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Tagungsbericht 20/1993

Low dimensional dynamics

- 25.4. — 1.5.1993

Die Tagung fand unter der Leitung von G. Keller (Erlangen) und Z. Nitecki (Medford)
- statt. Thema der Tagung waren analytische, metrische und kombinatorische Aspekte
der Dynamik 1-. und 2-dimensionaler dynamischer Systeme. Im Mittelpunkt standen
die allgemeine’ Strukturtheorie stetiger Intervallabbildungen und verschiedene Ansatze,
eine Sharkovskiische Theorie periodischer Trajektorien auf kompakten 2-dimensionalen
Mannigfaltigkeiten zu begriinden. Die 12 Hauptvortrige wurden durch 15 kiirzere Beltrage
und 2 abendliche “problem sessions” erganat.
Unter den 42 Teilnehmern aus Europa, Nord- und Sudamenka und Japan waren viele, die
die beiden oben skizzierten Forschungsgebiete in den letzten Jahren entscheidend pragten
und nun zum ersten Mal personlich Kontakt.hatten. Dariiberhinaus war es fiir viele der
- erste Aufenthalt in Oberwolfach. N
Zum erfolgreichen Verlauf der Tagung haben die groBziigigen Mdglichkeiten, die das
. Mathematische Forschungsinstitut sowohl fiir Vortrage als auch fiir Diskussionen im kleinen
o Kreis zur Verfiigung stellt, und die organisatorische Kompetenz und Hilfsbereitschaft der
6 Institutsmitarbeiter entscheidend beigetragen. Dafiir herzlichen Dank im Namen aller
Teilnehmer!
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Vortragsausziige

V. Baladi:

The spectrum of randomly perturbed piecewise expanding maps
(Joint work with Lai-Sang Young)

Let f : [0,1] — [0,1] be a continuous, piecewise C?, piecewise expanding (i.e. there
exists A > 1 with |fl'(z..z.-“)| >A>1lfor0 =20 <27y < ... < Iyt < ZIN =' -
a finite number of turning points), topologically weak mixing map. Let puo = podz
its unique absolutely continuous invariant probability measure (pp € BV) and 70 < 1
be the expontential rate of decay of correlations for observables in BV. We consider a
small random perturbation given by a positive L! function ¢, with support in [—¢, €}, i.e.
we study the Markov chain with transition probability p*(z, E) = [g ¥ (f(z) — y)dy. If
Ke = p.dz is an a.c.i.p.m. for the random perturbation and 7, < 1 its rate of decay for
BV observables, we show the following robustness results: If none of the turning points
are periodic, then p, — po tends to zero in the L' norm as ¢ — 0, and 7, tends to 7o
as € — 0 whenever 15 > \/5, where 6 = lim,_.o {fsup, m is the essential spectral
radius of the Perron-Frobenius operator Lo of f acting on BV; in fact we show convergence
of the spectrum of L., the “perturbed” transfer opérator, to that of Lo in the annulus
V8 < |z| € 1. If periodic turning points are present, stronger assumptions are needed, in
accordance with counterexamples of Keller and Blank.

Ch. Bandt:
The Cantor set as Mandelbrot set

The Mandelbrot set seems so complicated since it combines most different structures.

If we forget all conformal and metric properties, we obtain the abstract Mandelbrot set
defined by Douady and Thurston as a quotient space of the disk. This approach can ’ -
described also by symbolic dynamics, as was done by C. Penrose, and by K. Keller an
myself.

A still more abstract approach is explained here. We consider a Julia set as a compact
space with a 2-to-1-map, except for a single critical point. This comprises tree-like quadratic
Julia sets and other examples. These spaces can be classified by the branching degree of
the periodic points under the shift map.




M. Benedicks:
Non uniformly hyperbolic dynamical systems in the plane

The talk gave a survey of the recent development in the theory of dissipative dynamical
systems in the plane

1) The existence of strange attractors for a positive Lebesgue measure set of parameters
(a, ) for the Hénon family
T 14y — az?
N .
y bz

(Carleson & Benedicks; Ann. Math. 131 (1991)),

2) The existence of strange attractors for one-parameter families of two-dimensional
maps near a homoclinic bifurcation T
(Mora & Viana; Acta Math. to appear),

3) The ergodic theory in the preceeding situations: Existence of unique Sinai-Bowen-
Ruelle measures -

(L.S. Young & Benedicks; Inv. Math. to appear),

Also some remarks concefning the “critical set” in these situations, i.e. tangencies between
the unstable and stable foliation were given (G. Ryd, Benedicks)..This critical set is locally
located on a C* curve a < 1.

Furthermore some open questions were discussed

(1) Can this theory be extended to the area preserving case, i.e. the “standard map”
family?

(2) Are almost all points in the basin of attraction of the strange attractor of the Hénon
map for the “good parameters” generic for the SBR-measure of 3)?

(3) A kneading theory exists for the “good parameters”, but can there also be symbolic
dynamics in that case?

Ch. Bernhardt:

On the existence of fundamental representatives of cyclic permutations in
maps of the interval
(Joint work with E. Coven)

The ideas behind the proof of the following theorem were outlined.

Theorem: Suppose [ is a piecewise weakly monotone map of an interval. If it has a repre-
sentative of a cycle (not a double) then it has a fundamental representative.
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Fundamental representatives are defined from the fundamental loop in the Markov graph
and have the following properties: (i) They are periodic orbits of the correct cycle type,
(ii) associated to each point is a side, and (iii) associated to each pomt. and side is a given
orientation.

It was shown how the existence of fundamental representatives lies behind a polynomial-
time algorithm for deciding whether one cycle forces another.

L. Block:

Zero entroy permutations '

(Joint work with A.M. Blokh and E.M. Coven)

Given a permutation = on {1,...,n}, there is a unique piecewise linear map f of the
interval [1,n] to itself such that f(k) = m(k) for k = 1,...n and f is linear on each
interval [k,k + 1] for £ = 1,...n — 1. We define the entropy of a permutation 7 to be
the topological entropy of this map f. We give several different characterizations of zero
entropy permutations as well as-a procedure for constructing all of them. We also give
some information about the number of zero entropy permutations.

P. Boyland:

On dynamics of- annulus homeomorphisms
(Joint work with T. Hall and J. Guaschi)

Theorem: If ¢ : A — A is pseudo-Anosov relative to O(z,¢) and p(z,¢) = 5 then
2e Int (p(9)).

This implies an analogous theorem for general homeomorphisms of the annulus with
periodic orbits of pseudo-Anosov type. The main lemma asserts that under the same
hypothesis 2 € Int p((¢)) < T~™4" has a dense orbit in A <=> the leaf attached to

n

the lift of a 2-periodic orbit is dense in A. Here T : A — A is the deck transformation o',

the universal cover ‘A of the annulus A.

M. Denker:

Ergodic theory of parabolic rational maps
(Joint work with J. Aaronson and M. Urbanski)

There are two general notions permitting the study of measure theoretic properties of
parabolic rational maps on the Riemannian sphere. First, the conformal structure can
be described by a measure m on the Julia-set J. Its conformal dimension equals the
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" m is a multiple of the Hausdorff measure; a criterion when y is finite and various new

Hausdorff-dimension. The construction principle is originally due to S.J. Patterson, here
we give a different approach through dynamical quantities. Secondly, we introduce Markov

-fibred systems (MFS) with the Schweiger property (SP) (relative to this measure) which

allows to describe the combinatorial structure of the map as well as the analytic properties
of m.

The fundamental theorem for MFS with SP states: If the map T is “irreducible” and
conservative, then

(a) T is ergodic

(b) Ip ~ m o-finite, po T~! = u and loggﬁ € L*(B) for every “good” B.
(c) -Every “good” B is a Darling-Kac set with continued fraction mixing.
(d) If T is “aperiodic”, then T is exact.

Applied to a parabolic rational map we derive e.g. the following: % <h<2;if h > 1 then

ergodic theorems. S

R.L. Devaney:

The complex standard map
(Joint work with N. Fagella)

We study the complex standard family

z—=z+a+ Bsinz

where a € C, B € R*. When a is real, the unit circle is invariant, but-this is not so for «

) _ non-real. We study a special limiting case where 3 — 0 and the standard family is scaled g

to yield the family z — Aze”. We show that :

- there are infinitely many curves of A-values for which the Julia set is the entire
plane,

- there are infinitely many Mandelbrot sets in the A-plane,

- there is a special core Mandelbrot set whose “arms” extend to co.

A.L. Fel’shtyn:

Dynamical zeta function, Nielsen theory and Reidemeister torsion

"(Joint work with R. Hill)

We continue to study the Reidemeister and Nielsen zeta functions. We prove rationality
and' functional equations of the Reidemeister zéta function of an endomorphism of any
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finite group and of a self-map of a polyhedron with finite fundamental group. The same
results are obtained for.eventually commutative endomorphisms of groups, and for even-
tually commutative self-maps of compact polyhedra. We connect the Reidemeister zeta
function of a group endomorphism with the Lefschetz zeta function of the Pontryagin
dual endomorphism, and as a consequence obtain a connection of the Reidemeister zeta
function with the Reidemeister torsion. We also obtain arithmetical congruences for the
Reidemeister and Nielsen numbers similar to those found by Dold for the Lefschetz
numbers.

J. Franks: , .

The rotation set for toral homeomorphisms -

If f: T? — T? is a homeomorphism homotopic to the identity and F : R? — R? is a lift,
we define p(z, F) = lim %(F¥(z) - z). Also define R(F) = limit points of {f—“—i;ii}
where n; — oo and z; € R®. It is known that R(F) is compact and convex and that
if v € int R(F) is rational there is a periodic point zo for f such that for z € II"!(z,)
p(X, F) = v. (Here interior is with respect to R?). We show the same is true when R(F)
is a line segment containing at least two rational points and v € R(F) is rational.

J.-M. Gambaudo:
Boundary of chaos in the Hénon map

A (5':) infinitely renormalizable homeomorphism f of the two-disk is an orientation preser-
ving map such that there exists an infinite sequence of nested disks ... Dy, C Dy C D?
satisfying D,, f(Da.),...,f™ }(D,) are disjoint and f*(D,) C D,. (Here I, is the
number of loops D,, is doing around D,_; before coming back into itself).

precisely, let K = N>, s’ f1(D.). We give some sufficient condition on the smoothnes
of the map and the geometry of K so that fjx does not possess a wandering domain.
Assuming now that the diameters of the f *(D,) go to zero uniformly with n, a necessary
condition for C' smoothness is that the sequence ﬁ: converges.

In this talk, we first discuss some Denjoy theory associated to this type of maps. Mor(b

Finally, we show how these infinitely renormalizable maps occur at the boundary of po-
sitive topological entropy in the Hénon model.
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T. Hall:

Period multiplying cascades for diffeomorphisms of the disc

(Joint work with J.-M. Gambaudo and J. Guaschi)

An orientation-preserving C'** diffeomorphism of D? with positive topological entropy has
zero-entropy cascades of periodic orbits of infinitely many distinct types. This generalizes
a well-known result in one-dimensional dynamics.

M. Handel:

The pseudo-Anosov partial order as the mapping class group of the three
times punctured disk.

Conjugacy classes for pseudo-Anosov elements of the mapping class of the three times
punctured disk are in one-to-one correspondence with cyclic words in the lettérs-L and R
where L and R determine the mapping classes shown below

. L R

Theorem: A pseudo-Anosov conjugacy class determined by the word W, forces a pseudo-
Anosov conjugacy class determined by the word W, if and only if W, is obtained, as a
cyclic word, by removing letters from W;. 5

B

S. Kolyada:
Topological dynamics of triangula;‘ maps of the square

Let I be a compact real interval and let Ca(I?, I?) be the set of all continuous maps of
the square /2 into itself, which are triangular, i.e. of the form:

F(z,y) — (f(z),9(z.y))

for any point (z,y) € I°.

We study the topological dynamics of triangular maps of the square, in particular the
maps of the type 2°° and their topological entropy, and lower bounds for the topological
entropy of transitive maps.
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J. Llibre:
Periods for transversal maps via Lefschetz zeta function

We develop a modified Lefschetz number for analyzing if a given period belongs to the
set of periods of a self-map. Essentially we work with the Lefschetz numbers for periodic
points instead of the usual Lefschetz number for fixed points. If L(f) denotes the usual
Lefschetz number, the Lefschetz number of period m, {(f™), is defined as follows

(™) =L m(d)L(fF)
dlm B -
where ¥4, denotes the sum over all positive divisors d of m, and p is the Mbius functio.'
- We present some theorems.
Theorem A: Let f be a transversal map. Suppose that [{f™) # 0 for some m € N.

(a) If m is odd then m is a.period of f.
(b) If m is even then either m, or 3 is a period of f.

Theorem B: Let f be a transversal map of the n-sphere (n > 1) of degree D with |D| > 1.
If m is a positive integer and m # 2r with r odd, then f has a periodic point of period
m.

. Theorem C: Let M be a compact manifold such that Ho(M;Q) ~ Q, Hi(M;Q) = QB Q
and H,(M;Q) = 0 for ¢ # 0,1. Let f: M — M be a transversal map and let f,; be the
endomorphism induced on the first homological level. We denote by ¢ and d the trace and
the determinant of f,,.

Assume that the eigenvalues of f,; are real
(a) If (t,d) # (1,0) then the set of periods of f, Per(f), is non-empty.
(b) If ¢t # 1 then 1 € Per(f)
(c) If (¢,d) ¢ {(£1,0), (£2,1), (0,d) with d <0}, then Per(f) > {3,5,7,9,...}.

(d) If (t,d) ¢ {(£1,0), (£2.1), (0,0), (0,—1)}, then for any odd g at least one of eac
consecutive pairs of the sequence gq,2q,44q,3q,... is a period of f. :

Theorem D: Let f: T* — T™ be a continuous map of the n-torus, and suppose that f.;
has no roots of unity as eigenvalues. If ¢(f?*) # 0 for every prime number p and every
k € N, then Per(f) = N.

M. Lyvubich:
Structure of quasi-quadratic maps

We study the dynamics of non-renormalizable S-unimodal maps with non-degenerate
critical point. Qur main result says that the scaling factors characterizing the geometry
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of the map exponentially decrease. It follows that the return maps near the critical point
are becoming purely quadratic. This resolves the problem of non-linearity control at

- small scales. As the first applications of this result we prove that quasi-quadratic maps

don’t have “strange” attractors in the sense of Milnor, and that maps with the same
combinatorics are quasi-symmetrically conjugate. The proofs strongly involve ideas from
holomorphic dynamics and renormalization theory.

D. Mayer:

Dynamical zeta functions for Artin’s billiard and the Venkov-Zograf factori-
zation formula

In the thermodynamic formalism approach to Selberg’s theory for Fuchsian groups the
Selberg zeta function gets expressed in terms of Fredholm determinants of transfer opera-
tors for the geodesic flow on the corresponding surface. For the modular group S PS L(2,Z)
the Selberg function can be written as Zs(s) = det(1 — L,)det(l + L,) with L, the
generalized Frobenius-Perron operator for the continued fraction map Tz = 1/r mod
I. By using the reduction theory of indefinite binary quadratic forms L. Efrat. proved
recently, that the above factorization of the Selberg function corresponds exactly to the
decomposition of the spectrum of the Laplacian on the modular surface into even and
odd eigenfunctions with respect to the reflection Jz'= —z*'in the upper complex plane.
By using the close connection between the geodesic flow on the modular surface and the
billiard flow on Artin’s billiard table we give a simple dynamical proof of Efrat’s result.
This approach shows at the same time, that-the above factorization is a special’ case of
the Artin-Venkov-Zograf formula relating the zeta function for a subgroup of a Fuchsian
group to the ones with nontrivial representations for the latter one. -

W. de Melo:

Sullivan’s renormalization theory

We discuss Sullivan’s proof of the contraction of the renormalization operator on the
space of infinite renormalizable maps of bounded combinatorial type. We consider the
space U of unimodal maps of the interval of the form f = h o Q where Q is a quadratic
polynomial and h a C? diffeomorphism. The domain of the operator is the open set
D = Do UD; C U characterized by the following inequalities of the first iterates of
the interval point co-: f € Do <= 4aa 55, and f € D <=k &ad a4 The
renormalization operator R : D — U is defined by f € D, — rescaled ( f"c, c}) and
f € Dy +— rescaled (fii,, o)) )

Theorem (Sulllvan) There exists a compact mvanant. subset. ACDo={f€D: fr€
D Vn} such that

I If f € Dy then dist(R™f,A) — 0 as n — oo.
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2. The restriction of R to A is a homeomorphism conjugated to Smale’s horse shoe.

3. The maps in A are real analytic and have holomorphic extensions which are quadra-
tic-like in the sense of Douady-Hubbard.

4. For f,g € Do, distance(R™f, R"g) — 0 if and only if there exists m € N such that
R™f and R™g have the same combinatorial type.

M. Misiurewicz:
Minor cycles for interval maps .

We consider minor cycles (i.e. periodic orbits) of continuous interval maps. “Minor” stands
for “Minimal Non-Reducible”. “Non-reducible” means that there is no non-trivial block
structure. “Minimal” means that our cycle does not force any other non-reducible cycle
of the same period.

In a similar theory for disk homeomorphisms, there is a problem of finding pseudo-Anosov
cycles of a given period with minimal entropy. Here “pseudo-Anosov” means that the
homeomorphism is isotopic to a pseudo-Anosov one relative to this cycle. The entropy
of a cycle is the infimum of topological entropies of homeomorphisms exhibiting it. This
motivates a similar question for cycles in interval maps. There the role of pseudo-Anosov
cycles is played by non-reducible ones. Clearly, the non-reducible cycles with minimal
entropy must be minor.

We classify all minor cycles of a given period and then find among them the ones with
minimal entropy. It turns out that they are all unimodal. The forcing among them gives
the ordering of periods: 4,6,3,8,10,5,12,14,7,... If we look at the closest to% fractions
with a given denominator, we get the same ordering. This can be explained by A. Blokh’s
theory of rotation sets for interval maps.

H.E. Nusse:

The occurrence of Wada basins in simple dynamical systems and the fractal
dimension and uncertainty dimension of basin boundaries
(Joint work with J.A. Yorke)

In dynamical systems examples are common in which two or more attractors (basins)
coexist, and in such cases the basin boundary is nonempty. First, we consider diffeomor-
phisms of the plane to itself, for which there are at least 3 basins. A boundary point z of a
basin in called a Wada point if every open neighborhood of z has a nonempty intersection
with at least 3 basins. A basin B is called a Wada basin if every boundary point of B is a
Wada point. Assuming each boundary point of basin B which is accessible from basin B is
on the stable manifold of some hyperbolic periodic orbit. we have: The unstable manifold
of each of the periodic points that is accessible from basin B intersects at least 3 basins
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if and only if B is a Wada basin. Examples of the Henon map and the forced damped

~ pendulum illustrate the occurrence of Wada basins in simple systems (work in progress).

Now we consider one dimensional maps and two dimensional diffeomorphisms which are
hyperbolic on the basin boundary. We present a result that the box-counting dimension,
the Hausdorff dimension and the uncertainty dimension of the basin boundary, in any
given region that intersects the basin boundary, are all equal. (H.E. Nusse and J.A.
Yorke, The equality of fractal dimension and uncertainty dimension for certain dynamical
systems, Comm. Math. Phys. 150 (1992), 1-21)

M. Pollicott:

Automatic groups and symbolic dynamics
(Joint work with R. Sharp) ) o

Ny

Following work of Cannon, Thurston, Epstein et al, we know that the fundamental group of
a compact negatively curved manifold is an “automatic group”, i.e. the elements of 7,(M)
are in bijective correspondence with the paths in a directed graph (the “automaton”)
starting at a distinguished vertex, the elements of 7, (M) being the concatenation of labels
on edges from a finite symmetric set of generators (cf. Lectures of Ghys-de la Harpe)
Using the directed graph {with some added edges and vertices) we define a subshlft of
finite type.

To the group theory we add some geometry by con51dermg ‘weightings” w : 1r1(M )—R
(subject to some “Holder” assumption). Examples of such weightings are: word length g;
and displacement d(gz,z) on M. .

We associated to the weight function a Holder function f on the subshift such that
f+ fo+...4 fo™ 1, n > 1, evaluated on appropriate points gives the welght.mgs

By applymg well-known results for subshifts of finite type we can show the followmg limit -

exists:

. d(gz,3)
A= lim 1
e |g|2=:- ol ! uﬁgu

A.N. Sharkovsky:
Spatial self-stochasticity -

If we have a family of dynamical systems given by maps fo : X — X, a € A, and a map
h:Y — A where X, Y, A are some topological spaces, then we obtain a dynamical system
on the space K(Y, X) of functions  : ¥ — X given by the map o(y) — faqy)(@(y)). We
use a special metric which allows to measure closeness between deterministic functions and
random ones in order to complete the space K(Y, X) by random functions. We give some
conditions under ‘which the attractor of the dynamical system (in the completed space)

- o®



contains random functions. Thus, here random functions appear as result of deterministic
evolution of deterministic functions.

K. Simon:

Computation of the Hausdorff dimension of the basic sets of non-invertible
maps

To compute the Hausdorff dimension of the attractor of some near-hyperbolic, non-
invertible maps of the surface e.g. “Yakobson’s twisted horseshoe map”: F(z,y) = (¢(y)
Mz - %),g(y)) where ||g(y) — 4y(1 — y)llcz < ¢, and slanting baker transformation
(examined previously by Falconer)

T(z,y) = (Mz+my+ta,2y-1) if y>0
v Moz +py + o, 2w +1) if y<O,

we set up some conditions such that:

a) the maps above and their small perturbations in the first component satisfy these
conditions, :

b) under these conditions the Hausdorff-dimension of the attractor can be computed
by the pressure formula.

J. Smital:
Sequence topological entropy of chaotic maps

Recently in a joint paper with Franzova’ (Proc.Amer.Math.Soc. 112 (1991), 1083-1086)
we proved that a continuous map f of the interval is chaotic in the sense of Li and Yorke
iff it has positive sequence topological entropy hr(f) with respect to a suitable sequence
T of positive integers.

In the two-dimensional case as expected the situation is more complex. We will give some
results concerning triangular maps of the square.

S. van Strien:

Fibonacci maps and invariant measures
(Joint work with H. Bruin)

In this talk we consider S-unimodal maps f of the interval and show that two conjugate
maps with different orders of non-flatness at the critical point can have different metric
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behaviour: one map may have an absolutely continuous invariant probability measure
while the other does not. In the first part of the talk a necessary condition for the existence

‘of such a measure was given. Let c_; be the point in the set f~*(c) to the right of and

nearest to c. Let So = 1 and define inductively S; to be the smallest integer larger than
Si—1 such that c_s; € (c,c_s;_,). Let A; = [cs;,c5,_,]- If f has an absolutely continuous
invariant probability measure then

(*) . zs,‘_llA,‘l < oo,

Next this result is applied to maps with the Fibonacci dynamics. This means that 5y, 53, ...

is the sequence of Fibonacci integers, 1,2,3,5,.... If in this case we let the order of non-

flatness ! at the critical point be 2, then Lyubich and Milnor have shown that Df*(¢;) -

grows sufficiently fast so that the condition of Nowicki and van Strien for the existence
of such a measure is satisfied. Moreover Nowicki and Keller have shown that if the order
[ of the critical point with the dynamics of Fibonacci type is not too much larger than
2 then - even though this condition fails — these measures still exist. We shg_w that for
large [ the situation is quite different: the summability condition (*) is false. *

W. Szlenk:

A simplified model of the growth of Baleen Whale population

" (Joint work with F. Bofill)

The international Whaling Commision used the following formula for studying evolution
of the Baleen Whale Population (see J.D. Murray: Mathematical Biology, ch. 2, §25):

(l) Tep1 = (1 - [l).’t¢ + R(Ig_f), t= 0, 1,2, e

where p is the probability that an individual does not survive to the next nﬁoment, T is
the time in which a new born individual becomes sexually mature (t = 7 years), and the
function R(z) is of the form

R(z) = (1= )" {p+all - (})])

where p,a,r, k are some constants. To study the dynamics of the process (1) is a difficult
problem. So we propose the following simplification: 7 = 1, and we replace R(z) by

a tent function: @y(z) = Az for 0 < z < 1 and pa(z) = A(1 —z) for L <z <1, and

2
ref0,2), p= % Then the corresponding process is equivalent to the following dynamical

system: the phase space is @ = (0,1} x [0,1] and the map T\ : @ — Q is given by the
formula: T\(z,y) = (21,11} where

rn =
)

y
o) + (1= .

The dynamics of the system (Q, T) varies from regular to random behaviour while A runs
over its domain [0, 2}.
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The system has two fixed points, namely (0,0) (a saddle point) and p = (%,2) (a focus;
stable for A < 1 and unstable for A > 1).

Let Ay = N3, TT(Q)/W*(0,0).
Theorem 1: If 0 < A < 1 then for each point ¢q # (0,0) holds

Jim TPq=p,
e Ay = {ﬁ}

Theorem 2: Let Ag € {1,2] be a root of the polynome 5% +6A2 —20A+8 (Ao = 1.10738...).
Then

(i) ifdo<A<5—VI3then Ay isa pentagon, .

(ii) A=5- V13 then A, is a quadrilateral,
(iii) if 5~ /I3 < A < 2 then A, is a hexagon.

Theorem 3: For /& < A < 2 the system (A, T)) admits an absolutely continuous
invariant measure py and the system (A, Ty, ) is exact (which corresponds to the
random behavior).

" M. Tsujii:

A remark on Milnor-Thurston monotonicity theorem

We give a proof of Milnor-Thurston monotonicity theorem, which slightly improves the
proof in Milnor and Thurston’s paper. We first introduce a formula which relates the
movement of an iterated image of the critical point and the derivative of the so-called
Thurston map. Then, applying the (generalized) Schwarz-Pick lemma w.r.t. Kobayashi
metric to the (complexified) Thurston map, we obtain the theorem. What we want to point
out is that, since the Schwarz-Pick lemma holds for (hyperbolic) complex manifolds, we
have large choice of the domain of Thurston map. In fact, we use this in the final part

of the proof when we consider a perturbation of Thurston map, and avoid the usage o’

Teichmiiller’s uniqueness theorem, which may be a most difficult part of the proof o
Milnor and Thurston. A better choice of the domain, if exist, would give a more simple
proof and a generalization of the proof.

Berichterstatter: G. Keller
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M. Misiurewicz: Suppose. f : I — I is a continuous map of the interval satiéfying

Problem list:

(Compiled by Z. Nitecki and G. Keller)

P. Boyland: Suppose f : A — A is an area- and orientation-preserving homeomorphism
of the annulus. Define the mean rotation number of f as

on(D) = [Im10 f(2) = m(z)dz,

and denote by p(f) the usual rotation set (= set of rotation numbers for all orbits of f).

Question: Can p(f) = [0,7] with r > 07 The answer is probably “no” if f is pseudo- Anosov
relative to-a finite set.

M. Misiurewicz: Suppose C is a smooth, convex oriented curve in the plane, and consider
the following diffeomorphism of C to itself (formulated by A. Blokh): pick a basepoint a
interior to C, and for each z € C take L a line through a parallel to the tangent at z
to C; then f,(z) is the endpoint of the segment of C starting from z and ending at the
first intersection with L. Now, as a varies in the interior of C, the rotation numbers for f,
vary over an interval (0, 74(C)]. Similarly, define r_(C) using the same curve with opposite
orientation.

Question: Are r,(C) and r_(C) always equal?

A somewhat weaker question is whether r+(C) >1 3 iffr_(C) > > . This has the following
geometric content: it is known that r,(C) > 3 L if and only if there exists a circumscribed
triangle ABC, with points of tangency to C at A' € AB, B' € BC,C” € AC for whlch

AX BB CC'_
AB " BC = CA ™ .

1. Every point of I (possibly with a finite number of exceptidﬁ_s)'has at léast two
preimages under f;

2. f is transitive.

Question: Is_the topological entropy of f at least equal to log 27

A. Blokh proved that for a transitive map of an interval, the entropy is at least }log 2.
This was generalized to n-ods and triangular maps of the square by L. Alseda, S. Kolyada,
J. Llibre, and L. Snoha, who showed that for a transitive map of an n-od, entropy is at
least Xlog 2, and for a transitive triangular map of the square, it is at least %log 2. They
also showed that for a continuous transitive map of the square the entropy (which must
be positive) can be arbitrarily small. ’

E. Coven (in absentia) Dfop the second assumption, and strengthen the first to allow no
exceptions.
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Question: Same as above.

The second question was posed by Coven some time ago; with Nitecki, he showed that the
lower bound %log 2 always holds; also, there is a counterexample on the interval where all
but one point have at least two preimages but the entropy is zero; this can be used (by
M. Barge) to create a counterexample to the second question posed on the circle.

M. Misiurewic:: Let f, denote the tent map with slope a:
- fa(z) = a|l —z|.

Assume v2 < a < 2;in particular, we know f, is transitive on [—1,1]. Misiurewicz a.n, -
K. Brucks have shown that for (Lebesgue) almost all parameter values a, the trajector.
of the turning point 0 is dense in {—1,1]. '

Conjecture: For -almost every a, the turning point is generic for the absoiutely continuous
measure.

The following lemma arises in the proof of the result quoted above: let @,(a) = (fa)*(0).
Then there exists ¢ > 0 such that for almost all e, and for all n sufficiently large, the lap
(maximum interval of monotonicity) of ¢, containing a has image of length at least €

Question: Does this hold for all a?

J. Franks: Consider a homeopmorphism f of the torus, isotopic to the identity, and F a
lift of f to the plane. Then the rotation vectors of F are defined as for circle maps by

p(z, F) = J‘—"& Eﬁn);x.

Questions: Can the set of all rotation vectors for F' be a line segment disjoint from the
points with both coordinates rational? Equivalently, is there a homeomorphism without
periodic points for which its lift has more than one rotation vector? A stronger question
is: if f has no periodic points, does the rotation vector defined above exist for every point?

J.-M. Gambaudo: Let f be a C* diffeomorphism of the plane, and K a compact invariant
set. It is known that for every ergodic measure for f|K, almost every point has Lyapun
exponents.

Question: If f|K is uniquely ergodic, does_every point have a Lyapunov exponent?

M. Denker: For f a rational map of the Riemann sphere, expanding (the derivative is
bounded below away from 1 on the Julia set) and m the maximal measure, it is known
(J. Grigull) that the Erdés-Renyi ergodic theorem holds for Lyapunov exponents: by the
usual (Birkhoff) ergodic theorem,

1 & ;
- E log|f'| o f° — x almost everywhere.
n “

i=1
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However, it is useful to work somewhat independently of the point: the Erdos-Renyi

_theorem says that for all a sufficiently small there exist constants d. and d* such that

(almost everywhere)

1 i+d*logn

lim max = ———— Z log(1f'lo f) = x + e

n=00 0<i<n~d* logn d* log n =

and similarly

i+d, logn .
2 log(lffof)=x—-a-

lim . _min _
n—00 0<i<n—d. logn d, log n o

Question: For which other dynamical systems does such a result hold?

In order to prove such a result, two problems need to be solved:

1. When does the free energy exist? For Gibbs measures m with potential 1/:" one knows
that the free energy : .

. . o on=l . f:
o(¢) = lim, ~log [ expl3" ¢o [*ldm = P(f.4 +¢) - P(/,)
n - k=0

exists for every continuous function ¢.

2. The system has gbod mixing — looéely speaking, the spectrum of the Perron-Frobenius
operator is discrete and finite near the unit circle.

A.N. Sharkovsky: Consider the map f of the plane defined by
=(@-2° y=zy. | B

This map arises in the study of the Schrddinger equation (Y.Avishai, D.Berend, MSRI-
preprint #06008-91). It leaves the triangle A with corners (0,0), (0,4) and (4, 0) invariant.
Denoting its sides by Ly (on the y-axis), L, (on the z-axis) and T' (joining (4,0) and (0, 4))
one sees that f(L1) = L, f(Ly) = {(0,4)} and f(T) =T. Also fir : z — (z-— 2).

Questions: Has anyone investigated this map? Are the periodic orbits dense in A? Is fia
transitive? Is ' the attractor of fj5 in the sense of Milnor? Does there exist a point z
such that w(z) is unbounded but I' Nw(z) # 8?7

Simulations suggest that T is indeed the attractor of -fIA in the sense of Milnor. But the
transversal Lyapunov exponent of f on I is

1 4 log(4 - 1:)
=

V(4 —z)

General question: Under what conditions does the average Lyapunov exponent define the
type of a set? :
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J. Franks (comment on computer simulations): The map T on [0, 1] defined by

_L.()(I(l
& {—';i -;-Sx<l

has the property that T"(x) = z for sufficiently large n if and only if z is rational.

J. Llibre: Let M be a compact C'-manifold and f : M — M a C'-map such that
f(M) € M and f is transversal, i.e. for all n > 0 the graph of f is transversal to
{(y,y) : y € M} at all points (z,z) with f*(z) = z.

Theorem: If f : S* — S™ is transversal (n > 1) with degree(f) # —1,0, 1, then Per(f) ‘

N\ {2r : r odd}.
In fact, the theorem is true if M is a manifold such that Hy(M;Q) ~ H.(5™;,Q).

Question: [s there for some n a transversal f : S® — S™ such that Per(f) = N\ {2r :
r odd}?
Conjecture: No. (For n = 1 either Per(f) = N or Per(f) = N\ {2}.)

Question: Are there a manifold M with the homology of the sphere and a tran.sversal
f: M — M such that Per(f) = N\ {2r : r 0odd}?
Conjecture: Yes.

G. Keller: For the map T on [0,1] discussed before by J. Franks (or for other maps T
with |T’] > 1 and with indifferent fixed points) consider the transfer operator

2) = fy) v
‘Cﬂf( ) - ve;lr IT,(y)lg (B .>.. 0)

acting on the space of functions of bounded variation on [0, 1]. We know that the spectral
radius 7(Lg) > 1 for all 3 > 0 with equality if 3 > 1. Furthermore, logr(Lp) equals the
pressure P(T, —Blog|T’|). For maps with two surjective C? branches T. Prellberg showed
in his Ph.D. thesis that

-8

. 1
(1) Iogr(Eg)=const-m~(l+o(l)) ‘

for 3 /1.

Questions: Is the result of Prellberg true for more general maps? How is the rate in (1)
related to other dynamical properties of T, e.g. to the wandering rate for the o-finite
absolutely continuous invariant measure as discussed in related work of Aaronson and
Thaler. Note added in proof: O.A. Lopes seems to have related results.

S. Kolyada: Let f be a unimodal map with Sf = 0 (i.e. piecewise linear fractional).
There are three possibilities for the asymptotic behaviour of typical trajectories: (1) An
attractive cycle, (2) a minimal Cantor set, (3) a cycle of transitive intervals. A Feigenbaum-
like attractor cannot occur.

Question: Is it possible to have case (2)?
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R. MacKay: Bifurcation of Denjoy minimal sets:

1. Let f be a continuous mapping of S' with degree 1 and nontrivial rotation interval
p(f) = [pr1,p2], and let w € int(p(f)) be irrational. We know f posseses a rotationally-
ordered Denjoy minimal subsystem A, of roation number w (by cutting off at an apropriate

level N ).

Let fo =T,0 f, To(z) = z + a. Let a. = inf{a : w € p(f.)}-
Question: How does A, approach the critical point as a — a.?

2. Let f be an area-preserving twist map of T xR with zero net flux, possessing a uniformly
hyperbolic rotationally-ordered Denjoy minimal subsystem of rotation number w. Let f, =
Too f, Ta(z,y) = (z,y + a). Let a. = inf{a : I rotationally-ordered Denjoy minimal sub-
system A}. - :

Question: How does A disappear? E.g.

how does d — 07

~ Ch. Edndt:Denote by T the mé.p €'” +— €' on the unit circle and let E, be the diameter

through the points € and ""+?). £, divides the unit circle into two halves, say L and

. R, R béing the one which contains T(e'*). A kneading sequence (with respect to E;) is

associated with the trajectory of z in the obvious way.
Question: Which l\neadmg sequences occur?

Bl
N.B.: Not all R, L-sequences occur as kneading sequences. On the other hand the kneading

- sequences of unimodal maps are realized by those z whose trajectories avoid the arc from

Deutsche

e to e*=%) and ‘its complex conjugate.
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