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Combinatorial Convexity and Aigebraic Geometry .
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The conference was organized by G. Ewald (Bochum), P. Mcwlullen (Landon) and R. Stan­
ley (Cambridge, MA).

In 37 talks the current progress of the research wILich relates the fields of Comhinatorial
Convexity and Algebr':Üc Geometry was shown. One may say that this part. of mathematics
is very modern and is getting more and more attention. Not only weil known mathemati­
cians were present hut also many young mathematicians, which seems to he very hopeful
for future progress in this kind of mathematics.

The talks addressed many subjects out of the fields of Combinatorics and Algebraic Ge.
ometry. Many results in Aigebraic Geometry are achieved wi th the help of Combinatorics
but also some new results in Combinatorics and Numher Theory are achieved with the
help of Aigebraic Geometry.

Some of the addressed topics are: The Polytope Algebra, Counting Lattice points, The
Ehrhart polynomial, the Cd-Index. Polytopes related to singularitiesand deformations,
Chowgroups of toric varieties, The Picard group of toric varieties, Invariant Theory, h­
vectors, Matroids, Betti-numbers, and much more.

After the talks and especially in the evening, there were many fruitful (mathematical)
discussions.
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Klaus Altmann:

Deformation of affine toric varieties and ~I[inko\vsi stints ur convex polyhedra

Adeformation of an affine toric variety Y = SpecC[o-V n Zk+l] is called totic if the total
space together with the embedding of the special fibre Y are contained in the category of
totic varieties.
Nloreover, it is called homogeneous if the Kodaira-Spencer map maps the wh~le paramee
space into a homogeneous piece of T~.. . .

In this article we construct a one-one-correspondence bet\veen homogeneous toric defor­
mations on the one hand and certain decompositions of affine slices of the cone tJ into a
Minkowski surn on the other hand.·
Finally, we compute the Kodaira-Spencer map and provide some examples.

E.K. Babson:

A Hag vaxiety analog to oriented matroids

An (a) oriented matroid projection on [d] is a rank a oriented matroid on the set {l~ ... .d}.
An (at ... a r ) oriented matroid projection on [d] is a rank at oriented matroid each of whose
covectors is the basis set for an (a2 ... a r ) oriented matroid projection on (d]. These arise
from maps of pseudosphere arrangements if the support in (d1 of every nonzero basis has
order at least 1 + E(ai - 1).

~-\.. Barvinok:

Exponential valuations on convex lattice polytopes •
\Ve introduce a family of valuations defined by certain exponential integrals on convex
lattice polytopes. It turns out that such a valuation can be explicitly expressed in terms
of volumes of races and an additive measure on the supporting r.ones at the faces. "Ve
further use an analogue of ~~Fourier expansion·' for a valuation to compute the Ehrhart
polynomial and the number of integral points in a. polytope. In particula.r~ we show that.
the computation of an arbitrary fixed numer of the hip;hest cop.fficients of the Ehrhart
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polynoluial ("'cUl hc reduced in pseudopolynomial time to the computation of the volllmes
of faces. 'vVe also prove some identities for the coefficients of the Ehrhart polynomial.

Nlarge ßayer:

Subdivisions of polytopes and local h-vectors

A.ssociated \vith any polyhedral complex is the h vector, defined combinatorially by Stanley.
(The definition is motivated by fonnulas for intersection homology Betti numbers of the
bo~ndary complex of a rational convex polytope). We are interested in how the h-vector
her) of a polyhedral subdivision of a polytope relates to the h-vector h(P) of the polytope
it~elf. Stanley defined the local h-vector of a polytope relative to a sub'division. The local
h-vector of a face of a polytope measures the contribution of the subdivision of that face
to the difference h(.f) - h(P). A triangulation of a polytope P is shallow if each simplex
in the triangulation is contained in a face of P of dimension at most twice as large. A
shallow triangulation of a polytope has the same h-vector as the original polytope, and
thus the local h-vector of every face is O. We discuss how the Iocal h-"vectörs essentially
locate violations of shallowness. .~.

S.N. Bespamyatnykh

Constnlcting minimum spanning trees in ~~ and covering of the k-cube.

vVe establish a connection between the problem of finding the minimum...spanning trees in
?R~ and the covering of the (k - 1)-cube. The minimum spanning tree in'~~~ can be found
in O(2kkj'k_In(lg n)k-'1.1gIg n) time, where 'Yk-l is the minimum number',of simplices
to cover the (k - 1)-cube (the vertices of simplices are the vertices of.,the cube). The
minini~mspa~ning tree algorithm tlses the region approach of Yao A.C. ~d the minimum
value algorithm of Gabo\v H.N., Bentley J.L. and Tarjan R. E. -

Haiman ~v1. proved that (Tkl/(kl)!)l/kl ~ (Tk/k!)l/k where' Tk is the minimum number of
silnplices to triangulate the k-cube and k ~ 1, I ;::: 1. Scillee J.F. proposed the middle-cut
triangulation~ \vhich gives rs S; 13248. Hence TI. = O(pk k!) where p = (13248/40320)1/8 ~
0.870. It is clear that 'Yk S; Tk· "Ve propose the method of dimension reduction which gives
for instance. T120 ::; 0.145302548.10 192

. Hence '"'fit: = O(pkk!), where

= ;120 1;0 < (0.145302548. 10
192

) ih ~ 0.863258 < 0.864.
p 120 - 0.668950291 . 10199 -

Gahow H. N., Bentley J. L. and Tarjan R. E. diseovered an O(2kk!n(lg n)k-2 Ig Ig n)-time
and O(2k n)-space algorithm for finding the geometrie minimum spanning tree in ~~. We
improve the time bound by a factor O.8~4Ar and show how to reduce space to O(kn).
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L. J. Billera

Prociucts of ~IiIlors

We consider ~(Tn, n) C Rm.n, the Newton polytope of the produet of all minors of an mx n
matrix. By a result of Gel'fand, Kapranov and Zelevinsky, ~(Tn. n) == ~(tim-l x ~n-I ).
the secondary polytope of the product of an (m - 1)-simplex and (11 - 1)-simplex...\ result
of Stu~fels and myself shows this to be the fiber polytope J~ m _ I X ~"_ I P( u. b)dudb wherc

P(a,b) = {_Y' E R mxn I-Y 2:: 0, m x n matrix with row sums (;\, colwnn swns b}

This interpretation of L:(m, n) is used to obtain some infornlation about facets. This is
partially joint work with E. Babson.

.A. Björner

Orbit subspace arrangements and the complexity of some rlecision problems

Let W be a finite reflection group acting in Rn, and let !( he a. subspace obtained a~ the
intersection of some of the refiecting hyperplanes. Consider the orbit lrV(K). Based on
some evidence from the ~·type A" case we propose the optimistic conjectures that

(1) Rn \ U{w(K) : w E W} has torsion-free cohomology (same for c n \ U{w(K)}), ana
more strongly that

(2) sn-l n (U {w( K) : w E ltV}) has the homotopy type of a wedge of spheres (typically of
different dimension).

For ltV = Sn acting on Rn by permuting coordinates (the ~'type A" case) the orbit ar­
rangements ltV(K) are naturally indexed by nUInber partitions .x., n( i.e .. .\ = ('\l ~ ... ,'\p).
"\l ~ ... ~ Ap > 0, At + ... + '\p =: n). These conjectures have been verified for
,\ = (k, 1, ... ,1) in joint work with V. Welker, alld also for ..\ = (k, k .... , k). Kllown
results by Goresky and 1tlacPherson and Zie?;ler and Zivaljevic reduce these questions to
essentially combinatorial questions about certain lattices of set partitions.
Finally, we described an application of thc .\ == (k. 1. .... 1) orbit arrangements to a _­
tion in computational complexity, relatin~ the sum of Betti Illlnlbers of their comple.t
to the size of so-called linear decision trees (joint work \vith L. Lovasz).
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A. Borovik

Combinatorial Convcxity and Combinatorics of Fla.e; varieties

The talk will Oe devoted to sonle convexity-like strllctures on Coxetcr groups related to
\VP-Inatroid introduccd by Lw!. Gelfand and V.V. Serganova for study of combinatorics
of Hag varicties.

F. Brenti

Combinatorial properties of Betti numbers of some tone vaneties

Let P be a simplieial eonvex polytope. It is then weH known that one ean associate to P a
torie projeetive variety .Y"(P} and that the sequence of even dimensional Betti numbers of
.Y"(P} equals the h vector of P. In this talk we use this result to study, from a combinatorial
and enumerative point of view, (q-analogues of) these Betti numbers in the ease that P is
a Coxeter complex of type ..4n , B n a and D n . While for type ..4n these B.etti numbers are
known to eoineide with classical Eulerian numbers, and thus have.been exiensively studied
from a combinatorial point of view, 'only some results of a combiriatorial nature are known
for type B n , and little is known for type Dn . In this talk we show that .essentially all of the
classical results for Eulerian numbers have analogues for these other Betti numbers. Our
results generalize and unify previous results of Dolgachev, Lunts, Stembridge and Stanley,
and generalize the classical theory of Eulerian numbers and polynomials. As a by-product
of our combinatorial analysis we obtain a combinatorial proof of a simple relation between
these three types of Betti numbers and we are led to several conjectures, b9th of a geometrie
and combinatorial character. about them.

NI. Brion

Embeddings cf homogeneous spaees (some p;eneralizations cf toric varieties)

Spherieal varieties are a class of embeddings of homogeneous spaces; they are classified in
ternlS of ~'colored fans" (a combinatorial objeet, whieh extends the \vell-kno~notion of a
fan).

We stllcly morphisms between spherical varieties, by means of their combinatorial classifi­
cation, and of some .ideas of NIori theory.
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W. Bruns

On thc computation of a a-invariants

In our lectures we will mainly concentrate on computin~ the a-invarüults uf graded algebras
with straightening laws on upper semi-modular lattices. Let II be an upper selni-tnodular
lattice. vVe may construct a chain in rr u {SX)} as folIows: ~l = PI U ... U J1n are the
minimal elements of II, and inductively ~i+l = VI U ... U V.'f \vhere VI.' •. V, are the covers
of ~i, provided (i =/: 00. The construction stops after a. finite number m of steps. \'Ve call
P(II) = ~l, ••• , ~m the principal chain of IT. (It may of course happen that P(TI) = :G.)

Theorem 1. Let R be a monotonely graded ASL aver a ~eld k on an upper semimodular
lattice II with principal chain P(II) "= ~l,.· . ,~m. Set deg 'Xl = o. Then

a(R) = - L deg ~i.
i=l

The proof uses a standard incluetive seheme~ As a typical application' we will easily prove
a formula for the a-invariant of a determinantal ring.
NIy student ~L Barile has found the eonnection bet\veen the principal chain and Hibi ~s

fundamental faces:

Theorem 3 'Gnder the hypothesis of Theorem 1, the prineipal chain of II is the supremtun
of the fundamental faces of the order complex II (in the set of chains of 11 under its natural
parial order).

~vlark NlcConell

Polytopes~ Finite Projective Geunletry, and Reduction Theory for the SYlnplectic Group

In recent years. relations have elnerged between two areas: the cornbinatorics of geometrie
eonfigurations in projective spaccs. and locally synlmetric spaces (with thcir connections
to Lie groups~ number theory and algebraic geometry). Let P3(p) be projective t~
space over the field of p elements. \vith extra structure coming from a symplectie for~
~IacPherson and I define a set C of configurations in p:J(p), with a partial order coming
from inclusion. The order complex 6 of C has the homotopy type of ...1C/f, where _\ is
the symmetrie space for the symplectic ~()UP G = Sp(4. R) and r <; G is an arithmetic
subgroup. For instance, C can be used in principle to compl1te the interseetion cohonl01­
ogy of important algebraic varieties. The configurations in C are beautiful, and ~ is a
polyhcdral complex with interesting cells. The proof of our theorem mixcs techniques from
algebraic ,e;roup differential geometry, and polytope theory (e.~., we hau to shell sonle lar~e

trian~ulatedobjects explicitely).

6
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B.V. Dekster

The Jung Theorem for the spherical and the hyperbolic spaces

vVe extcnd thc .Jun~ Theorem to the spherieal and the hyperbolic n-spaces establishing a
lo\ver bounu of the diameter of a set there in terms of its circumradius R. In the hyperbolie
ease, the bünnel is the greatest. In the case of the sphere sn, it is also the greatest over
the segment R E (O~ arccos n+\)· For a greater R(~ 7r), we estimate the greatest lower
bound from above and from below. In the spherical case, the greatest lower bound over
the shorter segment R E (0, arceos n~\] was obtained be Molnar in 1957.

• 1. Dolgachev

Flips In Geometrie Invariant Theory And Toric Geometry

The notion of the quotient space ..:Y/ G in Geometrie Invariant Theory depe~4~on a ehoice of
a G-linearized line bundle L on )(. It turns out that, when \ve let L vMy i~; certain closed
convex cone, the different quotients are related by a sequence of some s~~cial birational
transformations which are called flips. We shall annourtce some general results concerning
these variations of quotients obtained in a joint work with Y. Hu. Then we shall give
some applications to the wall geometry of fans considered earlier by ~L Reid, and T. Oda,
H. Park

.A. Duval

The exterior face-ring and a combinatorial decomposition of simplicial complexes

vVe find a decomposition of simplicial complexes that implies and sharpens the Björner­
Kalai characterization of the f-vector and Betti ~u_mbers of a simplicial complex. The
proof uses the exterior face-ring of a simplicial complex~ the "exterior algebra version" of
the face-ring. \rVe also present several open problems on generalizations.

vV. Ebeling

Polytope complexes associated to singularities

Let f : (C n , 0) ~ (C.O) define an isolated hypersurface singularity. The intersection ma­
trix S with respect to a strongly distinguished basis of vanishing cycles of f is represented
hy ~ graph D. called a Coxeter-Dynkin diagram of f·. This is a graph with edges weighted

7
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by integers and with a numbering of the vertices ...~ closed path in D is called a monotone
cy~le if in traversing the path the numbering of the vertices is increasing (except for ~he

last step). \Ve denote by JA (D) the set of monotone cycles of D.
"Ve show that for many f there exist Coxeter-Dynkin diagrams D where only the weights
+ 1 or -1 occur and where the set J\A (D) has the structure of an n-dimensional abstract
simplicial Clr polytope complex. The Euler characteristic of this complex is equal to the
tracp. of the Coxeter transformation. In this way, to each such f there is associated a. dao:;s
of polytope eomplexes.
"Ve study combinatorial properties of this class of complexes. vVe dis~uss the following
conjecture: If f has at least one diagram D with ..-'A(D) a polytope complex then the
minimum over a11 diagrams D with J\.1(D) a polytope complex of the minimal embedding
dimension of JA(D) is equal to corank of f.

•NI. Eikelberg

Thc Picarcl group of a compaet tone variety

In our lecture we explain our generalization of our method for the calculation of the
Picard group we explained at the recent conference in 1989. Now our method applies to
all compact tone vaneties:
Let ..\'"~ be a compact toric variety given by a fan ~TNCDIV(_'Cr;) the group of all T­
invariant Cartier divisors, and SF(J.V; r:) the group of all 'support functions' as defined
by T. Oda. Using a special element of T:vCDIV(_YE) which always exists, we present a
formula for the calculation of the Picard group Pic ...YE of a compact variety:

This fonnula provides a formula for the calculation of TNCDIV ()(~) and 5 F(:.V; ~), as
\vell. We explain how to find the special element of TNC DI1/( _y~) mentioned above~ state
our theorem~ and give an outline of the proof. .
By an example we demonstrate our method of calculation. Furthcnnore \veshow what type
of results can be obtained using our formula. It is knowIl! that Pie ..Y"!: may not already
be determined by the combinatorial type of ~ hut dependend on metrical properties of ~
(cf. Dur lecture in 1989). Our results are also on the question what can be said about Pie
_y~ if only the combinatorial type uf ~ is known. •

G. Ewald

On mininlal resolutions of singularities in affine toric 3- ~·arieties

\Ve consider an affine torie 3-variety specC[ä n zn] := 4\17 =: -~~(t7) where f1 is ü lattice
cone generated by 3 linearly independent simple lattice vectors, ä its dual cone~ ~(a) t.he

8
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fan composcd of l7 and its faces. If 51, . ... Sq arc stellar subdivisions which turn E(a) into
a regular fan ~ then by

r; S., 5, .
~(a)+-- +--

! !
.\""~

yq lpt

_'t~(0')-+ -+

aresolution of singularitics is given (rPi torie morphisms, i = 1. .... q). \Ve assume the
resolution to be minimal in the sense that no <Pi is a blowdown. Then we can classify for
q :5 3 all pairs .\!:( 0'), .Y~ explicitely~

K.H. Fieseier

Chern classes for singular tone varieties .

In this talk \ve prove that for a torie variety .Y the Sehwartz-MaePerson Chern class
c.(.Y") = E C2iC.:Y") E H. dd(.y) is given by the formula . ·-.r-

i
:~-~

c.(H) =
ocx T-orbit

[0].

That result originatcs from joint work with G. Barthel and J.P. Brasselet~ hut as \ve
learnt later. on. there existed already an analogous computation by F. EWers. We show
that c. (..Y) In general does not eome from a cohomology dass (via the Poincare duali ty
homomorphism), hut over the rationals. it always lifts (non canonically) to·an intersection
homology class.

J. Fine

Intersection homology Betti ntunbers of al~ebraievarieties and convex polytopes

I wish to present geoll1etric prüofs for the ~Iayer-Vie.toris and the ICI equations for convex
polytapes.
The rest of the talk will be devoted to the following problems
a) verifying the author~sconjecture on the intersection homology Betti numbers of algebraic
varieties

. b) constructing interseetion homology for co~~ex polytopes, without reeourse to algebraic
vaneties
c:) defining generalised Betti n~unbers for convex polytopes~ whieh are to express the Bayer­
Dillera equations as duality for'a variant of intersection liomology.

9
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.T. Hibi

A lower bound theorem on Erhart polynomials cf convex polytopes

Let r be an integral polyhedral complex in Rn and suppose that the underlying space
_y =1 r I of r is horneomorphic to the cl-ball. Set "i(~Y", n) = #(TL\ n zn) for n == 1. 2. 3~ ....
It is knawn that iLY~ n) is a polynomial in n of degree Li \vith !.( .Y. 0) = 1. which is called
the Erhart polynomial of .-"\. \Ve define the sequence (~O, b\ ~ 0'2 . ... of integers by

(X)

(l-A)d+l[l+ Li(}(~n),\n] == LD1,\i.
n=1 i=O

Then Oi = 0 for every i > d. We say that o(X) = (0o, 0., . .. ,bJ) in the b-vector of x .•

Theorem 0.1 SUPPo3e that )( i3 '~star-shaped" with respect to same Q' E (_\ - D_\) n zn.
Then

(i) bo+51 + ... + ai ~ bd + bd-l + ... + bd-i,O::; Vi S; (d/2};
(ii) 61 ~ t5 j ,2 S; Vi< d.

R. Koelman

A criterion for the ideal of a projectively embedded toric surfacc
to be generated by quadries

\Ve show that the ideal of a projectively embedded toric surface is ,generated by quadric::.;
if and only if the polygon which correspoIld~ to the embeddin.g has more than 3 lat tice
points on its boundary. .

c. Lee

Convex polytopes, rigidity and stress

\Ve discuss a generalization of classical stress anti infinitesilnal ri~idity to higher-dimension
faces of simplicial complexes. In particular. we mention some relationship tri

the Stanley-Reisner ring
shellability
bistellar operations
the g-theorem for simplicial convex polytopes
the polytape algebra

10
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R. wlorelli

Volwnt"s or latticc polytopes~ Ehrhart polynomials, and Todd classes of tone varietics

Let Tl ;:::;: Zd he a latticc of rank d. We construct a sequence uf messures J.l~Ir, K = 0,1, ... ~ d
\vith the following properties:
1. I' ~~~ is defined ~n the collection of all n-dimensional rational polyhedal cones in ~VR =
:.V 0 Rand takes values in the spaee of rational funetions on thc grassmannian of (d-K+ 1)­
planes in lVR ·

2. IJ'::" is linear with respect to subdivisions of cones

N

J..t~fc (U1 U··· U UN) = L 1l~1r (ud
&=1

if the (Ti have disjoint interiors.
3. Il':" is natural \vith respect to isomorphisms of lattices.
4. 1l~1e are given by an explicit formula..
Theorem: 1. For a lattice polytope P ~ lvI l~ R = 1V v 0 R the Ehrnart polynomial
#(P; 71.) == Card(nP n iVl) == #o{P)"+ #dP)n + ... + #d(P)nd is given by.

#K(P) == L AtJ~~K(eF(p)V)vol(F)
F~P dim F=K

\vhcre ~F(P) is the angle eone of P along F.
2. For a completely arbitrary tone variety .Y'!l \vith fan .~,

O'E~ dirn O'=d-K

Peter )':Ic~lullen

Silnple polytopes

. The couditions characterizing the f-vectors of csimple polytopes were proposed by the
speaker in 1!)70. Arollnd 1979-1980~ the charaeterization was established. The sufficiency
of the conditions was proved by Billera and Lee, using a direct (and ingeniotls) construction.
However, the necessity~ proved by Stauley, employed deep results from algebraic geometry,
namely the hard Lefschetz theorem applied to the cohomology ring of the toric variety
associated with a rat"ional simple polytope. In this talk, a proof of the necessity entirely
\vithin convexity will be presented. However, there are striking' paralIeis with Stanley's
praof, and related results on the cohomology ring, which suggest deeper connexions that
remain to be explored.

11
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JarIleS Pomlnershcim

Todd classes of toric varieties and counting lattice points

"Ve give a formula for the Todd dass of a toric variety, which we ase to obtain results about
the Ehrhart polynomial of a convex lattice polytope. In particular. the codimension two
part of the Torld dass is expressed in terms of Dedekind SUlllS". This leads to an expression
for the coefficient of the degree n - 2 tenn in the Ehrhart polynomial of~ n-dimensional
polytope given in terms of Dedekind sums. Another consequence of the Todd dass formula
is new relations among Dedekind sums.

Lauren Rose •

•

Combinatorial conditions for homological dimension of modules of piecewise polynomials

For a polyhedral complex 6. embedded in R~ ~ we consider modules of piece\vise polynomial
functions defined on 6. \Ve describe combinatorial und topological conditions on ß for
these modules to have homological dimension equal to k ~ 0 ::; k ::; d. Ta do this, we make
use of a connection bet\veen these modules and the face ring of 6..

E. Shustin

Glueing of Newton polygons. construction of 3ingular curves und deformation
of singularities

\Ve solve completely the problem of classification of nada.! Illultisin~larities for real plane
al.gebraic curves and for deformation of real plane curve singular points. Our approach is
based on the following generalization of Viro's construction: any finite set of real polynomi­
als! whose Newton polygons form a regular subdivision of a convex polygon 6.. determines
areal polynomial with Newton polygon 6. and nodal multisin,~ularityequal to the disjoint
union of nadal m~ltisingularitiesof the initial polynomials.

Robert Simon

The Shellinp; Extension Conjecture

Ir ~ is Cl (pure) rank d shellable simplil:ial coulplex such t.hat 6. is not a uniform matroid
(6 = {F I IFI ~ d} ) does there exist a set B with IBI = tl and 6. u tJ a shellablc simpliciaJ
complex'! A proof of the ahove for 6 vertex deconlposable will be g;iven, and progress on
this question will be presentcd.

12
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Richaru Stauley

Fla~-f-vectorsan<! the cd-index

Thc fiag f-vector of Cl gradcd poset P counts the number uf chains of P whose elements
have specified ranks. If P is an Eulerian poset (e.g., the face-poset of a regular C\V­
sphere) then the cd-index <Jl p(c. d) is a noncommutative polynomial in c and d, due to
J. Fine. which efficiently eneodes the Hag f-vector. We conjecture that the cd-index of
a Cohen- NIaeaulay Euierian poset has nonnegative eoeffieients, in which ease this would
give all linear inequalities satisfied by Hag f-veetors of Cohen-~IacaulayEulerian posets.
We prove the eonjecture in several cases, including face-lattices of convex polytopes.

Bernd SturIllfels

Chow cohomology of toric varieties
-:Wt·o··

This leeture deals with ongoing joint work with W. Fulton. We study"-fhe Cbow homol­
o,gy groups Ak~Y" of k-dimensional algebraic cycles on a toric variety -,Y~';;modulo rational
equivalence.
If _Y' is cOluplete, then Ak_Yo is sho\vn to be dual to the operational Chow cohomology
group A k ~\, as defined. by Fulton and !vlaePherson. Our Inain result is a combinatorial
description. in terms of ivIinkowski weights, of the ring A.;' _t" = 9 k"4. k .."<.. The subring
generated by the Picard group Pic( ..Y) ~ ~41 X is isomorphie to NIcMullen's polytope
algebra II( P), provided ..Y is projective and P the associated convex Po~!tope.

David 'Vagner

Turic varieties assoeiated \vith finite distributive lattices

Associated with aposet P in the polytope P eonsisting of all order-reversing functions
f : P ~ R with 0 ::; f{p) ::; 1 for all pEP. Tbe tone variety V(D) associated with P
is also defined by the ideal (-Yq-Y'r - ..Xqur-'-"'qnr : q, rED) in k[_"(q : q E 1?L where D is
the distributive lattiee of do\vnsets of P. A subtorus of V(P) corresponds to a generous
sublattice L of D and its closure is isomorphie to V(L). For a downset q E D we determine
the structure of the associated graded ring of the Ioeal ring of V(D) along V([0, q]); as a
eonsequence we show that V(D) is nonsingular along V([0,q]) if and only if P\ q is a forest
of down\vard-branching trees. Order dual results also hold so that V(P) is a nonsingular
variety if and onIy if P is a disjoint union of chains. The technique seems likely to yield
similar information for all generollS sublat tiees L of D. Our hope is that these v~eties

will provide somc leverap;e in d~aling with purely order-theoretic questions.
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Uwe Wessels

Complete fans with ~ d + 2 .~enerators are strongly polytopal

The elose relation between the eonvex geometry of cone systems and the algebraic-geome­
tric theory of torte varieties has been used to solve geometrical probleIDs applying algebrruc
taols as weIl a..o.; to provide a geometrical treatment of algebraic objects. Interesting exam­
pIes of complex analytic spaces have been found this way, \Ve foeus on minimal examples
of compact~ non-projective toric varieties.
Regarding smooth toric varieties, Oda 1988 provided an ~xaInple of a 3-dimensional non­
projective compact torie variety with Picard number 4. Hs minimality has been established
by Kleinschmidt and Sturmfels~ 1989. The minimal kno\vn singular example is given
by a 3-dimensional fan with 6 I-cones. vVe establish its nünimalitYt asserting that any
non-simplicial eomplete fan with d + 2 generators is spanned by a pyramid~ whereas t~
simplicial case is settled by obvious modifications of the Kleinschmidt-Stunnfels proof. •

J .NI. vVills '.' .

~Iinkowski-type inequalities for the lattice point enumerator

Let K C Ed be an Q-symmetric convex body, L C Ed a lattice anu G( K. L) = card (KnLL
Further let

>"i(K~L) =min{.-\ > QI dimaff(.-\K n L) 2.: i} i = 1. ... ,d

11inkowski~ssuccessive minima. vVe sho\v

and, if K strict1y convex
G(I\-~ L.L~ 2r2j.-\.(K. Ln rl

- 1

For >"1 = 1 (i.e. intKnL = {Oll onegets iYlinkowski'sresults G(!(.L) S; 3d and G(K.L) S
2d+ I - 1. Further results in this direction are ~iven.

This is a joint paper with U. Betke and :\1. Henk.

David Yavin

A. chain complex for intersection homolo~y of toric varieties

\Ve present a topologieal description of a (compact) tori<: varicty .\" == .YE as a quotient
P x Tn / _, where P is a ceH conlplex dual tu the (complete) fan ~ which defines .\.

1-.1
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Tn = Rn /zn is thc n-torus~ and thc relation I"V collapses thc n-torus ovcr each point in a
k-facc F c P modulo thc (n - k )-torus uetennined by thc (n - k )-colle f7 E ~ dual to F.

Usin~ this near-product structure of _t. we show that in order to COlllpute the intersection
homology I H!(.Y:; YJ (for any perversity p and any loeal system ~), it suffices to consider
chains of the form cx t / ..... ~ where c E .sdP ~ and t is achain on the torus. vVe show that. after
suitable geometric interpretation. the bar complex W·.(zn;!C) can be used as a complex
on thc tOfUS .

.-\ndrei Zelevinsky

J\,Ia)cimal mino! polytopes.

For:2 ::; m ~ n the maximal minor polytope IIm,n is the Ne\vton polytope of the product
of all m x m-minors of an mx n matrix of indeterminates. The study of TIm,n was initiated
in a joint work with B. Sturmfels (to appear in "Advances in Math.~') and continued in
joint works with P. Santhanakrishnan (to appear in "Discrete Computational Geometry").
The polytopes TIm,n have several algebraic-geometric applications, including various sys­
tems of local coordinates on Grassmannians. This talk eoncentrates on cQInbinatonal and
geometrie properties of IT m .n . We discuss various ways of encoding vertices of II m . n , some
special facets, and a special class of simple vertices.

G.M. Zi~gle~

Constructing the Pernluto-Associahedron

\Ve construct a farnily of polytopes !{P .4.'1-1, the ~'Permuto-Associahedra". Here!{P .4.'1-1
is an (n - 1 )-dimensionaJ polytope, whose vertices correspond to the complete bracketings
of permutations of {I, 2, ... , 11.}, \vith a natural notion of adjacency. This·~solves a problem
of ivLNI. I(apranov, \vho had defined K PA.n - 1 as a combinatorial object and showed that
i t corresponds to a ceIlular ball.

Dur construction combines the construction of the associahedron as a special '~secondary

polytope~' with a compatible action of the permutation group. It can be generalizerl to
yield ~'Coxeter- associahedra~' for the signed permutation groups B n and D n . The proofs
yield integral coordinates. with all vertices on a sphere, and include complete descriptions
of the facei-defining inequalitics.

This is joint work with \:~ictor Reiner (Nlinneapolis).

Derichterstatter: R.J. Kuelnlan
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