen. Hier ist auf die Vorträ.ge am Dienstag zu

verweisen, die die Reduktion des numerischen Aufwands dieser Verfahren behandelten.

Der Dienstagvormittag war einer Reihe.von Vorträgen über Wavelets gewidmet (I. John­

s~one, D. Picard, D. Donoho, M. Neumann), einer neuen und vielversprechenden Metho­

dik im B~reich der Signalverarbeitung und Funktione~schätzung. Aus dieser Sitzung

entwickelte sich für Mittwochabend eine infor~elle Diskussi()I~ über (bzw. Einführung in
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die-'T'lC&)."i"(.: 'dci·l\iVavdct.s, die für alle Teilneluner sehr fruchtbar war. Ein weiterer Vortrag

(M. Nusshaunl) beschäftigte sich mit der Aquivalenz von Dichteschätzung und Weißem

Rauschen. Der Dienstagnachmittag behandelte die Implementation nicht-parametrischer

Funktionenschätzer, so daß sie schnell berechnet werden und der intensive Rechenzeit­

einsatz reduziert wird (Th. Gasser, K. Messer). Daneben wurden weitere Verfahren zur

Funktionenschätzung und Imageanalyse vorgestellt und ihre Anwendung in Semiparame­

trischen Modellen gezeigt (E. Mammen, K.-C. Li, Ph. Vieu, B. Turlach).

Die Frage des massiven Computereinsatzes in der Statistik war Hauptthema des Mitt­

wochs. Es wurden verschiedene Aspekte von Markov-Chain-Samplers diskutiert, sowie

deren Anwendung in Monte-Carlo-Studien und Image-Analyse demonstriert (D.D. Cox•.•

P. Green", F. Götze, L. Tierney). Die Sitzung endete mit dem Vortrag von O. Bunke über

Bootstrap, ein rechenintensi~esSichprobenwiederholungsverfahren.

Verschiedene Fragen zur Image-Analyse, wie z.B. Rekonstruktion und effiziente Spei­

cherung, standen im Mittelpunkt der Donnerstagvormittag-Sitzung (R. Olshen, L. Schu­

maker, C. Jennison, L. Younes, F. Natterer, P. Clifford). Den Nachmittag eröffnete der

Vortrag zu Sieves und Maximum-Likeli4ood von S. van de Geer, danach wurden nichtli­

neare und nicht-parametrische Kalibrationstechniken vorgestellt (E. Jolivet, M.A. Gruet).

Weiterhin wurde die (für alle nicht-parametrischen Methoden wichtige) Frage der Wahl

des Glättungsparameters diskutiert (D. Girard, B. Grund).

Der Freitagvormittag begann mit einem Vortrag von P. Hall über die Schätzung von

fraktalen Dimensionen. Dies ist ein neues und hochinteressantes Gebiet in der Statistik

mit vielen praktischen Anwendungen, die ebenfalls vorgestellt wurden. Weitere Themen

waren die multivariaten Dichteschätzung in den Vorträgen von C. Huber, W. Polonik und

Ph. Stark sowie die Regressorwahl in parametrischen und nicht-parametrischen Modellen

(G. Eagleson, M. Müller). Die Tagung endete mit einer weiteren Sitzung über massi_

ven Computereinsatz am Freitagnachmittag. In dieser letzten Sitzung wurden nochmals

Aspekte der nichtparametrischen Funktionenschätzung behandelt (G. Golubev, M. Low)

sowie Bootstrap-Anwendungen vorgestellt (R. Beran, W. Stute).
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ABSTRACTS

Stein Confidence Sets
R. Beran

University of California, Berkeley

In the simplest general trend model, the observations X = (Xl, ... , Xq)T satisfy the
, relation Xi = ~i + Ei, the {Ei} being i.i.d.standard.normal random variables. Estimators
of { = ({}, ... ,{q)T include the classical estimator X, smoothed curve estimators, model
selection estimators ~d the Stein estimators such a.s e. = (1 - W)J~. Dur results
concern the construction and asymptotic properties of Stein confidence sets for { of the
form C. =: {I E IRq: le. - I1 :5 Tq}. We discuss:

1. Asymptotic and bootstrap co~structionsof rq such that PdC. 3 {] = Q +O(q-l(2).

2. Improved bootstrap constructions of rq such that p([C" 3 ~] ~ Q +O(q-l).

3,. Risk superiority of C" over the classical confidence sets cent~red at X.

4. Failure of natural'boatstrap algorithm that resample from N(X, I) or N(e.,·j)~ ,',

-5. Asymptotic geometry of Stein confidence sets:

Bootstrapping in Small SampIe Regression Proble~s

. - o. Bunke
Humboldt University, Beflin

We investigate the small sampie behavior of bootstrap proGedures in parametrie, se­
miparametric and nonparametrie regression problems. The approach .is based oq: exact
calculations or a' smaJl variance approximation of the biases in the moments of the boot­
strap distribution of the interesting estimator. ,We show that even if a parametrie model
for the regression model is known, there will be an essential bias in the 3rd- and 4th-order
bootstrap moments. Moreover, we calculate additional' bias terms in the case of bootstrap
.procedures based on residuals after fitting by an incorrect linear or nonlinear 'parametric
regression model or by a nonparametric estimator.

A typical example exhibits the possibly disturbing magnitude of such terms in the
case of the variance of the bootstrap distribution.

We discuss modification of bootstrap pr~cedures that may diminish the above men­
tioned errors in approximating the true distribution of 'an estimator by bootstrapping.
They are based on' estimates of the first four cential moments of the errar distribution
that have small biases or, in case of the errar variance, have additionally mean square
error optimality properties.
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Polygonal Models ror Spatial Pattern
P. Clifford

Oxford University

Let T be a. 2~D region~ and let X be a surface defined on T. The values of X on T
constitute an image or 'pattern. The true value of X at any point on T cannot be directly
observed, but data can be recorded which provide information about x. The aim is to
reconstruct X using the prior knowledge that X varies smoothly over most of T, hut may
exhibit jump disconti~uitiesover line segments. This information can be incorporated
via Bayes' theorem, using a polygonal Markov random field as a prior distribution. In
a similar fashion linear structure in 2-D images can be modeled as a random graph. In
this case the statistical problem is that of efficiently estimating the defined parameter. A
probabilistic basis for such discussions is outlined using base measures which are either
spatial point or line processes.

Monte-Carlo Approximation of Posterior Distributions in
Nonparametrie Logistic Regression

Dennls D. Cox
Rice University, U.S.A.

A prior for nonparametrie logistic regression is constructed by assuming the logit is a
Gaussian process plus a standard regression model with an improper prior on the eompon­
ents. Many authors have proposed approximate inferenee using a Gaussian approximation
of the posterior. We wished to assess the aceuracy of this approximation. Analysis of the
posterior tails leads to an importane.e sampling density whieh is a mixture of the Gaussian
approximation and the tail dominating density. Our caleulations show the Gaussian ap­
proximation works reasonably weH for marginal inferences about the logit (or probability)
function at a point. Also demonstrated were simultaneous eredibility bands for theJogit.

Massive Adaptation
David Donoho

Stanford University

Let y. =Bi + Zi, i = 1, ... , n, Zi i.i.d. N(O, 1). Let 9~.i ='1tn (Yi), where in =~
and TJt(g) = sgn(y)(lyl - t)+. Now for almost auy reasonable 10ss which is bowl-shaped
a.nd symmetrie, and almost any apriori class e which is bowl-shaped and symmetrie

sup Rn(O:, 6) ;5 " log n·terms" iI!f sup Rn(O, 6).
. See 8 See

Implications include the fact that wavelet estimators based on J2log(n) thresholding
achieve within the log factors of the minimax risk over all Triebel and Besov elasses.

Sinee this ehanges the picture of adaptive estimation - making it seem almost trivial
if we are willing to aceept log terms and Gaussian white noise assumptions, we ·diseuss
the problem of adaptively selecting a basis. Adopting the approach of Coifman, Meyer,
Quake and Wickerhauser, we select a basis by adaptively tiling the time-frequency plane,
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and threshold in that basis. Denoising of Doppler and other mult-frequency chirps works
weIl when the basis is selected using Stein's unbiased risk estimate.

The use of simple thresholding for estimating quadrati.c functionals is also b~ie8y

discussed, along with adaptivity results in inverse problems.

Minimax Rates ror Weakly Dependent Regression Estimates
Paul Doukhan

Universite d'Orsay, France .

Regression estimation is a main tool for tbe general predictor problem. We estimate a
regression function r in a mixing stationary model (Xn , Yn)n=t,2, ... [r(x) =E(Y I X = x)]
using 6-sequence estimates (Walter, Blum (1979)) which include the use of convolution
kerneis, wavelets (Doukhan (1988)) and other projections techniques. Some explicit mo­
dels are explicited by their mixing properties (Doukhan' L.N.5. (to appear)).

Extending optimal equivalents for variance of kernel·density estimates (Tra.n (1990))
to our framework yields the MINIMAX bounds for the MISE of estimates of f and T.

A simple by-product .is the y'fl-consistent estimator of quadratic integral funGtion~s of
f and r funder restrictive assumptions. Berbee Reconstruetion Lemma (19j9) allows

. I

to prove uniform MINIMAX rates of this large class of estimates of a ß-mixiJlg prgeess
(in the a.s. and meanseIises). In. the weak dependent case the only result of this. '~lass
was in Bi'rge (1986) eoneerning Dereblin-recurrent Markov chains (this heavy .~ondition is
omitted here).

Variable Selection in Nonparametrie Regression
Geoff Eagleson

University of New South Wales
i. ~'-

As weH as new methods of estimating resp5>D.se- surfaees, attention needs to ~e Pa4d to
the eonsequent inferential problems. This point will be illustrated with a simple exa.rD.ple.
Analyzed by an automatie applieation of tbe additive nonparam~trie regression program
ACE, the results obtained are spurious. To understand why this might be so we study
the behavior of the selection eriterion, R2 , under two extreme null models. Appropriate
permutation tests provide one way of assessing the fits obtained. It may weIl be that
smoothing should -be used to assess goodness-of-fit; different to that whieh is used for
estimating the response.

Localization: A Useful Principle
Jianging Fan

University of No~th Carolina and Chapel Hill

The traditional statistieal model seleetion is based on largely "trials-and-errors". In
this talk, we introduee a simple and useful idea for model fitting.' Tbe smoothing para­
meter that governs the model complexity is estimated based on the idea of loealization:
one models loeally the unknown function by a linear function and uses different order
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of approxirnation to iUisess the bias of the approximation. The variance of estimate can
easily be delcrmined by the usual least squares theory. In comparison with traditional
approaches, our method is more efficient and has wider applicability. The idea can be
used to determine the order of approximation at various points and can also be applied
to alllikelihood based model. These models can be in one case the partiallikelihood from
survival analysis data, and in another ease the quasi likelihood funetion from generaJized
linear models. This new idea gives more strength to the statistieal "maximum likelihood
principle" via automatie model selection.

Fast Local Polynomial Fitting
Theo Gasser

Abteilung Biostatistik, Universität Zürich

Among the many methods proposed for non-pararnetric curve and surface fitting, 10­
ca! polynomial fitted by least squares turned out recently to have a number of optimality
properties (in a minimax sense). There are a number of other advantages, such as au­
tomatie boundary correction. We have developed a fast algorithm for computing these
estimates. It works in O(n) operations, whereas the conventional algorithm needs O(n ~)
operations. Typieally half a second is needed on a SUN Spare IPX to fit 1000 points,
irrespective of the design. Due to an add-substract procedure, numerical stability is a
problem, "in particular for small bandwidths. This problem is "dealt mainly by checking a
stability factor, defined to be the smallest (standardized) Cholesky factar in the normal
equation.

Nonpa"rametric Regression Based on Censored Data
!rene Gijbels

Institut de Statistique, Universite Catholique de Louvain

There are a variety of statistical tools available for modeling the relationship between
response and covanate if the data are fully observable. In ihe situation of censored data
however, those tools are no longer directly applieable. We provide ~ easily implemented •
methodology for modeling the regression relationship based on censored data, without
making any assumptions about its form.. Basic ideas behind the methodology are to
transform the data in an appropriate simple way, and then to apply a locally weighted least
squares regression. The proposed kernel type estimator involves an appealing variable
bandwidth, and as a consequence the procedure automatically adapts to the design of
the data points. The handwidth depends on a tuning parameter which !=an be seleeted
using cross-validation techniques. The methodology is illustrated via sirrl.ulation studies
and a.nalysis of real data sets. Some basic asymptotic results are established.
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On the Randomized Smoothing Parameters Choices
D. Girard

CNRS, University o~ Grenob~ie

We describe how and when we may use the fast randomized versions of the GCV and
CL-criterions' (resp. RGCV and RCL). Even for finite sampie sizes, a simple heuristic
argument shows that, if we are confident that CL can work for tbe problem at hand,
then RCL works too! We show that this can be extended to GCV and RGCV. Next we
deScribe how a few runs of RCL (or RGCV) can produce inferences about the validity of
the final ehoice. This is illustrated by same simulations in a two-dimensional setting.

Sequential Design for Inhomogenous Sobolev Class
G."Golubev

Institute for Proble'ms of InforInation Transmission, Moseow

We are given noisy data }j =J(tj) + ~j~ 1 ~ j :5 n, tj E [0,1], where ~j are i.i.d.
Gaussian variables and the regressio~ function J(.). belongs to a certain inhomogen~us

Sobolev elass. Our aim 'is to reeover the regression funetion minimum IMSE. It isrässuPted
that knots may be sequentially ,chosen. It is proved that optimal rate of eonveigen~e of
IMSE cannot be improved.bymeans of sequential design. Nevertheless it is pointe4' out
the sequential design when we don't know the parameters of the Sobolev elass. '..:- .

Stochas~ic Search in Image Reconstruction
Friedrich Götze

Universität Bielefeld

We i~yestig~te tlie. behaviour of MAP-estiniators' in statistical modeis fOf noise de­
g"raded images. Starting from a white Iioise model on pixel err9fS and a Ba:re~i~n prior
(Gibbs-measure) on the set of images whieh uses a nearest neighbor interacti~n we give
an estimate for the aeeuraey of the MAP-estimate for unifofinly,col~red original images.

Furtherßl:ore, stoehastie seareh algorithms approximating th~ MAP-estimate are con~'

sidered. It is shown that in 'easeof aunique and stahle MAP-estimate (in the sense of
Peierls) a logarithmie eooling seh.edule yields a polynomia,J relaxation time until the pro­
bability of having met'theoptimal image is larger than' t, say iI~ing'siIIiulated annealing.
TheSe bounds diverge when the amount of smoothing inereases.·.

In case of an Ising-type ·of every function with symmetrie ground states it is shown
that an appropriate Clü~ter algorithm of FKSW type admits a polynomial running time
too. This is a result of E. Weineek whieh is p~t of his 'PhD-theSis.
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Markov Chain Mante Carlo: Posterior Risk, Over-Relaxation
and Sensitivity Analysis

Peter Green
University of Bristol

Two variants of basic MCMC methods were first introduced; Hastings methods using
randomized proposal distributions~ and methods based on partial conditioning. "To quan-
tify the statistical performance of MCMC estimators, the concept of relative increase in
posterior risk was advocated: this is the excess in risk of the MCMC estimator over the
corresponding one based on the exact posterior distribution. To investigate the merits
of over-relaxation and of grouping the variables, the Gaussian case, with deter~inistic

sweeping, was discussed, where an exact representation of the autocorrelation time is
available. This can be used to guide the design of efficient sampling methods, even in the
non-Gaussian case. Among general conclusions are that autocorrelatioD time (i) is reduA
ced by oyer-relaxation; (ii) is unaffected by the sweep schedule, given the grouping; an~
(iii) is reduced by grouping in the case of strong positiveassociation and a non-negative
linear objective functiona.l. Finally, a. key application of MCMC was discUssed: sensiti­
vity to the prior in Bayesian analysis. Importance sampling ideas are useful here, and the
infinitesimal version is easy to apply: the .change in an estimated posterior expectation
can be approximated by the empirical covariance between the function of interest and the
log prior ratio.

Nonparametrie Calibration
M.A. Gruet

INRA, Biometrie, Jouy-en-Josas

Statistical calibration analysis provides a way to predict a quantity ~ which is not
directly observable from the observation of another easily measured quantity Z related
to the just one by some dose-relationship. In many situations, the knowledge of the
experimental process can hardly be translated into some parametric model. A tempting
alternative may be provided by a nonparametric modelisation. Let Z = r(~) +e when e is
a centered random variable. The unknown regression function r is supposed to be smooth
and strictly monotone. The available information about r is given by experimental data
l'i = r(ei).+ fi obtained from. a calibration experiment. The €i'S are i.i.d. with zer_
mean and the training sampie {Xi, Yi} is independent of Z. A nonp~rametric method i
proposed for estimating directly the parameter of realinterest e) r being here considered
a nüisance parameter. We propose to estimate eby a solution of the estimating equation

where [( is a convolution kernei, h the smoothing parameter and \[1 an odd function.
The asymptotic properties of the estimate are discussed. Calibration intervals of the type
{~, IHn«)1 :5 c} are constructed. This nonparametrie technique is applied to an important
biological problem, that of estimating the relative potency of a new product relative to a
known one.

8
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Loss and Risk in Bandwidth Selection
Birgit Grund

University of Minnesota

Currently, there is considerable disagreement whether "loss" ISE or "risk" MISE
should be used in kernel bandwidth selection. In this talk, >we contribute two new ar­
guments to the ISE vs. MISE discussion. First, we demonstrate that MISE measures
"risk" in the classical decision theoretic framework; this contradicts the common argu­
ment that expected ISE is the only proper decision theoretic risk in baudwidth selection.
Second, we show that bandwidth procedures may display opposite relative performance
with respect to expected ISE and MISE. This defends the commonly adopted viewpoint
that MISE optimal bandwidths are good estimates for the ISE optimal bandwidth.

On the Statistical Estimation of Fractal Dimension
Peter Hall

Australian National University/CSIRO

Fractal models for surfaces form a convenient and readily interpretable way..:of descri­
hing roughness. Practical examplesinclude meta! surfaces (e.g. prior to pai.nting), plastic
wrap (roughness inHuences ~he tendency of bacteria to adhere), ~eariIig-and:....sha.ft j>nter­
face (lubrication qualities are affected by roughness), etc.. Methods for gathering data
about surface roughness will be described, and new developments of data enhance~ents

will be discussed. Stochastic processmodels for rough surfa.ces will be s.uggested,'and
statistical methods for estimating, fracta! dimension be outlined. The properties'of those
methods, when applied to stochastic process models for' surfaces., will be noted.-

Estitmating Densitieson the Plane: Optimal Balloon Estimates
. c. Hube~ ~.;t"

University of Paris V,France
Joint "work with Peter Hall, Art 'Owen, and Alex Covertey

Given a sampie of n observations from a density fon JRd, a natural estimator of f(x)
is formed by counting the number of points in some region 'R, around x and dividing
this count by the d-dimensional volume of 'R. An asymptotically optimal ch~ice for 'R, is
presented here, with respect to lL2 norm risk. The optimal "balloons" turn to be ellipsoids
with shape depending on x. An extension of the idea, that uses a kernel functlon to put
weight greater on points nearer x is given. Among non negative. kerneis, the familiar
Epanechnikov kernet used withan el~ipsoidal region is optimal. When using higher order
kerneis, the optimal regions shapes are related to Il/' balls for even positive p.

9

                                   
                                                                                                       ©



Stochastic Optimisation: The Genetic Algorithm, Simulated Annealing
and Applications in Image Analysis

Chris Jennison'
Univ~rsityof Bath, UK

The Genetic Algorithm (GA) has been proposed a.s a method for optimising funetions
f(x) of many variables, x = (Xl, ... , Xl), with multiple loeal optima. It operates by
creating a population of veetors x and letting these evolve over time in a manner similar
to natural evolution. In choosing parents for future generations, priority is given for those
with high values of f(x). A "crossover" operation is used in producing some offspring -
the two parent vectors are broken at a randomly chosen point, the first part of parent A
and the second part of parent Bare combined to form one offspring, the remaining parts
are combined to form the other. A small amount of random mutation is also introduced
into each new generation. The vector x with largest f(x) seen in a certain number ofe
generatioI;ls is returned as the solution. .

Tbe algorithm defines a complex stochastie process which is difficultto eharaeterize.
On elose examination, the customary theoretical justifications of the GA are seen to
lack rigour. I.n contrast to the suecesses claimed in many papers, our empirieal studies
have shown that the GA ean perform poorly on very simple problems. In a more complex
problem, searching for a MAP image estimate, the GA is seen to work as a very ineflicient
analogue of Simulated Annealing.

On a po~itive note, we. believe that the problems for which the GA is designed to
be important - even if the GA is not the right method for these problems. There
is a· need for general-purpose methods to find near-optima of functions with structure
f(x) = Ec ~(x) where each ~(x) depends onlyon {Xi: i E c} for a small set c. The
treatment of main effects and low-order interaetions in classical experimental design is
relevant here, but dealing with a very large set of variables and the presence of loeal
optima poses new ehallenges.

Wavelet Shrinkage: Ideal Spatial Adaption and Denoising
I. Johnstone

Stanford University
Joint work with David Donoho, Gerard Kerkyacharian and Dominique Picard

We give first an overview of the method of soft thresholding of wavelet eoefficients in.
the idealized setting of non-parametrie regression on the interval with equally spaced data
and Gaussian white noise errors. Use of a threshold at V210g n standard deviations of the
noise yields estimates that adapt spatially to oscillation and discontinuities and have a
high degree of visual smoothness. Some supporting theorems are present~d in connection
with spatial adaption: wavelet thresholding can be tuned to come within a logarithmic
multiplicative factor of an ideal risk attained by an oracle who knows the optimal set of
coefficients to estimate. This result, valid for L2 global average risk for arbitrary functions,
can be sharpened aver estimation spaces of funetions, can be estimated at a given rate
by other spatially adaptive procedures such a.s piecewise polynomial fits. This exploits
oracle inequalities over weak-Lp balls along with charaeterisations of approximation spaees
developed by De Vore, Jawerth and Popov. Finally, we present same results coneerning
"denoising" and uniyersal near·minimaxity (in L2 ) properties of the estimates over certain
Besov and Triebel seales of function classes.
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Calibration in a Nonlinear Setting
E. Jolivet

INRA, Laboratoire de Biometrie, Jouy-en-Josas
Joint work with M.A. Gruet

Let observe the following data (~, Xi)~ i = 1, ... ,n, (Zj), j = 1, ... , m such that

Yi = f(Xil 8» +Ei, Zj = f(zo,~) +Tlj, 8 E 8, E(fi) = 'E(Tlj) = o.

.We· want to estimate zn using the training set (~, Xi) and th~ responseZj~ We are
interested in set estimates: No consistent asymptotic framework is directly obtainable
for this problem. We propose to consider m = nc5 ,O < {, < l~n ~ 00. Under these
assumptions, various aSymptotic pivots can be derived, and Edgeworth expansion~ can
,be computed. On the other hand simulations can be performed. Although no o'ne of these
two methods provide a definitive answer conceming the actuallevel of the prediction sets
derived, we remark some convergences of the results ~btained byboth ways.

Nonparametrie Estimation or Common Regress,?rs ~.
fo'r Similar ~urve Data

. Alois Kneip'
Wi:rtschaftstheori~-11, Universität' ~onn

The talk is c~~cerned' with data from a' collection of different~ hut related ';fegression
curv~s (mj )j=l,...,~ ,N >> '1. In st'~~isti~al ~ractice analysis- ofs~ch data is most 'freq~e~~ly
based on lowdimensionallinearmodelg. ·It· is then a.ss~rtled that. each regression" '<:ur~~

mj is a'linear. combinaÜon of a small number L- «N of corumon functions gi,: ~. ,gL.
For example, ifall rn/s' are straight lin~ this holds with .L == 2, 91 '=: 1..andg2(~) = x.
In this paper the assumption of "a. prespecifi~d mode1 is' dropped. A nonp~a.rnetri_c me­
thod is presented which allows to ~stimate'tbe smallest L and corresponding. functions

,:g1, .•. j'9L .from the 4ata.,. The ,procedure combines' smoothing techniques with~.ide~· re­
" .lated to Principal C~mporie~t Analysis; An·asymptotic theory Is presentedwE:ichyields

detailed insigl,1t .i~t9 pr~perties- of the res~ltiIig .~timators.-An application tö' household
expenditure data illiIstrates the ·approac~-...

SmC?oth Curves in Bio~m:~chanics
~ Sue L~urgans'

Rush-Presh!terian-St. Luke's Medi~al Center, Chicago, IL, ySA

Matiy blomechanical measure.ments Me sm~oth cutves recorded on a fine mesh. Ex­
ampl~ include joint angles in gait· anaiysis,..foot· pressur~s from pedabarographs', and lum­
bar sphere position from Lumbar Motion Monitors. Even though the curves are known

.to be smooth, some data' sets' contain. s~ple~ c~rves that are no't smooth,. because the
computations are not entirely weliposed. 'Some simple plots can assist in the identification
of curves that cannot corr~pond to actual mqtions. The most. important plot superposes
all trials from one subject on one plot. . .

Althoughsmooth principal components are a naturalmethod for such data, the Rice &
Silverman (1991) estimators are not robust t~ unusual (smooth) curves. Sampie inßuence
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functions für smooth eigenvalues and eigenvectors can be used to loeate unusual curves
when multiple trials are available for each subject, srnooth extension of random effects
multivariate analysis of variance can be applied.

Helices in High Dimensional Regression
Ker-Chau Li

Math Department, UCLA, USA

The 'shape of 14-dimensional Boston housing data looks like a helix or slide when
viewed from a three dimensional scatterplot of the output variable (median house price)
against the two projected regressors found by SIR (sliced inverse regression). From the
first viewing angle, a linear fit seems appropriate. But as we spin tbe data, a nonlinear
trend begins to emerge. These patterns are further eonfounded with the curvilinear a.ss~,
eiation between tbe two projeetions shown on the screen as the output axis is turned off
the sight. The helix-like shape of a data eloud highlights a typical nonlinear confounding
problem in regression, rarely addressed in the literature. These are four questions to ask:
How often does a helix occur? How to expose a helix in a high dimension setting? How
seriously does a helix' impair regression analysis and modeling? How to repair it? Stra­
tegies based on SIR type analysis are suggested. Demonstration on Mac Powerbook is
given.

A Constrained Risk Inequality with Applications to Adaptive Estimation
Mark Low

University of Pennsylvania

A general constrained minimum risk inequality is derived. Given two densities 18 and
Ja we find a lower bound for the. risk at the point 9 given an upper bound for the risk at
the point O. The inequality sheds new light on adaptive estimation problems arising in
nonparametrie funetional estimation.

Locally Adaptive Regression Splines
E. Mammen

Humboldt-Universität, Berlin
Joint work with S. van de Geer •

A penalized least squares estimate is eonsidered for nonparametrie regression. The
penalty is the total variation of a (higher order) derivative of the regression function.
It turns out that the estimate is a spline with data adaptive chosen knot points. An
algorithm is presented which shows that the estimate is based on stepwise addition and
deletion of knot points and soft thresholding of empirieal spline eoefficients. Global and
local asymptotie results are presente!i. In particular when the total variation of the fune­
tion itself is used as penalty, the estimate is at monotone pieces asymptotically equivalent
to the least squares monotone estimate.
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Visual Error Criteria from Qualitative Smoothing
J. S. Marron

University of North Carolina

An important gap between the classical mathematical theory and the practice and
implementation of nonparametric curve estimating is due to the fact that the ~sual norm
on function_ spaces searches something different from what the eye can see visually in a
graphica1 pre~entation. Mathematical error criteria, which more closely follow n visua4 im­
pression" are developed, and analysed from both graphical and mathematical viewpo~nts.
Examples from wavelet regression and kernel density are considered. .

A Fast and Easy Smoothing< Algorithm with an Application
to Environmental Monitoring Data

Karen Messer
California State ~niversity

Soil samplingdata from the Nevada Test Site for nuclear weapons are ,prese~ted.

Observations of CS-i37 concentration were taken over a nearly regular grid, with": variable
grid size over an irregular, non-convex sampling region. It is desired to estimate:the total
inventory of CS-137 present, and toestimate a specificconc<entration contonr ("isoplf:7th")
of the CS-137 concentration profile. Originally these data were analysed using Kriging
with a parametric model for the covariance, -with unsatisfactory results. A fast and e~ily

implemented kernel smoothing 'algorithm was presented, and used to' give a boundary
corrected kernel smooth of the data. Error bounds were presented. The smoother is<well
b~haved, arid has-ta recommend it that it is easyto code and to analyse.

. Asymtotic Properties of Model Selection Procedures
Marlene Müller

Humb6ldt University, Berlin

The talk concerns the asymptotic properties of a dass of criteria for model selection in
linear regression models, which covers 'the most weIl known criteria as e.g. MALLOWS'
CP1 GV (cross-validation), GCV ( generalized cross-validation), AKAIKE's Ale and
F PE a.s weH as SCHWARZ' BIC. These criteria are shown to be consistent in the sense
of selecting the true or larger models, assuming Li.d. errors and the possible inadequacy
of the linear model. Additionally we prove that EIe-type criteria select the true model
if the.sample size is converging to infinity. These consistency properties are completed by
convergence results for the risk and 1055 of the estimated regression functions.
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On the Smoothness of Stochastic Image Models
Frank Natterer

Universität Münster

Let Ef(x) = 0 and ~f(x)f(y) = f«x - y) describe an imge f. A 1-0 image f is said
to be scale invariant if

1 1
E 2(f(x,) + f(Xi-t)) 2(f(xj) + f(Xj-l)) = cEf(Xi)f(xj)

for some constant c. One cau show that f is scale invariant iff K(x) = ~-AI~I with some
constant A > O. An image in IR2 is scale invariant if K(x) = e-'\I~I with some norm lxi
in IR2

• It is shown that EllfllHQ < 00 iff Q < i, where HQ is the Sobolev space of order
Q. By computer simulations it is shown that the covariance K(x) = e-,\lzl in fact leads
to images which are more pleasing than images with other choices of K. •

On tbe Asymptotic Efficiency of Wavelet Estimators
- under Arbitrary Error Distr~butions

MichaelH.Neumann
Institute for Applied Analysis and Stochastics, Berlin

We assume a nonparametric regression model with fixed, not necessarily identically
distributed errors and regular design. Further, we suppose that the unknown regression
function f lies in a certain ball F of some Besov space W~, 1 $ p < 2,p:;5 q.

We show that under the above restrictions the minimaxrisk can" be bounded below
by the minimax risk under Gaussian errors and equidistant design. Here the Fisher

. informations of the Ioeation families derived from the 'error distributions' enter into the
formula of the variance of the Gaussian errors. If, additionally, the error distributions
vary in certain Hellinger neighborhoods of fixed, not necessarily identieal distributions,
the inverses of thc Fisher informations will be replaced by the respective variances of the
central measures. .

We prove that the optimal rate is attained by wavelet estimators with nonrandom
thresholds. We adapt these thresholds by some cross-validation technique and show that
these (random) thresholds are asymptotically as good as the optimal ones. The corre­
sponding estimator attains the lower bo.und within certain analytical constants, which_
depend on the particular shapes of the error distributions. •

Asymptotic Equivalence of Density Estimation and White Noise
M. Nussbaum

Institute for Applied Analysis and Stochastics, Berlin

Consider the problem of estimating a density /, defined on the unit interval, from n
i.i.d. observations Yi, i = 1, ... , n. Suppose / is apriori known to be in a set E. We show
that the corresponding experiment is asymptotically equivalent in the sense of Le Cam's
deficiency distance to an experiment
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if E = E~.Al, where E f •M is the set of densities bounded below by fand having a 4th
derivative bounded in L2-norm by M2. Equivalence means that ß(.,.) ---t 0 as n -.. 00

for the deficiency distance ß between the experiments. This generalizes a resul t of Le Carn
(1985) to the infinite dimensional case (E nonparametrie) and has various implications
for asymptotic decision theory in the Li.d. model.

•
Binary Tree-structured Methods ror Image Compression

Richard Olshen
Division of Biostatistics, ~tanford University .

Applications of CART ideas to clustering concern what in the engineering literature is
termed pruned, tree-structured vector quantization (PTSVQ); it is used for compressing
"images. The basic idea is that of "two-meaDs" clustering algorithms applied successively,
that is, in a binary tree-structured manner. The "predictor" at each terminal n~)de is
the centroid of the learning sampie yectors in the node. The depth of the tree averaged
over a suitable learning or test sampie of vectors is the "bit rate." The talk was in part a
discussion of algorithms and in part areport on medical experiments with the_~gorithm-s.

Original and compressed CT ~dMR images were shown. The work is a con:abo~ation
among engineers, radiologists, and statisticians led by Robert Gray. There,-was same
exposition of asymptotic properties of the algorithms, hoth their almost sure consistency

. in a described sense, and an .empirical~tudyof the rates of convergence of "distor~ions"

. of "codebooks'" to their asymptotic values. c::,

Wavelet Shrinkage: Density Estimation in Nonlinear Cases
D. Picard'
Paris VII'

Joint work with D. Donoho, I. Johnstone, G. Kerkyacharian

.. 1~
ßJ.k = - L..J tPJ.k(X.),

n .
t

where 4>,.,p are father, mother wavelet

15

J2(n)

L oJ1 (n),k4>J d n).k + L L S6"(i) (ßJ.k)-rPJ.k
k J1(n) k

In the first two questions tbe proposed estimate is:

We present different problems in density estimation of nonlinear type where' a wavelet
shrinkage procedure (or other nonlinear wavelet treatment) achieve the minimax rate of
the problem or some time at least nearly' (up to' a log n-term), whereas it can be proved
that all the linear procedures fail to have the proper rate:

• 1. Estimate /, / E B spq with loss function lIi - fll~/,pl > p.

2. Estimate /, f E Us.
P

B8pq wlth 105S function 111 - fll~/·

3. Estimate J /3.
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lt is worthy 1.0 obs(~rve that. the last part of the surn is a nonlinear improvement of the
first part which hchaves just like a classical kernel or orthogonal series methode

Random Sets and Density Estimation
Wolfgang Polonik

Institut für angewandte Mathematik, Heidelberg

By using empirical process theory we study random sets in ur which we caU "empi.rical
generalized -X-clusters". These sets can be used for estimating the"density contour clusters
of an underlying density and also for estimating the density itself..Let F be a distribution
on ~ which has a Lebesgue density f and let Xl, .. . ,Xn be i.i.d. observations drawn
from F. Let Fn denote the. empirical measure of the n observations. For any c1asse
C of measurable subsets of ur the "empirical generalized '\-clusters in C", denoted by
r n •C (..\)' are defined as those sets in C where th~ supremum of Fn(C) - >"Leb(C) over C
is attained. Here Leb denotes the Lebesgue measure. We give· consistency results and
rates of convergence. Moreover, if "r(>..) EC for all >.. ~ 0", then the underlying density
f can be estimated by means of the sets rn,c(..\),'\ ~ O. Consistency results and rates
of convergence of the corresponding density estimator will be given. The assumption
"r(A) E C for all A" can be used for modeling qualitative aspects of the underlying
distribution, as for example modality, symmetry, monotonicity. For a special choice of C,
our density estimator equals the Grenander estimator, which is the maximum likelihood
estimator of a monotone densi ty.

Data Dependent Triangulations and Applications
to Surface Fitting and Image Compression

Larry Schumaker
VanderbÜt University, Nashville, Tenessie .

We consider the space of bivariate Splines Sci(Ll) = {f E cr : fiT, E 'Pd} where 'Pd is
the set of polynomials of degree d and ß is a triangulation i~ m.2. The idea is to adjust .ß
to the data being fit. This can be done by swapping edges in ß to improve some criterion
of interest. For example, using Sf(ß), we can interpolate at the vertices and adjust to.
minimize smoothness of the surface. Altematively, we may seek to minimize i 2-goodness
of fit assuming we are given data at points other than the vertices. To apply these ideas
to image compression, we simply observe that the image can be regarded as a large (say
512 x 512) set of data (Zij E {O, ... , 255}) on a regular grid. To fit the image we begin
with an initial ß, the adjust it. The fit can be further improved by addingnew vertices,
and further compressed by deleting vertices (on triangles). To reconstruct the image, one
simply evaluates the spline on the grid.
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What can we do when the Data are Curves?
Bernard Silverman

University of Bath, England

An increasing number of problems involve functional data analysis where the. data .
points are "curves" or functions rather than numbers or vectors. Extensions of principal
components analysis and canonical correlation analysis to the functional context (Rice and
Silverman, 1991; Leurgans, Moyeed and..Silverman, 1993; both JRSS-B) a.re described. In
PCA, a method involving smoothing is desirahle hut not essential; in CCA smoothing, in
the same form, is essential.. Both PCA and CCA can be used, in different ways, to a.I!alyse
"bivariate" data of the form {(Xi(s), Yi(s)) , i = 1, ... , n}. The methods were illustrated
by referenceto two "sets-of data, one on human gait and one on ozone levels. There are
many other important potential applications.

.ConservativeFinite-Sample Confidence Envelopes:
in Density Esti~ation . .

P.B. Stark
Department of Statistics, UC, Berkeley, CA 94720

Joint work with N.W. Hengartne!

4"'t~: ...

·.. ·5~~~

.-

If a density is known to be monotone or t~ have K or fewer modes, a ~6Ii~er~ative
finite-sarnple confidence region for the density· cau he found by solving ci. fi;}jte ~et of
finite-'dimensional linear progfams." The met~od requires no conventional smoo~hness

. assumptions, hut if the density is Lipschitz (p) in a neighborhood of the point x q:>otai-

ning no mo~es, ".the bounds at x converge .at the rate n -2P+P) .. The method also~ gives
constru~tive .nonparainetric lower confidence ·intervals for tbe number of mo4es of the
density. .

Hazard ~egression

CharleS J. Stone
Department of Statistics, UC, Berkeley, CA 94720

Joint work wit~ Charles Kooperherg and Young Truong

Aversion of hazard regression is discussed in which the log-h~zard functi~n'is ~odeled
as a surn oE functions o.f at most two variables (cov~iates and/or time) with polynomial
splines and their tensor products being used to fit the various functions in the model.
Maximum likelihood, stepwise addition, stepwise deletion and BIC are combined to obtain
the final fit. Rates of convergence for ~onaptive versions of this methodology are also
presented. . .
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Improved Estimation under Random Censorship
w. Stute

University of Giessen, Germany

We briefly review the (very short) history of "Mean lifetimeO' estimation under ran­
dom censorship. Bias considerations lead one to modify the Kaplan-Meier estimator. In a
simulation study it is demonstrated that for small to moderate sample sizes the new esti­
mator outperforms Kaplan-Meier (though the asymptotics a.re the same). Also confidence
intervals for the mean lifetime are constructed which work pretty weIl.

Regeneration in Markov Chain Sampiers
Luke Tierney. •

,School of Statistics, University of Minnesota, Minneapolis, MN 55455. ,

Markov chain sampling has received considerable attention in the recent literature, in
particular in the context of Bayesian computation and maximum likelihood estimation.
This talk discusses the use of Markov chain splitting, originally developed as a tool for the·
theoretical analysis of general state ~pace Markov chains, to introduce regeneration times
into Markov chain sampiers. This allows the use of regenerative methods for analyzing
the output of these sampiers, and can also provide a usefu} diagnostic of the performance
of the sampiers. The general approach is applied to several different sampiers and is
illu~trated in a number of examples.

Asymptotically Minimax Estimation of Sets and Boundaries
Alexander Tsybakov

Universite Catholique de Louvain

The problem of estimating an unknown set G from the data driven from the distri~

bution indexed by this set is considered. The two particular setups are treated: Tbe
"regression" setup and the "density" setup. For the regression setup the pairs (Xi, l'i);
i = 1, ... , n are sampled such that, conditiona.lly on Xi E G, }ti has the density Pt(-IXd,
and conditionallyon Xi ~ G it has the density P2(.fXd, such that the Hellinger distanceebetween Pt a.nd P2 is bounded away from zero uniformly in Xi' For the density setup it is
assumed ~hat G is a support of unknown probability density, and the sampie X}, ... , Xn

is taken from this density. It is shown that, under general conditions, there exist two
types of estimators wIDch achieve minimax rates of convergence to the true G in Haus­
dorff metric and in measure-of-symmetric-difference metric. The rates of convergence
are related to the entropy properties of tbe classes of sets G.
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Discretized Version of Average Derivative Estimators
Berwin A. Turlach

C.O.R.E. & Institut de Statistique, Universite Catholique de Louvain.

Average Derivative Estimation is a nonparametrie method which may be used to
estimate the unkn.own parameter ß in the single index model E[YIX = xl = g(xT ß).
Like most nonparametrie methods it depends on the choice of a smoothing parameter.
Analyzing sampleswill include a variation of this smoothing parameter which may lead
to an enormous amount of calculations which make an interactive analysis impossible. In
this talk we demonstrate how the computational burden can be reduced by discretization
methods, i.e., binning the data. A simulation study shows that in the multivarfate s~tting

histogram binning is preferable over linear binning.

Sieves and Maximum Likelihood
Sara van de Geer
University of Leiden

We consider independent observations Xl, ... ,Xn with distribution deperidi:.i:!g on: some
~nknown par~eter 90 E 8, where e is a given parameter spac~. The sievedtestimator

.9 E eN is obtained by minimizing a loss function L(9) = 2:::1 !8(Xi) over a sieved para­
meter space aN. Entropy'methods are used to establish uniform probability inequalities
for L(8). As. example, we show that a. rate of convergence in Hell~ngerdista.ilcef9r the
sieved maximum likelihood estimatorJollows from the entropy with bracketing of the class
of densities endowed with Hellinger metric. '

Additive Model far Repeated Measurements: A Nonparametrie Point of
View

. Philipp~ Vieu
Universite Paul Sabatier, 39062 Toulouse

Tbe aim of this talk is to present a recent paper by Joel Baularan, Louis' Ferre and
myself (JSPI, 1993, in print). In this paper we develop a non-parametric approach, based

.on kernel estimation, to deal with a two-stage model for repeated measurements.. One
of the main interest of the proposed method is that it works weIl for unbalanced data
as for balanced ones, while previous non-parametric two-stage approaches need crucially
a balanced data set. The use of a two-stage model allows to get, in a first stage, an
estimated "mean" curve which is obtained as if all the data where collected from a single
individu·al. Then, in second stage, we ean estimate individual eurves by using not only
the data collected for each individu~ hut aiso the "mean" estimated curve. In fact, each
individual is used to estimate the mean curve, and so information for ea~h individual eao
be used for the other ones.

In ihis work we present asymptotics (ineluding LI, L2 and Loo rates of eonvergence
and optimal smoothing parameter selection). Then two examples are presented. The
first one is a classical growth curve situation, which is a balanced data set. The second
one is a geophysical data set and our method is particularly.relevant on it beeause it is
unbalanced.
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Synchronous Random Fields for Image Reconstruction
L. Younes

Universite Paris Sud

We investigate a class of random fields on a finite lattice which are invariant under
the action of a synchronous probability kernei, i.e. a. transition P(x, y) which factorizes
under the form

II trS(g, x s ),

sES

where S is the given lattice. After reviewing the necessary and sufficient condition for
P to be reversible w.r.t. its invariant distribution, we present an extension of the model
by considering P-dependent Markov-chain with some properties generalizing reversibility
in a proper way. It is then shown how this class of model may be used in practical
applications, namely Bayesian reconstruction of images, even in the presence of blu.
results of experiments are finally given for this last context.

Berichterstatter:

Sigbert Klinke, Marlene Müller, Berwin Turlach
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