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Die Tagung ~fand unter der Leitung von G. Keller (Erlangen) und Z. Nitecki (Medford)
- statt. Thema der Tagung waren analytische, metrische und kombinatorische Aspe.kte

·der Dynamik 1-. und 2-dimensionaler dynamischer Systeme. Im Mittelpunkt standen
die allgemeine' Strukturtheorie stetiger Intervallabbildungen und verschiedene Apsätze,
eine Sharkovskiische Theorie periodischer Trajektorien auf kompakten 2-di~ens~'onalen

Mannigfaltigkeiten zu begründen. Die 12 Hauptvorträge wurden durch 15 kürzere B~iträge

und 2 abendliche "problem sessions" ergänzt. ,-
Unter den 42 Teilnehmern aus Europa, Nord- und Südamerika und Japan ..waren viele, die
die beiden oben skiz~iertenForschungsgebiete in den letzten Jahren entscheidend prägten
und nun zum ersten Mal persönlithKontakt. hatten. Darüberhinaus war es für vi~le der
erste Aufenthalt in Oberwolfach. ,-
Zum erfolgreichen Verlauf der Tagung haben die großzügigen Möglichkeiten, die das
Mathematische Forschungsinstitut sowohl für Vorträge als auch für'Diskussionen im kleinen
Kreis zur Verfügung stellt, und die organisatorische Kompetenz und Hilfsbereitschaft der
Institutsmitarbeiter entscheidend beigetragen. Dafür herzlichen Dank im Namen aller
Teilnehmer!

                                   
                                                                                                       ©



--,........ _. ~ 'l

.- ,., ~

-,2- _.

Vortragsauszüge

V. Baladi:

The spectrum of randomly perturbed piecewise expanding maps
(Joint work with Lai·Sang Young)

Let f : [0, 1] ~ [0, 1] be a continuous, piecewise C2
, piecewise expanding (i.e. there

exists ,\ > 1 with If((r,.,ri+d l ~ A > 1 for 0 =Xo < Xl < ... < XN-l < IN =.­
a finite number of turning points), topologically weak mixing map. Let J.lo = Podx _
its unique absolutely continuous invariant probability measure (Po E BV) and TO < 1
be the expontential rate of decay of correlations for observables in SV. We consider a
small random perturbation given by a positive LI function tPl. with support in [-t:, f], i.e.
we study the Markov chain with transition probability p'(x, E) =Js tP"f(x) - y)dy. If
11-( = Pl. dx is an a.c.i.p.m. for the random perturbation a~d Tl. < 1 its rate of decay for
BV observables, we show the following robustness results: If none of the turning points
are periodic, then p( - Po tends to zero in the LI norm as f ~ 0, and Tl. tends to TO

as f ~ 0 whenever T~ > VB, where 0 = limn _ oo r/suPr IUn;'(r)l is the essential spectral
radius of the Perron·Frobenius operator Lo of f acting on SV; in fact we show convergence
of the spectrum of Ll., the "perturbed" transfer operator, to that of Lo in the annulus
v'9 < Izi ~ 1. If periodic turning points are present, stronger assumptions are needed, in
accordance with counterexamples of Keller and Blank.

eh. Bandt:

The Cantor set as Mandelbrot set

The Mandelbrot set seems so complicated since it combines most different structures.
Ir we forget all conformal and metric properties, we obtain the abstract Mandelbrot set
defined by Douady and Thurston as a quotient space of the disko This approach can JA, :J

described also by symbolic dynamics, as was done by C. Penrose, and by K. Keller an.
myself.

A still more abstract approach is explained here. We consider a Julia set as a compact
space with a 2-to-l-map, except for a single critical point. This comprises tree-like quadratic
.J ulia sets and other examples. These spaces can he classified by the branching degree of
the periodic points under the shirt map.
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M. Benedicks:

Non uniformly hyperbolic dynamical systems in the plane

The talk gave a survey of the recent development in the theory of dissipative dynamical
systems in the plane

1) The existence of strange attractors for a positive Lebesgue measure set of parameters
(a, b) for the Henon family

(Carleson & Benedicks; Ann. Math. III (1991)),

2) The existence of strange attractors for one-parameter families of two-dimensional
maps near a homoclinic bifurcation "~~"

<!f$.-c
(Mora & Viana; Acta Math. to appear),

3) The ergodie theory in the preceeding situations: Existence of unique Sinai- Bowen­
RueHe measures
(L.S. Young & Benedicks; lnv. Math. to appear),

Also some remarks concerning the "critical set" in these situations, i.e. tangeneies J;>etween
the unstable and stahle foliation were given (G. Ryd, Benedicks) ..This critical set is locally
located on a ca curve a < 1. .

Furthermore some open questions were discussed

(1) Can this theory be extended to the area preserving case, i.e. the 4C.standard map"
family?

(2) Are almost all points in the basin of attraction of the strange attractor"~fthe Heuon
map for the "good parameters" generic for the SBR-measure of 3)?

(3) A kneading theory exists for the ~~good parameters", but can there also be symbolic
dynamics in that case'?

eh. Bernhardt:

On the existence of fundamental representatives of cyclic permutations in
maps of the intervaJ
(Joint work with E. Coven)

The ideas behind the proof of the following theorenl were olltlined.

Theorem: Suppose / is a piecewise wealdy monotone mal' of.an interval. If it has a repre­
sentative of a cycle (not a double) then it has a fundamental representative.
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Fundamental represeritatives are defined from the fundamental loop in the Markov graph
and have the followi ng properties: (i) They are periodic orbi ts of the correct cycle type,
(ii) associated to each point is a side, and (iii) associated to each p~int and side is a given
orientation.

It was shown how the existence of fundamental representatives lies behind a polynomial­
time algorithrn for deciding whether one cycle forces another.

L. Block:

Zero entroy permutations
(Joint work with A.M. Blokh and E.M. Coven)

Given apermutation 1r on {I, ... ,n}, there is a unique piecewise linear map f of the
interval [1, n) to itself such that f(k) = 1r(k) for k = 1, ... n and f is linear on each
interval [k, k + 1] for.k = 1, ... n - 1. We define theentropy of apermutation 1r to be
the topological entropy of this map f. We give several different characterizations of zero
entropy permutations as weil as·a procedure for constructing all of ·them. We also give
some information about the number of zero entropy permutations.

P. Boyland:

On dynamics of. annulus homeomorphisms
(Joint work with T. Hall and J. Guaschi)

Theorem: Ir 4> : A -+ A is pseudo-Anosov relative .to O(x,4» and p(x, <1» = : then

: EInt (p{4»).
This implies an analogous theorem for general homeomorphisms of the annulus with
periodic orbits of pseudo-Anosov type. The main lemma asserts that under the same
hypothesis r;- EInt p( (4») {:::::> T-m ~n has a dense orbi t in A <=:> the leaf attached to

the lift of a ;;-perio~ic orbit is dense in .4. Here T : Ä -+ Ä is the deck transformation 0.,
the universal cover ,A of the annulus A.

rvl. Denker:

Ergodie theory of parabolic rational maps
(Joint work with J. Aaronson and 1\1. Urbanski)

There are two general notions permittillg the stllUY of mcasure theoretic properties of
parabolic rational maps on the Riemallnian sphere. First, the conformal structure can
he describeu hy a measure m on the Julia-set J. Its conformal dimension equals the
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Hausdorff-dimension. The construction principle is originally due t~ S.J. Patterson, here
we give a different approach through dynanlical quantities. Secondly, we introduce ~1arkov

. fibred systems (MFS) with the Schweiger property (SP) (relative to this measure) which
allows to describe the combinatorial st'ructure of the map as weil as the analytic pr~perties

ofm.

The fundamental theorem for MFS with SP states: If the map T is "irreducible" and
conservative, then

(a) T is ergodic

(b) 3p '"V m a·finite, po r- 1 = p. and log~ E LOO(B) for every "goo~" B.

(c) Every "good" B is a Darling-Kac set with continlled fraction mixing.

(d) If T is "aperiodic", then T is exact.

Appl.ied to a parabolic rational map we derive e.g. the following: ~ < ~:< 2; if h ~ 1 then
m is a: multiple of the Hausdorff measure; a criterion when J.l is finite and vari<?us new
ergodie theorems. .vf.

R.L. Devaney:

The complex standard map
(Joint work with N. Fagella)

We study the complex standard family

z -+ Z +er +ßsin z

wh.ere a E C, ß E lR+. When a .is real, the unit circle is invariant, but-this is not ~o for a
o.on·real. We study a special limiting case where ß ~ 0 and the standard family is scaled
to yjeld the family z ~ Azez • We show that .

there are infinitely many curves of A-values for which the Julia ~et is the entire
plane,

. there are infinitely rnany Mandelbrot sets in the A-plane,

there is a special core Mandelbrot set whose "arms" extend to 00.

A.L. Fel'shtyn:

Dynamical zeta function, Nielsen theory and Reidemeister torsion
(Joint work with R. HilI)

We contjnue to study the Reiclemeister an<! Nielsen zeta functions. We prove rationality
and' functional equa~ions of the -Reidcmeister zeta fUllction of an endomorphism of any

. ;t:.;f'~~", ...~:

~~.- '-~~

.. ~
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finite group and of a sdf-Ina.p of Cl. polylwdrol1 wit.lt fiuite fundanlental group. The Sanlf"

results are obtained for.e\'cntually cornmutative endomorphistns of groups, and for evcn­
tual1y commutative self-nlaps of compact polyhedra. We ('onnect thc Reidemeister zeta.
funct.ion of a group endomorphisnl wilh lhc Lefschetz zeta function of the Pontryagill
dual endomorphism, and as a consequen(~ obtain a. connection of the Reidemeister zeta.
function with thc Reidcmcister torsiOH. We also obt.ain arithmetical congruences for the
Reidemeist.er and Nielsen nunlbers similar to those found by Dold for the Lefschetz
numbers.

J. Frank~:

The rotation set far taral homeomorphisms

Ir f : T 2 -+ T 2 is a bomeomorphism homotopic to tbe identity and F : ]R2 -+ ]R2 is a lift,
we define p(x, F) = lim *(FN(x) - x). Also define R(F) = limit points of {F"i(:;)-Xi}
where nj -+ 00 and Xi E R? It is known that R( F) is compact and convex and that
if v Eint R(F) is rational there is a periodic point Zo for f such that for z E n-l(zo)
p(X, F) = v. (Here interior is with respect to lR?). We show the same is true when R(F)
is a line segment containing at least two rational points and v E R( F) is rational.

J.-M. Gambaudo:

Boundary of chaos in the Henon map

A (~) infinite]y renormalizable homeomorphism j of the two-disk is an orientation preser­

ving map such that there existsan infinite sequence of nested disks ... Dn C Dn - l C D2

satisfying D n , f(Dn ), .•. , jqn-I(Dn ) are disjoint and f9n(D n ) C D n . (Here In is the
number of loops Dn is doing around Dn - 1 before coming back ioto itself).

In this talk, we first discuss same Denjoy theory associated to this type of maps. Mor_
precisely, let I< = nn>o U1~Ol fi(D n }. We give same sufficient cODdition on the smoothnes
of the map and the geometry of !( so that jlK does not possess a wandering domain.
Assuming now that the diameters of the fi(D n ) go to zero uniformly with n, a necessary
candition for Cl smoothness is that the sequence 1.a.. converges.

9n

Finally, we show how these infinitely renormalizable maps occur at the boundary of po-
sitive topological entropy in the Henon model.
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T. Hall:

Period multiplying cascades for diffeo~orphismsof the disc
(J.oint work with J.-M. Gambaudo and J. Guaschi)

An orientation·preserving C·+ t diffeomorphism of D2 with positive topological entropy has
zerOwentropy cascades of periodic orbits of infinitely many distinct types. This generalizes
a well·known result in one-dimensional dynamies.

• M. Handel:

The pseudo-Anosov partial order as the mapping class group of the th"ree
times punctured disk.

Conjugacy classes for pseudOwAnosov elements of the mapping class of the ...~t9ree times
punctured disk are in one-to-one corresponde~cewith cyclic words in the letteJ.:s-L and R
where L and R determine the mapping classes shown below

L R

•

Theorem: A pseudo-Anosov conjugacy class deterrriined by the word W. forces a pseudo­
Anosov conjugacy class determined by the word W2 if and only jf W2 is obtained., as a
eyclie word, by removing letters from W•.

S. Kolyada:

Topological dynamics of triangular maps of the square

Let I be a compact real interval and let C~(I2, [2) be the set of a1l continuous maps of
the square [2 ioto itself, which are triangular, i.e. of the form:

F: (x,y)..-. (f(x),g(x.y))

for any point (x~ y) E [2.

We study the topological dynamics of triangular maps o[ the square, in particular the
maps of the type 200 and their topologieal entropy, and lower bounds for the topological
entropy of transitive maps.
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.1. Llihre:

Periods rar transve'rsal maps via Lefschetz zeta runc~ion

We develop a modified Lefschetz number for analyzing if a given period belongs to the
set of periods ~f a self·map. Essentially we work with the Lefschetz numbers for periodic
points instead of the usual Lefschetz 'number for fixed points. If L(/) denotes the usual
Lefschetz number, the Lefschetz numher of period m, l(fm), is defined as follows

l(fm) = LP(d)L(/7)
dirn

where Ldlm denotes the sum over all positive divisors d of m, and p is the Möbiu~ functioe,
We present some theorems.

Theorem A: Let f be a transversal map. Suppose that I(fm) =/; 0 for same m E N.

(a) Ir m is ocid then m is a. period of f.

(b) Ir m is even then either m, or ~ is aperiod of f.

Theorem B: Let f be a transversal map of the n-sphere (n ~ 1) of degree D with IDI > 1.
If m is a positive rnteger and m :/; 2r with r odd, then I has a periodic point of period
m .

. Theorem C: Let M be a compact manifold such that Ho{M;Q) ~ Q, HI(M;Q) ~ QE9Q
and Bq (M; Q) ~ 0 for q# 0, '1. Let 1 : M -+ lvI be a transversal map and let 1*1 be the
endomorphism induced on the first homological level. We denote by t and d the trace and
the determinant of 1.1.
Assume that the eigenvalues of f*1 are real

(a) If (t, d) =f:. (1,0) then the set of periods of /, Per(f), is non-empty.

(b) If t =I 1 then 1 E Per(f)

(cf Ir (t, d) ~ {(±1,0),' (±2,1), (0, d) with d :::; O}, then Per(/) :::) {3, 5, 7, 9, ... }.

(d) Ir (t, d) rt {(±l, 0), (±2,1), (0,0), (0, -1)}, then for any odd q at least one of ea~
consecutive pairs of the sequence q, 2q, 4q, 8q, ... is aperiod of f. • .

Theorem D: Let I : Tn -+ Tn be a continuous map of the n-torus, and suppose that 1.1
has no roots of unity as eigenvalues. If l(fPk) =/; 0 for every prime number p and every
k E N, then Per(/) = N.

rvl. Lyubich:

Structure of quasi-quadratic maps

\Ve :itudy the dynamics of non-renornlalizable S·unimodal maps with non-degenerate
critical point. Our main result says that thc scaling factors characterizing the geometry
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of the map exponentially decrease. lt follows that the return maps near the critical point
are becoming purely quadratic. This resolves the problem of non·linearity control at

, small scales.. As the first applications of this result we prove that quasi.q':ladratic maps
don't have "strange" attractors in the sense of Milnor, and that maps with the same
combinatorics are quasi-symmetrically conjugate. The proofs strongly involve ideas from
holomorphic dynamics and renormalization theory.

.D. Mayer:

Dynamical zeta functions forA~tin's billiard and the Venkov-Zograf f~ctori­

zation formula

In t~e thermodyn~mic formalism approach to Selberg's ,theory for Fuchsian groups the
Selberg, zeta function gets expressed in terms of Fredholm determinants of transfer opera·
t,ors for the geodesie flow on the corresponding surface. For the modular gro~~"~PSL(2,Z)
the SeIberg function can be written as Zs(s) = det(l ..:... L,,) det(l + L,,) .,,~ith L, the
generalized Frobenius-Perron operator for the continued fraction map Tx = I/x mod
'1. By using the reduction theory of indefinite binary quadratic forms I. Efrat proved
recently, that the above factorization' of the Selberg fUhcti~n corresponds ex~actly to the
decomposition of the spectrum of the Laplacian on the' modular surface into ev~n and
odd eigenfunctions with respect to the reflection J z:=, ~zlll'in' the upper complex plane.
By u'sing the elose connection between the geodesie flow on the modular surface ~nd the
billiard flow on Artin's billiard table we give a simple dynamical proof of 'E(rat's' result.
This approach shows at the same time, that· the above factorization is a special: case of
the Artin-Venkov-Zograf formula relating the zeta function for a subgroup of.a Fuchsian
group to the ones with nontrivial.representations for the latter one. '

W. de Melo:

SufIivan's renormalization theory

We discuss Sullivan's proof of the contraction of the renormalization operator on the
space of infinite renormalizable maps of bounded combinatorial type. 'We consider, the
space Uof unimodal maps of the interval of the form f = h 0 Q where Q is a quaclratic
polynomial and h a C2 diffeomorphism. The domain of the operator is the open set
V = Va U VI C U characterized by .the following inequalities of the first iterates of
the interval point Co-: f E Va ~J, co d ~I and f E VI <=>s-t3 J3 co 4 ~l' The
renormalization operator 'R : V -+ U is defined by J E Va .....-.+ rescaled (fl~C2.c.l) and

f E Vt ~ rescaled (!lfc3.C6])·
Theorem (Sullivan): There exists a compact invariant subset /\ C V?Q = {f E 'D: In E
'D Vn} such that .-

1. If f E 'D')(J then dist('R,.nf, ,~) -+ 0 a.s n -+ 00.
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2. The restrietion of R to A is a homeomorphism conjugated to Smale's hürse shoe.

3. The maps in A are· real analytic and have holomorphic extensions which are quadra­
tic-like in the sense of Douady-Hubbard.

4. For /, 9 E V oo , distance(Rn/, nng) --+ 0 if and only if there exists m E N such that
nm

/ and nm 9 have the same combin~torial type.

M. Misiurewicz:

Minor cycles for interval maps

We consider minor cycles (i.e. periodic orbits) of continuous interval maps. "Minor" stands
for "Minimal Non-Reducible". "Non-reducible" means that there is no non-trivial block
structure. "Minimal" means that our cycle does not force any other non-reducible cycle
of the same period.

In a similar theory for disk homeomorphisms, there is a problem of finding pseudo-Anosov
cycles of a given period with minimal entropy. Here "pseudo-Ano~ov" means that the
homeomorphism is isotopic to a pseudo-Anosov one relative to this cycle. The entropy
of a cycle is the infimum of topological entropies of homeomorphisms exhibiting it. This
motivates a similar question for cycles in interval maps. There the role of pseudo-Anosov
cycles is played by non-reducible ones. Clearly, the non-reducible cycles with minimal
entropy must be minor.

We classify all minor cycles of a given period and then find among tbem the ones wi th
minimal entropy. It turns out that they are all unimodal. The forcing among them gives
the ordering of periods: 4, 6, 3,8, 10,5, 12, 14, 7, ... If we look at the dosest to'} fractions
with a given denominator, we get the same ordering. This can be explained by A. Blokh's
theory of rotation sets for interval maps.

H.E. Nusse: •

The occurrence of Wada basins in simple dynamical systems and the fractal
dimension and uncertainty dimension of basin boundaries
(Joint work with J.A. Yorke)

In dynamical systems examples are common in which two or more attractors (basins)
coexist, and in such cases the basin boundary is nonempty. First, we consider diffeomor­
phisms of the plane to itself, for which there are at least 3 basins. A boundary point x of a
basin in called a 11'ada point if every open neighhorhood of x has a nonempty intersection
with at least :3 basins. A basin B is called a ~Vada basin if every boundary point of B is a
\Vada point. Assuming each boundary point of hasin B which is accessible from basin B is
on the stable manifold of some hyperholic periodic orhit. we have: The unstable manjfold
of each of the periodic points that is acccssihlt:" froln hasin B intersects at least 3 hasins
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if and only if B is a Wada basin. Examples of the Henon map and the forced damped
pendulum illustrate the occurrence of Wada basins in simple systems (work in progress).

Now we consider one dimensional maps and two dimensional diffeomorphisms which are
hyperbolic on the basin boundary. We present a result that the box-counting dimension,
the Hausdorff dimension and the uncertainty dimension of the basin boundary, in any
given region that intersects the hasin boundary, are all equal. (H.E. Nusse and J.A.
Yorke, The equality 0/ /ractal dimension and uncertainty dimension lor certain dynamical
systems, Comm. Math. Phys. 150 (1992), 1-21)

M. Pollicott:

Automatie groups and symbolic dynamies
(Joint work with R. Sharp)

Following work of Cannon, Thurston, Epstein et al, we know that the fundame~talgroup of
a compact negatively curved manifold is an "automatie group",: i.e~ the eleme~tsof 1rt(M)
are in bijeetive correspondenee wlth the paths in a direeted graph (the "auto~aton")

starting at a distinguished vertex, the elements of 1rt (1\1) being the concatenation of labels
on edges from a. finite symmetrie set of generators (cf. Lectures of Ghys-de la Harpe)

U~ing the directed graph (with same added edges and .vertices) we define a supshift of
fini te type. . ;

To tbe group theory we add some geometry by eonsidering "weightings" w : 1i't(M) -+ IR
(subje~t to some "Höld~r" assumption). Examples of such weightings are: word length gj

and displaeement ~(gx, x) on Ai. .. :
We aSsociated to the weight function a Hölder function I on the suhshift s~ch that
f + fu +... + fu n

-
t

, n ~ 1, evaluated on appropriate points gives the weightin~s.

By applying well-known results for subshifts of finite type we eail show the following limit
exists:

A = lim E d(gx, x) / E l.
n-+oo Igj=n Igl jgj=n

A.N. Sharkovsky:

Spatial self-stochasticity .

If we have a family oE dynamical systems given hy maps fQ : ){ -+ ~\'", 0" E A, and a map
h : Y -+A where ...Y', Y, Aare some topological spaces, then we obtain a dynamic~l system
on the space ]«Y, ...X") of funetions c.p : Y -+ ~l{ given by the map<p(y) 1--+ Ih(y)(<P(Y»). We
use a special metrie which allows to measure closeness hetween deterministie functi~ns and
random ones in order to complete the space [{( }', .\) by randorn functions. We give some
conditions under 'which the attractor of the dynamical system (in' the completed space)
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contains random functions. Thus, here random functions appear as result of deterministic
evolution of deterministic functions.

K. Siman:

Computation of the Hausdorff dimension of the basic sets of non-invertible
maps

To compute the Hausdorff dimension of the attractor of some near-hyperbolic, 000­

invertible maps of the surface e.g. "Yakobson's twisted horseshoe map": F(x, y) = (<p(y).
'x(x - ~)tg(y)) where IIg(y) - 4y(1 - y)llc2 < €, and slanting baker transformation.
(examined previously by Falconer)

we set up some caDditions such that:

a) the maps above and their small perturbations in the first component satisfy these
conditions,

b) under these conditions the Hausdorff-dimension of the attractor can be computed
by the pressure formula.

J. Smital:

Seque~ce topological entropy of chaotic maps

Recently in a joint paper with Franzova' (Proc.Amer.Math.Soc. 112 (1991), 1083-1086)
we proved that a continuous map f of the interval is chaotic in the sense of Li and Yorke
iff it has positive sequence topological entropy hT(f) with respect to a suitable sequence
T of positive integers. •

In the two-dimensional case as expected the si tuation is more complex. We will give some
results concerning triangular maps of the square.

s. van Strien:

Fibonacci maps and invariant measures
(Joint work with H. Bruin)

In this talk we consider S·unimodal rnaps f ur the interval and show that two conjugate
maps with different orders of non-flatness at the critical point can have different metric
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behaviour: oue map may have an absolutely continuous invariant probability measure
while the other does not. In the first part of the talk a necessary eondition for.the e'xistence

'of such a measure was given. Let C-i be the point in the set f-i(c) to the right of and
nearest to c. Let So = 1 and define inductively Si to be the sma1lest integer targer than
5i-1 such that C-Si E (c, C-Si _ 1 ). Let Ai = [esi , csi _ t ]. Ir f has an absolutely continuous
invariant probability measure then

Next this result is applied to maps with the Fibonacci dynamies. This means that 51,52 , •.•

is the sequence of Fibonacci iotegers, 1,2,3,5, .... If in this case we let the order ;of 000­

ftatness I at the critical point be 2, tben Lyubich and Milnor have shown that D fi (CI) ­
grows sufficiently fast so that the condition of Nowicki and van Strien for the existence
of such a measure is satisfied. Moreover Nowicki and Keller have shown that if the order
I of the critical point with the dynamicsof Fibonacci type is not too much larger than
2 then - even though this condition fails - these measures still exist. We show that for
large I the situation is quite different: the summability eondition (*) is false. Jf

W. Szlenk:

A simplified model of the growth of Baleen Whale population
(Joint. work with F. Bofill)

The internationaf Whaling Commision used the following formula for studying evolution
of-the Baleen Whale Population (see J.D. Murray: Mathematical Biology, eh. 2, §25):

x
R(x) = (1 - JJY . {p + all - (k yn

where IJ is the probability that an individual does not survive to the next r:loment, T is
the time in which a new born individual becomes sexually mature (T = 1 years), and the
function R(x) is of the form

~.

(1) XC+l = (1 - IJ)Xt + R(Xt-T)' t= 0,1,2, ., ..

where p, a, r, kare some constants. To study the dynamics of the process (1) isa difficult
problem. So we propose the following simplification: T = 1, and we replace R(x) by

,3 tent function: foP.\(x) = AX for 0 :5 x ~ t and <,O.\(x} = >'(1 - x) for i :5 x :5 1, and
,\ E [0, 2], IJ = ~. Then tbe corresponding process is equivalent to the following dynamical
system: the phase spaee is Q = (O, 1J x [0, 1] and the map T>.. : Q -+ Q is given by the
formula: T>.(x, y) = (Xlt Yt) where -

XI = y

Yt = c,?.\{x) + (1 - ~)y.

The dynamics of the system (Q, T.\) varies from regular to randorn behaviour while A runs
over its domain [0,2].
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The system has two fixed points, namely (0,0) (a saddle point) and p = (3.3) (a foeus;
stahle for ,,\ < land unstable for .,\ > 1).

Let ß,\ = n~=o T.'(Q)/l-VU(O, 0).

Theorem 1: If 0 < .,\ < 1 then for each point q '# (0,0) holds

i.e. ß.\ = {fi}.
Theorem 2: Let "\0 E [1,2] be a root of the polynome 5.,\3+6..\2-20"\+8 (;\0 ~ 1.10738 ... ).
Then

(i) if AO < A < 5 - v'I3 then ~.\ is a pentagon,

(ii) A = 5 - Vi3 then ~.\ is a quadrilateral,

(iii) if 5 - Vi3 < ,\ < 2 then ~.\ is a hexagon.

Theorem 3: For ~ < ,\ < 2 the system (~.\, T.\) admits an absolutely continuous
invariant measure Jl). and the system (~.\,T", Jl.\) is exact (which corresponds to the
random behavior).

M. Tsujii:

Aremark on Milnor-Thurston monotonicity theorem

We give a proof of Milnor-Thurston monotonicity theorem, which slightly improves the
proof in Milnor and Thurston's paper. We first introduce a formula which retates the
movement of an iterated image of the critical point and the derivative of the so-called
Thurston map. Then, applying the (generalized) Schwarz-Pick lemma w.r.t. Kobayashi
metric to the (complexified) Thurston map, we obtain the theorem. What we want to point
out is that, since the Schwarz-Pick lemma holds for (hyperbolic) complex manifolds, we

have large choice of the domain of Thurston map. In fact, we use this in the final part
of the proof when we consider aperturbation of Thurston map, and avoid the usage o.
Teichmüller's uniqueness theorem, which may be a most difficult part of the proof 0'"
Milnor and Thurston. A better choice of the domain, if exist. would give a more simple
praof and a generalization of the proof.

Berichterstatter: G. Keller
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Problem list:
(Compiled by Z. Nitecki and G. Keller)

P. Boyland: Suppose f : A -+ A is an area- and orientation-preserving homeomorphism
of the annulus. Define the mean rotation number of f as

Pm(f) = jr-trl 0fex) - 1l'1(x))dx,

and denote by p(f) the usual rotation set (= set of rotation numbers for all orbit~ of f).

Question: Can p(f) = [0, rl with r > 07 The answer is probably "no" if fis pseudo-Anosov
relative to-a finite set.

M. Misiurewicz: Suppose C is a smooth, convex oriented curve in the plane, and c~nsider
the following diffeomorphism of C to itself (formulated by A. Blokh): pick a basepoint a
interior to C, and for each x E C take L a.line througha parallel to the' tangent at x
toe; then fa(x) is the endpoint of the segment of C starting from x and ending "at the
first intersection with L. Now, as a varies in the interior ()f C, the rotation numb.ers for la
vary over an intervaJ (0, r+(C)]. Similarly, define r _(C) using the same curve ~ith opposite
orientation. .

Question: Are r+(C) and r _(C) always equal?

A somewhat weaker question is whether r+(C) ~ ~ iff r _(Cl .~ 3. Thishas the fol~owing

geometrie eontent: it is known that r+(C) ~ i if and only if there exists a. circum~:cribed
triangle ABC, with points of tangency to C at A' E AB, B' E E!C, C' E A(7 for w~ich

AA' BB' GC'
AB + BG + CA = 1.

"~i..ii'

M. ~isiurewicz: Suppose. I = I --t I is a continuous map of the interval satisfying

1. Every point of I (possibly with a finite number of exceptiön~)"has at l~ast two
.preima~es under f;

. 2. .f is transitive.

Question: Is the topological entropy of f at least equal to log 27

A. Blokh proved that for a transitive map of an interval, the entropy is at least ~ log 2.
This was generalized to 7}-ods and triangular maps of the square by L. Alseda, S. Kolyada,
J. Llibre, and L. Snoha., who showed that for a. transitive map .of an n-od, entropy is at
least ~ log 2, and for a transitive triangular map of the square, it is at least i log 2. They
also showed that for a continuolls transitive map of the square the entropy (which must
be positive) can be arbitrarily small. .

E. Coven (in absentia) Drop the second assumption, and strengthen the first to allow 00

exceptions. . .
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Question: Same as above.

The second question was posed by Coven some time a.go; with Nitecki, he showed that the
lower bound ~ log 2 always holds; also, there is a counterexample on the interval where a11
but one point have at least two preimages but t~e entropy is zero; this can be used (by
M. Sarge) to create a couoterexample to the second question posed on the cirde.

M. MisiuTewic=: Let Ja denote the tent map with slope a:

Ja(X) = all - xl·

Assume ~ :5 a :5 2; in pardcular, we know fa is transitive 00 [-1, I}. lVlisiurewicz an.
K. Srucks have shown that for (Lehesgue) almost all parameter values a, the trajector~

of the t~rning point 0 is dense in [-1,1].

Conjecture: For "almost every a, the turning point is generic for the absoiutely continuous
measure.

The fo11owing lemma arises in the proof of the result quoted above: let <Pn(a) = (fa)n(o).
Then there exists i > 0 such that for almost aJI a, and for all n sufficiently large, the lap
(maximum interval of monotonicity ) of <Pn containing a has image of length at least f

Question: Does this hold for all a?

J. Franks: Consider a homeopmorphism f of the torus, isotopic to the identity, and F a
lift of f to the plane. Then the rotation vectors of F are defined as for circle maps by

( F) 1
• Fn(x) - x

p x, = 1m .
n-oo n

Questions: Can the set of all rotation vectors for F be a line segment disjoint from the
points with hoth coordinates rational? Equivalently, is there a homeomorphism without
periodic points for which its lift has more than one rotation vector? A stronger question
is: if f has 00 periodic points, does the rotation vector defined above exist for every point?

J.-1\-1. Gambaudo: Let f he a Coo diffeomorphism of the plane, and !( a compact invariant
set. It is known that for every ergodic measure for II/{, almost every point has Lyapune
exponents.

Question: If fl/( is uniquely erg~dic, does, every point have a Lyapun~v exponent?

M. Denker: For f a rational map of the Riemann sphere, expanding (the derivative is
bounded helow away from 1 on the Julia set) and m the maximal measure, it is known
(J. Grigull) that the Erdös-Renyi ergodie theorem holds for Lyapunov exponents: by the
usual (Birkhoff) ergodic theorem.

1 n .- 'L log If'l 0 fJ ~ \" a.lmost everywhere.
n j=l
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However, it is useful to work somewhat independently of the point: the Erdös-Renyi
.theorem says ~hat for all (} sufficiently small there exist constants d." ·and d* such that
(almost everywhere)

1 i+cr' logn .

lim .max -d*l E log(I/'lof})=x+ o ;
n-oo O~I~n-d*logn og n j=i

and similarly

, - 1 i+c4logn .

lim . min -d-- E log(lf'l 0 I}) =X - 0.'
n-oo o~'$n-d..log n '* log n j=i

Question: For which other dynamic~l.systems does such a. result hold?

In order to prove such a result, two problems need to be solved:

1. When does the free energy exist? For Gibbs measures m with potential1/J~t.oneknows
that the free energy' .

c( 4J) = lim !. logJe~p('f rP 0 fk)dm = PU. .p + rP) - PU, ~)
n-oo n. . k=O

exists for every continuous function <p.

2. The system has good mixing - loosely speaking, the spectrum of the Perron-Frobenills
operator is discrete and finite n~ar the unit circle. .

A .N. Sharkovsky: Consider the map f' of the plane defined by

x' = (y - 2)2, y' = xy .

This map arises in the study of the Schrödinger equation (Y.Avishai, D.Berend, MSRI­
preprint #06008-91). -rt leaves the triangle ~ with corners (O~ 0), (0,4) and (4,0) invariant.
Denoting its sides by L t (on the y-axis), L'l (on the x-axis) and r (joining (4,0) and (0,4))
one sees that J(L t ) = L2 , f(L 2 ) = {(O,4)} and f(r) = f. Also flf : x ...... (x-- 2)2.

Questions: Has anyone investigated this map? Are the periodic orbits dense in Ll? Is fl~

transitive? Is r the attractor of 116. in the sense of Milnor? Does there exist a point x
such that w(x) is unbounded but r nw(x) f:: 0?

Simulations suggest that r is. indeed the attractor of jl~ in the sense of Milnor. But the
transversal Lyapunov exponent of f on r is

~14
loge4 - x) dx = 0 ..) ~

_"Ir 0 Vx (4 - x)

General question: Undcr what conditions does the avera.ge Lyapunov exponent define the
type of a set?
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J. Franks (comment on computer simulations): The map T on [~' 1] defined by

_ { l~r 0 ~ X ~ ~
T(x) - bf ! < x < 1

r 2- -

has the property that Tn(x) = x for sufficiently Jarge n if and only if x is rational.

J. Llibre: Let 1\1 be a compact C1-manifold and f : M --+ M a C1-map such that
f( M) ~ M and f is transversal, i.e. for all n > 0 the graph of In is transversal to
{(y,y) : y E 1\4} at a11 points (x,x) with fn(x) = x.

Theorem: If f: sn -+ sn is transversal (n ~ 1) with degree(f)" -1,0,1, then PerU)~
N \ {2r : ,r odd}.

In fact, the theorem is true if M is a manifold such that Hk(M; Q) ~ Hk(S"; Q).

Question: 15 there far some n a transversal f : sn --+ sn such that Per(f) = N \ {2r :
r odd}?
Conjecture: No. (For n = 1 either Per(f) = N or Per(f) = N \ {2}.)

Question: Are there a manifold M with the homology of the sphere and a transversal
f : M --+ M such that Per(f) = N \ {2r : r odd}?
Conjecture: Yes.

G. Ifeller: For the map T on [0,1] discussed berore by J. Franks (ar for other maps T
with IT'I ~ 1 and with indifferent fixed points) consider the transfer operator

" f(y)
.cßf(x) = L.-t IT'(y) Iß

J/ET-I x

(ß'?: 0)

acting on the space of functions of bounded variation on [0,1]. We know that the spectral
radius r(!.ß) ~ 1 for a11 ß ~ 0 with equality if ß ~ 1. Furthermore, log r(!..a) equals the
pressure P(T, -ß log IT'!). For maps with two surjective C2 branches T. Prellberg showed
in his Ph.D. thesis that

(1 )
1-ß

log r(L: ß ) = const . I ( ß) . (1 + o( 1))
- og 1- •for ,13 / l.

Questions: Is the result of Prellberg true for more general maps? How is the rate in (1)
related to other dynamical properties of T, e.g. to the wandering rate for the u-finite
absolutely continuous invariant measure as discussed in related work of Aaronson and
Thaler. Note added in proof: O.A. Lopes seems to have related results.

S. f{olyada: Let f be a unimodal map with Sj = 0 (i.e. piecewise linear fractional).
There are three possibilities for the asymptotic hehaviour of typical trajectories: (I) An
attractive cycle, (2) a minimal Cantor set. (:1) a cycle of transitive intervals. A Feigenbaum­
like allractor cannol occur.

Quest.ion: Is it possible to have case (2)?
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R. Mac/(ay: Bifurcation of Denjoy minimal sets:
1. Let f be a cont~nuous mapping oe S· with degree 1 and nontrivial rotation interval
p(f) = [Pt,P2], and let w E int{p(f») be irrational. We know f posseses a rotationally­
ordered Denjoy minimal subsystem Aw of roation number w (hy cutting off at an apropriate

level B ).
Let Ja = Ta 0 f, Ta{x) = X + a. Let a e = inf{a : w E p(Ja)}'

Question: How does Aw approach the critieal point as a ~ ae?

2. Let f be an area-preserving'twist map of T x JR with zero net flux, possessing a uniformly
hyperbolic x:otationally-ordered Denjoy minimal subsystem of rotation number w. Let Ja =
Ta 0 j, Ta(;, Y) = (x, Y + a). Let ae = inf{a : 3 rotationally-orclered Denjoy minimal sub­
system A} ..

Question: How does A disappear? E.g.

_w~ _

W" .
_., ~

eh. Bandt:.Denote by T the m'ap eU
: )--0+ e,2z on the unit circle and let Er be the diameter

through the points e,r arid e'(1r+x). Ex ~Üvides the unit circle ioto two halves, say Land
. R, 'R being the ODe which contains T-(e'.:I:). A kneading sequence (with respect to Ex) is
a.Ssoci~ted with the trajectory of x in the obvi~us way. < • '

Question: Whieh kneading sequences occur? .
;;,;z.....'

N.B.: Not all R, L-sequences occur.a8 kneading sequences. On the other hand tlie kneading
sequences of unimodal maps are realized by those x whose trajectories avoid the are from
e'X to e'(1r-::x) a.n~ "its complex conjugate. .
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