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Reelle algebraische Geometrie

9.5. bis 15.5.1993

The fourth conference on real algebraic geometry-. at _Oberwolfach was organized by

professors E. Becker (Dortmund), -L. Bröcker (Münster) and M. Knebusch (Regensburg).

The participants presented their most recent work in the meeting. The lively scientific

atomsphere of the conference resulted in very many stimulating d~scussions.which maybe

will influence future directions and \vill contribute to further progress in the field.

Vortragsauszüge

On filtrations .of sheaves o~ semi-algebraic sets

Ralph Berr, Dortmund

e Let R be areal closed field and 5 c Rn a semialgehraic set. "Ve denote' by Cs the sheaf of

l~ontinuoussemialgebraic functions.~)n5. Now let.F be a subsheaf of es. We will associate

with F a. clirec.~ systcln F,; C F of sllhsheaves with lim F 1: = F.

lt is the aiIn of this approach t.o ase these subshcaves for a more detailed an'alysis of

tohe 11lorphisillS (5, F) --; (T. F') with 5, T scmialgebraic 'UH.l Fe es. F' c CT. Let

.-l: == R[..Y1•••• , .Yn ]. In order to ("Ollstrllct thc sheaves F,: we use the real spectrtlnl of

lli~hl'r level lP-SperA of .-L This spaC(~ has t.he f()llowin~ properties:
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Theoreln 1: a) IP-SperA is a. spectra.l space.

b) SperA is a dense subspace of Jr-Sper ..4.

t:) There is an open retra.ct 7i: IP-Sper..4 -+ SperA..

Hence the following cliagram commutes:

lP-Sper A~ Sper A.

1/
SperA

Now let Sc Rn be sernialgebraic, S C SperA the cor..responding Gonstructible subset a~d. "

F Ces' For n E N we associate with S a subspace Sn C IP-SperA and a sheaf Fn on Sn

such that

a) $ is dense in Sn.
b) i": S '-+ Sn extends to a morphism (5, F) -+ (Sn, Fn) of ringed spaces..

Moreover the family (Sn, Fn) forms an inverse system ~nd we have the basic result:

Theorem 2: lim(Sn,Fn) = (S,F).

Now let F~ = rr.Fn , where 7T: Sn -+ SperA (see Theorem 1). 'Then F7: is a subsheaf of F
and F = limF:. For U C S open let I!.(f):= min{n E NI! E F~(U)}. i(f) is called the

level of f. The rings F~(U) and the levels €(f) can be characterized as follows: For a E [T

let h(a) be the henselization of (k(supp(a)), Ci) with respect to the natural valuation Wo

of ä. Für f E F(U) we have

f:U ---+ 11 h(o)(f(o)) -+ U k(o)
oEU aEU

I eatf = ramification index

U.(h(a), w~)). "

Here eat / denotes the ramification of the unique extension uf 'w~ t.o h( 0 )(f(a))

Theorem 3: a) F~(U) = {f E F(U) I eOt/ln for alln E N}.

b) I!(f) = l.c.m.{ecrJla EU}.

Therefore the level of f E F( U) llleasltrCS t.hc n\luification of f on U. Similarly one can

define levels·or morphisms i.p: (5, F) -+ (T, F'). Aga.in this level nleasu~es the ramificatioll

of <po For example~ let S. = {O :::; x, 0 ~ y :S :eil} ~ IR~ , 52 = {O :::; x, 0 ~ y S; x}.

Then f:. (SI, es, ) -+ (52, Cs2 ), [(x, y) t-+ (x, V'!7)] is an isolllorphislll und the level of f is

n.
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A few open problenIS about geolnetry and topology of real algebraic varietie.s

.J. Dochnak, :\.. mstcrdam

Let _'< and },P he a.mne n~al a.l~ebraic varieties a.n<.! let 'RLY. },P) b(~ the space of real regular
u+l

mappiugs frol11 _\ into },P, Let sn = {x E iR,u+l IL: :t'f = I} be thc lluit n-sphere.
;=1

1. Is 'R( sn, Sk) dense in Cf'X)( sn, Sk), where the space of Coo rnappings is equipped

\vith Cco topology'? Or, at least is every mapping f E coo(sn, Sk) homotopic to a

9 E R.(5 n
• Sk). (1t is so if k = 1,2 or 4. or of course if n < k).

2. Does there exist a. regular mapping 52 x 52 ~ 54 of add topological degree?

3. :\ssume that ..Y is' compact connected nonsingular and oriented of dimension n, and

denote

Deg"R.("Y) = {k E Zik = degf , f E 'R.( ..Y, sn)}

where degf is the topological clegree of f. 1s Deg'R.(X) a subgroup of ~?t

(1t is so if n is odd and in such a case Deg'R.(X) is always Z or 2Z. Howev~r no example

of odd dimensional -:Y with Deg'R.( ..Y) = 2Z is known.

If n = 2 or 4~ then Deg'R.(~Y) is also a subgroup of Z. In such a case Deg'R.(X) can be
even an arbitrary subgroup of Z).

4. Let Z be a complex projective nonsingular irreducible algebraic varietyand let ZIR be

its underlying real algebraic variety (which is known to be affine). Let n =. dirne Z (and

, hence dimg ZR = 2n). 15 R.(Z~, S2n )'dense in COO(ZIR, S2n)? (It is so if n = 1. If n = 2

then DegR(ZIR) is aiways Z or 2Z. hut again no example of Z with Deg1t(ZIR) = 2Z is
known. The simplest unknown case is Z = CP' x CP'; then of course ZR ~ 52 x 52;

see question 2). It is known that Deg1t(ZIR) :f:. {O} in any dimension.

5. Find all (n, k) such that each polynomial mapping sn -+ Sk is constant.· (It is known

each couple of the type (2P • k), k < 2P , has this property. Are there others'?). It

:-;uffices to salve this prüblenl far couples of the type (n. 11 - 1). The lowest unknown

~:ase is (48! 47),

6. Describe all regular autoluorphisn1s of IR.pn and sn. Are they all linear'? Unknown

even far 71 = 2.

,. Let Z 1 antI Z2 be conlplex projective algebraic vnrieties. \Vhen their underlying

rc:a.l algebraic structures ZUR a.nti Z21R a.re biregularly isomorphie? (Tbe problem has

been solved for complex nonsingular curves a.nd for"a lar~e family of complex abelian

varieties (Huisma·n)). It is possible to have an infinite family (Zj)jEN of comp~ex

11111tuaBy nonisolnorphic algchraic varictics with aB ZjlR isolnorphic'?
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8. Does there cxist an infinite falnily :F of nonisomorphie real algebraic varieties having

the saUle (iSOIllorphic) complexification? The answer is negative for nonsingular real

c:urves (in which case #F ~ 2(v'9+ 1), where 9 is the genus uf the complexified curve).

!J. A.lgebraic elnbeddings of real algebraic varieties in IRpn or Rn. Several open problems.

Example: Let V be a complex projective nonsingular cnrve. Does 1iIR (its real algebraic

underlying surface) embed algebraically iota 1R3 or IRp3?

10. Does there exist uncountably many nonisomorphie complex projective nonsingular

curves V with H t (VIR, Z/2) = H~g(VIR, Z/2)? Here H;lg(VIR , Z/2) denotes the sub­

group of Ht (VIa, Z/2) of homotopy classes represented by real algebraic eurves con­

.tained in VIR. (It is known that there exist exactly countably many eomplex elliptic

curves E \vith H;lg (EIR, 7l/2) ~ Ht(EfR, Z/2) = Z/2 x Z/2). •

Differential geometry of semialgebraic sets (first steps)

Ludwig Bröeker, Münster

Let S C IR" be semialgebraic compact (for simplicity). \Ve provide S with the intrinsi~

path metric d. Then (5, d) has the strueture of a Rieluann polyhedron. By this we mean

the following:

A. Riemann metric on the siandard simplex ~n is given by a scalar product Gij which is

bounded, Coo on open subsimplices and continuous when passing from ß k ---t' 6.k-l. A

Riemann polyhedron is patched together from Riemann simplices. Under extraconditions,

which hold for semialgebraie sets, ane has a Gauß-Bannet formula in dimension 2.

Jkdw + J kds + L 0'; = 27TX(S)
S sing S .

For instance, in the cube the curvature is concelltrated in the vertices, being ~ at each of

them.

Semialgebraie Riemann-polyhedra appear also in the theory uf the reduction,of semialga..

braie sets via real valuations. •

Local-global principle for semi-Iocal rings in etale cohomology

Jerome Buresi, RCllues

Let A. be a ring, 2 E A-, Hn(A) := H:t (..4, Jl'l) aud c.pIß the ilnage of <p E Hfl( ..4) in Hn(B)
for a. homomorphisnl ..4 -+ B. c.p E Hn ( ..4) is sai<1 to be (-1) torsion free if ( _l)k V <P -I 0

for all k E N. We prove t.he followillg.

4
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Theor~ln: Let..-l b(~ Cl s(~milocalring, 2 E A-. If·;; E Hn(A.) is (-1) torsion free t.hen

therc exi.sts a. real point n :--illch that f,' I~(o) "# O. where k( t.'k) is the real dosure of 0'.

Proof: ßy Arasoll Thcof(~m thc result is true if .-l is a field. So we are redllced to prove

there exists a. rea.l idenl fJ such that <p1.4: is ( -1 )-torsion free wherc ..4~ is the henselization

01 .4 p • VVc have

Proposition 1 (Localization): Let .4 be a ring, u~ u E ..4 such that 2d = 2(u:! + (1) E ..4­

then kernel and cokernel of Hn(A) -+ Hn{.4a) are killed by cup-product with (d)

Pr-oposition 2: Let A. be a semi-Iocal ring. If ~ is (-1 )-torsion free, then P = {a E .4,

Vu = 2:7=1 u} such that- u + a E .04,- ~ (u + a) V c.p is (-1) torsion} is a preordering.

The proof is using the property of transversality of quadratie forms over semilocal rings.

Mixing the hvo propositions and picking an ordering a containing P we have that for

p = supp(a) 'PIAp is (-~) torsion free.

Proposition 3 (projection formula): Consider A. ~ m- = B, where P j~monic. Then

there exists a map IV; Hn(B) ~ Hn(A.) such that IV[(b)] = (lV'[b)) with' abu:se of the

notation, and Ve.p E Hn(A.) V1/J E Hm(B) lV(e.pIB V t/J) = <p -V iV(t/J). :....

Proposition 4: Let A be a Ioeal ring and suppose the·ma.ximal ideal m is real. Let -P be

a monic polynomial such that m~ (x'ixJo)x ~ where Po(xo) =1= 0 (P haS a simple root

in k). '~et 1r: m-+.k, x I--+' XO. If-s E B is such that 7T'(s) < 0, then there is u E B sueh

th~t s + u 2 E B·.an~ 1V(U2 + s) < 0

Proposition 5: Let A. be a Ioeal ring, P and 7r as in proposition 4. Ir<;? E Hn(A) is

(-l)-torsion free and the ima.ge of P is on the positive part in k,.then e.ple is (-1) torsion

free, \vhere
1 ~. c (~)

'~\rl = (P) ~-I(OI

k

Let ~\/~ be an algebraic variety. ASSllIue 4\1[' = .Y XiR <C (:onneeted and ...Y(IR) "# ~.

Let .... be the nUIuber of connected cOIllponeuts of .\(IR.) and t the number of cOIupact
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connected components. Let bi = dilnHi(~Y"(IR)) \vhen Hi(~y(lR.)) = Hid~sical(-Y(lR),Z/2).

Let 1r: .Yc ~ ..:\. he the projection. Givell an abelian group ~..t and n > 0 an iIltcger~ let

nA = {x E A. Inx = O}.

(1) Zero..cycles

Let C Ho{ ..Y) be the Chow group of zero-cycles Inodulo rational equivalence. Ir ~Y is com­

plete, let Ao(.,;r) C CHo(X) be the subgroup of classes uf c.legree O. Let D(.X:) C CHo(-Y)

be the maximal divisible subgroup.

Theorem 1.1. a) CHo(X}/2 ';: (Zj2)t
b) D(JY) = 1T'.Ao(Xc) = 2Ao(...Y) if)( is complete

D(X) = 7r.CHo(.~"'<c) = 2CHo(...Y) if ~y. is not complete.

In the complete case, this is due to eT/Ischebeck (1981) - the proof there is by reduetioa

to the classical case of curves.

Theorem 1.2. Assume JY/R smooth. Then for any integer n > 0, the group nCHO()()
is finite. If ..Y is affine, or if )( is complete and H 1 ( .•:!(, Ox) = 0, then D( ...Y) is uniquely

divisible. If ~1( is complete, q = dimHl (X, Ox), A. = Albanese varieiy of X and 2T is

the number of connected components of ~4(lR), then the order of 2CHo(.Y) is bounded by_
22q+,,-1+T.

The proof uses Roitman's theorem on O-cycles on ..-re.

(2) Partial degenerescence of the Bloch.. Ogus spectral sequence

Let Hi(X): = H~t()(, Zj2). Let 1-li be the Zariski sheaf on _Y associated to the presheaf

U r--+ Hi(U). There is a spectral sequence

E~,q = O'for p > d :::: dimX. If ...Y is smooth, E~,q = 0 far p > fJ (Bloch-Ogus) and

Hi(_y, 1l.i ) ~ CHi(J",<)/2. It is known (see my talk at oberwolfach, ID90, see also Schei­

derer's Habilitationsschrift) that

•(}( arbi trary}. This is proved by using the isolnorphi~lll

d

HU(X) 3:: EB Hi( ..Y(IR)) far 11. 2: 2d + 1
&=0

(Artin-Vcrclicr, Cox, atllers, ... ). U~illg the~e facts t,ogethcr with (:olluting arp;tlluents, we

show:

G
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Theorem 2.1. Thc clitfen:ntials in (:~) ending in (1'. f/) with 11 + '1 2: 2d + 1 vanish. Ir .X"

is smooth. t.hey vanish if }J + q ~ 2d. If .Y" is Slllooth and H'1.d-1 (.\c) = O~ they vallish if

P + fJ 2: 2d - 1.

Theorenl 2.~. Let .\jR he slnooth. Hence CHot.Y)j2 = CHd(.Y)j2 3: H d LY,1{d).

a) C Hd( ..y)/"y' ~ H d (.Y"(IR), 7lj2) ~ (Zj2)t (prouf independent of (1)]

b) The cyde Iuap CHd(~Y)j2 -4 H 2d(}() is injective.

c) The group Hd-1( ..y, 'H. d) is finite. It admits a filtration \vhose successive quotients

are: H d - 1 ( ..Y(lR)); I(er[CH d ( ..Y)j2 -+ CHdCYc)/2] ~ (71j2)t-~, \vhere € = 1 if X is

complete und € = 0 if ..Y: is not complete; Image [H 2d- 1(Xc) -+ Hd-1( ...y, 'H. d )).

cl) If H'ld-I (.Yc) = O. there is a surjection:

[for d = 2 this gives a. surjective 2BrX ...... (Z/2}"]
;:~it(

(3) Connection with K-cohomology :f
Let Kj be the Zariski sheaf associated to U 1-+ Ki(r(U, Ox )). From J(-theoty (results of

Merkur'ev-Suslin) we have an exact sequence for )(jR smooth:

o-+ H d- 1 (X, Kd)/2 -+ H d- 1(X, Jtd) -+2 CHd(X) -+ O.

The results of §2 yield another proof o.f the finiteness of nCHd(X) (5. §l). If ~"'( is affine

of dimension ~ 2 or ..Y is complete and H 2d
-

1
( ..yC) = 0, we show

A completely normal spetral space that is not areal spectr-1lm

Charles N. Delzell and .Jalnes J. Madden

.Louisiana State University

A spectral space is said to be completely normal if whenever points x and y are in the

dusure of a singleton {z}, then either .c is in t.he dosllre of {y} or y is in the closure of

{x }.

Let A. he a ring, and let SpecrA denote the real spectrum of' A.. In one of the earliest

alld IIlOSt infiuential papers on the real ~pcctr\lm, Coste and Roy showed that SpecrA

is a. cOlupletely normal speetral space, an<.! they a.sked whether every completely normal

speetral space is the real spectrlllll of SOIUC rin~. Up to the present, all kriown topological

. properties of Spec r ..4 have been conseq\lencc~sof cOlnplete llonnality. In this talk. we gave

:Lll c.~xalnpre showillg that the allswer t.o CostP, a.nel Roy's qnestion is H OO". Our exalnple is
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one-di111ensional. The ideal is to itnitate SpecrlR.[~\]. It \vill a.ppear in .Jollrnal of A.lgebra,

1D94.

On the honl0logy of the space of non-singular real plane algebraic curves

Th. Fiedler, Toulouse

Let )( C CP'l be a smooth real algebraic curve of degree 2k and let 9J1x denote the

connected component in the space of all real smooth curves of degree 2k \vhich contains

Jy..

Let p denote the number of ovals of the real part _YIR = }( n IRp2 which are surrounded by

an even number of ovals and let n- denote the number of ova.ls which are surrounded b_

an add number of ovals and which bound moreover from the outside a surface of negativ.

Euler characteristics in RP2\XIR.

Theorem: .If the curve XIR contains k - 1 ovals which surround one anel the same point

in lR.p2 and if dirn H * (9J1X; Z/2Z) is odd then

_ 3 1
p - n ~ 2k(k - 1) - 2(k - 3).

Remark. For any curve of degree 2k Arnold's inequality holds: p- n- ::; !k(k -1). This

inequality is sharp, even for curves which satisfy the first condition of the theorem. Hence

the theorem implies that from" information about the components of non-singular curves

in the space of all curves oue"ean derive an improvement of Arnold's inequality.

The algebra of the center problem

J. P. Francoise, Paris

I study a generalization of Bautin's theorem to polynonüal vector fields of lR2m of the

following type:

••
where Ai ure Z-independent. Ina neighbourhood of 0:

Theorem 1: The set of .~ so that _\ !las rn fonnal first integrals generically independent

is an algebraic manifold, denotend by C.

Theorem 2: }( has m analytic. first integrals itf 4\ has (:ontinuUffi uf invariant torii. vVe

denotc by Z the set of such vector-fields. Thell Z c c.
~

s
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Theoren~ :i: \Vc~ .:an hOHnd Huifornlly (but thc ooulld CrLUllot be conlpllt(~d) th(~ nllnlbc~r

of invariant t.orii for ~\ 1. C.

Gabrielov theorem far subpfaffian sets

Zbigniew Hajto, Valladolid

In the talk we give an introuuction to the theory of subpfaffian sets. The motivation for

developing that kind of transcendental analogy of subanalytic geometry was the following

question posed by R. Moussu and M. Shiota (Trento, September 1992): "'\tVhat can we get

adding to subanalytic sets the solutions of Pfaffian equationsT'

Driefly, the theory is composed of three parts.

A) Semipfaffian geometry, where basic objects are defined. The bui.lding blocks of Dur

geometry are the interseetions of leaves of Pfaffian foliations with the strata of normal

decompositions of S. Lojasiewicz. This part of the theory'Yas sugge~t!:~ in several

papers of R. Moussu, C. 'Roche and J...:M. Lion. ~~~~'.~

B) Subpfaffian geometry, which includes the analog of Gabrielov theorem ab~ut the com­

plement of sub~alytic set. The main obstruction in building a self-contained theory

of semipfaffian sets is the lack of the theorem about the closure cf a semipfaffian set.

However using the theorem about the complement of a subpfaffian set it is possible to

prove that t.he closure of a subpfaffian set is' subpfaffian. The proof of t.he Gabrielov

theOrem is possible if we know that the boundary of a subpfaffian set. E is contained in

~ closed subpfaffian s~t of dimen~ion smaller than the dimension of E .This property

we call subregulari ty of E. . ,

C). The Ul0st technlc~ part '?f tbe theory where the praof that any basic seniipfaffian set

is subregular is presented.

The theorem about ~the_ co~plelnent and its consequence theorem abo~t the. ciosure to­

gether with subpfaffian version of finiteness theorem are the fund~entals of the basic

subpfaffian geometry. They form a good starting point far further study of the solutions

oE systems of Pfaffian equations, e.g.

dXI + ./ll-Ji} <Lt:::::: 0
( Xl

dx n + -/!-l- eit == 0
"X n

in lRu+1 • for f analytic in au open set ill IRn~ In this cOlltext. it seems to he valuable to

reprnve the triangulation the~)reIll freHn subanalytic geolnetry and to establish a kind of

l~ql1isiIl.~111aritythcory for 'subilfaffian sets. Finally an illtcrestillg connection \vith the work

of LOH vau den Drics should he IuelltioIlcd ;U:i weIl (1].
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[1] L. van (leu Drics, Tarski '5 problem and Pfaffiau functions, Logic ColloquitUll 84, 'VVillie

and \Vihners, e<l., North Holland (1086), 50-90.

Realiiability of cycles on real abelian varieties

Johan Huisman~ Utrecht

If ...J( "is areal abelian variety (that is, X is a complete, geometrically integral, sepatated

group scheme of finite type over IR) of dimension'l1 then it is \vell known that the set of real

points .Y(lR) of )( is topologically the disjoint union of 2i copies of (SI)ll. where 0 ~ i :5 n.

In particular,

dimz/2Z Hn-1( ...Y(IR), Z/2Z) = 2i
. n

In this talk it will be shown t~at one can compute the subgroup H:~1(X(IR),Z/2Z)Ofe
Hn-1(...-Y(IR), Z/2Z) of the codimension-1 cycles that are realizable by areal algebraic sub­

variety. As a consequence we will.prove the following.

Theorem: If)( is areal abelian variety of dimension n > 1, then the set of real

points ..-Y(lR) is connected whenever H:i~l (X(IR), Z/2Z) = 0, or H~I~l (..Y(R), Z/2Z) =
H n - 1(X(lR), Z/2Z).

Projective modules over fractional real polynomial rings

F. Ischebeck, Münster (joined work with M. Ojanguren, Lausanne)

Let .4: = IR[X, Y, Z], ~: = {f E Alf(x) # 0 'Ix E IR,3}.

Previous results: Every projective E-1 A-rnodule is free. (0. - 1.). Für f E ~ every

projective AI-module is free. (0. - Parimala). Für f = X 2 + y2 + Z2 there is ~ nonfree

projective AI-module. (Murthy or Eisenbud). Ir the real zero-set Zra(f) has a compact

connected component, there is a nonfree projective A1 -nlodule. (0. - Röver). We prove

Theorem: If ZfR(f) is smooth and has uo eompact conuected component, then every

projective E- 1 At-module is free. (We would like to replace ~-l A.I by AI!)'

~sin~ a global version of Gabber's theorem ~n '."projeetive modules over .lo~alized locae

nngs' we are reduced to show, that every proJcchve ~-lA/(f)-lnodule sphts Iota rank-l­

.ones. To this aim we show the following result in differential topolog;y:

Proposition: Let F be a closed CCX>-surface, P E F, F the blow up of F in P, Q E

exceptional fihre of this blow up, ~ a vectorbUlldle on F. Then thcre is a: CCX>-sec.tion in

the pu11 back of f. over F. which is transversal to t.he zero :)ection anu !las its only (if any)
zero in Q.

10
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Counter-examples to the Ragsdale conjecture

Ilia Itenb(~r~) DwlI, Ecole Nonuale Superieure. Paris, Frall\:c

In 1!J06 V·. Ragsdale propose(l the follo\ving conjecture: there a.re two incqualities for a.

non-singular real a.l.f?;chraic plc.ule projective CUfve of degree 2k:

where p (n, respectively) 15 the number of ovals of real point set of given curve lying

inside of even (odd, respectively) number of other ovals (such ovals are called even (acid,

respectively» .

In 1980 O. Vira canstructed curves of degree 2k (where k is even and k 2: 4) with

3k2 - 3k
n= +1

2

and suggested to ehallge the s~cand inequality in Ragsdale c~njecture to in;quality

3k2
- 3k + 2

n< ------ 2

(in this form the statement· of conje'~ture was formulatedin 1938 ?y 1. Petrovsky).

The following theorenl gives counter-examples to the "correcte~" Ragsdale conjecture.

Theorem For each iute.ger positive k > 1

a) -the~~ exists a non-singular re~ algebraic pl?-ne projective cur:c.re of degree.2k with

.~ 3k2
- 3k + 2 [(k - 3)2 + 4]

p-. 2 + 8

b) there exists a non-sin.gular real algebrruc plane projective curve of degree 2k with

- 3k2 -3k+2 ·[(k-3}2+ 4 ]
Tl = + - 1

~ 2 8

([al lienotes the Inaxilnal integer llu~ber uo ,greater than a).

These COllnter-~xalnplesare obtained llsing Viro~s method of construction of real al.gebraic

varieties with prescribed topology.

11
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Hilbert 17t~ problem and Riemannian vector bundles

Piotr Jaworski - \Varszawa

The aim of tny t.alk was to show that the problctll of represeIltill~ t.he IJositive definite

global real analytic fUllction f tnay be reduced to the IDeal problcln in the neighbourhood

of the zero set of f. Namely:

Assume that there exists a positive integer p and a family uf cOtnponents V1 , V~, . .. of the

zero set of f, such that:

a) 1- 1(0) = UVi, I-I (0) # UVi;
- i:#i

b) to each component Vi there is associated a positive definite analytic ~unction fi such

that: •

i) Vi = li- 1(0),
ii) f /11 ... li is analytic and its zero set is contained in UVj.

i>i
iii) fi is a surn ofsquares of p meromorphic functions defined in sotne neighbourhood

of Vi, analytic outside of Vi,

Then f may be represented as a s~m of k . 2d squares of global lneronlorphic functions~

where d = min{5:26 2:: p+ [fs]}, k = min{,:')'· 2d ~ n + I}.

The crucial step in the proof is the construction of the Riemannian vector bundle, \vhose

transition functions are Pfister matrices of functions fi.

Towards the maximal number of compon~nts of a surface of degree 5 in IRp3

V. Kharlamov, Strasbourg

The problem of determining the maximal number of cOlnponents of a. surface of given

degree m in Rp3 was proved by D. Hilbert yet in 1900. The response is still not known,

except m the trivial cases m s;; 3 und the case ln = 4. In this last ense thc Inaximal number

of components is equal to 10.

To determine the maximal nUluber of conlponcnts it is enollgh t.o r.onsider non-singular

surfaces: by a small variation, ,my singular surface call be replac,;d by öl. non-singular onee

having at least the same number of conlponents.

A standard application of the SUlith and COlllcsatti ineqllalities gives an estimate: the

lluluber of connected components of a non-singular surface of degree rn in IRP3 is less or
:l .. 25

equal to Sm -l8t,;· ± rn. In particular, i t c:an Hot he luore tItan 25 for In = 5.

In 19S1 I cOllstructed a surface of de.~f(~e 5 in IRp:J witlt 21 ccuupoueuts. The proof was

based Oll au appropriate equivariant version uf Horika.wa's t.hcorclIl on t.he lllocluli spnce of

nunleric cluintics.

12
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Reccntly, Itt~llbt'r.~ a.ntl 1 hav(~ t:onstructed areal qnintic with 2~ (:olllponents. It is honleo­

morphic to a. nOll-COllnect(~d sum of 21 spheres and Cl 1 spher'c with 7 :Vlöbius bands.
. .

This exa.ruple luay scr\·e. in particular. a.s a counter-cxarnple tu one Arnold's conjecture

conccrning r.he tnaxinlal uumber of eOlnponents of a surface of given degree. Arnold's

conjecture hO\luds hy ~l the nurnber of c:omponents in the case of quintics.

According to one Viro\i conjecture, this number should be less or equal to 23. This

conjecture still remains open.

The hOlnotopy groups of some spaces of real algebraic morphisms

Wojciech Kucharz, ,A.lbuquerque

(joint work with J. Bochnak, Amsterdam)

Let ..Y" and Y be affine real algebraic varieties. Denote by 'R(~Y,Y) the set ~f...~egular maps

(that is, real algebraic morphisms) of X in Y. We consider R(..JC, Y) as aitibspace of the

space C( ..Y, y~) of continuous maps of X in Y endo\ved with the compact op-=en topology.

Let IF denote one of' the fields IR, C or IHI (the quatemions) and let Gn,p(F) denote the

Grassmann variety of p-dimensional IF-vector subspaces of r n
. Here Gn,p(lF) is regarded

as areal algebraic variety.

Theorem: Let)~ be a compact afflne "real algebraic variety. Let i: 'R(X, Gntp(IF)) t-4

C( ..Y, Gn,p(IF)) be the inclusion map. Then for each 1 in 'R(X, Gn,p(IF)), the induced map

is injective for k = 0 and a .group isomorphism for k ~ 1.

Several examples in which i is a weak homotopy equivalence were also given."

vVf condition and Lojasiewicz inequlity

I\.. I\.urdyka, Krakc)\v & ChaInbery

(joint work ·with A. Parllsinski, Sydney)

Let f:)( --. IRh be a fUllction, _'\ ~"IR n. Let $ he a stratification of 4X"' Suppose that I1 S

has t.:onstant rank for each SES. We say that S is a vV, stratification of f iff for every

S~ 5' ES, 5 c 5'\5'. for every IO E S wc have
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for x ES, ;c' E S' clQse to Xo, where C depends on xo. li is sine of the an.l~le· bet\veen

correspondillg tangent spaces.

vVe prove the following

Theorell1: Let f:}( ~ IR be a subanalytic li.c. graph of f is ~l1ballalytic subset of Rn X IR).

continuous functioll. Suppose also that f is locally boundeu at eru;h .e EX). Then there

exists subanalytic Wf stratification S of function f.

Moreover each such stratification leads to the following Lojasie\vicz type inequality:

Proposition. If SES, Xo E S C /-1 (0), then there exists a constant C ,> 0 such that

If(x)1 ~ Cdist(x, S)lIgradj(x) 11

for each x E ..X" elose to x 0 •

Separation of clopen sets by etale cohomology

L. Mahe, Rennes

Let A be a ring, denote by Hn(A) the group H~(A, JL2)' Colliot-Thelene anq. Parimala

have defined a "signature map" A: Hn(A) -t Cont(Spec r ..4, Z/2) which can be extended

to H*(A): = ~'Hn(A) ~ Cont(SpecrA, Z/2) (the limit being taken under the map

Hn(A.) (~V Hn+l(A)). We give a proof that this A' is surjective. This has been already

proved by Colliot-Thelene and PariInala in the case of a. smooth variety over the real

numbers, and in the general case by Scheiderer and Buresi (independently). The proof

presented here is a copy of the proof of .the analog of the theorem for quadratic forms (The

author):

1) Formal Mostowski 's separation theorem (separation of clopen sets by "Nash func­

tions" ).

2) Use of a "localization Theorem" (Buresi) showing that Hn(B) --t HU(B1+,,) is an

isom~rphismmodulo the (-1 y-torsion where ,'; is n. Stun of squares.

3) Use of a trace formula to get control on the Inaps of type HTl(B) -; Hn(B[~YJ/~y4-(~

where d is a unit totally positive on B. •

Model theory and exponentiation

David Marker, University of Illillois, Chicago, USA

vVe ~urvey recent work on O-nliniInal structllres and expoIlcntiation. O-nlillimality implics

struct.llral properties of clennable sets all·alo~olls t.o those of selIlialg;ebra.ic sets. In partic­

ula.r \ve show that IR. with exponclltiatioll and rt.'st.ricted allalytic fUIlctions have qualltifi<~r
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elilninatioll (ollce lug is added). This is used to prove O-luiniluality. This is joint work

with L. vall den Dries ;Lud .-\... ~1a.cilltyre.

Separating faluilies aud Bröcker's t-invariant

Nlurray :Vlarshall. Ulliv. of Saskatchewall

Let V· ~ RN be an algebraic set, R real closed, and let S ~ V be a. tixed seIni-algebraic

set. For L= (f},···,fp) E R[t1, ... ,t,v)P and ~= (et, ... ,ep) E {-l,O.l}P, let

U(L,t~J:= {x E \' Isgnfi{x) = ei, i = 1, ... ,p}.

Say 11,"" I p 1S a 3eparating family for S if S = U U(/,~) for same subset ß ~
~E~ -

{-1,0, 1}p. p( S) = The least integer p such that S has a separating family 11, . .. ,I p.

t(S) = The least integer t such that S is the union of t basic. sets. Fix a separating family

/1 , ... , fp a.s above and let Si = the maximum of the stability indi~es of the kasic open and

closed sets U"v(L,~) ~ SperR(lV), ~ E 0, tv running through the irreduc~ble algebraic

setsW ~ V, i = 0, .... d, d = dirn V.

d d
Theorem 1. p(S) ::s L p(Si), t(S) ::; L T(sd, where p(O) = i, p(s) = 4"-1 - 2"-1 + 1 if

i=O i=O

s ~ 1, T(O) = 7(1) = 1, T(2) = 2 and r(s) =p(s)!/(P("~+I)!(P("~-l)!if s ~ 3.

Since'si ::; i by a result of Bröcker, this gives aglobai upper bound for p(S)", t(S) depending

only in d. Concerning lower "bounds we have

Theorem 2. If V = R d , there exists a semi-algebraic S ~ V with p(S) ~ lOg2(ßd- 1(2))+d

where ,8: N' --+ N is determined ß(n) = n(n + 1).

Arrangements of topological planes: criteria of linearity

N. ivInev, University of Bern, Steklov Institute

e In the terminology of orient.ed matroitls, the following theorem is discussed:

All the obstructiollS for linear reprcsentability of an oriented matroid Al (rank ~ 4) live

in hOluotOpy groups of the space of one-element p.xtentions of lvI.

Harnack's theorem for space curves

D. Pecker - Paris 6

Harnack's the~reIll for space curves is t.he following:
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Theorem: If k + c ~ C(d, n) (the classical Castelnuovo bouud) then there exists a. non

degenerate irreducible algebraic curve of degree d in Pu (lR) with k singular isolated real

points, c + 1 :"illlooth connected components homeomorphic to cireles.

This generalizes dassical results by Harnack (n = 2, k = 0) anti Hilbert (11. == 3, k = 0)

alld also lnore recent results on singular curves by Shustill (n = 2) an<! Tannenhatun (n

arbitrary, but complex case).

The proof is si"lnple, we first construct rational curves with lnany real isolated double points

(like for example the curve x = t a , Y = (t - l)b (a, b) = 1). Then \ve simplify the double

points of these curves using only elementary algebra.

The asymptotic values of a polynomial function on the real plane

M.J. de la Puente, Universided Complutense de Madrid

Let f: lR.2 ---+ IR. be a polynomial function and let c("\) denote the number of connected

compo.nents of the level curve V(f - A), ). E IR. It is well-known that if A is a critical value

fo~ f th~"n c may be discontinuous at A. In this paper we define anel study the other values

A, so called restricted a.sy~ptotic values 01 /, at which c may hav~ discontinuities. They

are related to unbounded subsets of lR.2 along which f tencls to A and the tangent plane to

the graph of f tends to horizontal position.

First of all, we study certain properties satisfied by unbounded semialgebraic subsets of

]R2 over which f has a certain behaviour (is bOtlDded, has ,a linüt, etc.). Secondly, we

define asymptotic classes, asymptotic values~ restricted asYlnptotic classes and restricted

asymptotic values of f and prove the finiteness of all of these families. Then the main

result can be proved: for a.given A, which is not a restricted asymptotic value, we prove

the existence of a compact subset B of }R:l such that c(p.) equals ehe number of connected

components of V(J - p.) n B, where 11. belangs to a neighbourhood of ,,\. Finally, we give

same necessary conditions for A to be an asymptotic value.

An invitation to computational real geometry through applications e
Tomas Recio, Universideu tle Cautabria

We present some applications of cOlnpntational real geonlctry in three fields: cOlnplexity,

conlputational geometry und robotics. The work presented here is jointly with several

people of the Ulliversity of Cantabria. We COlllluent brießy SOlne points.

It is shown that in the Lie group SE(3) of ellclidl~all plaeelncllts~ t.lle ~'I~a.tl1rar' Ieft invaria.nt

lnetric is not. computable lllH.ler thc Dhun-Shub-Sulale 1l1()del~ wlten dClncnts of SE(3) are
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..:-:!~:

consitlered in !R I'!, Even nlorc~: the topological shape of V~r()lloi dia~raIns nndcr snch

distan:ce. is Hot. nlIupntable by the salue 11lOclcl.

On Cl different t.opic. it is ShOWll. that a gelleralized inverse kinematics problem in robotics

(~aIncly ·'t.rac:king:' a. .givf~n scrnialgebraic path of a robot tip to r.he whole configuration

space) is sol \'t~d by lucans of algori thms fo~ thc Elinlination of quantifiers.

Finally, let llS lnention that an algorithm is presented to parametrize a semialgebraic set

in IRn, \vith dOlnain in IRd
t where d = dimension of S, and moreover keeping in the domain

good properties of S from the connectivity point of vie\v.

S moothings of plane singularities

J.-.J. Risler, DMI, ENS, Paris

Let, f = 0 be a germ at Ö E 1R.2 of aplane curve, f~ adeformation by f such that Je = 0

be smooth. \tVhat can be the topological type of {fe = O}?

If {f = Q} has r real branches, {fe = O} haS r '~'non-Glosed" eomponents an~ p ovals.

Theorem I p::; E~-;+l ovals, where JI. := Milno,r number.

Theorem 11 This bound is ~harp when n = 1 and f (locally) irreducible.

Theorem 111 When thebranches havedistinct tangents, there exists a, with 0 $ a $ r-1

and a s~oothing with ft-;+1 -.a ovals..

Theorem IV In the general case there exists a smoothing with e-;+1 .-. b ovals, for same

nUlnber b, 0 ~ b :s; 5(r - 1). .

The method is by blowing-ups.

Purity for real spectra; applications

C. ScheidereL Regensburg

Let. ~Y be an excellent regular scheIne and Z C :-\ a elosed regular suhscheme of eonstant

codiIuension c. Let F be .~ locally COllstant shcaf on ..Yr: = real speetrum of .Y. Let

'H~.. (.\-r, F) he the sheaf on .\r associated to the presheafU ~ HUnz.. (U, F) (U C )(r

open. )

Theorem (Purity). fLi.. (.\n F) =0 far 'tl =1= c, and Hz.. (.\r. F) is Zariski Ioeall)' isomor­

phie to Flz...

Tllt~ essential part of the proof is cOllccrnccl with the casc t: = 1, ..1( = specA. with A a.

~trictly rea.l Ioeal ring. First one dOt~S thc (:(unplet.e case nsing Cec:h cohomology alld the
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Weierstraß preparatioll theorem. The general case is inductively reduced tu the cOInplcte

ease, applyiug resolution or singularities and Ruiz's theoreIn on real spectruffi formal fibres.

In the seconu part same applications were :;ketched. For any (noetherian) scheme _Y as

above oue constrncts a complex

o -4 EB HO (sper ~(X),Z/2) -4 EB Hn(sper I';(x}, Z/2) -t EB ...
.rEX(O) xEX(l) xE.~(2)

whose cohomology is canonically identified with H*("Yrl 7l/2). This c9mplex is new even for

algebraic varieties /R, and is quite useful. From it cycie maps c.lq ; CHq( ..J{) ~ Hq(Xr , Z/2)
are constructed which in the classical cases (lR-varieties, compact real analytic Iuanifolds?"

coincide with the Borel-Haefliger maps. This construction permits to give a new proofo~

Bröcker's theorem, saying that on a smooth complete R-variety )( every divisor D with

eP(D) = 0 E H1()((R), Z/2) is rationally equivalent to a divisor D' \vith ID'l(R) = 0.
Here R is an archimedean real closed field. The proof is. purely algebraic and uses no

approximation techniques. Instead fan theory is applied, whieh again uses crucially the

fact that R is archimedean.

Separating ideals

Niels Schwartz, Passau

In his investigation of the Pierce-Birkhoff Conjecture .J. Madden introduced the nation of

the separating ideal (Ci, ß) of Ci~ ß E Sper(.A.) (real spectrtuß of the ring ..4). In a certain

sense (a, ß) measures the distance behveen a anti ,B. Similarly it is possible to associate a

separating ideal (v, w) with valuations v and 'IV of A. To every a E Sper(A) there belongs

a valuation-.vo in. a canonical way. It is trivially true that always (vo , vp) ~ (a, ß). The

geometrie meaning of separating ideals and of the connections between (vo , vp) and (a, ß)
can be made visible very clearly in the real plane. The separatirig ideals can be nontriviaf

only if a and ß (or v and w) have a comnlon center. If this COIUInon center is the origin t.hen

examples suggest that, informally speaking, t.lle separating ideals are small if the degree

of t.angency of the real sepctruDl points is high. This enn be made precise hy introducin.

tangent spaces for valuations and, addi tionally, t.a.ngent directions in the tangent spaces

for points of the real spectrum. lThe new resnlts rcportcd in the lectuf(~ were obtained in

collaboratio~with J. Madden.)

Riemann surfaces, algebraic curves and their period matrices

Nlika Seppii.l~i~ Helsinki

Ilecall tliut the following categories a.re cquivall'llt:
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e··

(a.) cOlnpact .~t"llllS '.J flielnal111 sl1rfaces;

(b) sinoot.h l:olnplcx a1.~cbraic f:llrVp.S of .geuus y;

(c)' periud lilatrices ('.J :< !J).

It is Ollr intt~ntion r.n dev(~lop COlllpllter progranls that can he llsed to study the abovp.

equivalencc of \·ate.~orit~s.

For real algebraic cur\'cs (\Vi th real points) the aboveproblem can be attacked directly:

(I) Real algebraic' curves \vith real points correspond to I(lein surfaces with a non-elnpty

boundary.

(2) Such I(lein surfaces .Y' can be presented in turns of a Fuchsian groups G of the 2nd

kindacting on the nnit disk D. For an orientable X we may choose G in such a way

that D/G = Int4\ (interier of 4\"). Non-orientable·Klein surfaces..:Y can be treated by

first passing to their orientable double coverings.

(3) G being of the 2nd kind, the space of holomorphic 1-forms on )( has a basis that

can be expressed in turns of certain Poincare series of \veight 1. Thi~~llows one to

compute (an approxilnation uf) the period matrix of 4Y. ~V-

The, algorithm sketched above has been coded and implemented in Helsinki.

On a result of B. Segre for real cubic surfaces

R. Silhol, Montpellier

. A smooth real cubic surface in jp3(1R.) can have 27, 15, 7 or 3 real lines.· This is weIl

known since the 19th century. The result of Segre is more subtle. Let D be a line in the

cubic surface .Y, and let P be aplane containing D then P n)( = DuC' where C is an,

eventually degenerated, conic. It cau easily be shown that' P is tangent to ...~ at the 2

points of intersection of D and C. Converseiy if x E D then' the tangent p~a.ne to ..Y" at x

contains D. This defines an involution a on D. But since a realline is holomorphic to 51,
it can have 0 or 2· nxed points. Segre <:alls the line elliptic in the first case, hyperbolic in

the second, and he proves.e.. Theorem (Segre): If X is a smooth real cubic with n lines then,

- 12 are elliptic and 15 hyperbolic if 11 == 27

- 6 a.re elliptic and 9 hyperbolic if n == 15

-- 2 :are elliptic anu 5 hyperbolic if TL = 7

. - 0 a.re elliptic and 3 hyperbolic if n = 3

In lllodern terms this result cau hc~ t!xplaillcd as follo\vs. Fi~ing a. spin structure .on p3.

al.lows t.o select a. da.ss of t~VeIl franlio.t!;s of the nurmal bundfe to ci~c1es clllbedded in 1P
3

.

EVt~ll .aud odd franliügs ditfer hy afHll twist.
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Let 4'[ be Cl. surface elubedded (or ilnmcrsed) in p3 anel let C be cu1 elnbedded circle on _Y.

Then one C~U1 defillc lj{ C) to be the number ruod. -1 of left ha.lf t.urns thc norrnal bandie

to ~~ restricted to C <.loes when moving along C with respect to an (~ven franüng. This

defines a Inap q: Ha (_\, Z/2) ~ Z/4 such that q( n + /1) = q( Cl:) +qUi) +:2(a, 13), where ( . )

is the intersection form. For embedded surfaces in !pJ the isoruetry dass of such a form

is uniquely determined. Retuming to the result of Segre it is easy to show that a line is

elliptic (resp. hyperbolic) iff 'q(D) = 1 (resp. q(D) = -1). Fronl this the theorem of Segre

reduces to an easy computation.

Counting real zeros with multiplicity

Gilbert Stengle, Lehigh University, USA

Let R be areal closed field, f(x) an element of R[x]. To count the real zeros of f \ve can

either manipulate fitself or dually use the algebra AI = R(x]/(f) as the basic datum. In

~he former' 'case the classic method of Sturm gives an algoritlunic procedure for counting

the number of real zeros. In the latter case the Inethocl of Sylvester associates to A.f a

quadratic form with signature equal to the number of real zeros. Each of these counts

1/(f), the number of topological zeros, that is, zeros are counted without multiplicity. vVe
give a formula for j.L(f), the number of real zeros counted with multiplicity. This formula

is semialgebraic in character, depending on numerical attributes of ..4./ as embodied in its

lattice of preC?rderings. (A preordering is a subsemiring containing the squares. vVe also

count ..4 I as an improper ordering.) Our main result is the following.

Theorem: Let AI be the lattice of preorderings of .4./. Let A(f) be the length of AI.

Then J.L(f), the number of real zeros of f cOllnted with muItiplicity, is given by

Jl(f) = A(f3) - ,\(f)
3 .

This is a cOllsequence of the more detailed fOrIllUla:

Proposition: Let 1/odd(!) be the Ilulnber of real zeros of f of odd degree counted \vitho.

multiplicity. Then •
3 1

,\(f) = 2JL(f) - 2LJodd{f).

This in turns follows from the following facts.

1. ,\( x m) = [3~ ]
:2. A((X

2 + a:l yn) = 0 . if u # 0

3. 1\(f9) = A(f) ffi 1\(9) if (!,y) = 1

-1. A is additive on direct sums.
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These inlply t.hat ..\( f) is a sunl L ..\( Xliii). Tht" t.hl"OrCIll follows froul the proposition! sill.ce

VOdd(f3J1l) = Ilntlcl(fUl) ~o t.hat.

A. real version of the Greuel-Le formula

Zbigniew Szafraniec, Gdansk

Let F = (fl, .... ,Jk):Rn -- IRA:, k < n! be a polynomialmapping. Let vV = F-l(O),

Wc = FC1(O), let I C IR [X 1, ... , In] be the ideal generated "by /1"", fk and all minors

aql·II:z,fl ..... fk) h 11 II's th n . TnIn L t Q(F) D[ ]/1
8(Zi

1
,...•~ik+l)' W ere . 1 e arm In h'. e . ~a Xl, •.. ,In •

Theorem.. Assume that dimlR Q(F) < 00 and thät rank DFc()() = k for every x EWe.

"Then there is an explicitley defined linear functional <p: Q(F)·--+ IR. such th~~<\~the quadratic

"form cI> on Q( F) defined by <1>(g) = <p(g2) is non-singular and x( ~V) = "si~~i"Ure cl}, where

x( ltV) is the Euler characteristic of W. ~

Approximation theorems for Coo solutions of systems"

A. Tognoli, Trento, Italy

Let U be an open set of IRn, by COO(U), Cc..J(U) we shall denote the ring of Coo and analytic

real function on T.!. In the following we shall consider the Whitney strong topology on
n '

COO(U). Let (1) L Q:ij(X)tj = pi(X), i = l~ ... , q, Q:ij E Cc..I(U) Pi E CtJ(U) be a linear
j=l ",

system. Then we have the following;

Theorem 1: Any Coo solution (11 ... In) of (1) can be approximated by analy"tic solution

(gI gn). Moreover if 11,,'" fp E CW( U) p ::; n, then we may "assume 91 = li, i =
1, ~ p. Let.Y ~ U be a coherent analyt.ic set, if lilx E C~( ..~), then we may assume

udx = Jilx,i = 1, ... ,n.

Theorem 2: Let" V be a. paracompact rea.l a.nalytic manifold~ then" every closed (exact)

(litferentia.l form ca.n be approxiInated hy analytic closed (exact) differential forms. that

are in thc SC'Llne cohoIllological da.ss.

Real algebraic geolnetry of contral problems

Y. YOlndin, Rehovot

I presented some filliteness reslllts for the an~a.chable see' of a. poly~omial control problenl

l +:). .e ~ I( x ~ u) , .r. u E 1R'2. Certain seInia.l~ebraic tricks. houudiug the hehaviour of thc
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trajectories of t*) huve heen presentcd. In pal'ticular, t.he followiug !conjecture has been

discussed: the rotation of an algebl'aic vector neId arollnd auy algebraic subnlunifold (in a

given time) is "al,gebraically" bounded.

Approximation by abstract Nash functions

Digen Zhang, Regensburg

Let A. be a commutative ring with 1. There are two inlportant :sheaves on the real spectrum

Sper A of A. If A = R(X1,··· ,Xn ], then CA is the sheaf of selnialgebraic functions on lRn
and lVA is the sheaf of Nash functions on IRn. It is \vell kno\vn~ that a semialgebraic

function on Rn is piecewise Nash functions, and is approxirnated by Nash functions Oll RU.
In fact it holds also ror follciwing abstract functions. e
Let U be a constructible open subset of Sper A.

Defin,ition 1: An element f E CA(U) (N'A(U), respectively) is called an ab.stract ~emial·

gebraic (Na:;h~ respectively) function on U.

Proposition 2: Let f be an Nash function on U. Then j(.):[T ~ IlaEuk(Q'), a 1---1'

f(a), where J(O') is the image of Ja in the residue field ,,:V.4,a/mA,u = k(a), is an abstract

semialgebraic function on U.

Proposition 3: Let X be a (pro)constructible subset uf Sper A and f. E C.4(.Y). Then

there are a covering {X.}i::l of )( by (pro)constructible subsets, open subsets Ui of Sper A

and Nash functions I. on Ui for i = 1,··· ,n such that .Y". C; Ui and J(o:) = fi(O') for any

Cl' E ..-Yi .

The main result of my talk is the following:

Theorem 3: Let /, c be abstract semialgebraic fUllctions Oll U with € > 0 on U (i.e.

e:( 0:) > 0, \I EU). Then there is an abstract Nash functioll !J on U such that If - !J I < ~

(i.e. IJ(a) - 9(0')1 < e(O'), Va EU).

To prove the theorem, we use the followin,g abstract wIosto\vski separation theorem.

Theorem 4: Let F, G be disjoint closed subsets of Sper .4.. Then thcre is an abstract_

Nash function on Sper A in the following form. •

where {1i, bij E .04, such that f > 0 Oll F a.lld f < 0 Oll G.

ß(~richtcrstat tel': Di~cn Zhang
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