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Die Tagung fand unter der Leitung von J.A. Nohel (UW-Madison & ETH-Zürich) u~d

M. Renardy (Virginia Tech. - Blacksburg). statt.

Viscoelastic materials with fading memory exhibit behaYior that is intermediate be­
tween the nonlinear hyperbolic response of purely elastic solids and the strongly dif­
fusive, parabolic response of viscous ,fluids. A deep understanding of these effects
is fundamental to advanced~terialsengineering and process design involving hig~-

, strength polymers, suspensions, and. emulsions in production of polymers, additives
to lubricants, rubber and plastics, paints, printing inks, magnetic tape' coatings, etc;
process design ineludes spinning of synthetic fibers and injcction molding.

The key to successful mathe~atical modeling of viscoelastic flows is the use and cort­
struction of constitutive relations (in some situations replaced or supplemented by
appropriate molecular theory) that reflect the relevant physics and that are comp~­

t~tionally.tractable. The complex behavior of steady and unsteady motions of th~e
materials continues to pose, challenging problems in .modeling,. analysis and computa-

- tion. Applied and computational mathematicians and analysts, engineers and scientists
need to develop' qualitative andnumerical techniques for understanding solutions to
the nonlinear equations goveming particular motions, as weIl as effective computational
algori thms and codes that are vital for the comparison of performance of mathematical
models wi th results of careful experiments.

Th.e purpose of the Tagung was to address these issues by assembling an interdisci­
plinary groul> of 41 researchers, including younger applied mathematicians, who are
active in or interested in vanous aspects of this fascinatlng field. The resulting 38 pre­
seniations are abstracted below under the following headings: (i) experimental meth­
ods; (ii) numerical and computational methods; (iii) stability of flows; (iv) modeling
and analysis of particular viscoelastic flows; (v) modeling and analysis of motions of
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viscoelastic solids; (vi) modeling and analysis of thennoviscoelastic materials; (vii) con·
trol problems in viscoelasticity; (viii) related mathematical problems. In additions to
numerous public and private discussions, a much appreciated highlight was a special
session on open problems, four of which are abstracted below.

Abstracts (arranged by topics)

Experimental Methods

JOACHIM MEISSNER:

Experimental Methods in Polymer Rheology

Conventional methods in polymer rheology have made it possible to study such phe­
nomena as oscillations and extrusion through capillaries. New experimental methods
giving more insight into the viscoelastic nature of polymer melts are being developed.
But also the increase in precision of conventional methods reveals. important phenom­
ena, e. g., the additional elasticity due to interfacial tension in melts of polymer
blends, and opens the way to measuring the two normal stress differences in simple
shear flow even at higher temperatures. By changing the shear direction in a parallel
plate rheometer, the "shear-induced rheological anisotropy" can be studied. Another,
rather new area is polymer melt elongation. It is even possible to change tbe principal
axes of the strain rate tensor during such a test and thereby gaining an interesting
perspective for checking the applicability of constitutive equations.

JOSEF HONERKAMP:

Determination of Relaxation Spectra rar Viscoelastic Fluids

There are several phenomenological equations in rheology relating experimentally ac­
cessible quantities to distributions h(T) of relaxation times which are use~ul, e.g., for
characterizing a material. Tbe estimation of these distributions from experimental
data is an inverse (or deconvolution) problem. Tbe naive approach, treating the
problem by least squares, is not consistent; the uncertainties of the esimated values
{h(T0) ,(} = 1, ... , M} increase to infinity by increasing the number M of esimated
values.

To deal with this issue, we have adapted regularization methods, known as Tikhonov
or maximum entropy methods, to rheological problems; we also developed more robust
versions and generalized these to the case when the relation between experimental
quantity and distribution is nonlinear. A nonlinear relation appears if, e.g., one tries
to estimate the logarithm of a relaxation spectrum rather then the spectrum itself.

We demonstrate that nonlinear regularization works better than the linear version
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when determining relaxation spectra from dynamic moduli.

Numerical arid Computational Methods

JACQUES BARANGER and DOMINIQUE SANDRI:

Numerical Analysis of Differential Models ror Viscoelastic Flows

For the Oldroyd B model- in stea.dy fiow (for example), it is known that if the continuous
problem has a sufficiently smooth and small solution, then tbe approximate solution
obtained by FEM and upwinding on a triangular mesh exists; moreover, error boun~s

are available. This has been extended to quadrangular meshes and to a scheme f<?r
unsteady fiow. Some remarks are also made on a decoupled scheme for models with
one and two (ar more) relaxation times, and on the Wbite-Metzner model; many
problems remain open. .

HANS CHRISTIAN ÖTTINGER:

"Smart" Polymers in Finite-Element Calculations

.­

.;~.:..
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Being able to calculate tbe flow behaviour of complex fluids from molecular models h~
been a long-standing dream of many engineers. The CONNFFESSIT method described
in this talk provides a tool for pedorming such calculations in a very simple and direct
manner. Moreover, this new meth~d allows us to solve problems and to ,determine
"material properti~ inaccessible by conventional methods for calculating the flow of
complex fluids. Tbe key idea behind CONNFFESSIT is to use a. stochastic simulatiQu
of the molecular dynamics in order to obtain the stresses in the fluid required for solving
the momentum balance equation - rather than using some rheological constitutive
equation as in tbe conventional approach. As an illustration of the method, the time
development ofplane Couette flow is studied for a ~iety of models of polymer ;61G"iions
and melts (Oldroyd-B, FENE, Doi-Edwards). Several ~athematical implications of the
CONNFFESSIT approach are discussed in detail.

F. DEBAE, V. LEGAT and M. J. CROCHET:

Numerical Simulation of Extrusion of Viscoelastic Fluids in Two arid Three
Dimensions

During recent years, we implemented different mixed., finite element methods for com­
puting viscoelastic ßows. We found that the most efficient methods are: "MIX 1n which
uses bilinear interpolation for the stresses and the velocities and piecewise consta.nt ap­
proximation for the pressure; "4 by 4" with 4 by 4 sublinear interpolation for the
stresses, biquadratic for the velocities and bilinear for thepressure~ "EVSS PI-PI-P2­
PI" , where we apply the EVSS method with bilinear interpolation for the tensors Sand
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D and the pressure, as weil a.s biquadratic interpolation for the velocities; and tinally,
"EVSS P2-P2-P2-Pl" in which biquadratic interpolation is used for the tensors S and
D. We campare the performance of these methods for some typical ßows of a Maxwell
fluid (i.e., arouild a sphere falling in a tube, in a corrugated tube, in a 4 to 1 circular
contraction, and in a circular die swell) using the following formulations: Galerkin, SU
(streamline upwinding), and SUPG (streamline-upwinding-Petrov-Galerkin). We also
simulate non-isothermal viscoelastic fiows with multiple relaxation files in experimental
2-~ geometries, and we show most recent progress in calculation of extrusion in 3-D,
and in calculation of the prediction of the shape of the die in order to produce a given
shape of the extrudate.

DIETMAR KRÖNER

Discretization of Convection Dominated Flows

Convection terms playadominant role in many flow problems in computational fluid
dynamies, including, e.g., in computing viscoelastic ßows govemed by the upper con·
vected Maxwell model. In these problems, convection tenns are usually discretized
using the characteristic and other finite element methods; finite volume schemes can
also be used. For a salar conservation law, where only convection terms are present,
the finite volume scheme can be justified by a direct convergence proof, also for a higher
order scheme. For systems, one can still establish the expected order of convergence
if the exact solution is known. We have used this technique to simulate flow problems
with complex geometries in 3-D; mesh refinement and mesh alignment can also be done
easily in this context.

Stability 01 Flows

MICHEAL 'RENARDY:

Linear Stability of Viscoelastic Flows

From a rigorous mathematical point of view, the stability of viscoelastic ßows, other
than the rest state, is largely an open problem. One of the principal issues is the rela­
tionship between linear stability and spectrum. Some first results in this direction are
presented. In particular, the linear stability of plane Couette flow of an Oldroyal B .fluid
is discussed. An abstract result of a more gen~ral nature is also given. Unfortunately,
applications of this result are limited to problems in one space dimension.

JEAN-CLAUDE SAUT:

Stability Issues in Viscoelastic Flows

We consider differential models for viscoelastic fluids (mainly of Jeffreys type) with a
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"Newtonian" contribution to the extra stress. In this setting, we review known results
concerning three nations of stabiüty: linear stability, nonlinear stability, and spectral
stability. One of tbe main issues ,(largely open) is the link netween linear stability and ­
spectral stability.

YURIKO RENARDY:

Stability of the Interface in Two-Layer Couette Flow of Upper Convected
Maxwell Liquids

The Bow of two superposed liquids between parallel plates, the top plate moving, is
discussed. A basic f10w is (U(z),O) in each liquid, where U(z) is identical to the
Newtonian case. Alinear stability analysis of this flow with 'a Hat interface was studied
by Y. Renardy (88) and Kangping ehen (91). A critical situation may occur for a single
wave number Oe, with other wave numbers linearly stable. One may then cal~~:te the
Stuart-Landau' constant to determine wbether this bifurcation is supercritic'ifiT If so,
one can continue tbe study of weakly nonlinear interactions to see if the t~il.veling

wave solution is stahle to sideband perturbations. The method of analysis '·for the
sideband problem is analogous to that for the two-Iayer Newtonian flow. The amplitude
equations describe the evolution of the traveling wave and also that of the long-wa~e

node (M. and Y. Renardy, Phys Fluids, '93).

Modeling and Analysis 01 Particular Viscoelastic Fluid ·Flows.

JOHN HINCH:

Uncoiling of a Polymer Moleeule by aStrang Flow

Computer simulations have been performed of an isolated random-coiled polYI!!er un­
ravelling when it is placed in astrang straining motion. The simulations have several
hundred freely hinged links subjected to a Brownian motion and viscous forces, with
some recent simulations including fu~ hydrodynamic interactions. The stress is fOllnd
to be mainly v1SCOUS ratber than elastic in nature, i.e., proportional to the instanta­
neous strain-rate rather than being dependent on it. A rapid build up of this viscous
stress with the total strain is shown to come from the growth of segments of a fully
stretched chain. The evolution of these segments, the growth in their size along with
the reduction in tbeir number, is examined with a simplified 'kinks dynamies' model.
The small elastic component in the stress, seen by suddenly switching off the imposed
extensional motion, is found to be bounded. The above rheological behaviour in tran­
sient strong extensional flows is not described by the standard constitutive relations fC?r
dilute polymer solutio~s, such ~ the Oldroyd-B fluid and the FENE dumbbell mod­
els. A suitable modification is suggested which gives large strain-dependent visco~s

stresses.
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A. RUSSELL DAVIES:

Corner Singularities in Viscoelastic Flow9

Exact perturbation series solutions are presented for steady, incompressible corner
flows of viscoelastic model fluids in the plane. The differential eonstitutive models are
of the Johnson-Segalman-Oldroyd type, and both reentrant and non-reentrant sectors
are considered. Singular perturbation series are required for reentrant corners, whereas
regular perturbation series suflice for non-reentrant corners.

For reentrant corners, it .is shown that a Stokesian velocity field gives rise to non- •
integrable normal stresses on the walls forming the corner, in the case of an Oldroyd-B
"fluid, unl~s separation takes place at the corner. A non-Stokesian veloeity field to-
gether with viseometrie stress behavior at the walls ia given which satisfies the goveming
equations and no-slip boundary conditions. Tbe normal stresses on the walls are infi-
nite but integ~able.."For non-reentrant corners, the fiow is Newtonian-like away from
the walls.

DAVID S. MALKUS:

Shear-ftow Instabilites in Viscoelastic Fluids

Intriguing instabilities have been observed in experiments involving shear flows of highly
elastie and very viscous fluids. Many researchers have interpreted. these observations
as "slip" or "apparent slip" , i.e. loss of adhesion of the fluid to the wall. This research,
joint with J. Nohel and B. Plohr, offers the alternative explanation that such flow
instabilities have a common origin in bulk material properties rather than in adhesive
properties. One-dimensional shear-flows, pressure and piston-driven flow in a slit die,
as weil as Couette Flow are modeled mathematically as viscoelastic fluids with fading
memory. The goal is to model "spurt" (a sudden inerease in the volumetrie Bow rate)
and related phenomena in pressure-driven flow, oseillations in piston-driven flow at
a. fixed volumetrie ftow rate, and stress relaxation under 'step-strain in Couette ßow.
The same basic system of time-dependent, quasi linear partial differential equations is
used to model all three ftows. The characteristie feature of the fluid model employed,
stemming from the differential Johnson-Segalman-Oldroyd constitutive equations, is
a non-monotonie relation between steady shea.r stress and strain rate. Analysis and
numerical simulations, aspects of which are discussed in the presentations by Plohr
and Pego abstracted below, show that in all three flows, the polymer system changes
state in a thin layer near the wall giving tbe appearance of a slip layer. In Couette
ßow with a step shear strain applied by moving one wall while the other is held fixed,
one observes an anomolous stress relaxation, accompanied by an inhomogeneous ßow
which starts some time after the moving wall has stopped. Calculated solutions are in
good agreement with experiments.
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BRADLEY J. PLORR:

Persistent Oscillations in Piston-Driven Flows of Non-Newtonian Fluids

In their recent experiments on piston-driven ftow at a fixed volumetrie ßow rate o( a
highly elastie and very viscous non-Newtonian fluid, F. Lim and W. Schowalter [J.
Rheology 33 (1989), 1359] have observed pesistent, nearly periodic oseillations in the
particle velocity at the channel wall. This periodicity has been characterized ag' a
stick/slip phenomenon caused when thefluid lails to adhere to the wall.

'The purpose of this work, in collaboration with D. Malkus and J. Nohel, is to offer
an alternative explanation for these oscillations. Tbe basis for our explanation is the
differential Johnson-Segalman-Oldroyd constitutive law that exhibits a non-monotoJie
relation between steady shear stress and strain rate; the eonstitutive model being
used to model piston-driven Bow has also been used successfully to explain.~purt [G.
Vinogradov et 41, J. Polymer Sei., Part A-2 10 (1972), 1061] and related pli~Iiome~a

in pressure-driven flow [D. Malkus, J. Nohel, and B. Plohr, SIAM J. Appl. Math. 51
(1991),899 - 929].

Piston-driven flow is modeled as an instantaneous, globally weH-posed feedhack-cont~ol

problem, the control being the volumetrie ftow rate and the feedback being the press~re

gradient. In the inertialess approximation, the equations governing the flow can be
viewed a.s a continuous family of quadratie ode's coupled by the non-Ioeal eonstraillt
that fixes the volumetrie ßow rate; allsolutions of this system are bounded, even for
large, discontinuous initialdata. Numerical simulations demonstrate that beyond. a
critieal flow rate, the time-asymptotic hehavior is cyclic. Lalge shear strain rates are
observed in a thin, hut maeroscopic, layer near the wall, just as in pressure-driven spurt
flow. .~o,.. '

Further analysis of the inertialess dynamical system links the observed oscillations to
the apparent occurrence of a Hopf bifureation that spawns a periodic orbit beyond a
critieal fiow rate. Ta provide evidence for this, we observe that the dynamical system
admits diseontinuous steady states when tbe volumetrie flow rate is fixed (eorrespond­
ing to the wall stress between the steady local shear stress maximum and minimum j,
and we lineanze the system around a. discontinuous steady state witb a single jump.
Parametrizing such discontinuous steady states hy wall stress and fiow rate, there are
regions in parameter spare in which the eigenvalues of the discrete spectrum of the lin­
earized operator change from having negative real parts to having positive real parts,
and there is a separating curve along which the real part of the eigenvalue vanishes.
Proving the existence of a stable' periodic orbit beyond a eritical flow rate is a chal­
lenging op~n problem.

7
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JOHN A. NOHEL and ROBERT L. PEGO:

Nonlinear Stability and Asymptotic Behavior of Shearing Motions of a Non­
Newtonian Fluid

The goal is to study the asymptotic hehavior as t -. 00 of solutions to an initial­
boundary value problem in one space dimension goveming pressure--driven shear flow
of a highly elastie and very viscous non-Newtonian fluid in a channel, and to establish
the nonlinea.r stability of discontinuous steady states. In this model, the total shear
stress consists of a non-Newtonian part satisfying the Johnson-Segalman-Oldroyd dif­
ferential eonstitutive law for the shear and normal stresses, a small Newtonian viscous
contribution and apressure term, and the flow is assumed to be symmetrie about the
centerline. The initial-boundary value problem is globally well-posed in time for initial
data of arbitrary size, and permitting discontinuities in the initial veloeity gradient and
the stresses. ·The key feature of the model is that the total steady shea.r stress depends
on the steady shear strain rate in a non-monotone fashion, resulting in steady states
having diseontinuous stress eomponents and steady veloeity profiles with discontinu­
ities in the steady velocity gradient (strain rate). Such solutions are observed in shear
flows deseribed in the presentation by Malkus.

In a regime where the Reynolds number is small compared to Deborah number, we
prove that every solution of the governing system tends to some, possibly discontinuous, ,
steady state as t --+ 00; moreover, we show that discontinuous steady states that take
their values on the increasing parts 'of the total steady shear stress VB strain rate
curve are nonlinearly stahle with respect to symmetrie one-dimensional perturbations
of initial data [J. Nohel and R. Pego, SIAM J. Math. Anal. - to appear]. These results
provide apart of the analytic explanation of the spurt phenomenon described in the
presentation by Malkus.

DANIEL SEVCOVIC:

Explanation of Spurt via Geometrie Singular Perturbation Theory

We study the model problem

(ft. -(f + g( uz ) + 1/2U %z (-1 < x < 0 ,t > 0) ,

with suitable boundary conditions at x = -1,0 and preseribed initial data for v and
u. If v =0, and for a particular choice of 9, the model problem which neglects normal
stresses, has the same behavior in steady shear as the more realistie modelbased on the
the Johnson-Segalman-Oldroyd differential eonstitutive law diseussed in the presenta­
tions by Malkus, Piohe and Pego, abstraeted above. Here, the term v2U Z % represents
a small diffusion term modeling stochastic effects of polymer molecules in Brownian
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motion and leads to a rieh structure of steady state solutioos. Using geometrie theory
of singular pertubations, we show that the model problem captures tbe spurt phe­
Dornenon on eyelic loading of the pressure gradient f, and it also exhibits hysteresis on

subsequent unloading.

COLETTE GUILLOPE:

Differential Models with an Order Parameter

We introduee a elass of models, the Kwon-Shen models, that are elaimed to describe
the behavior of polymers better than popularly used models. These models contain tbe
Giesekus and Leonov eonstitutive models as partieular eases. An internal parameter,
the rigity parameter, is introduced; it satisfies a differential equation that relaxes wit'~

time. Existence govemed by such a flow is proved for short time, as well as for lang
time provided the initial data are sufficiently smalI. Stable, slow steady flow~ ~re also
shown to exist. ::~~,

JAMES M. GREENBERG:

A Simple Model Car Melt Fracture - Relaxation Oscillations in Polymer
Melts-

We develop a system of equations describing the mean flow of a polymer melt using
singular pertubation methods. Slipping of the melt at the wall of tbe pipe is permitted,
and an evolution equation for'the boundary slip parameter is postulated. The combinep
system govemin"g eross-sectional ßöw a.nd slip parameter is shown to exhibit relaxatiop.
oseillations if the entrance boundary eonditions are properly' tuned.

PIOTR RYBKA:

Modeling Phase Transitions by Means of Viscoelasticity in Many Dimen­
sions

We study the initial-boundary value problem for the quasilinear pde

Uu = 'V . (O'(Vu) + VUt) ,

where q is the primitive of a smooth function W, with either no-traction or 00­

displacement boundary conditions imposed on the smooth boundary of a bounded
region n in Ir', and with suitable intial data u( x, 0) and u,(x, 0) for x E O. We assume
that the function W is not eonvex. We show global in time existenee of solutions when
q is Lipschitz continous. We also study the stability of equilibria and the asymptotic
behavior of solutions as t ~ 00. Specifically, we show that discontinuities in V'u do
not move.

Modeling & Analysis 01 Motions 0/ Vi3coela.stic Solids
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ATHANASIOS E. TZAVARAS:

Viscoelasticity of Rate Type

The nonlinear system of partial differential equations

9t ~(6,U)V;+1

is a very simple model that ineorporates the basie mechanism proposed for the expla- •
nation of shear band formation in high speed plastic deformation of metals . In this
leeture, I diseuss various resl;llts obtained using techniques of partial differential equa-
tions with the goal of understanding the features of the instability meechanism. These
include conditions on' p,(9, u) and on the strain-rate sensitivity n that lead to a stable
response, as weIl as conditions that lead. to. the development of non-uniform response
of the field variables.

RICHARD C. MAC CAMY:

Differential Approximations for Linear Viscoelasticity

Linear, isotropie viscoelasticity is considered. The models can be described by two
scalar elastic moduli. The idea is to appropriate these moduli in a way what produces
differential models instead. of those having mem9ry terms in the form of integrals. The
approximations are designed to produee tbe same qualitative properties of the exact
solutions, including dissipation, as weil as short and long time behavior.

GIANPIETRO DEL PIERO:

Characterization of the Relaxation FUnctin in Linear
Viscoelasticity in Terms of Work

This contribution is related to a senes of papers by Breuer & Donat, Gurtin & Herrera,
and Day, dating to the sixties, in which various apriori restrietions on the relaxation
funetion of linear viscoelastieity, indueed by general laws of thermodynamics are de­
termined. Three elasses of relaxation functions are considered: monotonie, eompletely
monotonie, and exponential. Each of them is eharacterized by a corresponding prop­
erty of the work done in partieular deformation processes. More precisely, it is shown
that the relaxation function is: monotonie if and only jf the work done in any rectilinear
monotonie process is decreased by retardation; it is completely monotonie if and only if
the work done in retraced paths is increased by delay; and it is exponential if and only
if the work done in all processes which are closed in stress-strain space is non-negative.
The first and third of these results are original, while the seeond generalizes a result of

10
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Day. The above results hold under the following assumptions': the restrietion of defor­
mation process to any time interval to any interval (-00, t) is a function of bounded
variation, and the relaxation function is Lebesgue integrable on (0,00).

OLOF J. STAFFANS:

We prove well-posedness in a new setting for the the linear viscoelastic equation

Well-Posedness of a Linear Viscoelastic Equation in Energy Space

• v'(t)

a(t)

-D*u(t) + f(t)

lIDv(t) + /:00 a(t - s)Dv(s)do9 , t ~ o.

In this setting, the state oi the system consists of two components: the velocity v(t)
and the Laplace transfonn of the initial function Du(3) ,s < O. The tr~sform is
defined in parts of the left half plane. Different norms of. the second comp~pent are
considered, such as the ~bsorbed energy norm and the interna! energy norm. The
latter is defined for a new class of general relaxation moduli a that includes the class
of completely monotone kernels as a special case, and that can be analysed in detail.
In particular, we characterize the spectrum of the semigroup in terms of a frequency
domain condition, and we show that the growth of the sem.igroup is deterrnined by the
spectrum of its generator.

EDUARD FEIREISL:

Forced Vibrations in Nonlinear I-D Viscoelasticity

We prove the existence oi weak t-periodic solutions to tbe initial - boundary value
problem '.:'!:'

Utj = (u(U.) -!k(s)u(U,.(t - s,x»).,ds + f(x, t)

U(O, t) = U(l, t) = 0

with zero initial data, where f is t-periodic and possibly large. The main ingredients
of the proof are: finding invariant regions for obtaining suitable apriori estimates for
the application of the compensated compactness method.

DEBORAH BRANDON:

Global Existence ror aQuasilinear Hyperbolic Volterra Equation with Semidef­
inite Equilibrium Modulus

We consider a nonlinear hyperbolic Volterra equation in one space dimension with a
semidefinite equilibrium stress modulus (i.e., a'(.) - k( oo)t/J'(.) in the notation of the
preseiltation by Feireisel, except that here the material functio~s inside and outside
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tbe integral need not be tbe same!). In joint work with W. J. Hrusa, global existenee
of solutions for smooth ~ata sufliciently elose to equilibrium is obtained via energr
methods. Tbe main difficulty lies in obtaining suitable estimates on terms that do
not involve time derivatives. We make essential use of properties of strongly positive
kerneis that satisfy additional assumptions; the latter are needed to obtain bounds on
the spatial derivative U:r using an appropriate resolvent kerne!. Large-time asymptotie
behavior of solutions, including that of a term involving uz , is also obtained.

GUSTAF GRIPENBERG:

On Some Nonlinear Hyperbolic Volterra Integrodifferential Equations

The goal is to establish the existence of a global weak (distribution) solution to the
initial-boundary value problem for the equation

(.-

•
Vt(t, x)

v(t,O)

I~ k(t - s)(o-(v:r))z(s, x)ds + f(t, x), t ~ 0, x E (0,1),

v(t, 1) = 0,

together with the initial condition v(O, x) = vo(x). The equation can be thought of
as an interpolation between a wave equation and a diffusion equation. The kernel
k is assumed to be locally integrable and log-convex on (0,00), and t:r has only one
Ioeal minimum which is positive. Because of the singularity of k at zero, one cannot
differentiate the equation and apply the technique used in the presentation of Feireisl
(above). The ~rucial part of the proof (and oi the result) is to establish certain apriori
Loo-bounds on the solutions. To do this, the equation is rewritten in the form

iiß*(w -wo)

itß* (v - va)

where ß =--y6 + b, where b is nonincreasing and ß(z) = (2k( Z )-1/2.

HANS-DIETER ALBER:

Existence of Global Solutions to Mathematical Models ror Hardening of
Metals

We consider a system of differential equations modeling viscoelastic behavior of metals
for small strains and large stresses. The derivation of the governing system is based
on the assumption that the state of the material can be characterized by a set of
interna! variables; the resulting constitutive equations take the form of time-dependent
o.d.e's. If the right side of these o.d.e's is the gradient of a convex function, global
existence can be proved by applying the theory of monotone operators. However, such
an assumption is not satisfied in practice by most models, and global existence must be
proved by other methods. In one space dimension, one can sometimes derive an apriori
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LOO bound .which implies global existence, provided one oe tbe constitutive functions
satisfies a suitable growtb condition.

FRANK KLAUS:

An Existence Theore~ rar Miller's Equations

Miller's constitutive equations aim to mo~el tbe inelastic behaviour in solid materials
like steel, aluminium, alloys, etc. The strain E is additively decomposed iota ~
elastic part E - En and a inelastic part En. With the elasticity tensor r, the stress :is
equal to r(E - En). Ta describe the inelastic strain E", Mißer introduces differential
constitutive laws for tbe evolution of E" in terms of the internal variables R (kinematic
hardening) and D (isotropie hardening). The goal is to establish the well-posedness of
the governing system oi the three eoupled differential equations subjeet to Dirichlet and
Neumann boundary conditions. Tbe praof depends on obtaining suitable H~~ ..~nergy
estimates~ In one spare dimension, a global existence result with bounded energy is
given. ..-:.

Modeling and Analysis 01 Thermovi3coela,.,tic Materia~

WILLIAM J. HRUSA:

On Thermoviscoelastic Materials oe Single-Integral Type

We consider a elass of nonlinear materials in which the stress and internal energy
depend on the present values and on the past histories of strain and temperature. We
study two situations regarding the heat eonduction mechanism: (i) Fourier's Law and
(ii) Noneonductors. We show that for constitutive equations of the form

q(t) = u(e(t),9(t)) + 7Ö'(t:(t), 6(t), e(t - r), 6(t - r» dr
o

(and similarly for the internal energy e), it is possible to give simple and direct con­
ditions for compatibility with the Second Law of thermodynamics. For motions of
such materials in one spare dimension~we also discuss tbe existence of globally defined
smooth. solutions for smooth data that are elose to equilibrium. Most of th~ results
deseribed here were obtained jointly with Morton Gurtin.

Control Problefn3 in Vi3coela.9ticity

JONG UHN KIM:

Control of Same Linear Viscoelastic Models

The question of exaet controllability is diseussed for two special models: tbe plate
equation with memory and the wave equation with memory in a domain n in 'Rn with
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smooth boundary. The basic tool is the Hilbert Uniqueness Method. The main feature
of the proof is to establis-h a certain "unique continuation property" associated with
each of the two model equations.

ROBERT L. WHEELER (with K. B. Hannsgen & O. J. Staffans):

Rational Approximation of Compensators in Same Contral Problems Cor
Viscoelastic Systems

We study rational approximations of the transfer function P(s) for a linear viscoelastic
rod undergoing torsional vibrations, where input and output are· at the same end of
the rod. An approximation is carried out that is consistent with the theory cf robust •
(HOO). contral for the construction of rational, sub-optimal compensators that approxi-
mate the ideal, optimal compensator. The transfer function can be constructed in the
form P(s) = s-2ß{s)g(B2{s», where B(s) is in general a. transcendental function de-
termined by the viscoelastic stress relaxation modulus, and g(82 ) is an infinite product
of fractional linear transformations; in the ca.se of uniform densities, 9(82

) = cothB.
The approximation takes three steps: First, 9(82

) is approximated by partial products
9N(B2 ). For relevant values of B, convergence rates are analysed in detail. For the con-
trol problem at hand, suitable convergence requires introducing an irrational correction
factor the effects of which must be studied separately. In addition, the fractionallinear
factors in 8 2 appearing in gN(B'Z) roust be replaced by something rational. When the
damping is weak, it is possible to do this by separating the oscillatory modes from
creep modes and ignoring the latter. Numerical examples illustrating the procedure
are given.

Related Mathematical Problems

HANS ENGLER

Similarity Solutions to a Class of Hyperbolic Volterra Intregrodifferen~ial

Equations.

We construct similarity solutions to the Cauchy problem

t
Utt - U:z:% + f a(t - s)u:z(x, s)ds = 0 (t > 0, x E R),

. 0

u(x,O) = sgn(x), Ut(x, 0) =0,

.-
in the explicit form

u(x, t) = \{1 C~riQ) - '1i C~~iQ) ,
under the assumption that a is a certain completely monotone kernel in L1(O, 00) that
behaves like t- er near t = 0, and like to - 2 as t -+ 00; here, 0 < Q < 1 is arbitrary.
The function '1' turns out to be the cumulative distribution o~ a (one-sided) stable
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distribution (with parameter a) in tbe sense of P. Levy. In particular, for er = 1/2,
\{I'(r) = rr- 1/ 2r-3/ 2exp( -1/4r). The asymptotic behavior (as t -+ 00) of these solutions
is also studied.

STIG-OLOF LONDEN

On Some Nonlinear Parabolic Volterra Intregrodiff'erential Equations

Consider the initial value problem

• Ut(t,x)

u(O,x)

f~ a(t - 3)(h(u~))z(s,x)ds + f(t,x), t ~ 0, x E n c 'R."

Uo(x) x E n ,

where h is a given smooth function on 'R satisfying h'(O) > 0, and tbe functions fand
Uo are given. If a(t) == 1, the equation red.uces to the quasilinear wave equation; ir5J(t)~t
is a point mass at tbe origin, tbe equation reduces to tbe quasilinear heat eqti~!ion. tr
a E LlocCR,+), a is positive and in some sense singular at the origin, then the equatio'p
represents an intermediate case between these two extremes. For the purpose of .:~

rough classification, we distinguish three types of kemels: (i) 0 < a(O+) < 00, '-00 <
a'(O+) < 0; (ii) 0 < a(O+) < 00, a'(O+) = -00; (iii) a(O+).= +00, a E LlocCR,+Y.

We analyze the almost parabolie case (iii), taking a convex, and assuming Reo'(m) ~
qllm ä(m)l, m E 'R. First, existence results for streng solutions with small data a~e

established. These are based on lengthy estimates of parameter-dependent resolvent§.
The equation can then be taken in the more general div-grad form. Second, we pro~e
the existence of global weak solutions for data of arbitrary size. Finally we discu~s

regularity of solutions, showing that u~(t, x) ,Ut( t, x) are continueus in t for a.e. x, an~d

also continuous in x for a.e. t.

KENNETH B. HANN,SGEN (with Sergiu Aizicovici, Athens, OH, USA):

Mild Solutions of Abstract Semilinear Volterra Intregrodifferential Equa­
tions

Lacal existence of mild solutions is proved for the initial value problem

t
x'(t) J a(t - T)Lx(T)dT + (Fx)(t) (0:5 t :5 T),

o
x(O) %0.

Here L is a densely defined linear operator that (i) generates a eosine family in a Banach ­
space or that (ii) is self-adjoint and negative in a Hilbert space. F is a continuous
(nonlinear) hereditary mapping on e([O, Tl). The scalar kerne1a(t) satisfies conditions
that make the resolvent kernel for the linear ca.se (F = 0) compact.
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PAVEL SOBOLEVSKII:

A Model Problem for Stabilizing Viscoelastic Fluid Motion

We consider the initial-boundary value problem

V·v

v(t, x)

v(O,x)

t

f~V + f pexp[-6(t - s)]ßv(s, x)ds + Vp + f(t, x),
°o (t~O,xEn),

o (t ~ 0, x E an),
VO ( x ) (x E fi) ; (p, 1) = 0 . •Here, the unknown functions are v = (Vt, ... , vn ) ,p, and the funtions f ,vo are giveo; n

is an open bounded domain in 'Rn, where n =2 or n = 3, with smooth boundary an,
and f, p, 6 are positive constants.

Under suitable assumptions, it is shown that the above problem is local.ly weIl-posed
in time when n = 3 and globally well-posed in time when n = 2. Moreover, as t ~ 00,

the solution tends to the unique solution to an appropriate limiting boundary value
problem.

MICHAEL BÖHM:

Diffusion in a Finely Structured Medium

Let G be a region occupied by a medium with a doubly porous structure, i.e., G
contains subregions Gt , G2 with different types of pores and permeabilities. Assuming
that the subregions G lt G2 are "weIl intermingled", one arrives at a set of two continuity
equations for appropriate densities. Specification of the coefficients leads to various
types of coupled p.d.e's (and o.d.e's) which are brießy discussed.

ALEXANDER BELYAEV:

Homogenization of a Dirichlet Problem for the p-Laplacian

Consider the following nonlinear Dirichlet problem in an e-perforated domain:

-ßpu~ == -div(IVu~Ip-2Vu~) = f, u~ E n~.

Here, nr == n\U{fT~ + ke : k E zn} ,u~ E w~,p(n~) ,n c 'Rn,
an E COo , 1 < p $ n, f E Lco , T~ c D = {lei :5 ~}, e= ;.

Denote < . >= fD . de ; let

A~ = inf{< IVvlP > / < IvlP >: v E Gper (D) ,v = 0 on T~},

16
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and let w~(~) be the minimizer of this spectral problem, where < w~ >=' 1. Under
suitable assumptions, we study the limiting behavior of the solution u~ to the ab<?ve
nonlinear Dirichlet problem as f ---. 0, and we describe the sense in which the resulting
limiting equation is satisfied by the limit function uo.

Open Problems

MICHAEL RENARDY:

The Stresses oC an Upper Convected Maxwell Fluid in a Newtonian Veloc~ty

Field near aReentrant Corner

We investigate the stresses of an upper convected Maxwell fluid in the neighborhood of
a reentrant 270 degree corner. It is assumed (incorrect1y, of course) that the velocity
field is Newtonian. Both asymptotic analysis and numerical solutions are presented.
It is found that, for a fixed angle, the stresses behave approximately like r-O.74~ which
contrasts with a behavior like r-O.

91 at the walls (the latter is simply the square:.of
the Newtonian shear rate at the wall, where the ßow is viscometric). ,The ~nalY$is

shows that there are boundary layers near the walls, in which there is a transition fr~m

the viscometric behavior at the wall to a rore region where the behavior is dominat~d

by the convected derivative in the constitutive equation. Moreover, our computations
show Iarge" spurious stresses downstream resulting from numerical errors.

JOHN HINCH:

The ftow o~ an Oldroyd Fluid around a Sharp Corner

A similarity solution t/J = r 1+o /(9) is cODstructed for the flow of an Oldroyd fiu'"id
around a 2700 corner. An upstream viscometric region near the wall away fipm ttIe
corner determines the distribution of the str~s across the streamlines in the vicini:ty
of the corner as rl. = -p1 + Gt/J-fJID.!, where ß = 2(n - o:)/{2n - 1 - er) with f "J _on
as 9 ---. 0 (the w~il). Satisfying the momentum equation yields a nonlinear .eigenvalue
problem for /(6) and Q, with the exact solution {} =5/9 and 1(0) = -sin7/3~0. Thus
the velocity is found to .vanish like r S/ 9 and the stress to be singular like r - 2/~ •

KENNETH WALTERS:

Settling in Elastic Liquids

The conceptually simple non-Newtonian flow problem involving the settling under grav­
ity of asolid sphere moving along the axis of a cylindrical container provides a number
qf interesting challenges. Experimentally, there are some unusual features that have
yet to be predicted theoretically. For example, for a. Newtonian fluid, the sphere orten
reaches its terininal velocity after travelling no more than a diameter. In contrast,
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thirty or fourty diameters are sometimes required for elastic liquids, with substantial
overshoot. The dependenc~of the drag on the sphere on the Weissenberg number and
on the ratio of the sphere and cylinder radii have not yet been predicted with anything
representing quantitative agreement between experiment and theory.

CONSTANTINE DAFERMOS:

Redistribution of Damping

In viscoelasticity, effects of the memory induce damping. However, the presence of
dissipation is not explicit in every conservation law. For exarnple, consider the simple ..
one-dimensional model system •

a,u - fJ:ev 0

t

f k(t - r)8z u(u)(x, T)dr ,
o

with a given smooth kernel k. This system can be written in the equivalent form

8t u - Bzv 0

t
-k(O)v + f r'(t - r)v(x, T)dT - r(t)vo(x) ,

o

where r is the resolvent kernel of k and Vo is the initial datum of v. Under appropriate
assumptions on k, damping is clearly present in the second equation hut not tbe first.
This causes problems when for instance, we try to construct solutions with shocks to
the above system hy the random choice method of Glimm.

The question is whetber we may red.istribute the damping hetween the two equations
by replaving v by a new variable of the form

t
w(x, t) = v(x, t) + f p(t - r)v(x, r)dT

o

for an appropriate kernel p. For example, note that if

k(t) = Q~be-al - a~be-bt , b =f a, a, b > 0,

the change of variable
t

w(x, t) = v(x, t) + af v(x, T)dr
o

reduces the original system to

B, u - a~ w + au aUo

Ot W -:- 8z 0'(11) + bw 0

in which damping effects are weIl balanced between the two equations.

Berichterstatter: J.A. Nohel
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