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Die Tagung fand unter der Leitung von P. Deheuvels (Paris), A. Irle (Kiel) und
, .

J. Steinebach (Marburg) statt. Es war auch diesmal wieder ein besonderes Anliegen,

das breite Spektrum innerhalb der Stochastik aufzuzeigen. Im Mittelpunkt des Inter­

esses standen aktuelle Entwicklungen, welche geeignet sind, die Querverbindungen

zwischen Wahrscheinlichkeitstheorie und Mathematischer Statistik zu fördern.

Schwerpunktthemen waren u.a.

- Banachraummethoden in der Stochastik

- statistische Inferenz stochastischer Prozesse

- empirische und Quantil-Prozesse

- n~chtparametrische Verfahren, Bootstrap

- starke Grenzwertsätze und Invarianzprinzipien

- asymptotische. Entwicklungen, Konvergenzraten.

Es wurden insgesamt 42 Vorträge gehalten, davon fünf Übersichtsvo~träge. Neben

.deIn Vortragsprogramm kam es zu intensiven Diskussionen und wissen~chaftlichem

Gedankenaust'ausch unter den Teilnehmern. Insbesondere hatten auch die jüngeren

Stochastiker Gelegenheit f ihre Arbeit einem fachkundigen Publikum vorzustellen.
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M. ALEX:

INVARIANCE PRINCIPLES IN EXTENDED RISK MODELS

In collective risk theory, one is interested in the risk reserve Ru( t), t ~ 0 of an

insurance company, which depends on the initial reserve 'U. > 0" and the time' of

ruin T(U):= inf{t > 0; Ru(t) :5 O}. In the classical case, Horvath and Willekens

(1986) proved strang approximations of P{-r(u) :5 u2x}, Z ~ 0, by the distribution

function of the first-exit time of a Wiener proeess over a straight line.

Extended risk models allowing for risk ßuctuations and including interes.t and in-

ßation funetions are presented, based on models, which were introduced by Gar- e
rido (1987) and GrandelI (1991). Using invariance principles for the composition of

stochastic processes, strang approximations of P{T( 'U) :5 u 2x} by distribution fune-

tions of first-exit times of Wiener processes over curved boundaries can be proved

in these generalized models. It is remarkable that the convergence rates in these

models are the same as in the classieal case.

G. ALSMEYER :

A RECURRENCE THEOREM FOR SQUARE-INTEGRABLE MAR­

TINGALES

Let (Mn)n~o be a zero-mean martingale with eanonieal filtration (Fn)n~o and

stochastically L2- bounded increments Yi, Y2, ... , w hieh means that

P{IYnl > tIFn - 1} ~ 1 - H(t) a.S. for all n :2: 1, t > 0

and some square-integrable distribution H on [0, CX»). Let V 2 = Ln~l E(Y';IFn - 1 ) .

. lt is the main result that each such martingale is a.s. convergent on {V < <Xl} and e,
recurrent on {V = oo}, i.e. P{M" E [-c, c]i.o. IV = oo} = 1 for some c > o.
This generalizes arecent result by Durrett, Kesten and Lawler who eonsider the

case of finitely many square-integrable increment distributions. As an application

of our recurrence theorem, we obtain an extension of Blackwell's renewal theorem

to a fairly general dass of square-integrable proeesses with independent increments

and linear positive drift function.
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J. BEIRLANT :

ON THE ASYIVIPTOTIC NORMALITY OF Lp-NORMS OF EMPIRI­

CAL FUNCTIONALS

A general Iuethod is presented for .deriving the asymptotic normality of the Lp~

norm of empirical functionals which make use of the neighboring data at a~y point

x of interest. This technique is based on a Poisson representation for the empirical

process together with a Fourier inversion technique for conditional characteristic

functions.· As applieations of this method, the asymptotic normality is established

for Lp-norms (1 ~ p <~oo) of regression and density estimators. In the process

previous results on this subject from the literature are extended and{or sharpened.

E. BOLTHAUSEN :

SELF-ATTRACTING RANDOM WALKS

We consider several models of random walks on 7ld with a self~attractive interaction

of the path. The laws of these self~attractive randorn walks on paths of length T

are given by a density proportional to exp{HT(w)} with respect to the law ofthe-'

ordinary symmetrie random walk, where the "Hamiltonian" HT is large when the

path w is untypically clumping together. We mention same examples which will

be discussed during the talk:

a)

b) HT(W) = -NT)

v ~ 0,

where NT is the cardinality of the set of points visited up to time T.

M. BRONIATOWSKI :

LARGE DEVIATION PRINCIPLES FOR SET-INDEXED PROCESSES

WITH INDEPENDENT INCREMENTS

Let {"'Y"l(A); A E A}l~O be a family of processes indexed by a collection of sets A.

Assume that the process "-"<l has independent increlnents, meaning that Xl(A)

alld ...'(>,(B) are independent when A n B = 0. Assume that, for every fixed
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A E A, (Xl(A))l~O obeys a large deviation pnnciple (LDP) in same Hausdorff

space X. We prove that, under suitable conditions on this marginal LDP, the

processes (Xl (·))l~O obey an LDP in X A . This is based on an extension of the

approach of Lynch and Sethuraman (AP 1987) for functional LDP's for the partial

sum processes.

Two applications: 1) Consider a sampie Xl, ... , X n of real Li.d. r.v.'s and let

M,,(t) = max(XI, ... ,X(ntJ}' 0 ~ t ~ 1, be theextremalprocess. Embedding Mn(t)

in the process JIon(A) = maJeiEnA Xi and applying our result, we obtain a functional

LDP for Mn. Here A is some subset of B[O, 1].

2) Let Pn(A) = n-1 LiEnA 5x• be the sequential empirical measure and let

A ........ Pn(A) be the induced process. We obtain a Sanov-type functional LDP and

deduce LDP's for weighted U-statistics.

(Joint 'work"with Ph.- Barbe)

E. CSAKI:

SOME LIM INF RESULTS FOR TWO-PARAMETER RANDOM PRO-
CESSES ... "

Let Z(:z:, y) be a two-parameter random process and let ßT be a set of (x, y)

depending on T. Small deviation results are applied to study the lim inf behaviour

cf

sup Z(x,y) and 'sup IZ(x,y)1
(Z,lI)EÖ,T (Z,y)EaT

for certain Gaussian processes Z(;c, y) such as Kiefer (empirieal) process and Wiener

sheet. These results are obtained via eigenfunction expansio~ for the Ornstein·

Uhlenbeck process.

M. CSÖRGÖ:

STUOENTIZED INCREMENTS OF PARTIAL SUMS AND SELF-NOR­

MALIZED EROÖS-RENYI LAWS

Let X,Xt,X2 , ••• be i.i.d. r.v.'s with E....Y = 0, and assume that X belongs to

the domain of attraction of the nornlallaw. We, jointly with Z.-Y. Lin and Q.M.

Shao, establish Studentized-Increlnents·versions of the Csörgö-Re~esz (1979, 1981)

laws of large numbers for increments of pa.rtial sums of these r.v.'s. We prove that
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replacing the nortllalizing constants [c lognJ by the r.v.'s L:~:!~~gnJ(...y? + 1) in the

classical Erdös-Rcnyi strang law of large numbers, a corresponding result remains

true under assunling the existence of the first moment only. Consequently, we lose

the distribution-determining nature of the classical E-R law, though the result is not

distribution-free. For proving our self-normaIiz~dE-R-type law of large numbers,

fY is not assumed to belong to the domain of at traction of the normal law.

(Joint work with Z.-Y. Lin and Q.M. Shao)

s. CSÖRCÖ :

RESOLUTION OF THE ST. PETERSBURG PARADOX

\Ve show that the distribution functions of the suitably centered average gain of

Paul in a sequence of Petersburg games and a sequence of infinitely divisible, semi­

stable distribution functions merge together. The approximating distrib~tions are

taken from the family of all possible partial limits, a family with the cardinality

of. the continuum. We derive some theoretical results for this family and further

investigate it by computer-assis~ednumerical methods. As a result,.for any winning

probabilty p E (0,1) of Peter, we propose an asymptotically precise premium

formula for Paul to pay for n games. For any reasonable p, this price is greater

than the "fair priceu suggested by Feller's law of large numbers. Motivated by the

dominating role of extremes, we also consider modifications in which Paul renounces

a few of his largest principal gains. Then another merging approximation is possible

based upon trimmed versions of the original subsequentiallimiting laws. Even if just

the ~ingle largest gain is retained by Peter, the game can be made asymptotically

fair in theclassical sense. The results, when all put together, resolve the 279 year

old paradox by thoroughly explaining the probabilistic essence of the asymptotic

behavior of a sequence of Petersburg games. Graphical and numerical illustrations

will be gi yen.

(Joint work with G. Simons)

P. DEHEUVELS :

STRASSEN'S LAW IN STRONG TOPOLOGIES

'"file classical Strassen (1964) law of the iterated logarithm asserts that if

5
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{W(t),t ~ O} is a Wiener process, then (with LLt == log(log t V ee)) the set of

functions {(2TLLT)-1/2W(T.)} is almost surely relatively compact in the set

C(O, 1) of continuous functions on (a,1) endowed with the uniform topology. We,

give suflicient conditions tor this result to hold when the uniform topology is replaced

by the topology defined by an arbitrary measurable norm. Moreover, we also give

necessary and sufficient conditions under small restrietions such as assuming that

the norm is lower semi-continuous.

(Joint work with M.A. Lifshits) ,

J .H.J. EINMAHL :

MAXIMAL TYPE T,EST STATISTICS ,BASED ON CONDITIONAL

PROCESSES

A general methodology is presented for non-parametric testing of independence, 10­

eation and dispersion in multiple regression. The proposed procedures are based

on the eoneepts of conditional distribution funetion, eanditional quantile, and con­

ditional shortest t-frae~j~n. Techniques involved came !rom empirical process and

extreme' value theory. The asymptatic distributions are standard Gumbel.

(Joint work wi th J. Beirlant)

u. EINMAHL :

RATES OF CLUSTERING IN STRASSEN'S LIL FOR PARTIAL SUM

PROCESSES

We provide a detailed description of the rate of clustering in Strassen's functional e
LIL for partial sum processes. Necessary and sufficient conditions are given for

eertain convergenee rates in terms of rnoment- type condi tions. Our proof is based

on a new strang approximation of sums of i.i.d. randorn variables.

(Joint work with D. Mason)
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P. EMBRECHTS :

STOCHASTIC DISCOUNTING AND THE BOOTSTRAP

Let (Y'i) and (Zd be independent i.i.d. sequences ofr.v.'s satisfying the moment

conditions: 3p > 0: EIZdP < 1, E/}'t1P < 00. Define the so-called perpetuity

variables:
I

Vi ~ 1: Sl= LZ1 ... ZkY1c.
k=:1

Under the above conditions, 51 ~() ..t. S where S satisfies the randorn equation:

s g (Yi + S)ZI

Explici t (analytical) solut ions are difficult to 0 btain. 'Ve present a bootstrap proce­

dure for estimating P{S ~ x}. The method of proo! depends onproperties of the

minimal Lp-distance:

For the bootstrap variable Sl:nn it is shown that dp ( Simnt S) -+ 0 as ~>~

min(l, m, n) -+ 00. Varic:>us examples showing that the method actually works in

practice are given.

H. J. ENGELBERT :

ON ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS:

SOME RESULTS ON EXISTENCE AND UNIQUENESS

We consider the one-dimensional stochastic differential equation

Xt = Xo +f a(s,X,)ds +l b(s,X,)dB"t < S(X), (1 ).

where a, bare Borel functions on fO, 00) x IR, (Bd is a- Brownian motion, and

S( X) is the explosion time of ",Y. By absolutely continuous transformation of

probability measure oe space transformation (at least if a does not depend on s),

equation (1) can be reduced to the equation without drift

X t = Xo + l b(s, X,)dB" t < S(X). (2)

In the present talk, we first give necessary and sufficient conditions on b for existence

- as weH as uniqueness in law of the solution to (2) i~ the homogeneous case (b(s, x) =

b( x)). Thcn we discuss several Ilew rcsults in the general, non-homogeneous case.

7
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P. GAENSSLER :

ON SET-INDEXED PARTIAL-SUM PROCESSES WITH RANDOM

LOCATIONS

The purpose of this talk is to present a unified approach to empirical and partial­

sum processes by studying processes Sn = (Sn(C))CEC with Sn(C) beiJ.lg defined

by

Sn(C):= E 1c(1]nj) en;,· C E C,
iSi(n)

the l1n;'S being random elements (random locations) in an arbitrary sample space _

X, the en;'S being real-valued random variables, and where the index family C is

a Vapnik-Chervonenkis dass of subsets of X. Our main emphasis is on asymptotic

results (as the sampie size n tends to infinity) for the processes Sn such as

uniform laws oflarge numbers (the uniformity being ~.r.t. C) and functional central

limit theOrems containing various results for emp~rical and partial-sum processes as

special cases.

u. GATHER:

PROPERTIES OF ·SHORTESl' HALF-BASED SCALE ESTIMATORS

The paper deals with scale estimators for univariate distributions, which ~re of the

type of Rousseeuw's (1988) Iength of the shortest half.

It is the aim to compare these estimators with ather similar estimators (e.g. Grübel

1988) as weil as to study their properties described by their influence functian,

sensitivity curve and large sampie properties.

E. GINE:

THE NECESSITY PART OF THE CLT FOR DEGENERATE U-STATIS­

TICS

Let h: sm ~ IR. be a measurable function (on (sm, Am))» symmetrie in its

arguments, and let ~"(i be i.i.d. S-valued. \Ve prove that if the sequence

{n-m/2l:i.< ...<i..aSn h()(it, ... , )(im)}:=l is stochastically boun~ed, then Eh 2 < 00­

and Eh(X,Z2"."Xm ) = 0 X2, ... ,Zm - a.s. (w.r.t. L:( ....y)m-l). And in par­

ticular the sequence converges in distribution. The praof uses Rademacher ran-
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dOlltization a.nd dccoupling, Khintchine's inequality (reiteratively) and an argument

of Paley-Zygnlund. It providcs t for m:::: I, a simple proof of E....y2 < 00 <=

CLT for n- 1!2 L?::l )(,.
(Joint work w~th J. Zinn)

F. GÖTZE:

ASYMPTOTIC EXPANSION.S AND T~E BOOTSTRAP

Asymptotic expansions up to an error of order O(n- 1 )' are shown to be'valid for

asyrnptoti~ally'linear nonparametrie statistics which admit a Hoeffding exp~nsion

with terms of order O(n- k
/

2
), k =: 0,1,2. These approximati~nshold uniformly

in the dass of statistics with fourth order moments and a Cramer-type smoothness

condition on the sum oC r.v.'s. Here the Bootstrap approximation do~i~;ing Cor

the standardized statistics works up to an error of order O(n -1). ~ .~~..~ ~

This is joint work with V. Bentkus.

For von Mises statistics of order . 2 we show that for twice differentiable kerneis

defined on a Euclidian space and which have infinitely many eigen:values the error

in the functionallimit theorem is of order Op(n- 1j2 ). It is expected that iterated

Bootst~ap methods even yield an error of order 0 p(n- 1 ).

This result is joint work with R. Zitikis.

V.GOODMAN:

LIMIT THEOREMS FOR SELF-SIMILAR PROCESSES

Let W(t) be a standardized Wiener process and kt(u, v) be in L2{m,2) for each

t ~ O. Processes of the form JYt :::: J Jkt(u, v) dW(u) dW(v) have been studied by

Taqqu, Kono, and Mari and Odaira.. M.-O. (1986) impose conditions on kt(u, v)

to give processes having stationary increments and satisfying a self-similar identity:

Xet g eH X t for some index H, 1/2 < H < 1.

M. -0. (1986) 0 btain functional laws 0 f the i terated logari thm for the processes

n-"(loglogn)-l)(nt under these assumptions. Coodman and Kuelbs (1993) re­

lax the assumptions on the k t ( U, v) for the FLIL to hold. Here, I give exam­

pies, related to the Rosenhlatt process, where special choices of kt satisfy G.-K.

conditions hut not ~1.-0. conditions. Furthermore" a rate of convergence in the
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FLIL is obtained for apartion of the Rosenblatt process. The rate is shown to be

o (log log log n )2(log log n )-H/(2+H)) .

K. GRlLL:

BRANCHING RANDOM WALK

The branching random walk is o~tained by superimposing a random walk struc­

ture on a Galton-Watson process. We assume that the offspring distribution has

finite variance. and consider only the simple random walk case." From the work of e
Asmussen and Kaplan ·we know that (even in more general cases) the ratio of the

number of particles to the left of x and the total size of the generation tends to a nor-

mal distribution (always~ssumingthat the Galton-Watson process is supercritical,

and conditioned on non-ex~inction). We investigate the .question whether large de-

viation results canbe transferred to this setting. It turns out that for -1 < a < 00,

where 0:0 is the solution of 0:
01 (1 - 0)1-01 = m/2 (00 = -1 for m > 2) there are

no particles eventually at [na], whereas for 0 > Cl > Clo we have that the ratio

of the relative frequenc~..?f particles in [na] and the corresponding random walk

probability converges to a nondegeneraterandom variable W(a:).

A.GUT:

FIRST PASSAGE TIMES FOR PERTURBED RANDOM WALKS

'A perturbed random walk is' a sequence {Zn, n 2:: I}, such that Zn = Sn + {n,

where {Sn, n ~ I} is a random walk (with positive drift) and {{n, n 2:: I} is a

sequence oe random variables, such that en/n~· 0 as n -t 00. •

Let v(t), t ~ 0, be th.e first time a perturbed randoln walk crosses a (general

nonlinear) boundary. We provide limit theorems for the first passage times, the

stopped perturbed random walk and the overshoot as t -1> 00. In particular, these

results are applie~ to the import~nt case when the perturbed random walk is of the

form {ng(Sn/n), n ?: I}, where {Sn, n ~ I} is a. random walk whose increments

have positive, finite mean arid 9 is positive, continuous and, possibly, has further

smoothness properties.

The traditional case considered in nonlinear renewal theory is when the summands

have finite variance and 9 is twice continuously diffcrentiable. We also present some

. 10
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results concerning existence of moments and uniform integrability. We conclude with

a. n unlber of exaIIl pies.

E. HAEUSLER :

ON COVERAGE PROBABILITIES OF CONFIDENCE INTERVALS

BASED ON A WEIGHTED BOOTSTRAP

Erron 's classical nonparametrie bootstrap puts weights on the observations form.

ing a random vector having a multinomial distribution and being independent of

the observations. Typically, this bootstrap leads to two-sided confidence intervals

for which' the actual coverage probability converges at rate l/n to the nominal

level, where n is the sampIe size. Recently, bootstrap procedures employing much

more general weights have been developed. We discuss the coverage probabi,lities of

confidence intervals for the mean based on a specific type of a weighted bootstrap.

C.C.HEYDE:

WHEN DO WE NEED THE LIKELIHOOD ?

Recent developments in the general theory of inference suggest that likelihood-based

methodology can in many cases be subsumed into a quasi-likelihood framework with

considerable advantages in robustness and simplicity of derivation. Qnly first and

second mOment properties are required. Illustrations were given related to~:;REML

estimators, estimating the drift in a diffusion and estimating parameters subject

to eonstraints. The material is from a soon-to-be-completed monograph on quasi.

lik~lihood and its application whose principal foeus is on statistical models which

can be written in a semimartingale form as a signal (involving the parameter of

interest) plus noise.

A. JANSSEN :

PRINCIPAL COMPONENT DECOMPOSITION OF KOLMOGOROV­

SMIRNOV TYPE TESTS

The ta.lk deals with the comparison of asymptotic power functi"ons of non-parametric

11
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unbiased tests. The bench-mark is the power function of the best two-sided Gaussian

tests (two-sided Neyman-Pearson tests). Each non-parametric unbiased test has a

principal component decomposition given by a Hilbert-Schmidt operator. Thus

every test has reasonable curvature only for a finite number of orthogonal directions

of alternatives. As applieation one obtains. results about the curvature of the two­

sided Kolmogorov-Smirnov test. It is shown that these tests pIefer for small Cl

approximately the same direction as the two-sample median rank test, which has

power only for aue direetion of alternatives. The consideration of the curvature can

be used to establish global extrapolations of the power function. It turns out that

-exeept of one direction- the power of the Kolmogorov-Smirnov test is Hat for small

Q. This explains earlier numerical calculations for that power function.

J. KUEL~S:

METRIC ENTROPY AND THE SMALL BALL PROBLEM FOR GAUS­

SIAN MEASURES

We establish a precise li~~, between the small ball problem for a Gaussian measure J.L

on a separable Banach space, and the metric entropy of the unit ball of the Hilbert

space Hp generati.ng JI.. This link allows us to compute small ball probahilities

from metne entropy results, and vice versa.

(Joint work with Wenbo Li)

H. R. LERCHE:

OPTIMAL CHANGE POINT DETECTION

We consider the sequential change point detectio~ problem of Shiryayev. A process

W(t) = B(t) + 8(t - T)+ is observed, B is a standard Brownian motion with

drift 0, T is an" independent exponentially distributed random variable and 8 is

a positive constant. Für a stopping time T of W the risk is taken as

R(T) = P{T < T} + cE(T - T)+,

We show that R(T) = I g(1rT )dP where 9 is a convex function with a unique

minimum p. and 1rt is the posterior probability of a change before t. Then it

12
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follows illlIlleJia.tcly that

Proeeeding from this idea further one can derive a sirnilar result for the case when

9 is unknown. The results give an intuitive support for detecting a change of trends

in a stock market by l~g-likelihood statisties.

F. LIESE:

e ASYMPTOTIC PROPERTIES OF SELECTION PROCEDURES

For k populations with distribution funetions F(x-Btl, ... ,F(z-BIc ) one wants to

seleet the population with the largest 9-value bytaking n independent observa~~ons

in each· population. For the probability of eorrect seleetion for- the se~~ence of

localized models F(x - (80 + h1/.JTi,)), .. , ,F(x - (80 + hlc/.fii)) with"sample

size n ~ (X) an asymptotic Hajek-Le Carn bou~d may be established.. The"optimal

sequence of selection procedures depends on the density f{:r; -90 ) w~ch is unknown

in practical situations. An adaptive and asymptotically efficient selection procedure

can be constructed withthe help of a kernel estimate of /(:1:-80). For fixed parameter

configuration Bb ... ,Bk the error probabilities Jor many selection proced~res tend

exponentially to zero. The maximum exponential rate can be explicitely expressed

in terms of the Hellinger integrals of the distributions F(z - 8i ), 'F(z - Oj).

P. MAJOR:

ON THE NUMBER OF LATTICE POINTS IN A RANDOM DOMAIN

_ The investigation of the number of laltice points in a large do~ain is a 'c1assical

topic in number theory. Recently, such questions became interesting also because of

their application in physics. The investigation of finer properties of the spectrum of

the Laplace operator in a domain leads to such questions ..

. We discuss questions of the following type: Let A be a domain with smooth bound·

a.ry in a plane and R be a ra.ndomly chosen number with uniform distribution

in an interval [1, Tl. \Vhat ~an be said about the distribution of the number of

la.ttice points in the domain R.A or in (R + h) A \RA if T -+ 00 1. Some new

results and open problems will be discussed together with the relation of the above

13
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problems to physics.

D. M. MASON:

A GENERAL BOOTSTRAP

Let Xt, X" ... be i.i.d. Fand independent of these random variables-let W =
(W1 ,,,, .•• , W",n), n 2: 1, be a triangular array of exchangeable random variables.

Introduce the general weighted 'bootstrapped' empirical distribution function

1 n .

Fw,n(z) := ;;?= Wi,n1{Xi$z}, -00 < X < 00.

'=1

The reason for the inclusion of the, ward 'bootstrap l in the definition cf Fw,n is

that when 'W = (Mt •n ) ••• ) Mn.,,) P.., Mult(n; Iln, ... , 1/n), Fw,,, ;g F: conditioned

on Xl, ... )X,,) where F;: denotes the usual bootstrapped empirical distribution.

The asymptotic properties of this general weighted bootstrapped empirical distri­

bution and functionals of it are described. These functionals include the general

weighted bootstrapped mean and empirical process .
..'. ". ~

H.G. MÜLLER:

SEMIPARA:t\1ETRIC MODELLING OF VARIANCE FUNCTIONS

We propose a general semiparametric variance function model in a fixed design re­

gression setting. In this model, the regression function is assumed to be smooth

and is ·modelled nonparametrically; whereas the relation between the variance and

the mean regression function is assumed to follow a generalized linear model. AI- A,
most' all variance function models that were considered in the literature emerge as .,

special cases. Least squares type estimates for the parameters of this model and

the simultaneous estimation of the unknown regression and variance functions by

means of nonparametrie kerne! estimates are combined to infer the parametrie and

nonparametrie components of the proposed model. ,The asymptotic distribution of

the parameter estimates is deri ved and is shown to follow usual parametrie rates in

spite of t~e presence of the nonparametrie cOlnponent in the model. This result is

applied to obtain a data-based test for heteroscedasticity nnder minimal aSSUlnp-.

tions on the shape of the regression function.

(Joint work with P.L. Zhao)
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G. NEUHAUS :

TWO SAIVIPLE RANK TESTS FOR CENSORED DATA : AN OVERVIEW

The developnlent of the theory of two-sample rank test~ for censored data is dis­

cussed with special emphasis on optimality questions in Ioeal asymptotic models.

Two sorts of rank statistics for testing the equality of failure "time distributions

Ft, F2 of hoth sampies have been suggested by praetitionets: 's'core statistics' and

'observed-expected statistics'. While the first sort extends t.he classicallinear rank

statistie in a straightforward manner to censored data, the second sort is seemingly .

qualitatively different.e It is demonstrated that both sorts of statistics are asymptotically equivalent in 10­

cal asymptotic models, the observed-expected statistics being martingale versions of

the score statistics. This entails asymptotic optimality and distributional ~~ults for

bath classes. Moreover, following an idea of Gill (1992), the optimali~ p~?pert~es

of the observed-expected statistics under unequal censoring in hoth samples_ are ex·

plained hy enlarging the usual one-parameter asymptotic model to a two-pa!.ameter

modcl. ~

Finally, conditional (permutation) tests, introduced by the author, are discuss~d.

These tests are finite sampie distribution-free under F1 = F2 with equal censoring

and are asymptotically equivalent to their unc<;Jnditional counterparts also under

unequal censoring.

R. NORVAISA :

A CHARACTERIZATION OF AN ASYMPTOTIC BEHAVIOUR OF

DISTRIBUTIONS ON BANACH FUNCTION SPACES INDUCED BY

EMPIRICAL AND PARTIAL SUM PROCESSES

We consider, as a. sample path space, a B~nach function space of measurable func­

tions defined on au-finite measure spaee. One may pose the question of describing

those Banach function spaces where enlpirical and partial surn processes have almost

all their sa~ple paths and induced distributions converge weakly. We would like to

fonnulate a couple of this kinq results proved by applying probability in Banach

space techniques ancl/or strong approxilnalion results.
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D. PFEIFER:

PSEUDO..POISSON APPROXIMATION FOR MARKOV CHAINS

We consider the problem of approximating the distribution of a Markov chain with

rare transitions in an arbitrary phase space by the corresponding pseudo-Poisson

process. Sharp estimates for hoth first- and second-order approximations are ob­

tained. These estimates improve also the known results in the ordinary Poisson

theorem.

D.PLACHKY:

CHARACTERIZATION OF DISCRETE DISTRIBUTIONS

The aim of the talk is twofold, namely to characterize some special discrete distribu­

tions (for example the Poisson distribution by some estimation-theoretical property)

the unif~rm distribution by stochastic ordering) and to characterize discreteness of

distributions by same general properties (like unique extension, existence of regular

conditional distributions, and continuity from below of inner probabilities).

F. PUKELSHEIM :

THE KIEFER ORDERING OF INFORMATION MATRICES

The Kiefer ordering of information is a superposition of the Loewner ordering and

majorization,

A» B {::} 3 F: A ~ F -< B,

where F -( B :~ F E conv{QBQ' : Q E Q} is the matrix majorization when the _

group Q ~ GL(k), compact) acts by congruence, and where A ~ F :{::} A - F

n.n.d. is the Loewner ordering. We give two examples to illustrate that this is the

right way to combine the Loewner ordering and matrix majorization. One is the

monotonicity of the information ma.trix mapping A » B :::;. CK(A) »CK(B). The

other is rotatable information matrices in second order models, relating to tensor

representation of classical groups (R." Brauer 1937).

(Joint work with N. R. Draper and N. Gaffke)
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R.-D. REISS :

XTRElVIES: EXTREME DAT~ANALYSIS AND ROBUSTNESS (WI~H

SOFTWARE DEMONSTRATION)

In many applications, extremes da not fit to the ideology o~ normal sampies and,

, therefore, such data are omitted or one uses statistical procedures upon which ex­

tremes have a bounded influen.ce. The converse attitude is to regard extremes as

the important part of the data. The generalized Par~to distribution~will be taken

for the parametrie modelling of the upper tai! of the distribution..

The software package XTREMES provides graphical representa:tions cf curves such

as generalized Pareto, extreme value or Cauchy-normal densities and q.f.'s. Sec­

ondly, data sets may be generated according to thesedensities and in non-i.i.d.

models. Finally, the data may be inspected by means cf parametrie and' nonpara­

rnetric methods. An external implementation of new estimators is possibl~. The

performance of estimators may be inspeeted by means of diagrams, plots anq. }\1onte

Carlo simulations of the MSE. .=

XTREMES is menu-driven, runs on IBM-compatible, Pe'sand comes witha user's

guide-manual. The first release is seheduled for May, 1993.

P. Rtvtsz :

BRANCHING RANDOM WALKS

At time t == 0 a' partiele loeated in 0 E 7ld begins a randorn walk. It moves at

time t == 1 with equal probabilities to one of the 2d neighbours cf o. Arriving

at the new Ioeation it produces k offsprings with probability PlI) (k = 0,1,2, ... )

and dies. Each of the offsprings moves independently at time t = 2 to on~ of

its neighbours. Arriving at the new Ioeation eaeh of them produces independently

offsprings and then dies. Rep~ating this procedure we obtain a. bra'nching random

waik. Let A(X, t), (x E 7ld
, t == 0,1,2, ... ), be the number of particles in Z 30t t.

We are interested in the limit properties of ,,\(x, t) as t ~ 00. ~ typical result is

the following: for any x E 7ld and 0 < € < 1 we have

I, rl-( 11 (21rT)d/2 A(X, T) I'1m - -- --- - B = 0
T-~ 2 d m T

where m == Lk:OPkk and B is a r.v., (B?:: 0).

17
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W ....D. RICHTER:

LARGE DEVIATIONS FOR GAUSSIAN, ASYMPTOTICALLY GAUS­

SIAN AND ELLIPTICALLY CONTOURED DISTRIBUTIONS

The influence of certain geometrie properties of a la~ge deviation domain onto the

asymptotic behaviour of the respective large deviation probabilities is discussed for

Gaussian and for special types of asymptotically Gaussian or spherical distributions.

The talk starts with a discussion of the Osipov problem for fixed and the Khintchine

problem for increasing dimensions. In a sequence of steps it follows a comparison

of large deviation theorems for analytically exaet known with only asymptotically e
known distributions. Several types of large deviation limit theorems are dealt with:

starting from those concerning the logarithms of large deviation probabilities up to

those even including an asymptotic expansion.

L. RÜSCBENDORF: -

SCHRÖDINGER EQUATIONS ANP CLOSEDNESS OF SUM SPACES

We determine sufficient '~~nditions for the closedness of sum spaces of L1-functions.

As a. consequenee of Csiszar's projection theorem this implies generalizations of re­

sults of Faltet, Beurling and Hobby and Pyke on the existence and uniqueness of so­

lutions of some nonlinear integral equations, which were introduced by Schrödinger,

to describe the most probable behaviour of Brownian ,motions conditional on the

observed initial and final state in a finite interval (0, t 1 ). The result is also of inter­

est {or a large deviation formula for infinite dimensional Brownian motions related

to Schrödinger bridges and tor the construction of optimal estimators in marginal

models.

(Joint work with W. Thomsen)

M. S0RENSEN :

CURVED EXPONENTIAL FAMILIES OF STOCHASTIC PROCESSES

AND THEIR ENVELOPE FAMILIES

Many important statistical stochastic process Inodels are exponential families in the

sense that the likelihood function corresponding to observation of the process in the

18
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I .

time interval lOt t] ha.s an exponential family representation of the same dimension

for all t > O. Most exponential fatnilies of processes are curved exponential families

in the sense that the canonieal parameter spaee forms a curved submanifold of a

Euclidian space.

Several modern statistical techniques for eurved exponential families use properties

of the fuIl exponential family generated by the eurved model. Examples are methods

based on differential geometrie considerations or on approximately ancillary statis­

tics. The interpretation of the full exponential families as stochastic process models

is not straightforward and must be done for each t > 0 .separately. Therefore, the

full families are referred to as envelope families in the stochastic process setting.

A _general result on how to calculate the envelope families is gi~en. Particular atten­

tion is devoted to the question in what sense the envelope families can be interpreted

as stochastic proeess models. For Markov processes rather explicit answers can be

given. Diffusion processes and counting processes are studied in particul~; As an

example, the family of Ornstein- Uhlenbeck processes is considered in detail. Also

an application of our theory to a goodness-of-fit test for censored observations is

presented.

(Joint work with U. Küchler)·

J .L. TEUGELS :

REINSURANCE AND EXTREMES FOR A RANDOMLY INDEXED

SEQUENCE ~.-..;..

The theoretical study of reinsurance treaties within the framework of mathematical

risk theory is still in its infancy. One of the main reasons for this meager state of the

art is that reinsurance is: meant to safeguard thecompany from the effects of largee claims while extreme value theory is almost unknown to the praeticing aetuary.

\Ve try to give a fiavour for the problem and indicate a few steps towards an im­

provement.
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H. WALK:

ON AVERAGED RECURSIVE ESTIMATION IN LINEAR REGRES­

SION

Let the random sequence (An, bn)) of symmetrie positive semidefinite m x m

matrices An and rn-vectors bn be stationary with A:= EA1 positive definite

and b :=Eb1 • For the estimates Xn of (J:= A -lb defined by

X n+1 := X n - an(An+1Xn - bn+1 ) with gains an, the sequence (.Kn) of arithmetic

means is investigated. This joint work with L. Györfi extends results of Ruppert,

Polyak and Juditzky, Pechtl to general An under weak dependence of «An .6n ». e
For an == er > 0 (sufficiently small) one obtains in the ergodie case, especially

under mixing eonditions, a.s. eonvergence of Xn to f} + 50. wi th 60. = o( 1) or

O(JQ) and asymptotic nor~alitywith order 1/.Jn. For an = an--Y (3/4 < I < 1)

under the assumption of a functional CLT for bn - AnB with asymptotic covariance

matrix Sand with Eil Lk=t(A/c - A)11 2 = D(n) and Eil L:k=t(b/c - b)11 2 = D(n),

an invariance principle for :Kn - 8 with convergence order 1/vn and optimal

asymptotic covariance matrix A-tSA-l is obtained.

J. ZINN:

STRONG LAWS OF LARGE NUMBERS FOR QUADRATIC FORMS

Under mild regularity conditions on the normalizing sequence, ;n, and symmetry

of the distribution of the i.i.d. sequence, (Xj ), necessary and sufficient conditions

are given for
1- l: X.Xj -+ 0 a.s ..

"Yn i#i$.n

Preliminarily, one gives necessary and sufficient conditions for

under only In / 00 .

. Berichterstatter: J. Steinebach and M. Alex
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