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The conference was organized by G. Ewald (Bochum), P. McMullen (Londonj and R. Stan-
ley (Cambridge, MA).

In 37 talks the current progress of the research which relates the fields of Combinatorial
Convexity and Algebraic Geometry was shown. One may say that this part.of mathematics
is very modern and is getting more and more attention. Not only well known mathemati-
cians were present but also many young mathematicians, which seems to be very hopeful
for future progress in this kind of mathematics.

The talks addressed many subjects out of the fields of Combinatorics and Algebraic Ge-
ometry. Many results in Algebraic Geometry are achieved with the help of Combinatorics
but also some new results in Combinatorics and Number Theory are achieved with the
help of Algebraic Geometry.

Some of the addressed topics are: The Polytope Algebra, Counting Lattice points, The
Ehrhart polynomial, the Cd-Index. Polytopes related to singularities and deformations,
Chowgroups of toric varieties, The Picard group of toric varieties, Invariant Theory, h-
vectors, Matroids, Betti-numbers, and much more.

After the talks and especially in the evening, there were many fruitful (mathematical)
discussions.
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Klaus Altmann:

Deformation of affine toric varieties and Minkowsi sums of convex polyhedra

A deformation of an affine toric variety ¥ = SpecC[6Y N Z**!] is called toric if the total
space together with the embedding of the special fibre ¥ are contained in the category of
toric varieties.

Moreover, it is called homogeneous if the Kodaira-Spencer map mdpb the whole parame‘
space into a homogeneous piece of T}

In this article we construct a one-one-correspondence between homogeneous toric defor-
mations on the one hand and certain decompositions of affine slices of the cone & into a
Minkowski sum on the other hand.-

Finally, we compute the Kodaira-Spencer map and provide some examples.

E.K. Babson:

A flag variety analog to oriented matroids

An (a) oriented matroid projection on [d] is a rank a oriented matroid on the set {1,.... d}.
An (@, ...a,) oriented matroid projection on [d] is a rank a, oriented matroid each of whose
covectors is the basis set for an (a; ... a,) oriented matroid projection on [d]. These arise
from maps of pseudosphere arrangements if the support in (d] of every nonzero basis has
order at least 1 + £(a; — 1).

A. Barvinok: . .

Exponential valuations on convex lattice polytopes

We introduce a family of valuations defined by certain exponential integrals on convex
lattice polytopes. It turns out that such a valuation can be explicitly expressed in terms
of volumes of faces and an additive measure on the supporting cones at the faces. We
further use an analogue of “Fourier expansion” for a valuation to compute the Ehrhart
polynomial and the number of integral points in a polytope. In particular, we show that
the computation of an arbitrary fixed numer of the highest coefficients of the Ehrhart
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polynomial can be reduced in pseudopolynomial time to the computation of the volumes
of faces. We also prove some identities for the coefficients of the Ehrhart polynomial.

Marge Bayer:

Subdivisions of polytopes and local h-vectors

Associated with any polyhedral complex is the & vector, defined combinatorially by Stanley.
(The definition is motivated by formulas for intersection homology Betti numbers of the
boundary complex of a rational convex polytope). We are interested in how the A-vector
h(T) of a polyhedral subdivision of a polytope relates to the h-vector h(P) of the polytope
itself. Stanley defined the local h-vector of a polytope relative to a subdivision. The local
h-vector of a face of a polytope measures the contribution of the subdivision of that face
to the difference A(I') — 2(P). A triangulation of a polytope P is shallow if each simplex
in the triangulation is contained in a face of P of dimension at most twice as large. A
shallow triangulation of a polytope has the same h-vector as the original polytope, and
thus the local h-vector of every face is 0. We discuss how the local h-Véctors essentially
locate violations of shallowness. B

S.N. Bespamyatnykh

Constructing minimum spanning trees in % and covering of the k-cube.

We establish a connection between the problem of finding the minimum spanning trees in
R4, and the covering of the (k —1)-cube. The minimum spanning tree in:R¥, can be found
in O(2%kvx_in(lg n)¥~%lglg n) time, where vk—, is the minimum number of simplices
to cover the (k — 1)-cube (the vertices of simplices are the vertices of the cube). The
minimum spanning tree algorithm uses the region approach of Yao A.C. and the minimum
value algorithm of Gabow H.N., Bentley J.L. and Tarjan R. E. )

Haiman M. proved that (rxi/(kD)1)!/* < (7 /k1)'/* where 74 is the minimum number of
simplices to triangulate the k-cube and k > 1, { > 1. Sallee J.F. proposed the middle-cut
triangulation, which gives ry < 13248. Hence 7, = O(pFk!) where p = (13248/40320)!/8 ~
0.870. It is clear that yx < 7. We propose the method of dimension reduction which gives
for instance. ryzo < 0.145302548 - 10'92. Hence vx = O(p*k!), where

120 T8 < (0.145302548 . 10192

Ity
=2 —_— ~ 0. < 0.864.
P 0.668950201 - 10199) 0863258 < 0.864

12i
Gabow H. N., Bentley J. L. and Tarjan R. E. discovered an O(2*k!n(lg n)*~2lg lg n)-time
and O(2*n)-space algorithm for finding the geometric minimum spanning tree in RE,. We

improve the time bound by a factor 0‘8:.} -~ and show how to reduce space to O(kn).
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L. J. Billera

Products of Minors

We consider £(m,n) C R"‘"“, the Newton polytope of the product of all minors of an mx n
matrix. By a result of Gel'fand, Kapranov and Zelevinsky, S{m.n) = S(Am-i X Ap_y).
the secondary polytope of the product of an (m — 1)-simplex and (n — 1)-simplex. A resuit
of Sturmfels and myself shows this to be the fiber polytope j;\'n_‘ xa,_, Pla.b)dadb where
P(a,b) = {X e R™*" | X >0, m x n matrix with row sums a, column sums b}

This interpretation of Y _(m,n) is used to obtain some information about facets. This is
partially joint work with E. Babson. .

A. Bjérner

Orbit subspace arrangements and the complexity of some decision problems

Let W be a finite reflection group acting in R", and let K be a subspace obtained as the
intersection of some of the reflecting hyperplanes. Consider the orbit W(K). Based on
some evidence from the “type A” case we propose the optimistic conjectures that

(1) R"\ U{w(K) : w € W} has torsion-free cohomology (same for C™ \ U{w([\)}) and
more strongly that

(2) S 'NU{w(K): w € W}) has the homotopy type of a wedge of spheres (typically of
different dimension).

For W = S, acting on R" by permuting coordinates {the “type A” case) the orbit ar-
rangements W(A') are naturally indexed by number partitions A, n(i.e.. X = (Ay,..., ).
Ay 2 - 2 A, >0, Ay +...+ A\, = n). These conjectures have been verified for
A = (k,1,...,1) in joint work with V. Welker, and also for A = (k,k...., k). Known
results by Goresky and MacPherson and Ziegler and Zivaljevic reduce these questions to
essentially combinatorial questions about certain lattices of set partitions.

Finally, we described an application of the N\ = (k.1...., 1) orbit arrangements to a -
tion in computational complexity, relating the sum of Betti numbers of their comple‘
to the size of so-called linear decision trees (joint work with L. Lovasz).
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A. Borovik

Combinatorial Convexity and Combinatorics of Flag varieties

The talk will be devoted to some convexity-like structures on Coxeter groups related to
WP-matroid introduced by .M. Gelfand and V.V. Serganova for study of combinatorics
of flag varieties.

F. Brenti

Combinatorial properties of Betti numbers of some toric varieties

Let P be a simplicial convex polytope. It is then well known that one can associate to P a
toric projective variety .X(P) and that the sequence of even dimensional Betti numbers of
X(P) equals the h vector of P. In this talk we use this result to study, from a combinatorial
and enumerative point of view, (g-analogues of) these Betti numbers in the case that P is
a Coxeter complex of tvpe 4,, B, a and D,. While for type A, these Betti numbers are
known to coincide with classical Eulerian numbers, and thus have.been extensively studied
from a combinatorial point of view, only some results of a combiratorial nature are known
for type B, and little is known for type D,. In this talk we show that -essentially all of the
classical results for Eulerian numbers have analogues for these other Betti numbers. Qur
results generalize and unify previous results of Dolgachev, Lunts, Stembridge and Stanley,
and generalize the classical theory of Eulerian numbers and polynomials. As a by-product
of our combinatorial analysis we obtain a combinatorial proof of a simple relation between
these three types of Betti numbers and we are led to several conjectures, both of a geometric
and combinatorial character. about them.

M. Brion . _ e

Embeddings of homogeneous spaces (some generalizations of toric varieties)

Spherical varieties are a class of embeddings of homogeneous spaces; they are classified in
terms of “colored fans” (a combinatorial object, which extends the well-known notion of a
fan). .

We study morphisms between spherical varieties, by means of their combinatorial classifi-
cation, and of some ideas of Mori theory.
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W. Bruns

On the computation of a a-invariants

In our lectures we will mainly concentrate on computing the a-invariants of graded algebras
with straightening laws on upper semi-modular lattices. Let Tl be an upper semi-modular
lattice. We may construct a chain in I U {0} as follows: & = u, U...U g, are the
minimal elements of II, and inductively ;4 = v, U... U v, where v,....v, are the covers
of £;, provided £; # o0. The construction stops after a finite number m of steps. We call
P(I) = &,,...,&m the principal chain of II. (It may of course happen that P(II) =

Theorem 1. Let R be a monotonely graded ASL over a field & on an upper semimodular
lattice II with principal chain P(IT) = &;,...,£,,. Set deg > = 0. Then

a(R) = - i deg ¢&;.

The proof uses a standard inductive scheme. As a typical application we will easily prove
a formula for the a-invariant of a determinantal ring.

My student M. Barile has found the connection between the prmcxpal chain and Hibi's
fundamental faces:

Theorem 3 Under the hypothesis of Theorem 1, the principal chain of II is the sﬁpremum
of the fundamental faces of the order complex II (in the set of chains of IT under its natural
parial order).

Mark McConell

Polytopes, Finite Projective Geometry, and Reduction Theory for the Symplectic Group

In recent years. relations have emerged between two areas: the combinatorics of geometric
configurations in projective spaces. and locally symmetric spaces (with their connections

to Lie groups, number theory and algebraic geometry). Let P3(p) be projective t:. _

space over the field of p elements. with extra structure coming from a symplectic for
MacPherson and I define a set C of configurations in P*(p), with a partial order coming
from inclusion. The order complex A of C has the homotopy type of X/T, where X is
the symmetric space for the symplectic group G = Sp(4.R) and I' C G is an arithmetic
subgroup. For instance, C can be used in principle to compute the intersection cohomol-
ogy of important algebraic varieties. The configurations in C are beautiful, and A is a
polyhedral complex with interesting cells. The proof of our theorem mixes techniques from
algebraic group differential geometry, and polytope theory (e.g., we had to shell some large
triangulated objects explicitely).
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B.V. Dekster

The Jung Theorem for the spherical and the hyperbolic spaces

We extend the Jung Theorem to the spherical and the hyperbolic n-spaces establishing a
lower bound of the diameter of a set there in terms of its circumradius R. In the hyperbolic
case, the bound is the greatest. In the case of the sphere S”, it is also the greatest over
the segment R € [O,a.rccos"'—_‘_'l . For a greater R(< =), we estimate the greatest lower
bound from above and from below. In the spherical case, the greatest lower bound over
the shorter segment R € [0, a.rccosﬁ';] was obtained be Molnar in 1957.

I. Dolgachev

Flips In Geometric Invariant Theory And Toric Geometry

The notion of the quotient space X/G in Geometric Invariant Theory depends on a choice of
a G-linearized line bundle L on X. It turns out that, when we let L vary iﬁéé certain closed
convex cone, the different quotients are related by a sequence of some special birational
transformations which are called flips. We shall annourice some general results concerning
these variations of quotients obtained in a joint work with Y. Hu. Then we shall give

some applications to the wall geometry of fans considered earlier by M. Reid, and T. Oda,
H. Park ) :

A. Duval

The exterior face-ring and a combinatorial decomposition of simplicial complexes

We find a decomposition of simplicial complexes that implies and sharpens the Bjorner-
Kalai characterization of the f-vector and Betti numbers of a simplicial complex. The
proof uses the exterior face-ring of a simplicial complex, the “exterior algebra version” of
the face-ring. We also present several open problems on generalizations.

W. Ebeling

Polytope complexes associated to singularities

Let f:(C",0) — (C.0) define an isolated hypersurface singularity. The intersection ma-
trix S with respect to a strongly distinguished basis of vanishing cycles of f is represented
by a graph D. called a Coxeter-Dynkin diagram of f. This is a graph with edges weighted
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| . by integers and with a numbering of the vertices. A closed path in D is called a monotone
; cycle if in traversing the path the numbering of the vertices is increasing (except for the
| last step). We denote by M(D) the set of monotone cycles of D.

We show that for many f there exist Coxeter-Dynkin diagrams D where only the weights
+1 or =1 occur and where the set M(D) has the structure of an n-dimensional abstract
simplicial or polytope complex. The Euler characteristic of this complex is equal to the
trace of the Coxeter transformation. In this way, to each such f there is associated a class
of polytope complexes.

We study combinatorial properties of this class of complexes. We discuss the following
conjecture: If f has at least one diagram D with M(D) a polvtope complex then the

minimum over ail diagrams D with M(D) a polytope complex of the minimal embedding
dimension of M(D) is equal to corank of f.

i | [
M. Eikelberg

The Picard group of a compact toric variety

In our lecture we explain our generalization of our method for the calculation of the
Picard group we explained at the recent conference in 1989. Now our method applies to
all compact toric varieties:

Let Xr be a compact toric variety given bv a fan STVCDIV( Xsg) the group of all T-
invariant Cartier divisors, and SF(N;X) the group of all ’support functions’ as defined
by T. Oda. Using a special element of TyCDIV(Xs) which always exists, we present a
formula for the calculation of the Picard group Pic Xg of a compact variety:

PicXy = Z"~4~dimg 0y AD(a)

This formula provides a formula for the calculation of TvCDIV(Xs) and SF(N; <), as
well. We explain how to find the special element of Ty C DIV(Xs ) mentioned above state
our theorem, and give an outline of the proof.

| By an e*caxnple we demonstrate our method of calculation. Furthermore we show what type
of results can be obtained using our formula. It is known, that Pic Xg may not already
be determined by the combinatorial type of € but dependend on metrical properties of ©
(cf. our lecture in 1989). Our results are also on the question what can be said about Pic
X¢ if only the combinatorial type of € is known.

G. Ewald

On minimal resolutions of singularities in affine toric 3-varieties

We consider an affine toric 3-variety specC[7 N 2"| = X; =: Xy, where o is a lattice
cone generated by 3 linearly independent simple lattice vectors, 7 its dual cone. £(g) the
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fan composed of 7 and its faces. If Sy,.... S, are stellar subdivisions which turn ¥(o) into
a regular fan T then by

b 05—1- .- QS—‘ . E(a)
L !
Xe 3 2y,
a resolution of singularities is given (@; toric morphisms, i = 1..... q). We assume the

resolution to be minimal in the sense that no ¢; is a blowdown. Then we can classify for
g < 3 all pairs Xg(,), Xt explicitely:

K.H. Fieseler

Chern classes for singular toric varieties .

In this talk we prove that for a toric variety X the Schwartz-MacPerson Chern class
c(X) = Lea(X) € H.4(X) is given by the formula N

c(H)= 3 (0]

OCX T-orbit

That result originates from joint work with G. Barthel and J.P. Brasselet; but as we
learnt later on. there existed already an analogous computation by F. Ehlers. We show
that ¢.(X) in general does not come from a cohomology class (via the Poincaré duality
homomorphism), but over the rationals. it always lifts (non canonically) to-an intersection
homology class.

J. Fine =

Intersection homology Betti numbers of algebraic varieties and convex polytopes

[ wish to present geometric proofs for the Mayer-Vietoris and the ICI equations for convex
polytopes.

The rest of the talk will be devoted to the following problems

a) verifying the a,uthor s conjecture on the mtersectlon homology Betti numbers of algebraic

_varieties

b) constructing intersection homology for convex polytopes, without recourse to algebraic
varieties

c) defining generalised Betti numbers for convex polytopes, which are to express the Bayer-
Billera equations as duality for a variant of intersection LHomology.

o®




T. Hibi

A lower bound theorem on Erhart polynomials of convex polytopes

Let T be an integral polyhedral complex in R" and suppose that the underlying space
X =|T | of T is homeomorphic to the d-ball. Set i(.X,n) = #(n.XYNZ") forn =1,2.3,....
It is known that i(X,n) is a polynomial in n of degree d with {(X.0) = 1. which is called
the Erhart polynomial of X. We define the sequence do,y,02.. .. of integers by

-0+ i H(X.n)Am] = \i N

n=1 =0

Then §; = 0 for every i > d. We say that 8§(X) = (60,61,-..,04) in the é-vector of X. -

Theorem 0.1 Suppose that X is “star- shaped" with respect to some a € (X —0X)N2Z".
Then

(i) b0+ 81+ + 8 S ba+ a1+ +8a-i,0 < Vi < [d/2];
(i) 6 < 6:,2 < Vi < d.

R. Koelman

A criterion for the ideal of a pro;ectnelv embedded toric surface
to be generated by quadrics

We show that the ideal of a projectively embedded toric surface is generated by quadrics
if and only if the polygon whlch corresponds to the embedding has more than 3 lattice
points on its boundary.

C. Lee

Convex polytopes, rigidity and stress . -

We discuss a generalization of classical stress and infinitesimal rigidity to higher-dimension
faces of simplicial complexes. In particular, we mention some relationship to
the Stanley-Reisner ring
shellability
bistellar operations
the g-theorem for simplicial convex pol\ topes
the polytope algebra
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R. Morelli

Volumes of lattice polytopes, Ehrhart polynomials, and Todd classes of toric varieties

Let n = Z* be a lattice of rank d. We construct a sequence of messures p‘,f" K =0,1.....d
with the following properties: _
1. l‘%* is defined on the collection of all n-dimensional rational polyhedal cones in Np =
N @ R and takes values in the space of rational functions on the grassmannian of (d-K+1)-
planes in Ng.

2. p',g“ is linear with respect to subdivisions of cones

N
pRMOIU-Uay) =Y pld (o)
=1

if the o; have disjoint interiors.
3. ;t',f-" is natural with respect to isomorphisms of lattices.

4, y%‘ are given by an explicit formula.
Theorem: 1. For a lattice polytope P C M ® R = NV ® R the Ehrhart polynomial

#(P:n) = Card(nPN M) = #o(P)+ #1(P)n + --- + #4(P)n? is given by.

#a(P)= Y. M (Or(P)Y wol(F)
FCP dim F=K

where @ p(P) is the angle cone of P along F.
2. For a completely arbitrary toric variety X with fan'A,

Tde =(Xa)= Y s (Vo).
. €A dimo=d—-R . .

Peter McMullen

Simple polytopes

" The conditions characterizing the f-vectors of simple polytopes were proposed by the

speaker in 1970. Around 1979-1980, the characterization was established. The sufficiency
of the conditions was proved by Billera and Lee, using a direct (and ingenious) construction.
However, the necessity, proved by Stanley, employed deep results from algebraic geometry,
namely the hard Lefschetz theorem applied to the cohomology ring of the toric variety
associated with a rational simple polytope. In this talk, a proof of the necessity entirely
within convexity will be presented. However, there are striking parallels with Stanley’s
proof, and related results on the cohomology ring, which suggest deeper connexions that
remain to be explored.
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James Pommersheim

Todd classes of toric varieties and counting lattice points

We give a formula for the Todd class of a toric variety, which we use to obtain results about
the Ehrhart polynomial of a convex lattice polytope. In particular. the codimension two
part of the Todd class is expressed in terms of Dedekind sums. This leads to an expression
for the coefficient of the degree n — 2 term in the Ehrhart polynomial of an n-dimensional
polytope given in terms of Dedekind sums. Another consequence of the Todd class formula
is new relations among Dedekind sums.

Lauren Rose .

Combinatorial conditions for homological dimension of modules of piecewise polynomials -

For a polyhedral complex A embedded in R?, we consider modules of piecewise polynomial
functions defined on A. We describe combinatorial und topological conditions on A for
these modules to have homological dimension equal to k., 0 < k < d. To do this, we make
use of a connection between these modules and the face ring of A.

E. Shustin

Glueing of Newton polygons. construction of singular curves and deformation
of singularities

We solve completely the problem of classification of nodal multisingularities for real plane
algebraic curves and for deformation of real plane curve singular points. Our approach is
based on the following generalization of Viro’s construction: any finite set of real polynomi- -
als, whose Newton polygons form a regular subdivision of a convex polygon A. determines
a real polynomial with Newton polygon A and nodal multisingularity equal to the disjoint
union of nodal multisingularities of the initial polynomials. . A

Robert Simon

The Shelling Extension Conjecture

If A is a (pure) rank d shellable simplicial complex such that A is not a uniform matroid
(A = {F||F| £ d}) does there exist a set B with |B| = d and AU B a shellable simplicial
complex? A proof of the above for A vertex decomposable will be given, and progress on
this question will be presented.
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Richard Stanley

Flag. f-vectors and the cd-index

The flag f-vector of a graded poset P counts the number of chains of P whose elements
have specified ranks. [f P is an Eulerian poset (e.g., the face-poset of a regular CW-
sphere) then the cd-index ®,(c.d) is a noncommutative polynomial in ¢ and d, due to
J. Fine, which efficiently encodes the flag f-vector. We conjecture that the cd-index of
a Cohen- Macaulay Eulerian poset has nonnegative coefficients, in which case this would
give all linear inequalities satisfied by flag f-vectors of Cohen-Macaulay Eulerian posets.
We prove the conjecture in several cases, including face-lattices of convex polytopes.

Bernd Sturmfels

Chow cohomology of toric varieties

This lecture deals with ongoing joint work with W. Fulton. We study;ﬁ'le Chow homol-

ogy groups A.X of k-dimensional algebraic cycles on a toric variety X "modulo rational
equivalence.

X is complete, then AxX is shown to 'be dual to the operational Chow cohomology

group 4%X, as defined by Fulton and MacPherson. Qur main result is a combinatorial
description. in terms of Minkowski weights, of the ring 4*X = @;4*X. The subring
generated by the Picard group Pic(X) = A'X is isomorphic to McMullen’s polytope
algebra II( P), provided .X is projective and P the associated convex polytope.

David Wagner

Toric varieties associated with finite distributive lattices

Associated with a poset P in the polytope P consisting of all order-reversing functions
f: P — Rwith O < f(p) < 1forall pe P. The toric variety V(D) associated with P
is also defined by the ideal (X,.X, — XqurX¢nr : ¢,r € D) in k{X, : ¢ € D], where D is
the distributive lattice of downsets of P. A subtorus of V(P) corresponds to a generous
sublattice L of D and its closure is isomorphic to V(L). For a downset g € D we determine
the structure of the associated graded ring of the local ring of V(D) along V ([0, q]); as a
consequence we show that V(D) is nonsingular along V([0, ¢]) if and only if P\ q is a forest
of downward-branching trees. Order dual results also hold so that V(P) is a nonsingular
variety if and only if P is a disjoint union of chains. The technique seems likely to yield
similar information for all generous sublattices L of D. QOur hope is that these varieties -
will provide some leverage in dealing with purely order-theoretic questions.

13
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Uwe Wessels

Complete fans with < d + 2 generators are strongly polytopal

The close relation between the convex geometry of cone systems and the algebraic-geome-
tric theory of toric varieties has been used to solve geometrical problemns applying algebraic
tools as well as to provide a geometrical treatment of algebraic objects. Interesting exam-
ples of complex analytic spaces have been found this way. We focus on minimal examples
of compact, non-projective toric varieties.

Regarding smooth toric varieties, Oda 1988 provided an example of a 3-dimensional non-
projective compact toric variety with Picard number 4. Its minimality has been established
by Kleinschmidt and Sturmfels, 1989. The minimal known singular example is given
by a 3-dimensional fan with 6 1-cones. We establish its minimality, asserting that any
non-simplicial complete fan with d + 2 generators is spanned by a pyramid, whereas Ll"
simplicial case is settled by obvious modifications of the Kleinschmidt-Sturmfels proof.

J. M. Wills-. -

Minkowski-type inequalities for the lattice point enumerator

Let A C E? be an 0-symmetric convex body, L C E¢ alattice and G(K. L) = card (AN L).
Further let

Mi(R,L) = min{A > 0| dimaff(AK NL)>:} i=1.....d
Minkowski’s successive minima. We show
G(K.L) < [2/\(K.L)+1]*

and, if K strictly convex

G(K.LYy< 2[2/A(K.L)]* -1
For Ay =1 (i.e. intANL = {0}) one gets Minkowski's results G(K.L) < 3% and G(A. L) <

24+1 _ 1. Further results in this direction are given.
This is a joint paper with U. Betke and M. Henk. ' R
David Yavin

A chain complex for intersection homology of toric varieties

We present a topological description of a (compact) toric variety X = Xg as a quotient
P x T"/., where P is a cell complex dual to the (complete) fan © which defines X.

14
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T™ = R"/z~ is the n-torus, and the relation ~ collapses the n-torus over cach point in a
k-face F C P modulo the (n — k)-torus determined by the (n — k)-cone o € T dual to F.

Using this near-product structure of X. we show that in order to compute the intersection
homology THE(.X; V) (for any perversity p and any local system V), it suffices to consider
chains of the form c¢xt/., where ¢ € sdP, and t is a chain on the torns. We show that, after
suitable geometric interpretation, the bar complex W,(Z"; V) can be used as a complex
on the torus.

Andrei Zelevinsky

‘, Maximal minor polytopes

For 2 < m < n the maximal minor polytope I, , is the Newton polytope of the product

A of all m x m-minors of an m x n matrix of indeterminates. The study of IIm,» was initiated
in a joint work with B. Sturmfels (to appear in “Advances in Math.”) and continued in :
joint works with P. Santhanakrishnan (to appear in “Discrete Computational Geometry”). i
The polytopes II;n,» have several algebraic-geometric applications, including various sys- 1
temns of local coordinates on Grassmannians. This talk concentrates on combinatorial and :
geometric properties of Il n. We discuss various ways of encoding vertices of I, ., some
special facets, and a special class of simple vertices.

G.M. Ziegler

Constructing the Permuto- Associahedron

We construct a family of polytopes KP4, _,, the “Permuto- Associahedra”. Here KPA,_,
is an (n — 1)-dimensional polytope, whose vertices correspond to the complete bracketings
of permutations of {1.2,...,n}, with a natural notion of adjacency. Thissolves a problem

. of M.M. Kapranov, who had defined KPA,_, as a combinatorial object and showed that
it corresponds to a cellular ball.

Our construction combines the construction of the associahedron as a special “secondary

R polytope” with a compatible action of the permutation group. It can be generalized to
a vield “Coxeter- associahedra” for the signed permutation groups B, and D,. The proofs
yield integral coordinates. with all vertices on a sphere, and include complete descriptions

of the facet-defining inequalities.

This is joint work with Victor Reiner (Minneapolis).

Berichterstatter: R.J. Koelman
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