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MATHEMATISCIIES FORSCHUNGSINSTITUT OBERWOLFACH

Tagungsbericht 22/1903

Reelle algebraische Geometrie

9.5. bis 15.5.1993

The fourth conference on real algebraic geometry at Oberwolfach was organized by
professors E. Becker (Dortmund), L. Brécker (Miinster) and M. Knebusch (Regensburg).
The participants presented their most recent work in the meeting. The lively scientific

) atomsphere of the conference resulted in very many stimulating discussions, which maybe
will influence future directions and will contribute to further progress in the field. -

'Vortragsausziige

On filtrations.of sheaves on semi-algebraic sets

Ralph Berr, Dortmund

‘ Let R be a real closed field and S C R™ a semialgebraic set. We denote by Cs the sheaf of
continuous semialgebraic functions on S. Now let F be a subsheaf of Cs. We will associate
with F a direct system F); C F of subsheaves with lim F; = F.

It is the aim of this approach to use these subsheaves for a more detailed analvsis of
the morphisms (S, F) — (T.F') with S,T semialgebraic and £ C Cs, F' C Cr. Let
A= R[Xy,...,X.]. In order to construct the sheaves F; we use the real spectrum of

higher level P-Sperd of A. This space has the following properties:
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Theorem 1: a) P-SperA is a spectral space.

b) SperA is a dense subspace of P-SperA.

¢) There is an open retract 7: P-Sperd — Sperd.
Hence the following diagram commutes:

P-Sper A z Sper A

P

Sper A

Now let S C R" be semialgebraic, S C Sper4 the corresponding constructible subset and .
F C Cs. For n € N we associate with S a subspace S.C P-Sperd and a sheaf F,, on Sn
such that -
a) S is dense in S,. . :
b) i:5 < 5, extends to a morphism (5, F) — (Sn, F,) of ringed spaces. _

Moreover the family (5',,,F ») forms an inverse system and we have the basic result:

Theorem 2: im(Sn, Fa) = (S, F).

Now let F? = m,F,, where : $, — SperA (see Theorem 1). Then F is a subsheaf of F
and F =limF;. For U C S open let ¢(f):= min{n € N|f € F:(U)}. €(f) is called the
level of f. The rings Fj;(U) and the levels ¢( f) can be characterized as follows: For a € U
let h(a) be the henselization of (k(supp(a)), &) with respect to the natural valuation wq
of & For f € F(U) we have

f:U— I hla)(f(a)) — [I k(a)
a€lU agll
| €q,r = ramification index

[1(~(a), wg)).

Here eq,; denotes the ramification of the unique extension of wh to h(a)( f(«))

Theorem 3: a) F;(U) = {f € F(U) | eq,s|n for all n € N}. .
b) ¢(f) = lem.{eq sla € U}.

Therefore the level of f € F(U) measures the ramification of f on U. Similarly one can
define levels of morphisms : (S, F ) — (T, F'). Again this level measures the ramification
of . For example, let Sy = {0 <z, 0<y<z"}CR?, S, ={0<z, 0<y<z}
Then f:(51,Cs,) = (52.Cs,), [(z.y) — («, {¥)] is an isomorphism and the level of f is

n.

Deltsche
DFG Forschungsgemeinschaft . © @




A few open problems about geometry and topology of real algebraic varieties

J. Bochnak, Amsterdam

Let .Y and ¥ be affine real algebraic varieties and let R(.X.Y") be the space of real regular
n+1

mappings from X into Y. Let S™ = {r € R"+]] Z z} = 1} be the unit n-sphere.
i=1
1. Is R(S™,5*) dense in C™(5", 5*), where the space of C® mappings is equipped
with C™ topology? Or, at least is every mapping f € C*(S", S*) homotopic to a
g € R(S™.5*). (It is so if k = 1,2 or 4. or of course if n < k).
- 2. Does there exist a regular mapping 5% x S? — S* of odd topological degree?
‘. 3. Assume that X is compact connected nonsingular and oriented of dimension n, and
denote
- Degr(X) = {k € Z|k = degf , f € R(X,S™)}

where degf is the topological degree of f. Is Degr(X) a subgroup of Z?’

(It is so if n is odd and in such a case Degz(X) is always Z or 2Z. However no example
of odd dimensional X with Degz(X) = 2Z is known.

If n =2 or 4, then Degr(X) is also a subgroup of Z. In such a case DegR(X) can be
even an arbitrary subgroup of Z).

4, Let Zbea complex projective nonsingular irreducible algebraic variety and let Zg be
its underlying real algebraic variety (which is known to be affine). Let n = dimc Z (and
" hence dimg Zg = 2n). Is R(Z=, S*") dense in C*®(Zg, S?")? (Itissoifn=1. fn=
then Degr(Zr) is aiways Z or 2Z. but again no example of Z with Degz(Zgr) = 2Z is
known. The simplest unknown case is Z = CP’ x CP’; then of course Zg ~ 5% x §?;
see question 2). It is known that Degg(Zgr) # {0} in any dimension.

5. Find all (n, k) such that each polynomial mapping S™ — §* is constant. (It is known
each couple of the type (2P, k), k < 2P, has this property. Are there others?).
suffices to solve this problem for couples of the type (n.n — 1) The lowest unknown
case is (48, 47).

. Describe all regular automorphisms of RP™ and S™. “Are they all linear? Unknown

even for n = 2.

. Let Z, and Z, be complex projective algebraic varieties. When their underlying
real algebraic structures Zig and Zyg are biregularly isomorphic? (The problem has
been solved for complex nonsingular curves and fora large family of complex abelian
varicties (Huisman}). [t is possible to have an infinite family (Z;)jen of complex

mutually nonisomorphic algebraic variceties with all Z;g isomorphic?

3
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8. Does there exist an infinite family F of nonisomorphic real algebraic varieties having
the same (isomorphic) complexification? The answer is negative for nonsingular real
curves (in which case #F < 2(\/g +1), where g is the genus of the complexified curve).

9. Algebraic embeddings of real algebraic varieties in RP™ or R". Several open problems.
Example: Let V be a complex projective nonsingular curve. Does Vg (its real algebraic
underlying surface) embed algebraically into R* or RP3?

10. Does there exist uncountably many nonisomorphic complex projective nonsingular
curves V with Hy(VR,Z/2) = H¥8(Vr,Z/2)? Here Hi'8(Vg,Z/2) denotes the sub-
group of H1(VR,Z/2) of homotopy classes represented by real algebraic curves con-
‘tained in Vg. (It is known that there exist exactly countably many complex elliptic -
curves E with H8(Eg,Z/2) = H,(Eg,Z/2) = Z/2 x Z/2).

Differential geometry of semialgebraic sets (first steps)

Ludwig Brécker, Miinster

Let S C R" be semialgebraic compact (for simplicity). We provide S with the intrinsic
path metric d. Then (S, d) has the structure of a Riemann polyhedron. By this we mean
the following:

A Riemann metric on the standard simplex A™ is given by a scalar product G;; which is
bounded, C™ on open subsimplices and continuous when passing from A% — A*¥-1. A
Riemann polyhedron is patched together from Riemann simplices. Under extraconditions,
which hold for semialgebraic sets, one has a GauB-Bonnet formula in dimension 2.

/kdw+ / kds+Za.-=27rx(S)
% :

sing §

For instance, in the cube the curvature is concentrated in the vertices, being 7 at each of
them.

Semialgebraic Riemann-polyhedra appear also in the theory of the reduction of semia.lg‘ 3

braic sets via real valuations.

Local-global principle for semi-local rings in étale cohomology
Jerome Burési, Rennes
Let 4 be aring, 2 € A*, H™(A) := HA (A, u2) and ¢|p the image of o € H*(4) in H*(B)

for a homomorphism A — B. ¢ € H™(4) is said to be (—1) torsion free if (—1)¥ Vo # 0
for all k € N. We prove the following.
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Theorem: Let A4 be a semilocal i'ing, 2¢ A% Ifp € H*(4) is (—1) torsion free then
there exists a real point « such that oy # 0, where k(«) is the real closure of a.

Proof: By Arason Theorem the result is true if 4 is a field. So we are reduced to prove
there exisis a real ideal p such that SF’IA; is (—1)-torsion free where :1:,' is the henselization
of 4,. We have
Proposition 1 (Localization): Let A be a ring, a,u € 4 such that 2d = 2(u* +4a) € 4°
then kernel and cokernel of H*(A4) — H"(4,) are killed by cup-product with (d)
Proposition 2: Let 4 be a semi-local ring. If ¢ is (—1)-torsion free, then P = {a € 4,
Vu =37, u? such that u + a € A* = (u +a) Vy is (—1) torsion } is a preordering.
. The proof is using the property of transversality of quadratic forms over semilocal rings.

Mixing the two propositions and picking an ordering « containing P we have that for
p=supp(a) ¢la, is (—1) torsion free.

Proposition 3 (projection formula): Consider 4 — %[5)1 B, where P i Js monic. Then
there exists a map N:H"(B) — H™(A) such that N[(b)] = (N[8]) thh’ abuse of the
; notation, and Vo € H"(4) V€ H™(B) N(plaVy)=pV N(¥). P

Proposition 4: Let 4 be a loca.l ring and suppose the ' maximal ideal m is "r‘ea.l Let ‘P be

a monic polynomial such that Xzl T P) (z—klleo— where Py(zq) # 0 (P has a simple root
in k). Let m: ‘(ﬂpf)l —k, v zo. Ifs€ Bis such that 7(s) < 0, then there is u € B such

thats+u € B*.and V(u2 +3s)<0

Proposition 5: Let 4 be a local ring, P and 7 as in proposition 4. If ¢ € H*(A) is
(—1)-torsion free and the image of P is on the positive part in k,-then ¢|c is (—1) torsion

free, where

A .
A — TE)]._._, ((P) )11'"(0]

P
k
- 6 " This suffices to prove ga|,‘; is (—1) torsion free.
Zero-cycles and cohomology of real algebraic varieties
' J.-L. Colliot-Théléne.'Orsu_\;
(Joint work with C. Scheiderer, Regensburg)

Let X/R be an algebraic variety. Assume X¢ = X xg C connected and X(R) # 0.
Let s be the number of connected components of X(R) and t the number of compact

[}
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connected components. Let b; = dim H'(X(R)) when H(X(R)) = H', ical( X(R), Z/2).
Let m: X¢ — X be the projection. Given an abelian group A, and n > 0 an integer, let
nA={z€A|nz=0}

(1) Zero-cycles

Let CHo(X) be the Chow group of zero-cycles modulo rational equivalence. If X is com-

plete, let Ag(X) C CHo(X) be the subgroup of classes of degree 0. Let D(X) C CHo( X)
be the maximal divisible subgroup.

Theorem 1.1. a) CHo(X)/2 = (Z/2)
b) D(X) = m.Ae(Xc) = 240(X) if X is complete
D(X) = n.CHo(Xc) = 2CHo(X) if X is not complete. -

In the complete case, this is due to CT/Ischebeck (1981) - the proof there is by reduction‘
to the classical case of curves.

Theorem 1.2. Assume X/R smooth. Then for any integer n > 0, the group »CHo(X)
is finite. If X is affine, or if X is complete and H'(X,Ox) = 0, then D(X) is uniquely
divisible. If X is complete, ¢ = dim H}(X,Ox), 4 = Albanese variety of X and 27 is

the number of connected components of A(R), then the order of ;C Hy(X) is bounded by

T 92qts—li4r,

The proof uses Roitman’s theorem on 0-cycles on Xc.

(2) Partial degenerescence of the Bloch-Ogus spectral sequence
Let H(X):= H(X,Z/2). Let H' be the Zariski sheaf on X associated to the presheaf
U w H¥(U). There is a spectral sequence

EP"I HZar( Y Hq) = H‘P+q(X) (*)

E}? = 0for p > d = dimX. If X is smooth, E}'" = 0 for p > ¢ (Bloch-Ogus) and
Hi(X,H') = CHY(X)/2. It is known (see my talk at Oberwolfach, 1990, see also Schei-
derer’s Habilitationsschrift) that

H{(X,H")= H'(X(R)) for n>d+1 .
(X arbitrary). This is proved by using the isomorphism
d .
HYX)= P H(X(R)) for n>2d+1
=0 ‘
(Artin-Verdier, Cox, others, ... ). Using these facts together with counting arguments, we

show:
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Theorem 2.1. The diffcrentials in (+) ending in (p.q) with p+ ¢ > 2d + 1 vanish. If X
is smooth, they vanish if p +¢q > 2d. If X is smooth and H*¢~'(X¢) = 0, they vanish if
p+aq=>2d—-1.
Theorem 2.2. Let X/R be smooth. Hence CHo(X)/2 = CHYX)/2 = HYX, HY).
a) CHYXY/2 = HYX(R),Z/2) = (Z/2)! [proof independent of (1))
b) The cyele map CH4(X)/2 — H?¢(X) is injective.
¢) The group H?*"'(X,H?) is finite. It admits a filtration whose successive quotients
are: H¥"Y(X(R)); Ker[CHY(X)/2 - CHYX¢)/2] = (Z/2)'~¢, where e = 1 if X is
complete and ¢ = 0 if X is not complete; Image [H?4~!(Xc) — H!™ (X, H?)].
d) If H?¢~'(X¢) = 0. there is a surjection:

HIY(X, HY) - HI2(X(R)).

{for d = 2 this gives a surjective ;BrX — (Z/2)?]
=
(3) Connection with X-cohomology F
Let K; be the Zariski sheaf associated to U — K(I'(U,Ox)). From K- theory (results of
Merkur’ev-Suslin) we have an exact sequence for .X/R smooth:

0— HYY(X,Kq)/2 = HY Y (X, H?) =, CHE(X) — 0.

The results of §2 yield another proof of the finiteness of ,CH?(X) (s. §1). If X is affine
of dimension > 2 or X is complete and H24~ l(’(c) 0, we show

HY(X,K4)/2 2 HY(X(R)).

A completely normal spetral space that is not a real spectriim
Charles N. Delzell and James J. Madden
‘Louisiana State University

A spectral space is said to be completely normal if whenever points z and y are in the
closure of a singleton {z}, then either r is in the closure of {y} or y is in the closure of
{z}.

Let 4 be a ring, and let Spec, A denote the réal spectrum of 4. In one of the earliest
and most influential papers on the real spectrum, Coste and Roy showed that Spec,A
is a completely normal spectral space, and they asked whether every completely normal
spectral space is the real spectrum of some ring. Up to the present, all known topological
_properties of Spec, A have been consequences of complete normality. In this talk, we gave
an example showing that the answer to Coste and Roy’s question is “no”. Qur example is

7
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one-dimensional. The ideal is to unitate Spe(.rR[ X]. It will appear in Journal of Algebra,
1994.

On the homology of the space of non-singular real plane algebraic curves

Th. Fiedler, Toulouse

Let X C CP? be a smooth real algebraic curve of degree 2k and let My denote the
connected component in the space of all real smooth curves of degree 2k which contains

JY .

Let p denote the number of ovals of the real part Xg = X N RP? which are surrounded by
an even number of ovals and let n~ denote the number of ovals which are surrounded b,

an odd number of ovals and which bound moreover from the outside a surface of negativ’
Euler characteristics in RP?\ Xg.

Theorem: If the curve Xg contains k& — 1 ovals which surround one and the same point

in RP? and if dim H.(Mx; Z/2Z) is odd then

w

p—n" < Sk(k—-1) ——(k—'&)

[

Remark. For any curve of degree 2k Arnold’s inequality holds: p—n~ < %k(k —1). This
inequality is sharp, even for curves which satisfy the first condition of the theorem. Hence
the theorem implies that from information about the components of non-singular curves
in the space of all curves one’can derive an improvement of Arnold’s inequality.

The algebra of the center problem
J. P. Francoise, Paris

I study a generalization of Bautin’s theorem to polynomial vector fields of R?™ of the
following type:

m a ’
X = E /\J‘(Ijay J,a )+ E Capryt —+Z ast” y? 3y . E
1=1

where A; are Z-independent. In a ueighbourhoo(l of 0:

Theorem 1: The set of X so that X has m formal first integrals generically independent
is an algebraic manifold, denotend by C.

Theorem 2: X has m analytic first integrals if X has continuum of invariant torii. We
denote by Z the set of such vector-fields. Then Z c C.
, #

DFG Deutsche
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Theorem 3: We can bhound wniformly (but the bound cannot be computed) the number
of invariant torii for X € C.

Gabrielov theorem for subpfaffian sets

Zbigniew Hajto, Valladolid

In the talk we give an introduction to the theory of subpfaffian sets. The motivation for
developing that kind of transcendental analogy of subanalytic geometry was the following
question posed by R. Moussu and M. Shiota (Trento, September 1992): “What can we get
adding to subanalytic sets the solutions of Pfaffian equations?”

Briefly, the theory is composed of three parts.

A) Semipfaffian geometry, where basic objects are defined. The building blocks of our
geometry are the intersections of leaves of Pfaffian foliations with the strata of normal
decompositions of S. Lo_pasxewxcz This part of the theory was suggest d in several
papers of R. Moussu, C. Roche and J.-M. Lion.

B) Subpfaffian geometry, which includes the analog of Gabrielov theorem about the com-
plement of subanalytic set. The main obstruction in building a self-contained theory
of semipfaffian sets is the lack of the theorem about the closure of a semipfaffian set.
However using the theorem about the complement of a subpfaﬁian set it is possible to
prove that the closure of a subpfaffian set is subpfaffian. The proof of the Gabrielov
theorem is possible if we know that the boundary of a subpfaffian set E is contained in

a closed subpfaffian set of dimension smaller than the dlmenswn of E. Thxs property
we call subregularity of E. .

C). The most technical part of the theory where t.he proof that any basic semipfaffian set
is subregular is presented -

"'The theorem about .the complement and its consequence theorem about the_clos_ufe to-
gether with subpfaffian version of finiteness theorem are the fundamentals of the basic
subpfaffian geometry. They form a good starting point for further study of the solutions
of systems of Pfaffian equations, e.g.

(l.tl + dﬁédt =0

dz, + fi—«lt =10

in R"*' for f analytic in an open set in R™. In this context. it seems to be valuable to
reprove the triangulation theorem from subanalytic geometry and to establish a kind of
cquusingularity theory for subpfatfian sets. Finally an interesting connection with the work
of Lou van den Dries should be mentioned as well [1].

. : 9
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{1} L. van den Dries, Tarski’s problem and Pfaffian functions, Logic Colloquium 84, Willie
and Wilmers, ed., North Holland (1986), 59-90.

Realizability of cycles on real abelian varieties

Johan Huisman, Utrecht

If X is a real abelian variety (that is, X is a complete, geometrically integral, separated
group scheme of finite type over R) of dimension n then it is well known that the set of real
points X(R) of X is topologically the disjoint union of 2 copies of (5!)", where 0 < i < n.
In particular, '
dimg/zz Ha-1(X(R),Z/22) = 2 n -

In this talk it will be shown that one can compute the subgroup Hi@dX(R),Z/?Z) of.
Hn_1(X(R),Z/2Z) of the codimension-1 cycles that are realizable by a real algebraic sub-
variety. As a consequence we will prove the following.

Theorem: If X is a real abelian variety of dimension n > 1, then the set of real
points X(R) is connected whenever H2% (X(R),Z/2Z) = 0, or HS (X(R),Z/2Z) =
Ha-1(X(R), 2/22).

Projective modules over fractional real polynomial rings

F. Ischebeck, Miinster (joined work with M. Ojanguren, Lausanne)

| Let A:=R[X,Y,2], &:= {f € A|f(z) £ 0z € R*).

Deutsche

Previous results: Every projective £~!A-module is free. (O. - L.). For f € T every
projective Ag-module is free. (O. - Parimala). For f = X2 + Y2 + Z2 there is a nonfree
projective Aj-module. (Murthy or Eisenbud). If the real zero-set Zg(f) has a compact
connected component, there is a nonfree projective A f-module. (O. - Rover). We prove

Theorem: If Zg(f) is smooth and has no compact connected component, then every
projective 7' A¢-module is free. (We would like to replace ©7' Ay by A[!).

Using a global version of Gabber's theorem on “projective mocules over localized loc
rings” we are reduced to show, that every projective S~!4/( f)-inodule splits into rank-1-

.ones. To this aim we show the following result in differential topology:

Proposition: Let F be a closed C®-surface, P € F,F the blow up of F in P, Q €
exceptional fibre of this blow up, ¢ a vectorbundle on F. Then there is @ C™-section in
the pull back of £ over F'. which is transversal to the zero section and has its only (if any)
zero in Q.

10
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Counter-examples to the Ragsdale conjecture
{lia ltenberg, DMI, Ecole Normale Supérieure. Paris, France
In 1906 V. Ragsdale proposed the following conjecture: there are two inequalities for a
non-singular real algebraic plane projective curve of degree 2k: -

p< 3k _3k42

n S 3k‘2-.‘lk .

where p (n, reépeétivelv) is the number of ovals of real point set of given curve lying
inside of even (odd, respectively) number of other ovals (such ovals are called even (odd,

. respectively)).

In 1980 O. Viro constructed curves of degree 2k (where k is even and k > 4) withv

3k - 3k : -
n=-———+ 1 . |
= & ;

and suggested to change the second inequality in Ragsdale conjecture to inequality

2—
n < 3k ?3k+2

(in this form the statement of conjecture was formulated in 1938 By L Petrovsky).
The following theorem gives counter-examples to the “corrected” Ragsdale conjecture.

Theorem For each integer positive k > 1

a)’ there exxsts a non- smgular real a.lgebra:c plane pro;ectxve curve of degree 2k with

s
o

.-3k2—3k}; k—3)2 +4
p= . +[( ) ]

b) there exists a non-singular real algebraic plane projective curve of degree 2k with

L

n
. 2

3k -3k +2  [(k-3)2+4
_ + ( )+ ]_1

([a] denotes the maximal integer number no greater than a). .

These counier-examples are obtained using Viro's method of construction of real algebraic
varieties with prescribed topology.

.

DFG Deutsche
Forschungsgemeinschaft




oF

Hilbert 17"? problem and Riemannian vector bundles
Piotr Jaworski - Warszawa

* The aim of my talk was to show that the problem of representing the positive definite
global real analytic function f may be reduced to the local problem in the neighbourhood
of the zero set of f. Namely:

Assume that there exists a positive integer p and a family of components V;, Va,... of the
zero set of f, such that: '
a) f7HO)=UV: £7'(0) # U Vi
TI#F
b) to each component V; there is associated a positive definite analytic function f; such

that:
i) Vi = f71(0),
it} f/f1--- fi is analytic and its zero set is contained in U V.
J>i
iii) fi is a sum of squares of p meromorphic functions defined in some neighbourhood
of V;, analytic outside of V;.

Then f may be represented as a sum of k - 2¢ squares of global meromorphic functions,
where d = min{6:2° > p+ [&]}, k = min{v:v-2¢ > n+1}.

The crucial step in the proof is the construction of the Riemannian vector bundle, whose
transition functions are Pfister matrices of functions f;.

Towards the maximal number of components of a surface of degree 5 in RP?
V. Kharlamov, Strasbourg

The problem of determining the maximal number of components of a surface of given

degree m in RP* was proved by D. Hilbert yet in 1900. The response is still not known,

except m the trivial cases m < 3 and the case m = 4. In this last case the maximal number
of components is equal to 10.

To determine the maximal number of components it is enough to consider non-singular

surfaces: by a small variation, any singular surface can be replaced by a non-singular one. -

having at least the same number of componcnts.

A standard application of the Smith and Comesatti inequalities gives an estimate: the
number of connected components of a non-singular surface of degree m in RP? is less or

amd— 2 . . . o«
equal to im-—l8m_$25m ls]'.;‘ 28m Iy particular, it can not be more than 25 for 1 = 5.

In 1981 I constructed a surface of degree 5 in RP* with 21 components. The proof was
based on an appropriate equivariant version of Horikawa’s theorem on the moduli space of
numeric quintics.
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Recently, Itenberg and | have constructed a real quintic with 22 components. It is homeo-
morphic to a non-connected sum of 21 spheres and a 1 sphere with 7 Mobius bands.

This example may serve, in particular, as a counter-example to one Arnold’s conjecture
concerning the maximal number of components of a surface of given degree. Arnold’s
conjecture bounds by 21 the number of components in the case of quintics.

According to one Viro's conjecture, this number should be less or equal to 23. This
conjecture still remains open.

The homotopy groups of some spaces of real algebraic morphisms

Wojciech Kucharz, Albuquerque
(joint work with J. Bochnak, Amsterdam)

Let X and Y be affine rea.l algebraic varieties. Denote by R(.X,Y’) the set of regula.r maps
(that is, real algebraic morphisms) of X in Y. We consider R(X,Y) as a subspace of the :
space C(X,Y) of continuous maps of X in ¥ endowed with the compact open topology. ’

Let F denote one of the fields R, C or H (the quaternions) and let G,,,,(F) denote the
Grassmann variety of p-dimensional F-vector subspaces of F*. Here Gn ,(F) is regarded
as a real algebraic variety.

Theorem: Let X be a compact affine real algebraic variety. Let i: R(X,Gn p(F)) —
C(X,Ga p(F)) be the inclusion map. Then for each f in R(X, Gn »(F)), the induced map

1o Th(R(X, G p(F)), f) — ma(C(X, G o(F)), f)

is injective for ¥ = 0 and a group isomorphism for k£ > 1.

v

A

Several exampies in which ¢ is a weak homotopy equivalence were also given.’

Wy condition and Lojasiewicz inequlity

K. Kurdyka, Krakow & Cha.mbefy

(Joint work with A. Parusinski, Sydney)

Let f: X — R* be a function. X C'R™. Let S be a stratification of X. Suppose that fls
has constant rank for each S € S. We say that. S is a Wy stratification of f iff for every
5,5 8,5 c 5N\ for every zg € S we have

ST f T AN ST [~ f(e' )N S < Clz — &)
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for z € S, 2’ € §' close to zp, where C depends on . § is sine of the angle between

corresponding tangent spaces.
We prove the following

Theorem: Let f: X — R be a subanalytic (i.e. graph of f is subanalytic subset of R” x R).
continuous function. Suppose also that f is locally bounded at cach & € X). Then there
exists subanalytic Wy stratification S of function f.

Moreover each such stratification leads to the following Lojasiewicz type inequality:

Proposition. If S € S,z0 € S C F71(0), then there exists a constant C > 0 such that

If(z)] < Cdist(z, S)llgrad f(=)ll . .

for each z € X close to zg.

Separation of clopen sets by étale cohomology
L. Mahé, Rennes

Let A be a ring, denote by H"(A) the group HZ (A, pa). Colliot-Théléne and Parimala
have defined a “signature map” A: H"(A) — Cont(Spec,4,Z/2) which can be extended
to H*(A):= lim H*(4) A, Cont(Spec,4,Z/2) (the limit being taken under the map

H™(4) Y H™+1(A)). We give a proof that this A’ is surjective. This has been already

proved by Colliot-Théléne and Parimala in the case of a smooth variety over the real
numbers, and in the general case by Scheiderer and Burési (independently). The proof
presented here is a copy of the proof of the analog of the theorem for quadratic forms (The
author): :

1) Formal Mostowski’s separation theorem (separation of clopen sets by “Nash func-
tions”).

2) Use of a “localization Theorem” (Burési) showing that H"*(B) — H"(B)4,) is an

" isomorphism modulo the (—1)-torsion where s is a sum of squares.

3) Use of a trace formula to get control on the maps of type H*(B) — H™(B[X]/X*? —'(b

where d is a unit totally positive on B.

Model theory and exponentiation ‘

David Marker, University of Illinois, Chicago, USA

We survey recent work on O-minimal structures and exponentiation. Q-minimality implies
structural properties of definable sets analogous to those of semialgebraic sets. In partic-

ular we show that R with exponentiation and restricted analytic functions have quantifier
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elimination (once log is added). This is used to prove O-minimality. This is joint work
with L. van den Dries and A. Macintyre.
Separating families and Brdcker’s ¢-invariant
Murray Marshall, Univ. of Saskatchewan

Let V C RV be an algebraic set, R real closed, and let S C V be a tixed semi-algebraic
set. For f =(f1,...,f,) € R[t1,...,tn]P and e = (e1,...,¢e,) € {—=1,0.1}?, let

U(fie):=({z €V |sgnfi(z) =ei, i=1,...,p}

Say fi,....fp is a separating family for S if S = |J U(f,e) for some subset A C
- €A T

{-1,0,1}2. p(S) = The least integer p such that S has a separating family f1,..., fp.
t(S) = The least integer ¢ such that S is the union of ¢ basic sets. Fix a separating family
fi,.--, fp as above and let s; = the maximum of the stability indices of the basic open and
closed sets Uw( _f. ,e) C SperR(W), e € A, W running through the irreducjble algebraic
sets WCV,i=0,....,d,d=dimV.
- d d. '
Theorem 1. p(S) < 3_ p(si), t(S) < Y 7(s:), where p(0) =1, p(s) = 4°~1 — 22~ 4 1 if
1=0 i=0
s21,7(0)=r(1) =1, 7(2) = 2 and 7(s) = p(s)!/(BEyyelal=yr 5 5 > 3.

Since’s; < i by a result of Brocker, this gives a global upper bound for p(S), ¢(S) depending
only in d. Concerning lower bounds we have
Theorem 2. If V = R?, there exists a semi- algebraic S C V with p(S) > logz(ﬂ‘ 2N +d
where 3:N — N is determined #(n) = n(n + 1). K

e

Arrangements of topological planes: criteria of linearity

N. Mnev, University of Bern, Steklov Institute

In the terminology of oriented matroids, the following theorem is discussed:

All the obstructions for linear representability of an oriented matroid M (rank > 4) live
in homotopy groups of the space of one-element extentions of M.

Harnack’s theorem for space curves

D. Pecker - Paris 6

Harnack’s theorem for space curves is the following:

15




Theorem: If k + ¢ < C(d,n) (the classical Castelnuovo bound) then there exists a non
degenerate irreducible algebraic curve of degree d in P,,(R) with k singular isolated real
points, ¢ + 1 smooth connected components homeomorphic to circles.

This generalizes classical results by Harnack (n = 2,k = 0) and Hilbert (n = 3,k = 0)
and also more recent results on singular curves by Shustin (n = 2) and Tannenbaum (n
arbitrary, but complez case).

The proof is simple, we first construct rational curves with many real isolated double points
(like for example the curve z =%, y = (¢ - 1)* (a,b) = 1). Then we simplify the double
points of these curves using only elementary algebra.

|

\

The asymptotic values of a polynomial function on the real plane ‘

M.J. de la Puente, Universided Complutense de Madrid -

Let f:R? — R be a polynomial function and let c(A) denote the number of connected
components of the level curve V(f — A), A € R. It is well-known that if A is a critical value
for f then ¢ may be discontinuous at A. In this paper we define and study the other values
A, so called restricted asymptotic values of f, at which ¢ may have discontinuities. They
are related to unbounded subsets of R? along which f tends to A and the tangent plane to
the graph of f tends to horizontal position.

First of all, we study certain properties satisfied by unbounded semialgebraic subsets of
R? over which f has a certain behaviour (is bounded, has a limit, etc.). Secondly, we
define asymptotic classes, asymptotic values, restricted asymptotic classes and restricted
asymptotic values of f and prove the finiteness of all of these families. Then the main
result can be proved: for a.given A, which is not a restricted asymptotic value, we prove
the existence of a compact subset B of R? such that ¢(u) equals the number of connected
components of V(f — u) N B, where p belongs to a neighbourhood of A. Finally, we glve
some necessary conditions for A to be an asymptotic value.

An invitation to computational real geometry through applications . h
Tomas Recio, Universided de Cantabria
We present some applications of computational real geometry in three fields: complexity,

computational geometry and robotics. The work presented lere is jointly with several
people of the University of Cantabria. We comment briely some points.

\ .
| It is shown that in the Lie group SE(3) of euclidean placements, the “natural” left invariant
| metric is not computable under the Blum-Shub-Smale model, when clements of SE(3) are
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considered in R'*. Even more, the topological shape of Voronoi diagrans under such
distance. is noi computable by the same model.

On a different topic, it is shown, that a generalized inverse kinematics problem in robotics
(namely “tracking” a given semialgebraic path of a robot tip to the whole configuration
space) is solved by means of algorithms for the Elimination of quantifiers.

Finally, let us mention that an algorithm is presented to parametrize a semialgebraic set
in R", with domain in R?, where d = dimension of S . and moreover keeping in the domain
good properties of S from the connectivity point of view.

Smoothings of plane singularities
J.-J. Risler, DMI, ENS, Paris

Let f = 0 be a germ at 0 € R? of a plane curve, f. a deformation by f such that f, =0
be smooth. What can be the topological type of {f, = 0}?

..-.

If {f = 0} has r real branches, {f. = 0} has r “non-closed” components a.nd P ova.ls
Theorem I p < L"z— ovals, where p := Milnor number.
Theorem II This bound is sharp when n = 1 and f (locally) irreducible.

Theorem III When the branches have distinct tangents, there exists a, with0 < a < r—1
and a smoothing with £=751 — g ovals. -

Theorem IV In the general case there exists a smoothmg with & -b ovals, for some
number b,0<b<5(r—1).

The method is by blowing-ups.

Purity for real spectra; applications

C. Scheiderer, Regensburg

Let X be an excellent regular scheme and Z C X a closed regular subscheme of constant
codimension ¢. Let F be a locally constant sheaf on X,:= real spectrum of X. Let
HY (X.,F) be ihe sheaf on X, associated to the presheaf U — HY oz (U F) (U C X,
open.)

Theorem (Purity). H% (X, F) = 0 for q# e and HS (X, F) is Zariski locally isomor-
phic to Flz,.

The essential part of the proof is concerned with the case ¢ = 1, X = specA with 4 a
strictly real local ring. First one does the complete case using Cech cohomology and the
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Weierstrafl preparation theorem. The general case is inductively reduced to the complete
case, applying resolution of singularities and Ruiz’s theorem on real spectrum formal fibres.

In the second part some applications were sketched. For any (noetherian) scheme X as
above one constructs a complex

0~ P H'(sperx(z),2/2) —» @ H'(spern(z),Z2/2)— P

reX(® rex() reX(D

whose cohomology is canonically identified with H*(X,,Z/2). This complex is new even for
algebraic varieties /R, and is quite useful. From it cycle maps cl?; CHY(X)— H1(X,,Z2/2)

are constructed which in the classical cases (R-varieties, compact real analytic manifolds) o
coincide with the Borel-Haefliger maps. This construction permits to give a new proof o.
Brocker’s theorem, saying that on a smooth complete R-variety X every divisor D with
c'(D) = 0 € H'(X(R),Z/2) is rationally equivalent to a divisor D' with |D'|(R) = 0. -
Here R is an archimedean real closed field. The proof is. purely algebraic and uses no
approximation techniques. Instead fan theory is applied, which again uses crucially the

fact that R is archimedean. ‘

Separating ideals

Niels Schwartz, Passau

In his investigation of the Pierce-Birkhoff Conjecture J. Madden introduced the notion of
the separating ideal (@, 8) of a.3 € Sper(4) (real spectrum of the ring 4). In a certain
sense (a, f) measures the distance between o and 3. Similarly it is possible to associate a
separating ideal (v, w) with valuations v and w of 4. To every a € Sper(A) there belongs
a valuation.v, in. a canonical way. It is trivially true that always (ve,vg) € (o, ). The
geometric meaning of separating ideals and of the connections between (vq,vg) and (o, 8)
can be made visible very clearly in the real plane. The séparating ideals can be nontrivial
only if @ and 3 {or v and w) have a common center. If this common center is the origin then
examples suggest that, informally speaking, the separating ideals are small if the degree
of tangency of the real sepctrum points is high. This can be made precise by introducin’ :
tangent spaces for valuations and, additionally, tangent directions in the tangent spaces

for points of the real spectrum. (The new results reported in the lecture were obtained in
collaboration with J. Madden.)

Riemann surfaces, algebraic curves and their period matrices
Mika Seppiilia, Helsinki

Recall that the following categories are equivalent:
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(a) compact genus ¢ Ricmann surfaces;

(b) stnooth complex algebraic curves of genus y;

(c) period matrices (y < g).

It is our intention to develop computer programs that can be used to study the above

equivalence of vategories.

For real algebraic curves (with real points) the above problem can be attacked directly:

(1) Real algebraic curves with real points correspond to Klein surfaces with a non-empty
boundary. :

~ (2) Such Klein surfaces X can be presented in turns of a Fuchsian groups G of the 2ond

; ’ that D/G = Int X (interier of X). Non-orientable Klein surfaces X can be treated by
first passing to their orientable double coverings.

(3) G being of the 2" kind, the space of holomorphic 1-forms on X ha§ a basis that

|

' - i kind acting on the unit disk D. For an orientable X we may choose G in such a way
i §
' i
lows one to %

can be expressed in turns of certain Poincaré series of weight 1. Thid%

compute (an approximation of) the period matrix of X.

The algorithm sketched above has been coded and implemented in Helsinki.

On a result of B. Segre for real cubic surfaces

R. Silhol, Montpellier

- . A smooth real cubic surface in P3(R) can have 27, 15, 7 or 3 real lines.” This is well
known since the 19" century. The result of Segre is more subtle. Let D be a line in the
cubic surface X, and let P be a plane containing D then PN X = D UC where C is an,
eventually degenerated, conic. It can easily be shown that P is tangent to X at the 2
points of intersection of D and C. Conversely if z € D then the tangent plane to X at z
contains D. This defines an involution o on D. But since a real line is holomorphic to S*,
it can have 0 or 2 fixed points. Segre calls the line elliptic in the first case, hyperbolic in

" the second, and he proves.
- . Theorem (Segre): If X is a smooth real cubic with n lines then,

— 12 are elliptic and 15 hyperbolic if n = 27
15

M S S

It

— 6 are elliptic and 9 hyperbolic if n

i

— 2ure elliptic and 3 hyperbolic if n
~— 0 are elliptic and 3 hvperbohc fn=3

In mwodern terms this result can l)n e‘(pl.uuul as follows Fixing a spin structure on P*
lllows to select a class of even framings of the uormal bundle to circles ¢mbedded in P3. ..

Even and odd framings differ by a full twist.
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Let X be a surface embedded (or immersed) in P* and let C be an embedded circle on .X.
Then one can define §(C) to be the number mod. 4 of left half turns the normal bundle
to X restricted to C does when moving along C with respect to an even framing. This
defines a map ¢: H\(X,Z/2) — Z/4 such that q(ﬁ +3) = q(a) +q(3) + 2(a, 3), where (- )
is the intersection form. For embedded surfaces in P? the isometry class of such a form
is uniquely determined. Returning to the result of Segre it is easy to show that a line is
elliptic (resp. hyperbolic) iff ¢(D) = 1 (resp. ¢(D) = —1). From this the theorem of Segre
reduces to an easy computation.

Counting real zeros with multiplicity

Gilbert Stengle, Lehigh University, USA g .

Let R be a real closed field, f(z) an element of R{z|. To count the real zeros of f we can -
either manipulate f itself or dually use the algebra Ay = R[z]/(f) as the basic datum. In

the former case the classic method of Sturm gives an algorithmic procedure for counting

the number of real zeros. In the latter case the method of Sylvester associates to Af a
quadratic form with signature equal to the number of real zeros. Each of these counts

v(f), the number of topological zeros, that is, zeros are counted without multiplicity. We

give a formula for u(f), the number of real zeros counted with multiplicity. This formula

is semialgebraic in character, depending on numerical attributes of Af as embodied in its
lattice of preorderings. (A preordering is a subsemiring containing the squares. We also
count Ay as an tmproper ordering.) Our main result is the following.

Theorem: Let Ay be the lattice of preorderings of 4. Let A(f) be the length of Af.
Then u(f), the number of real zeros of f counted with multiplicity, is given by

pl(f) =

This is a consequence of the more detailed formula:

AU =M
3 .

Proposition: Let voq4(f) be the number of real zeros of f of odd degree counted witho
multiplicity. Then ‘b

3 1
AMf) = ;/‘(f) - ;Vndd(f)~
This in turns follows from the following facts.
Az = 2]
Mz +a?)) =0 ifa#0
- Afg)=Af)yBAg) i (fg)=1 N

. A 1s additive on direct sums.

I R
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These imply that A(f) is asum 3= Az™). The theorem follows frow the proposition, since
Vodd (™) = oad(f™) so that

’\(f.‘i) - ,\(f) = Z [g—ﬂl.’] — [g"l;jl = 32 m; = Sll(f)-

A real version of the Greuel-Lé formula

Zbigniew Szafraniec, Gdansk

Let F = (fi,...,fr):R™ — R¥, k < n, be a polynomial mapping. Let W = F~'(0),
Wc = F&'(0), let I C Rlzy,...,zn] be the ideal generated by fi,..., fi and all minors
QUUJ-Z'L'L""‘—)’, where || - || is the norm in R". Let Q(F) = R(z1,...,za}/].

EIE TN T

Theorem. Assume that dimg Q(F) < oo and that rank DF¢(X) = k for every z € W¢.
Then there is an explicitley defined linear functional ¢: Q(F) — R such that.the quadratic

‘form ® on Q(F) defined by ®(g) = ¢(¢?) is non-singular and x(W) =‘sigri§.i'i'ixre $, where

x{W) is the Euler characteristic of W. &

Approximation theorems for C* solutions of systems -
A. Tognoli, Trento, Italy

Let U bé an open set of R™, by C*°(U), C*(U) we shall denote the ring of C™ and analytic
real function on U. In the following we shall consider the Whitney strong topology on
C>(U). Let (1) Za,-j(:t)tj =pilz),1=1,...,q, aij € C¥(U) p; € C¥(U) be a linear

=1 -

system. Then we have the following )

Theorem 1: Any C solution (f; ... fn) of (1) can be approximated by analytic solution
(1 ..A.g,.). Moreover if fi,...,fp, € C¥(U) p < n, then we may -assume g; = f;, 1 =
I,....p. Let X C U be a coherent analytic set, if filx € C¥(X), then we may assume
gilx = filx,i=1,...,n. :

Theorem 2: Let V be a paracompact real analytic manifold, then every closed (exact)
differential form can be approximated by analvtic closed (exact) differential forms, that

are in the same cohomological class.

Real algebraic geometry of control problems
Y. Yomdin, Rehovot

[ presented some finiteness results for the “reachable set” of a polynomial control problem
(¥) &= f(z.u), £.u € R?. Certain semialgebraic tricks. bounding the behaviour of the
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trajectories of (*) have been presented. In particular, the following ‘conjecture has been
discussed: the rotation of an algebraic vector tield around any algebraic submanifold (in a
given time) is “algebraically” bounded.

Approximation by abstract Nash functions
Digen Zhang, Regensburg

Let A be a commutative ring with 1. There are two important sheaves on the real spectrum
Sper A of A. If A = R(Xy,--+,Xa], then C, is the sheaf of semialgebraic functions on R®
and N, is the sheaf of Nash functions on R™. It is well known, that a semialgebraic
function on R™ is piecewise Nash functions, and is approximated by Nash functions on R™.
In fact it holds also for following abstract functions. .

Let U be a constructible open subset of Sper A.

Definition 1: An element f € Co(U) (Ma(U), respectively) is called an abstract semial-
gebraic (Nash, respectively) function on U.

Proposition 2: Let f be an Nash function on U. Then f(.):U — Haev *a), a —
f(a), where f(a) is the image of fq in the residue field V4,o/m 4o = k(@), is an abstract
semialgebraic function on U.

Proposition 3: Let X be a (pro)constructible subset of Sper A and f € C4(X). Then

there are a covering {X;}, of X by (pro)constructible subsets, open subsets U; of Sper 4

and Nash functions f; on U; for i = 1,--- ,n such that X; C U; and f(a) = fi(a) for any

o € _K.'.

The main result of my talk is the following:

Theorem 3: Let f,e be abstract semialgebraic functions on U with ¢ > 0 on U (i.e.

e(a) > 0,Y € U). Then there is an abstract Nash function g on U such that |f — g < ¢

(i.e. |f(a) — g(a)| < e(a), Va € U). -
To prove the theorem, we use the following abstract Mostowski separation theorem.

Theorem 4: Let F, G be disjoint closed subsets of Sper 4. Then there is an abstract.
Nash function on Sper 4 in the following form.

Y

where a;, bij € 4, such that f >0on Fand f <0 on G.

Berichterstatter: Digen Zhang
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