
MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 12/1993

Gewöhnliche Differentialgleichungen
14.-20.03.1993

The conference was organized by H.W. Knobloch (Würzburg), J. Mawhin (Lou­
vain-Ia-Neuve), and K. Schmitt (Salt Lake City).

Following a now established tradition the conference focused upon one area of
current research interest in ODE. Tbe organizers had chosen

Asymptotic behavior of solutions and the structure of attractors:.

as the conference title and they were'fortunate to have a positive answer fr~m a
very distinguished selection of the world experts in this area, as 'revealed by th~ list
of participants and the titles of the lectures. A few defections were caused by the
severe weather conditions on the East coast of the USA.

Forty-five scientists from ten different countries followed the Institute's invitat:ipn
to attend the conference. There were a total of thirty-eight lectures presented dUring
the week. Most of them were closely related to the conference title and described
recent important progress in the theory and in the applications.

Several of the lectures were devoted to chaos theory and in particular to recent
progress in shadowing, links with knot theory, chaos and discretization, homoclinic
and heteroclinic orbits, fractals as iterated functions systems, global analysis of

. cellular automata, structural stability, Hausdorff dimension of the attractors, chaos
in retarded differential equations.

There were several contributions to bifurcation theory, i~ particular to secondary
bifurcation of periodie solutions in retarded differential equations, .bifurcation with
sy~etry, bifurcation from singular solutions in elliptic equations, bifurcation in
reaction-diffusion systems and bifurcation from the continuous spectrum.

Progress was also reported on reaction-diffusion systems and population dynam­
. ics, with emphasis on the structure of the global attractor, permanence and the

influence of spatial heterogeneity.
The state of the art for important conjectures in dynamical systems and ODE

like Hilbert sixtee"nth problem, Dulac, Markus-Yronabe und Jacobian conjectures
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was described, as weIl as recent progress in fundamental techniques 0/ the theon) 0/
ordinary differential equations like integral rnanifolds, nearly integrable Haamilto­
nian systems and linear differential equations and systems.

Some contributions to boundary value problems and periodie solutions were also
presentend, with special emphasis upon dry friction problems, singular second order
functional differential equations, subharmonie solütions, oscillating potentials and
radially symmetrie solutions of quasilinear elliptic equations.

Many of the above mentioned talks were motivated by some applications butf~
ther leetures concentraded more on this applied side and in particular to cardiolo.
and to control theory.

To accomodate so malJ.y lectures, it was necessary to plan a few o~es in the
evening, which were chosen for their historieal, entertaining or general character.
Intense discussions were generated of course byall the lectures, and were continued
late in the evening in the traclitional Oherwolfach tulique spirit~

Such a spirit is of course mostly due to the kind and efficient service provided
by the Institute 1s administration and staff which has to be acknowledged and con­
gratulated.

The meeting ,vas adjourned at 3.00 p.m., on Friday, March 19, 1993.

Vortragsauszüge

P. BRUNOVSI(Y :

An example of diffusion driven oscillations of two 2D systems

An example is presented in which it enn be shown analytically that if aue of the
diffusion coefficients is increased the initially stable homogeneous equilibrium 10.
its stability in a pitchfork bifurcation and afterwards astahle periodie orbit bif' •
cates from the nonhomogeneous equilibrium. Up to now this phenomenon has been
established numerically ooIy. This example indicates strongly that the periodie orbit
bifurcates into a stable invariant torus. '

S. CANTRELL :

Reaction-diffusion models for mathematical ecology

We model the interactions of two theoretical populations which are allowed to
move at random throughout a bo\~nded habitat via systems of two weakly coupled
reaction-diffusion equations. The reaction terms in these systems involve parameters
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which are subject to biological interpretation ~d which are assumed to be spatially
dependent. We examine the effet of spatial heterogeneity on the long-term viability
of each of the populations, whith the aim of quantifying the effect in tequs of the
biological parameters in the models. To this end, we employ the dynamic ~oncept of
pennanence of the interacting populations, conditions for which lead direc.tly to the
spectral theory for linear elliptic boundary value problems, so that the lang-term vi­
ability of tbe populations can be expressed in terms of eigenvalues dependipg on the
biological parameters of tbe models in directly quantifiable ways. We give~ number
of examples, and demonstrate for tbe first time via reaction-diffusion equations that
spatial~heterogeneity can lead to coexistence in situations wherein extinction would
result, were the habitat spatially homogeneous. .

K. DEIMLING =

Periodic solutions of dry friction problems

Experiments ·show that in certain cases dry friction has to be modelIed by functions
of the v~locity which are discontinuous at zero: this leads to discontinuov.s ODEs,
the quantitative theory of which can be successfully, developed by: mea.p.s of the
corresponding theory for associated multivalued differential equatiöns. W~ consider
in particular

x" + ox' + JLsgn(x') + ßx =.sint;

and give a complete picture for the 27t"-periodic solutions. in case 0-= O. In the
resonance esse (ß = 1) we find such solutions (with deadzones) which ar~ globally
asymptotically stable, ~rovided J.1. E (11"/4,1). '

P. DORMAYER :

Floquet Eigenwerte und Sekundärverzweigung periodischer Lösungen von
Funktionaldifferentialgleichungen

Wir betrachten die verzögerte Differentialgleichung x'(t) = -af(x{t - 1), er > 0
wobei vorausgesetzt wird daß f : R -+ R glatt und ungerade ist, und x f (x) > 0
für 0 <x .< a ':111d einem 0 > 0 gilt. Es ist bekannt, daßes zu jedem Z E )0, o[
ein er = er(z) und ein x == x(., z): R -+ R gib~, so daß x eine periodische Lösung
.mit Amplitude .z und Periode 4 ist. Wir betrachten die Floqueteigenwerte dieser
periodischen Lösungen und geben Bedingungen für Sekundärverzweigung periodis-
cher Lösungen an. Unser Hauptergebnis ist, daßz.B. für f = sin eine Folge ale ==
er(zk), k E N, existiert, für die gilt: (i) (ale, x(., ':k»)" ist ein Verzweigungspukt, (ii)
0k -+ 00 für k -+ 00 und (iii) Ok+l - 0k ~ 11" für k -+ 00. Damit ist gezeigt,
daßFunktionaldifferentialgleichungen unendlich viele. Sekundärverzweigungspunkte
haben können.

3·
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L. ERBE:

Boundary value problems for singular second order functional differential
equations

We consider BVPs of the fonn

(1) y"(x) + fex, y(r(x») = 0,0 $ x ~ 1

. (2) ay(x) - ßy(x) = Ji(x), xE [a,O], I'y(x) + oy'(x) = v(x), xE [l,bJ. e
Here f : (0,1) x (0,00) -+ (0,00) is continuous and decreasing in y for each fixed x
and integrable on [0,1] in x for each fixed y and satisfies

lim f (x, y) == 00 unifOrmly on compact subsets of (0, 1),
y-O+

J!.~ f(x, y) =°uniformly on compact subsets of (0,1).

The function r(x) is continuous on [0,1] and satisfies inf[o,ll r(x) = 1 and SUP[O,l) TeX)
> O. The functions JL(x}, v(x) are defined on the intervals [a,O] and [1, b] respectively,
where a = min{O~infr(x)},b = max.{l,supr(x)} with /-L(O} = v(l) = O. Existence
and uniqueness results are obtained via a monotone fixed point theorem. The proto­
type is the equation involving a function fex, y) of the form fex, y) = p(x)y->', A> O.
(Joint with Qingkai Kong).

W.N. EVERITT:

On a property of the Titchmarsh-Weyl m-coeflicient of second-order or­
.dinary linear differential equations

e·C*)-(py')' + qy = AWy on [a, b).

The Titchmarsh-\Veyl rn-coefficient is a Nevanlinna function of the complex spectral
parameter Aassociated with the Stwm-Liouville differential equation

Each m-coefficient is associateduniquely with a self-adjoint operator generated by
(*). The m-coefficients of (*) can be considered as limits of m-coefficients of the
differential equation considered on the compact interval [a, ß], as ß --+ b. The lecture
diseusses the properties of this limit process.

B. FIEDLER;

The global attractor of semilinear parabolic equations

We consider dissipative equations

Ut:=: Urr +!(x,u,ur ), 0 < x < 1,
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- with Neumann boundary co~ditjons. Let AI denote the global attractor. Sy a
gradient structure, AI consists of the set EI of equilibria, and of orbits connecting
equilibria. Let the equilibria {VI, . .. ,VN} = EI be all hyperbolic. Comparing the
orderings of Vl{X), ... ,VN(X) at x = 0, x = 1, resp., defines a permutation 7r E SN'
Using this ODE input information encoded in 7r determines the attractor AI: given
7T', there is a constructive procedure to determine whether or not v, w E EI are
eonnected bya PDE trajectory. This result generalizes earlier work by P. Brunovsky
and the author. It was obtained jointly with C. Rocha.

A.M. FINK:

An example where the dynamics are determined by the averages

Consider the problem:

(1) x' = k1x(u - X - y) - ßIX - CX, y' =: k2y(C1 - x - y) -/hy + cx,

where all constants are positive and ODe is looking at the dynamics in the'quadrant
x,y ~ O. Tbe quantities ~(1 - ß2 and ß = ~ - (~ + c)- determine 'the dynamics
according to their sigris. If the ßi and c are replaced by positive almost periodie
functioDS, then thc dynamics are similar to the system (1) where the constants are
the mean values of the functions ßi and c. A slight generalization is also cqnsidered.

D. FLOCKERZI :

Integral ma(.lifolds in nonlinear control theory

Hy means of examples of qualitative contral problems like, modal synthesis, asymp­
totie stabilization and the synthesis of stable periodic solutions, we show how dy­
namie feedback can be used ta generate integral manifolds that salve the respecti ve
contral problem. On the other hand we present disturbance attenuation and track­
ing problems where an appropriate feedback turns given manifolds jh the extended
phase space ioto integral manifolds with the properties of normal attractivity and
asymptotic phase. Thereby the standard state and error feedback regulator prob­
lems ean be solved for nonHnear affine control problems.

A. FONDA:

Subharmonic solutions for some second order differential equations

Same existence results on subharmonic solutions of both scalar equations and con­
servative systems are reviewed. In particular, the ~xistence of subharmonics for
a simplified suspension bridge model is illustrated, as weIl as for some equations
modeling the motion of an electric charge in a Coulombian field.
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G. FREILING :

Nonsymmetrie matrix Riccati equations

We consider matrix Riccati differential equations

and the corresponding algebraic Riccati equations

0= B21 + B22W - WBll - WB I2W,

(RpE)

(ARE)
·e

where W, B u ,B 12 , B 21 , B22 are matrices of dimensions m x n, n x n, n x m, m x n
and m x m respectively. It is known that matrix .. Riccati equations are playing
an important role in many branches of applied mathematics and in particular in
systems theory; nonsquare matrix Riccati equations appear for example in Nash
and Stackelberg control problems, where the solutions of Riccati equations are used
to detennine the optimal open loop strategies.· .

In the first part of the lecture we present a general representation fonnula for
all solutions of (RDE) with constant coefficients Bij and we show that a similar
fonnula can be obtained if these coefficients are T-periodie functions or are poly­
nomially dependent on t or on a complex parameter A. Further we explain how
our representation formula can be used for the description of the phase portrait of
(RDE) and for a parametrization of all solutions of (ARE).

In the second part of our talk we apply our resuits to the investigation of coupled
matrix Riccati equations appearing in open-Ioop differential games.

P. HABETS:

A nonlinear BVP with potential oscillating around the first eigenvalue

In this talk, we consider the Dirichlet boundary value problem

u" + u + f(t, u) = 0, u(O) = u(tr) = 0, (1)

assuming that the potential

F(t, u) = f f(t, s) ds

satisfies the conditions

tim sup (1r F(s, a sin s) ds == +00,
a-+oo Jo

liminf {7f F(s,asins)ds = -00.
R-+OO Jo

6
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where

•

We prove there exist sequences (ttn) and (u~) of positive sohltions of (1) such that

Jl.~ <!>(ttn) :::: +00, J~ </J(u:a) = -00,

fn
1f u1'2(t) u2(t)

t/J(u) = [- - - - F(t,u(t»Jdt
o 2 2

is the functiOrial associated with (1), whose singular points are solutions of (1). The
variaiional approach we use extends to different boundary value problems such a.s
the periodie or the Dirichlet .problem for elliptic PDE. 1

M.W. HIRSCH:

. ,Shadowing, asymptotic phase, and stochasticperturbation ,~~
I~~!~\,,: ~

A new "exponential shadowing" theorem is applied to asymptotic ph~e and to
stochastic perturbations. Let X be a complete metric space, f : X --+' X :a contin­
uous map, K C X a positively invariant closed set. The distance in~X ~s written
IIx - ylI· Tbe expansion constant EC(i, X, K) is the supremum of all niimbers LI > 0
such that there exists p. ~ 0 for which

x EK,O ~ P ~ p. ~ f(B(p,x» ~ B(vp,f(x»,

where B(p,x) = {y EX: IIx - Yll :$ p}. Define the expansion rate

E(X,j,K) = supEc(!n,X,K)l/n.
n>O

-".,

Theorem 1. Assume flK is uniformly continuous. Let {ak} be a A-pseudo-orbit
in K : this means 0 :5 A < 1 and

limsup II/(an) - lln+l "l/n :5 A.
n-oo

• Suppose &(/,X,K) = J.L and A < rnin{l,J-L}. Then there is a uniqtie orbit i/ny} in
K which is A-shadowed by {ak}; that is : for some 1 ~ 0,

lim sup 11ry - lln+llli/n :5 A.
n-oo

Asymptotic phase. Suppose x E X is attracted to K at rate ..\,0 :5 A < 1 :

limsupdist (r(x), K)l/n :5 A.
n-oo

Theorem 2. Assume I is Lipschitz. Jf A < IJ. = &(/, ){, K). Then x has an asymp­
totic phase in K: there is a unique orbit i/ny} in K .such that for some l ~ 0 :

limsup IJ/n+l(x) - r(x)lI l /
n < A.

n-oo
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Stochastic perturbations. Let f : Ra -+ Rd be a Lipschitz vector field with flow
<p = {<Pt}tER. Consider a stochastic process

where the X n , Un +1 are randorn variables on a probability space (O,:F, P) with
values in Rd , and Tn -+ 0 in R+. The goal is to find conditions ensuring that {,X'n }

approaches a solution to ~ = f(x). Assume there is a compact set K C Rd positi~e~

invariantunder <p, such that almost surely X n E K for all n ~ o. Suppose furtnw
that E(Un+lIFn ) = 0, where :Fn denotes the u-field of events up to time n.

Theorem 3. (Michel Benaim). Assume further. :
(a) SUp IIUn +1 11 < 00 almost surely.
(b) limsuPn_oo t!:;n == -0 < 0,

(e) e-0l
/
2 < J.L = SUPt>o &(<pt, Rd, K) = SUPt>o infzEK IID<p_t(cptx )!I1/t,

(d) E An = 00, E A;. < 00.

Tben there eyists a random variable Y : n -+ Rd such tha.t almost surely

J!...~ IIXn - <P"'l+...-h'n(Y)11 = o.

The hypotheses on '"Yn hold if '"Yn = ein for sufficiently small c > 0, or if "'fn =
1 .

nlogn·

Note: Benairn shows the limit set of {Xn } in Rd is a eompaet, conneeted c.p­
invariant subset of the chain reeurrent set of cp.

To appear in: "Contral theory, Dynamical Systems and Geometry of dynamics" ,
K.D. Elworthy, W.N. Everitt, E.B. Lee ed., Marcel Dekker. '

'J. HOFBAUER :

Stability of heteroclinic cycles

Robust heteroclinic cycles arise in dynamical systems with symmetry and in eeale
ical differential equations

We associate to sueh a heteroclinic cycle a "characteristie matrix" Al eonsisting
of the external eigenvalues at the fixed points on the eyde. Instead of Poincare
maps we use "average Lyapunov functionsU of the form P = Tl xf' to analyze their
stability. This leads to systems of linear inequalities of the form p > 0, Al' > o.
Matrices A with this property are called "semipositive". For "simple" heteroclinic
cycles (dirn ~VU = 1 at. each point) this leads to a. eharacterization of (in}stability
in terms of M-matrices. A special case are planar heteroclinic cycles where det A =
nAi - Tl J.Li < or > 0 is the condition for (in}stability. More general (multiple)
heteroclinic cyeles are repelling Hf A -I 2:: o.

8
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v. HUTSON:

Asymptatics far reaction-diffusion systems

R.eaction diffusion equations are frequently used to model problems in genetics, ESS
theory and ecology, when species are both interacting and dispersing. A problem
of major importance in practice is to determine conditions under which a1l species
'ooexist' in the lang term. Adefinition (called permanence) of the ter~ 'ooexis­
tence' is now often taken to mean that species densi ties are repelled uniformly by
the boundary (corresponding to zero species densi ties), and i t is not necessary that
the densities should approach stationary states asyrnptotically. A nwnber of tech­
niques have been developed recently for tackling this problem, and they h~ve same
mathematical interest in their own right.

In this talk, one of these techniques will be described, and an appHeation given
to problems with zero Dirichlet conditions. Conditions for permanence-' involve the
signs of eigenvalues of certain linear operators. As a bonus, by means of~ ~ed point
theorem, we abtain same of the standard conditions for the existence of stationnary
interior coexistence states. .

F.KAPPEL:

An ODE model for fundamental regulation processes in..the cardiovas"c'u-
lar system .

Based oz:l the four compartment model by Gradins we develop a model for the re­
sponse of the cardiovascular system to a short tenn submaximal workload. Basic
mechanisms included in the model are theFrank-Starhing law of the. heart, the
Bowditch effect and autoregulation in the peripheral regions. A fundamental 8S­

sumption is that the action of the feedback control is represented by the barorecep­
tor loop and minimizes a quadratic cast functional. Simulation results show that
the model provides a satisfactory description of data obtained in bicycle ergometer
tests.

H. KIELHOFER:

Uniqueness of global positive solution branches of semilinear elliptic prob­
lems with symmetry

We conslder the problem

ßu + Af(u) = 0 in 11, U = 0 on an, U > 0 in n (1)

where n is same symmetrie domain in R2 and f = R+ --+ R fulfills '/(0) ~ O. We
prove : Ta any c > 0 where f{c} -:F 0, there is a unique solution (..\, u) of (1) with
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lIull oo == C. Thi8 solution i8 on aglobai smooth curve {(A, u)} of 8olutions of (1) with
sign A == sign fee). This curve can be parametrized by the amplitude lIulloo E (a, b)
with 0 ~ a < b ~ 00, characterized by fee) =I 0 for C E (a, b). The condition 1(0) ~ 0
is sharp. The behavior at lIulloo = 0 i8 discussed as weIl.

N. KOKSCH:

Compa~ison systems and properties of special integral manifolds

In this talk we consider the ordinary differential system

with f E C1(F, Xl x"X2 }, F·C; [0, 6o}x Xl X X 2 , Xi" = R1li. Let s : Wo -+ X 2 , Wo C;
"Xl, be °a given Cl-function. We introduce the integral manifold M which i8 generated
by the solutions of (*) passing through X2 =" S(XI) at t = O. Let W be the projection
of M into [0, (0) x Xl. Dur aim i8 to find conditions which guarantee that M i8
the graph of a C1-function S : W -+ M. Moreover, we investigate the attractivity
of M and the existence of asymptotic phases in M. These problems can be solved
by using of nonloeal assumptions, quadratic Lyapunov function8 and comparaison
systems.

T ..KUPPER:

On the bifurcation structure of nonlinear perturbations of Hill's equation
at boundary points of the continuous spectrum . . 0

Nonlinear perturbations <;>f Hill's equations have been studied as a first application
of a general operator theoretic approach to treat bifurcation at boundary points of
the continuous spectrum. It has been established that there i8 bifurcation into the
gap at distinguished boundary points. Moreover for °fixed parameters in th

o

e"
there are m distinct solutions where m can be characterized by the number of n"ll'
tive eigenvalues of an associated linear eigenvalue problem. For a dass of nonlinear
Hill's equations with a nonlinearity concentrated on a finite interval [-N, N] we are
ahle to reduce the problem to an auxiliary nonHnear Sturm-Liouville problem with
parameter dependent boundary conditions. The reduction is based on the knowl­
edge of the stable/tmstable spaces of the linearized problem. Although the reduced
problem is of Cl complieated nature we ean analyze its bifurcation structure by a
modified Lyapunov-Schmidt procedure. In that way we provide a detailed analysis
of both the reduced and the original problem and we can explain various phenom­
ena which occur in connection ~vith bifurcation from the continuous spectrum. In
particular we detect global effects of the presence of continuous spectrum and we
provide a mechanisnl to understMd results on the variou8 numbers of solutions.

lO
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A. LASOTA:

From fractals to differential equations

Our starting point is the observation (BamsIey) that fractals ca.n be defiJ1ed as the
attractors of iterated function systems (IFS). A classical IFS is given by a finite
sequence of transfonnations Si : X ~ X, i = 1, ... , N where X is a locally compact
metric space and by a probability vector Pi : X --+ (0, lL ~ Pi (x) = 1 for x E X.
Every IFS defines a Markov operator P : M --+ M acting on the spare M(X) of
Borel measures on X. We generalize the definition' of IPS by replacing :the finite
sequences Si, Pi, i = 1, ... ,N by families St : X ~ X; Pt : X.-+ [0, I], t eT, where
T is a measure space and fT Pt (x) dt = 1 for x E JY:. Again a generalized rrs defines
a Markov operator P : M --+ M. We proved (A. Lasota, J.A. Yorke) a co~vergence'

theorem which can be applied to this class of operators. In particular;i~J, is applied
to Poisson driven differential equation (A. Lasota, J. Traple) of the f9:IRJ .

dx = b(x)dt +u(x)d&, x ERd,

where ~ is a Poisson process with an intensivity .>t(x) depending on x.

N.G.LLOYD :

Centres and limit cycles in two-dimensional systems

Let the nwnber of limit cycles of the system

X' =, P(x,y), y' = Q(x,y) (s)

e·

be res). Part of Hilbert's sixteenth problem is to obtain information about

Hn = sup{r(s).: P, Q are polynomials of degree ~ n}.

When P 'and Q are polynomials, it is known that res) < 00, b~t it remains unproved
that Hn < 00, even for n = 2. We have recently shown that Hn ~ '0(n2 Iog n).

Tbe talk is designed to highlight the interplay between obtaining information
about the nwnber of limit cycles which cau bifurcate, from, e.g., a critical point or
from the set of orbits forming a centre, and conditions for the integrability of the
system. Two systems will be used as illustrative examples :

(1) x' - y, y' = -x + atx2 + a2xy+ a3y2.- a4x3 + asx2y + a6xy2 + a1y3,

(2) x' = y(x + 1), y' = -x - at x2 - a2x3 - a4x4 - a(1 + ux)xy - wy2.

Necessity of conditions far a centre is proved by computing foeal values, and the bi­
furcation of limit cycles can be j~vestigated at the same time. Sufficiency is proved

11 .
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S. MAlER

,.

by constructing a Dulae function which is a produet of powers of invariant poly­
nomi~s. Both make intensive use of Computer Algebra. In case (1) necessity is
partieularly demanding of resourees. In (2) not "all the cases of a centre are found
by the invariant curve construction, and the method of Cherkar, involving transfor­
mation to a Lienard system, ~s used. There are instances in whic~ invariant eurves
do not exist.

e
Convergence for radially symmetrie solutions of quasilinear -elliptic equa~

tions is generic

We prove that radially syrmnetrie solutions w = w(x), x E Rn and n > 1, of

ßw + f(w) = 0,

and of
div(A(IDwI)Dw) + f(w) = 0,

have a definite limit at infinity under reasonable assumptions on the coefficient
function A E Cl (Rt) and for all nonlinearities ! E Cl (R) with a regular value zero.

L. MARKUS:

Hybrid control theory and nonlinear evolution equations

Certain types of nonlinear evolution equations, arising from hybrid control theory,
are proved to be globally asymptotically stable. The hybrid contral systems consist
of an infinite dimensional dynamical system (P.D.E. of a wave or an elastic vibra­
tion), linked at the boundary to a finite dimensional dynamics (O.D.E. ofa nonlinear
oscillator), through \vhieh an appropriate feedback controller is applied. The meth­
ods involve energy inequalities and Lyapunov functionals. Problems coneernine
rate of decay are difficult, and remain unsalved in sanle cases. .

A. MIELI(E :

Chaos and knots

We give a small introduction to knot theory and braids as rar as they concern
ODEs in 3 dimensions. For a continuous mapping f : D --+ D (= closed unit
disc in R2

) with a periodic orbit {Xl,'.' tXn} (where Xi+1 = !(Xi)) we introduce
the stretching factor as follows. Let ~ be a loop in b = D \ {Xl,". ,X n } and
[,I E 0 1(0) the loop dass. With thc length L([,]) = inf{length(i') : "y E [-r)}, we
define G/([1'1) = tim SUPn_oo ~ log l([fn(')'»)) und the stretching factor G(f; D)

12
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suP{G'([il) : [1] E lll(D)}. ,According to Manning (1975) the topological entropy
h(j, D)' always exceeds G(/; D). We apply .this theory to a Hamiltonian system
with an orbit being homoclinic to a saddle-center. Close to the homoclinic orbit we
construct nontrivial knots implying positive entropy in the associated return map.

c. OLECH:

Global ~ymptotic stability and the Jacobian conjecture

G.H. Meisters and the author (1988) proved that the polynomial autono~ous sys­
tem on the plan is globally asymptotically sta.hle if the Jacobian mat~x of the
right-hand side is stable for each point. This. result constitutes a con~ation of
Markus-Yamabe conjecture (1960)' in the case n .=2 and polynomia},..vector field,
as well as a contribution to the real Jacobian conjecture. The latterstate~· that the
not vanishing of Jacobian .of a polynomial map impli~s injectivity. This and other
relations between O.D.E. and injectivity was discussed. In partic,ular the 'following
problem was mentioned ; Is the system x' = -x + H(x) + a globally asymptot­
ically stable for any constant vector a if H is homogeneous polynomial ;map and
the Jacobian matrix H'(x) is nilpotent. This is a special case of Maikus-Yamabe
conjecture and the positive.answer to this problem for H ofdegree three ~lllead to
the solution of the Jacobian conjecture (Keller, 1939), that the polynomiä.I map with
constant nonzero Jacobian is invertible; that is the inyerse map is also pqlynomial.

K. PALMER:

Shadowing orbits of differential equations

A new notion of shadowing. of a pseud<rorbit, an ~pproximate solution, of an au­
tonomous system of ordinary differential equations by an associated newly true orbit
is introduced. Theo a general shadowing theorem forfinite time, which guarantees
the existence of shadowing in ordiJ?afy differential equations and provides error
bounds for the· distance between the true and the pseudo-orbit in terms of com­
·ptitable quantities, is proved. Tbe use of this theorem in numerical computation of
orbits is illustrated on the Larenz equations~

H.O. PEITGEN :

Cellular automata, attractors and dynamical. systems

The aim of this paper is to develope tools for the global analysif? of ceIIular au­
tomata. We will relate cellular automata (CA) with several associated dynamical
systems, such as matrix substitution systems (MSS) and hierarchical iterated func­
tion systems (HIFS). In several wa~s the idea is to use methods and concepts from
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dynamical systems theory to discuss and understand problems of scaling and self­
similarity features of a large dass of CA which includes linear cellular automata
(LCA) in all dimensions and of all degrees. In particular we discuss the following
problems:

- What is the formal description of rescaling procedures ?
- Which are the classes of CA that are scaling ?

For those CA which are scaling we introduce the rescaled evolution set, which cap­
tures th~ global evolution of a CA. The next set of problems for which we pro.

answers 18 : '.
~ What are the geometrical invariants of rescaled evolution sets?
- How can one de8cribe and decipher the self-similarity features of the rescaled

evolution set ?
- What is the Hausdorff dimension of the rescaled evolution set ?

The paper is joined work with Fritz von Haeseler and Gencho Skordev from the
University of Bremen.

V.A. PLISS

A class of periodic systems with hyperbolic non'-wandering set

The system of differential equations

dx
jJ. dt = X(x) + J(t) (1)

is considered, x, )(, fERn, J.L > 0 is a small parameter, X E Gi(Rn), J(t) =
JCt - mw), where m is arbitrary integer and w > 0,] E C1([O, w]) and ](0) =I lew).
Let I/15M. Assumptions :

I. There exists a function v(x) with properties v E el(Rn), v(x) -+ +00 as
Ixl-+ 00 and ~X + I~IJL < 0 for lxi ~ r with some positive T.

Consider the family of autonomous systems

dx
dt = X(x) + /(r), (2)

where r E [0, w] is a parameter.
II. All systems (2) are systems of Morse-Smale type without periodie solutions.

Let fi(r)(i = 1, ... , k) be a solution of equation X(x) + f(r) == O. In accordance
with 11 the real parts of the eigenvalues ofaX(t~(T» are never zero. Denote by fkj(r)
those fie,) for which the matrix 8X~~(T)) has k eigenvalues with negative real parts,
k = 0, 1, ... ,n, j ==.1, ... ,,sk, 50+·· ,+Sn = K. Denote by W'(/i(r» and WU(fi('»)
the stahle and unstable manifolds of the rest point !i(') of the system (2).

111. li(O) f/-LR:: Uj~l W'(fkj(W» UWU(/kj(W),

n-l.flt

fi(W) f/- U U W.f(/kj(O»UWU(!kj(O», i = 1, ... ,K.
. k=lj=l
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IV. All intersections

are transversal.

Theorem. If assumptions I-IV are satisfied then there exists a J.Lo > 0 such that j{

Jl. :5 JJo then the system (1) is structurally stable.

•. V. REITMANN :

Introduction of ametrie tensor in Hausdorff dimension 'estimates of at-
tractors .

The Hausdorff dimension of a compact invariant set of dynamical sy~r~ms on Rie­
mannian manifolds is considered. Using a special singular value deco~po~ition for
the linear operators arising from the linearization o{ flows, upper bOÜnds for the
Hausdorff dimension of invari"~t sets are given. .

H. RUSSMANN

Integration in the presence of small divisors

We extend Kolmogorov's theorem on the preservation of quasi periodic moti9n under
small perturbations of the Hamiltonian to those cases in which the frequen~y vector
W = (WI' ... ,wn ) E Rn of the quasi periodic motion satisfies the condition

where < k, W >== kiWI + ... knwn , rkl ==< k, k > 1/2, and n ; [1, oc[~ ]0, oo[ is a non
decreasing continuous function with J~ log O(t)1i < 00. This condition is equivalent
to the condition formulated by A.D. Bruno for differential equations and mappings
holomorphic near a singular point.

R.eferences : A.D. Bruno, Local Methods in Nonlinear Differential Equations,
Springer Verlag

H. Rüssmann, On the frequencies of quasi periodic solutions of analytic nearly in­
tegrable Hamiltonian systems, Proc. Euler Intern. Math. Institute St. Petersburg,
Birkhäuser Verlag.

R. SCHAAF:

Bifurcation from singular solutions

Regular positive so)utions of a parameter dependent stationary diffusion problem
with a fast growing source term can approximate sing"ular solutions. More precisely
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we look at
(*)

where Bn is the unit ball in Rn and

n+2
f(u) = (1 + U)P + l.O.t., P > --2' n ;::: 3,

n-

J{u) = (1- u)-P + l.o.t., p> 0, n ~ 2,

J(u) = eU + l.o.t., n ~ 3,

f(u}/u ~ C > 0 for u > o.
Under (more or less) these ~sumptions a singular solution (..\00' uoo ) exists, whieh
under a transformation turns out to correspond to the unstable manifold of a hyper­
boHe stationary point of an autonomous ODE in 3 variables. This manifold attracts
solutions coming from the regular regime in fast time. Time estimates are possible
by exploiting a Lie group strueture of the problem in the limit u ~ 00. A more
refined asymptotic analysis shows that (*) has infinitely many solutions for ..\ = ..\00
which berome more and more unstable or else (>"00' uoo ) is approximated by stable
solutions monotically in A.

J. SCHEURLE

Discretization of autonomous equations and homoclinic orbits Uoint with
B. Fiedler)

One-step diseretizations of order pand step size t: of ordinary differential equations
;xl = f(..\, x} can be viewed as time-t maps of

x' = f(A.,x) + fPg(t,..\,!, x), x ERn, A E R,
t:

where 9 has period 1 in t/f. This is a rapidly forced nonautonomous system. ~
study the behaviour of a homoclinie orbit r, f = 0,..\ = 0 under discretizati~

Under generic assumptions, r turns out to break and the perturbed stable and
unstable invariant manifolds turn out to interseet transversally for small positive
t, which gives rise to chaotic behaviour. However the transversality effects can be
estimated from above to be exponentially small in c, if J 1S analytic. For example,
the length 1(c) of the parameter interval A for which the local invariant manifolds
have nonempty intersections can be estimnted by l(f} ~ Ce-21rTJ/f-, where C,l1 are
positive constants. The factor 1] is related to the minimal distance from the real
axis of the poles of r = f(t) in the complex time plane.

K. SCHNEIDER

Melnikov's techniques for singularly perturbed systems
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The existence of a transversal homoclinic orbit in a dynamical system implies the
existence of an invariant Cantor set on which the dynarnics is topologically equivalent
to the Bemoulli shift. Melnikov's method is an analytical tool to prove the existence
of transversal hornoclinie orbits for systems of the type (*) dx/dt = fex) + €g(x, t),
where € is sufficiently small. In order to be able to apply Melnikov's method we
need the knowledge of a homoc1.inic orbit "Y(t) of dx/dt = fex) and a solution 1/J(t)
of the system dy/dt = - f'(/(t))T y which is bounded on R (and =I 0). Additionally
we have to show that the Melnikov integral J~ 'l/J(t)Tg('"'f(t) , t + ta) dt has a simple
zero. If f is higher-dimensional these assumptions can be verified analytically only
in a few cases. In our talk we present problems which lead to singularly perturbed
systems of the type

(*·)dx/dt = fo(x, y) + fIt (x, y, t), fdy/dt = 9o(X, y) + €91 (x, y, t).

We show that by applying results from the theory of invariant manif~fts (**) can
be reduced to a lower order system (*). This approach permits the non~.~utonomous

perturbation tobe almost periodie and can be extended to systems with delays in
the fast subsystem. We present an example related to pattern format~on an'd pu't
same open problems (systems with singular homoclinic orbits).

G.R. SELL

Network .Dynamics and cardiac modeling

We study the dynamics of the pacemaker behaviour in the sino-atrial node of a
mamm~an heart. For each individual cell in the sinus node (i.e., the. pacemaker
node) we use the Noble model, which is a 14-dimensional system of ordinary dif-

- ferential equations representing the voltage and chemical reactions. For the fuH 2D
(ar 3D) network we allow the parameters in the individual reHs to vary with space,
and we introduce a "nearest-neighbor" diffusion for the valtage, with a diffusion
rate r > O. A calculation of the .bebavior of the sino-atrial node was performed on
tbe Connection Machine CM-5 and a video produced, both at the AHPCRC at the
University of Minnesota. This video suggests that the voltage u in" the sinus node
is nearIy homogeneous, Le., independent of spatial dependence. We introduce the
spatial average operatOr M where u = UM +uS , uM = Mu does not depend on space
and MuS = o. We then show that

lIu
s

(t)1I2~ e-
crt llu8112 + g:2' t ~ 0,

where C > ·0, Q > 0, and 11.11 denotes an L2-nonn over the sinus network. One then
has lIuS (t)1I 2 -:-+ 0, as r --+ 00. While lIuS (t)1I 2 is smaIi, the video shows a surprising
change with respect to time t.ln fact the largest values of uS(t) seems to occur at
those times t where OtUM (t) assumes its largest valueS. It would be tiice to develop
a theory which predicts this phenomenon. If one sets uS = 0 in the equations for
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the network dynamies of the sinus node, one ohtains the equations for an "averagefl

cell.' While ODe would like to have a rigorous proof that the single ·reH model of a
sinus cell does have astahle periodic orbit, the numerical evidence of this property
is convincing. We then see that period of the pacemaker node is (approximately)
equal to the period of the average ceH, provided r is large.

This is an ongoing research project, and the collaborators include D. Noble
(Oxford), R. Winslow (John Hopkins), A. Varglase (Minnesota), and M. Marlon
(Lyon).

A. 'VANDERBAUWHEDE

A general reduction result for periodic solutions near equilibria

In this talk we describe and discuss a general reduction principle for periodie solu­
tions near an equilihrium in autonomous systems. The result combines the normal
form approach \vith the Liapunov-Schmidt method, and is particularly useful when
the linearization at the equilibriurn has purely imaginary eigenvalues which are in
resonance or \vhich have nilpateneies. Also, the reduced problem keeps the par­
ticular structure (such as equivariance, reversibility, Hamiltonian structure, etc) of
the original system. For Hamiltonian systems the reduction result can be, roughly,
described· as follo\vs. Consider a Hamiltonian system, depending on a parameter
A, and such that the origin is an equilibrium for aH A. Given some Au' and same
To > 0, the problem is to describe all sroall T-periodic solutions for T near To and A
near Ao. The result says that such periodic solutions are in 1-1 relation to the small
T-periodic solutions of a reduced Hamiltonian system, which is Sl-equivariant and
which has as phase space the generalised eigenspace corresponding t~ the purely
imaginary eigenvalues which are in resonance with the period To. Moreover, the re­
duced Hamiltonian can be calculated by bringing the original one in normal form.
We also discuss an application to the Hamiltonian Hopf bifurcation.

B.O. WALTHER

On attractors of differential delay equations

Consider the equation

(1) x'(t) = -J.LX(t} + I(x(t - 1)))

(J1. ~ 0,1 Cl, 1(0) = 0 and x/ex) < 0 for x # 0) which models a system with one
steady state (x = 0), governed by delayed negative feedback. A solution is called
slowly oscillating (s.o.) if its zeros are spaced at clistances greater than the delay
(> 1).

Theorem. (Work in progress). Suppose J.L == 0 anel f'(x) < 0 for all x E R. Then
the set of initial data tp E C = C([-l, 0L R) so tlJat tlJe corresponding solution is
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s.o. on same unbounded interval [t<p, 00) is open-dense.

This proves an old conjecture (see e.g. a paper by Kaplan and Yorke in SIAlvl
J. Math. Anal. 6 (1975)) on the importance of s.o. solutions. The ph8$e curves
t ....... Xt E C (where Xt{s) = x(t + s) for t ~ 0, -1 ~ s ~ 0) of s.o. solutions belang
to the positively invariant set See of data tp f; 0 with at most one change of sign.

Theorem. Suppose J..I. ~ 0 and f' (x) < 0 for all x E R. Then the global attractor
A C "S oE the restricted semiflow on "S is either trivial (A = {O}») or Ei 2-dimensional
Lipschitz continuous graph in C which ishomeomorphic to a disk and bordered by
the orbit oE a s.o. periodic solution. Phase curves in A converge to 0 or to periodic
orbits BS t -+ ±oo. .

This applies, e.g. to Wright's equation r(t) = -ax(t - 1)l1 + x(t»).

Theorem. (Joint work with B. Lani-Wayda). There exist smooth -C1 .. functions
f : R ~ R,xf(x) <0 for x f; 0, so that A C "S contains chaotic"motioiffJ .

These C1-functions have Ioeal extrema, of course, and J..l. = 0 he~e~. Chaos is
caus~d by a transversal homoclinie point of a Poincare map P : Ir" -S "n ..... H
associated with a hyperbolie unstable s.o. periodie solution y. 'The proof makes use
of the following transversality eriterion (uTransversality by oscillation';). A veetor
X E His transversal to the loeal stable manifold w" eH of P at Ya (Le. X E 'H\Tcpw~

for cp E w") if and only if every nontrivial linear combination az' + bu.J : [0, 'po) --+ R
(z the solution of (1) generated by <p, w the solution of the variational ~uation

v'(t) = I'(z(t - 1»v(t - 1) generated by X) is s.o. on same unbounded: interval
[t4Ib' (0). .

W. WALTER

The simplicity axiom with applications

Following the principle "M8.ke i t simple", a counterexample due to G.W. F. Hegel
(from his thesis of 1801, Universität Iena)" and three examples were given.

I. A simple praof due to Ray Redheffer and the author is given of the following

Theorem. Let I : G -+ R U {+oo} (G C Rn open and convex) be lower semicon­
tinuous and IDf(x)1 :5 K in G. Then I/(x) - J(y)1 :5 Klx - Yl in G. Here

DJ(x)'= {p ERn: liminf f(y) - f(x) - p.(y - X) > -oo}
y-% Ix - vl 2

C {p E Rn : tim inf f(y) - f(x) - p.(y - X) .~ O} = f'(x),
!I-X Ix - yl2

(f'(x) is the ususl subgradient).

11. A simple proof is given of the following
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Theorem. Let A be a n x n matrix: and ß < RA, < Q for the eigenvalues oE A.
Then there exists a HjJbert norm 11.11 such that

eßt $ lIeAt tl 5 eQt for t ~ O.

In the case Q = - ß = 6, the norm ~s generated by < ., . >,

~.
111. Another approach to the maximum principle for second order ODEs is given,
hased on the following "

Theorem. Assume that p(x) > 0 a.e.. in J and u,pu' E ACloc(J). If u has a
"nontrivial-Iocal minimum in J, tben (pu')' > 0 on a set of positive measure in J.

The reasoning is different from the usual proof of the maximum principle.

Berichterstatter : J. Mawhin
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