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This conference, under the direction of Wulf-Dieter Geyer (Erlangen) and: Moshe

J arden (Tel Aviv) \vas the second one on this subject held 'in Oberwolfach.

As in the first conference survey.lectures were giyen on arecent central

result in Field Arithmetic. This time it was the theorem of Fried and Völklein

that each PAC Hilbertian field of characteristic 0 is w-free. The "lecturers were

Geyer, Völklein,. and Haran. Then special lectures were given. In one of them

Pop announced his t. Riemann Existeoce TheQrem which implies a generalization

of the Fried-Völklein theorem to arbitrary characteristic. The other talks fell ioto

six categories:

1. Galois groups (Efrat, Fried, Geyer, Jensen, Haran)

2. Real fields (Berr, Efrat, Königsmann, Maciotyre, Schmid)

3. Model theory and logic (Delon, Macintyre, Pheidas)

4. Finite fields (Fried, Müller)

5. Local global principle (Jarden, Razon)

6. Diophantine equations (Ruppert)
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R. Berr: Same applications of the theory of real halomorphy rings

Let !( be a formally real field. By definition, the absolute real holonlorphy

ring H( J{) of K is the intersection of the real valuation rings uf 1{. Thcreby Cl

valuation ring is called real if its residue field if formally real. For H(I() the

following description holds

H(K) = {x E KI3n E N: n ± x E L K 2
}.

Using the ring H(K) E. Becker showed that x E L: K 2 is a surn of 2nth powers iff

v( x) E 2nrv for alLvaluations.v of. K·. This result can by generelized as follows:

Let J: c N and let

LLK2n = {Lx~n'l Xi E K, ni E .c}.
L,

Then for x E L: K2 we have: x E Li: L: K2n iff v(a) E UJAEc 2/-lrv for all

real valuations v of K. For example, let f = .y4(_y" + 1)6 E IR(_Y). Then f E

L: IR(_y)4 + 2: R(X)6 + 2: lR(X)lO. These results are based on the fundamental

relation H(K)* n L K2 c L: K2n for all n E N. This l:an be generelizcd as

follows. Let T C K be a quadratic preordering. Instead of H( K) we now

consider the ring A.(T) = {x E KI 3n ~ N: Tl ± xE· T}. Let S·e K· be a

subgroup such that K2 C S and T = L S == {l: sil .)i ES}. Finally for n E N

let L sn = {L: sil Si ES}. If n E N is odd we get the following results:

(1) A(T)* nT C L sn;

For example, let K = IR( x) and let T = L: K1. + }[ L: I·(l. Then t$; E

~4(T)* nT. Now let S = K 2 U_"<K 2 in order to gct t$; E L IR(x)2n +x" L: R(x):l

for all odd n E N.
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Fran.;oise Delon: Groups acting on valued groups

'vVe are intercstcd in retracts of fields, precisely in these structures consisting of

the additive group K+, a multiplicative subgroup G and the action of G on K+.

vVe add a valuation v from K+ on G, commuting with the action of G:

Vg E G, 'Vx E K+: v(g) = 9, v(g. x) = g' v(x).

-e
Let .c be the corresponding language. We prove an Ax-Kochen Ershov principle

for this kind of structures, with the following consequences.

PROPOSITION 1: H (K, v, G) and (L, w, H) are two valued fields with cross­

section, and baving the same type of cbaracteristic, then

(K, v, G)r.c == (L, w, G)r.c iff I K/v 1=1 L/v land G == H as ordered groups.

(K, v, G)r.c is decidable iff Gis as an or~ered group.

PROPOSITION 2: Hk is a neid and G an ordered group, let k«G» be tbe skew

power series neid, defined as usual, with its natural valuation and cross-section.

Suppose G is solvable and decidahle as an ordered group. Then k«Gnr.c is

decidable.

PROPOSITION 3: IE A is an ahelian divisible group without torsion, or with pA =
o tor a prime p, and G an ordered solvable group, decidable as an order~dgroup,

then the wel1-ordered vVreath-product WO(AWB) is decidable. .......

Ido Efrat: Profinite groups modulo the real core

._e The talk considered the quotient of a profinite group G by its real core N (Le.,

lV is the <closed subgroup of G generated hy all involutions). It was shown that

if G ~ G K is the absolute Galois group of a field K, then G/ N is torsion-free.

For example, Gal(Qtr /Q) is torsien-free answering a question posed by M. Fried
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and D. Haran. \Ve presented a Galois-cohomological praof of t.hc following: If

G has a projective open subgroup of index ~. 2 and if G satistles certain condi­

tions imposed on an absolute Galois group by Artin-Schreier theory, then G/ JV is

projective (when G = G K(2), this has been proved by Ershov and \Vare, indcpen­

dently, using field-theoretical tools). This enables proving a going up property for

real projective groups', duc to Haran, without using Artin-Schreier cohomology.

Mike Fried: Factoring Polynomials in finite ftelds

We give an example. oi an application of the arithmetic of covers that is not an

addition to the inverse Ga.lois problem. F. Chung introduced certain graphs:

n fixed, k a finite field, K/k oi degree n, K = k((). Form of directed graph:

Vertices are a E KX, a -+ ß if P/cx = (+ a for same a E k.

QUESTIONS:

(1) 15 the graph conneeted? (Da the {( +a} a Ek generate K x ?)

(2) What is the diameter? (Least integer such that nt=l (( + a.) runs through

al1 K X
.)

Katz in Math. Ann. 286 (1990) 625-637 shows far same canstant B(n), if

Ikl > B(n), d = ·n + 2 suffices. He gives as an unsolved problem if d = n + 1

does also (d = n trivially does not). We give a quick proof of Katz's result,

then we use Hurwitz spaces to show for each n there exists infinitely many k and

f E k[x], f irreducible of degree n, for which d = n + 1 does not suffices a as

diameter bound. The case n = 3 was quite explicit: the essential ingredient was

construction Of]pl .-+ pI by x ~ m(x) of degree 4 with alternating group ..44 ,_ as

geometrie monodromy group and S. as arithmetic monodromy group.

3
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.Mi-"e Fried: Reminiscences on aperiod of work on the Inverse Galois

Problem

We gave some historical comments on the relations arnong the work of the

. speaker, A.x, Debes, Haran, (Mike) Artin, Harbater, Pop, Jarden, Shimura,

Völklein, Serre, Jensen, Thompson. Here are same of the unsolved problems

discussed in the talk.

Assume all fields are countable of characteristic O.

1. Den.ne K to be R(egular)G(alois)-Hilbertian if for each LIK(t) Galois

with L n f( = K there exists inflnitely many to E K with G(L to / K) =
G(LIK(t».

TUEOREM (Fried-Völklein): If K is Pile, K is RG-Hilbertlan if and only if each

finite group is a quotient of G K .

THEOREM (Fried-VölkIein): If K is PAC, K is Hilbertian if and only if GK is

pro-free* .

Thus Hilbertian and RG-Hilbertian have a complete Galois theoretic char­

acterization for the case K is PAC. There is a nation of real Hilberianity that

allows us to characterize existence of certain quotients of G(LI K (t» arising from­

specializations L to / K. Consider the exact sequence:

I-G(L/K(t) -G(L/K(t))~G(K/K)-1.

Here k = [( n K. Let H* be the largest subgroup of G(k / K) generated by

images of involutions of G(k / K). Let G· be the largest subgroup of res-1(H*)_e generated by involutions. Then K is real Hilbertian if G* = G(L,./K) for

infinitely many to E K.

• Editorial comment: The easier direction, K PAC a.nd G K free profinite group
implies K Hilbertian~ is due to Roquette.

4
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For example the field Qlr is real Hilbertian. Find analogons theorems for

fields that are RG-real Hilbertian and real Hilbertian. See [Fried-Haran-Völklein]

for Cl pretty good start in this direction: GQlr is freely generated .by involutions.,

2. There is a PAC field P/Q that is Galois with group fI~=..! Sn- (Fried-'

Jarden): Thus,

I-Fw ~ G(Q/Q) ~ TI S~ -4 1.
n=2

To get a truly natural field like P it is probably better to use in its place

the composite Q8y
mm of all Galois extensions L/Q with G(L/Q) = Sn for

some n. This, however, has the property that the group on the right of

(*) is a little complicated.. Better yet, try the composite Qa1~ of all Galois

extensions L/Q with G(L/Q) = An for same n.

THE PROBLEM: Is Qalt P.AC?

OTHER TOPICS IN THE TALK. Qtr(i) (The field of complex multiplication);

nonrealizatibility of Dr; as a regular extension of Q(t) [Fried; Review of Serre's

Topics in Galois Theory]; The lifting invariant for covers J"'t( ~ lF i with brauch

cycles as 3-eyeles (the two compenents of the Hurwitz space are both defined

over Q); and the appearanee of arithmetic geometrie group extensions coming

from going to the Galois Closure.

W.-D. Geyer: Fundam'ental and Braid Groups

This was the first of severalleetures about the Fried-Völklein paper on realizing

groups a.s Galois graups using Hurwitz moduli spaees for covers of the Riemann

sphere with given data. In this talk the basie definitions ~d properties of fun­

damental groups were developed, the Galois theorem of (unranlified) covers was

studied. This was applied to the theory of ramified covers or the Riemann sphere

5
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1P1(C). Riemann's existence theorem and some corollaries and the branch cycle

argument \vere explained. To deal with deformation of covers of 1P1(C) different

hraid groups were introuuced as fund.amental groups of higher dimensional many

rolds. The full and the pure Artin braid group, and its projective counterpart,

the fuH and pure Hurwitz braid group. The structure of these groups was .ex­

plained, especially the operation of the hraid group on the fundamental group of

the punctured Riemann sphere.

• W.-D. Geyer: Realization of l-groups over global ftelds

Scholz (1.936) has shown that over Q every I-group, G with I=/:2 is realizable as

Galois groups. Reichardt (1937) has improved t~s proof, bis version can be found

in Serre's "Topics in Galois Theorey"(1992). All these proofs use the theorY';~'of

cyclotomic extensions as an essential tool. -Safarevic (1954) gave another proof,

overcoming the exception 1 i:- 2, hy using the concept of a Scholz field hut then

developing a huge combinatorial apparatus to solve tbe oc~urring embedding

problems. In this joint work with M-. Jarden under report we try to translate

first the result of Scholz to algebraic functions fields in ODe variable over a finite

field. The cyclotomic extensions do not work there, we had to replace, th~m ~y

class field theory. The finite result give not onIy extensions with given I;..group

G, but we can very precisely control the ramification of the extension (which

explodes in SafareviC's approach), such that we can bound the number and"{by

Cebotarev's density theorem) the degree of the ramfied primes. As a consequence

we get abound to the genus of the field on which the group G acts (resp., to_e the discriminant, in the number field case). The precise result is as follows: Let

[( be a global field, let s be the rank of the global units, r be the I-rank of the

class group. Assume I to be a prime such that (, fi K. Then given a finite set

So of primes in K there is a set SI of r + s exceptional primes such that: Given

6
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an I-group G of order im there is aScholz extension LI/\" with Galois group G

such that the ramified field primes in LIK are contained in 51 U {Ql, ... , qm},

where the qi are given by congruence conditions; moreovcr all primes in So split

completely in LIK.

D. Haran: The a~solute Galois group of the fleld of totally real alge­

braic numbers QU

The main result: G(Qtr) == b w = the free product of groups of order 2 over the

Contor space ""'(w. Furthermore, Qtl is decidable.

This follows as Qtl is PRC (Pop) and from this:

THEOREM: Let K be a PRC neId, LIK a Galois extension, L not Eorma1ly real,

H a finite group, I ~ H a conjugacy domain of involutions, and 7i": H -4> G( L / K)

an epimorpbism such that

11"(1) = f(LI K) := {e E G(LIK)I c2 = 1, L(e) is not Eormally real }.

Then there exists a Galois extension F of K (x), regular over L, and an isomor­

pbism h such that
G(FIK(x)) __h • H

r~
G(L/K)

commutes and h(/(FIK(x)) = I.

To show this, we first construct a point q on the Hurwitz space 'H,jnn that

represent the required extension and h is the case K = IR.

In the general case we partition the space of ordering 4~ ( K) of Kinto dopen

subsets .Y1, ... , )(m, and construct appropriate points q., ... , qm E BinD of the

above type, each for a certain subgroup Hi, i = 1, ... , m, and a certain subset

7
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Ii ~ Ho of involutions. We then apply the PRC property to fined p E 1-l(K) such

that p approximates f]i for each P E .\i. This p gives the desired extension F

and the isomorphism h.

D~ Haran: Schur multiplier and the Conway-Parker Theorem

This talk gave the group-"theor~ticalbackground for the work of Fried and Völk­

lein. We defined the Schur multiplier of a finite group G. and being "generated

by commutat·ors". Every finite group is a quotient ·of a group with· the latter

property~ We pro~ed the -Conwa~-pa.rkerTheorem for such groups.

Moshe Jarden: PAC Fields over Subri~gs

This is a.report about a joint work with Aharon :Razon.

8

Remark: A PAC field over itself is just a "PAC field". •

THEOREM: HO is a countable Hilbertian field and K is its quotient field, then

for almost a11 a E G(I()t:, K~((1) and K(ir) are PAC over O.

•Example: 0 = Z and K = Q.

Definition: A field M is said to bepAC over a subring 0,. if fOT every absa­

lutely irreducibI~ polynomial f E ..1\1(T, xl and every 0 =1=9 E M[T], there exist

a E 0 and bE M such that I(a, b) = 0 and g(a) =1= o.

_ • The work shows that all algebraic extensionsof Q which are known to

be PAC, except Q(O'), are not PAC over Q. In particular, Qsymm and any finite

extension of Qtr are.not PAC. We don't know of any example of a Galois extension

of Q which is PAC over· 0 except Q.
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LOCAL GLOBAL PRJNCIPLE.

Data: In the above notation suppose that 0 is a Dedekind domain, K is a global

ficld, and lvI is an algebraic extension of K which is perfect and PAC ovcr O.

Let VAJ be the set of all valuations of 1\1 which are integral over 0 and let ltV be

a finite subset of V,W'. For each 1} E V.W' let ~"Iv be the completion of Al at l) anti

let 6 M.v be its valuation ring. Finally let V be an absolutely irreducible variety

aver 11;[. •

THEOREM: H'V(OM.u):j:. 0 far each v E V.\1, then V(O) =1= 0. Nloreover, for each

finite subset W OfVM, V(O) is dense in IlwEw V(O.\1,w).

c.V .. Jensen: Prodidhedral extensions of finite numb.er fields

The talk represented joint ,,?ork. with·W.-D. Geyer. Let L = K(jd) be a quadratic

extension of a number field K. Consider the two statements:

(1) Does there exists bp-e~tensionof K which is Zp-extension of L?

(2) L is not totally real.

Then (2) => (1). Also (1) <= (2) if one assumes Leopoldts conjecture for L.

Here Dp is the projective limit lim Dpn', of the dihedral groups of order 2pn.
4--

Several explicit examples and applications were" given.

J. Koenigsmann: Valuations elementariJy deflnable from multiplica­

tive subgroups of ftelds

Given a multiplicative subgroup M ~ K x in a field K and a compatible valuation

1) of K (i.e. 1+mv ~ M, where mu denotes the maximal ideal of the corresponding

valuation ring Ou), the question when Du is elementarily definable in terms of lvI

has been asked in various centexts (e.g. by Diller, Dress, Berer, Jacob, Arason,

Ware). If [K X
: 1\1] = 2 and M + 1\1 ~ M (i.e. M is a "half-ordering" of K), one

9
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can show hy introducing a topology induced by M on -K, that there always exists

a valuation definable in terms of At. Using this, an explicit formula for a valuation

compatible with finitely many orderings Pt,· .. , P2 (here lvI = PI n· .. n P n ) can

be given. Also, for any henselian non·euclidian field with n square classes, where

1 < n < cx), this method yields a henselian valuation which is 1st -order definable

in the language of fields.

Angus Macintyre:- The Field of Real Exponeritial Algebraic Numbers-

Joint work with A. J. Wilkie. Wilkie's praof of model completiness of the re­

_stricted exponential field is effectivise, by giving effective estimates for' rates

of growt~ for definab~e families of definable functions. Then Schanuel's Con­

jecture is used to embed the prime model of real exponentiation, the fiel<!..-:9f
-::-~rj.---~

real exponential-algebraic numbers, into al1 models of a certain recursive ~od;i-
--';-'

complete subtheory of the real field. Combining this with Ressayre's methods

allowing easy transition to unrestrected exponentiation, we prove:

THEOREM: If Schanuel's Conjecture is true, the theory of tbe real exponential

Held is decidable.

P. Müller: Exceptional Polynomials

An outline of the preprint "Schur covers and Carlitz's conjecture" by M. Fried,

R. Guraling and J. Saxl \vas given. The mairi object of this work is to classify

exceptional polynomials as elose aspossible, is particular close enough to prove

Carlitz's conjecture. A polynomial f over in finite field k is exceptio,na! if it

induces a bijection on infinitely many finite extensions of k, of equivalently if no

irreducible (over k) factor of f{x~=~(y) is absolutely irreducible. The latter yields

strang constraints about the points of the arithmetic andgeometric monodromic

groups of f. _Besides possible exceptions in characteristics 2 and 3, the arithmetic

10
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monodromy group of an indecomposible (aue mayassume this without 10ss of

generality) is primitive of affine type q, where the degree is apower of char(k),

this information proves Carlitz's which asserts that in odd characteristics the

degree of an exceptional polynomial is odd. Finally, thc. first example of an

exceptional polynomial with non-solvable arithmetic Illonodromic group recently

constructed was given.

Thanases ·Pheidas: Solvability questions in function ftelds

We announced the new result: The existential thearey of the function field F( t)

with char(F) ~ 5 in the language {O, 1, t, +,.} is undecidable.

We surveyed a number of relevant older results and gave outlines for thc

proofs in thc case of C[t] and IR[t] pointing out certain analogies. vVe asked a

number of questions, manly:

(1) Is the theorey of C[t] decidable?

(2) Is the existential theory of e[t] decidable?

(3) Is "ordox > 0" definable in e[t]? Exist. definable?

Floria~ Pop: tRET and Applications

Let K be henselian field with respect to a non-trivial valuations v and S ~ lP~

a finite set of closed points. If S = S X K f< = {x 1'" •• , Zn.} (n.. = 2n, even)

can be organized in pairs PI: = (XI:, Yk) which are permuted by G z and Xl: ~ Yk

v-adically, then setting U for the complement of Sone has:

tRET : Tbe canonical exact sequence 1-11"1(0) --1rl(U) - GK --1 has

canonica11y a quotient of the form 1 - TI - I1~ G K - 1t where •

11
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with SI: a supernatural number with all components 00, but the one component

to. p, j[ ch~(J{) = 0, char(K v) = p > O. Moreover, PII has a section a such

that the action ofGK on rr ~ja ais given by (gz,)17 = gl7-lz,Xcyc1(Q-l). Several

appJjcations oE the above theorem were gi yen, like:

(1) H K is a countable Hilbertian P.4C neId theil GK is w-free.

(2) H K is global neid and [(E is tbe field oi totally E-adic numbers [ar some

finite subset E ~ IP(K), then G KE,cyd is w-free.

(3) Wi th the notation from above ~ne· ·bas

when W is the Cantor space and K p is the completion oE K with .respec~

to p E ~.

Aharon Razon: The" Local Global Principle ror PAC ftelds over Sub-

rings

This is areport about a joint work with Moshe J arden. We have p~oved, following

the methods of Roquette et al. for Q, the ~ocal global pri~ciple fo~. ,absolutel!

irreducible varieties defined over a perfect algebraic PAC field lv[ over a Dedekind

domain 0 with a.global quotient field K.

The transition to non;;ugebra:ica1~y closed fields poses some difficulties,

which we have succeeded to overcome. First, far each polynomial h· PE M[Xr..:

we have assured theexistence of an Al-rational root of a polynomiaJ. h' in M(X]

which is T -elose enough to h, where T is a Zariski-close~ set of vaIuations of.. e M wmch are integral ov~r O. Second, for each x E k an<!- each positive integer.

c, we have showed the existence of afinite exte~sion L of K which is c~ntained

in 1\1 such that for each v E T and each u E G(K) there exists bEL with

v(b-- xD') > c. (If j\l/K is normal then this is trivial.) Third, for a ~~nc'tion field

12
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of one variable F over l\tf and a function f E F, we have proved the existence of

an M -rational zero of a function 9 in F whieh is T -elose enough to f.

\Ve have Inanaged to overcome these three difficulties using thc PAC prop­

erty of A1 over O.

w. M. Ruppert: Solving algebraic equations in roots of unity

Let 1 E C[x,y) be an irreducible polynomial of degree (d 1 ,d2 ). The problem is

to find all «(1,(2) where (1,(2 are roots of unity and 1«(1,(2) = o.
It is weil known that there are infinitely many such solutions iff f = c(x d1 ­

(yd 2
) or f = c(xd\yd2

- () where ( is a root of unity (Ihara, Serre, Tate, ... ).

H there exist oo1y finitely many solutions in roots of unity a procedure was

sketched how one can actually find them. A consequence is that the number of

such solutians is ~ 22d1d2 - 2dt - 2d2 • The quality of the estimate is indicated

by the polynomial J( x, y) = x dt yd2+ 2 .1 h (x d1 - yd 2 ) - 1 which has 14d1d2Sln 1&

solutions in raots of unity. For the general case, i.e. looking for s<:>lutions in roots

of unity cf fl(Xt, ... ,xn )"= f2(Xt, ... tXn) = ... = fm(Xt, ... ,xn ) = 0 there

exists also an algorithm how one can find them and a structure theorem how the

Zariski closure of these solutions looks like.

Joachim Schmid: Sums of fourth powers of rational functions

In this talk the following theorem was presented: Let" K be a formally real field

such that 3 is a square in K and assume that F1(K) = 2. Then P4(K) ~ 6. Here

P2(K) (resp., P4(K)) is the 2nd (resp. 4th) Pythagarannum~erof the field K.

H. Völklein: Moduli spaces ror covers of the Riemann sphere

These moduli spaces were originally constructed by Fried and Völklein (Math.

Ann. 1991), extending earlier work of Fried (Cornm. Algebra 1977). They are

13
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generalizations of the classical nioduli spaces for simple covers of pt studied by

Hurwitz. The talk described a new construction of these spaces that is not based

on the generalized Riemann existence theorem.

Application include on cxact sequence for GQ:

00

I-Fw -GQ ---TI Sn --+ 1
n=2

where t w is the free profinite group of countable rank (Fried-Völklein, Annal.

1992). Further, Galois realizations over Q of the groups GLn{q) and PUn{q), n

even n ~ q.

H. Völklein: Solvability of regular embedding problems and rat.ional

points on' moduli spaces :~~;

We use the moduli- spaces for covers of the Riemann sphere that were constructed

in joint work with M. Fried. It is shown that the existence of k-rational poin~s"on

certairi twists of these spaces implies the solvability of certain regular embedding

problems over k. This can be used to prove that all embedding problems over a

Hilbertian PAC field of characteristic zero are solvable.

Berichtersatter: ...l\.haron Razon

14
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Nachtrag zum Tagungsbericht 18/1993 "The Arithmetic of Fields"

Franz-Viktor Kuhlmann: On the valuation theoretical structure of

nonarchimedean exponential fields

This talk was areport on the work of Salma Kuhlmann.

Every ordered field K admits a natural valuation v such that the value of

an element is represented by its archimedean class. v is nontrivial iff the field is

nonarchimedean. If the field admits an exponential f, then it induces a special

structure on the value group G. Note that G as an ordered abelian group also has

a natural valuation VG. If f is just an order preserving isomorphism betweet:! the

additive group of K and its multiplicative group of positive elements (a "weak

exponential"), then it already follows that there exists an isomorphism <p between

the negative part G<o of G and the rank vG(G) of G (as o~ders). If f satisfie~

_ ~certain gro\V~h axioms, ~hen. tJlis_~~y be e~:Rr~s~~~py_~he additi<?nal·property of- .. - _. -- . .; '. - - ~ -

'P to satisfy Va E G: ep(a) < vG(a). Conversely, if the ~alue group G adinits an

order isomorphism cp: C<o ~ vG(G), if K is countable and if its residue field K

admits an exponential, then K admits a weak exponelltial. If Cf' has tlle above
.. I

\

Qlentioned additional property, then J( admits a weakexponential f satisfying.1 additional growth axioms such as \:Ix: fex) > 1 + x.

The valuation theoretical interpretation of growth axioms for exponentials

on nonarchimedean fields was given and the structure induced on the value group

was discussed in detail. Moreover, we exploited the idea to split an exponential

into a left, a middle and a right exponential according to a de~omposition of

the additive group inta a lexicographical sum of three subgrollps, the one on the

right being the valuation ideal and the one on the left a group co~plement to the

valuation ring. Then, the left exponential induces the special st,ructure on the

value group, and the middle exponential induces an exponential on the residue
I

field.
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