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Tagungsbericht 24/1993

Differentialgeometrie im Grofien

. 23.5. bis 29.5.1993

Die Tagung fand unter der Leitung von W. Ballmann (Bonn), J.P. Bourguignon (Palaiseau)
und W. Ziller (Philadelphia) statt. -

Geometrie Uberzeugte als idealer kultureller und programmatischer Rahmen, in dem eine
Vielfalt an Fragestellungen und Methoden in produktive Wechselwirkung treten kénnen.

Neben genuin geometrischen Themen wird man -auch algebraische, analytische, topolo-
gisclie und andere Orientierungen an den Vortragsausziigen erkennen.

AuBerhalb des Vortragsprogramms gab es Gelegenheit zu vertieftem fachlichen und per-
sonlichen Austausch. :

Unter anderen Schwerpunkten seien hier genannt:

- Starrheit,
- negative Ricci- bzw. Schnittkriimmung,
- topologische Entropie.
- Holonomie,
. - isospektrale Deformationen,

B - elliptische Operatoren,
- positive Skalarkrimmung,
- isosystolische Ungleichungen.
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Vortragsausziige

K. GROVE

Curvature and Packing radii

It seems natural to divide metric invariants into two kinds: (1) Size invariants such as
diameter, volume etc., and (2) Shape invariants like curvature, excess etc.
Typically the shape of a space will influence its size: “Big curvature implies small size”.
For example, if curv M > 1 then diamM < «.
The size of M can also be measured in terms of its sequence of packing radii, pack, M >

. 2 packgM > ...\, 0 where 2 - pack,M = mazs,,...,yminic;dist(z,z;). For each
standard comparison yields '

pack,M" < pack,S}' , if curvM >1. -

If on the other hand pack,M is not too small we have

Theorem (Grove, Markvorsen). There is an £ = ¢(n) > 0 such that any closed Rie-
mannian n-manifold M with sectional curvature curvM > 1 and packn42M > 74 —¢ is
homeomorphic to S™ or diffeomorphic to RP™.

The proof uses convergence techniques and the following
Theorem (G, M). Any n-dimensional Alexandrov space X with curvX > 1 and

packn1 X = n/4 = 1/2diamX is isometric to S?/H, where H C (Z,)"*! (the group of
reflexions in coord. hyperplanes) acts without fixed points on S7.

Another non-convergence application of singular spaces yields

Theorem (Grove, Wilhelm) Any n-manifold M with curvAdf > 1 and pack,._lM > /4
is diffeomorphic to S™.

M. BERGER

Systoles & Applications According to Gromov

In 1949 Loewner proved that, for any Riemannian metric g on the 2-dimensional to:

one has %35'7‘% > £ the equality holding exactly only for the equilateral flat torus.

Here Area(g) is the area of g and Sys(g) = systole of g denotes the length of the smallest
curve which is not homotopic to zero.

This Loewner theorem, as Thom remarked in 1962, is the founding stone of a general
program. Namely found universal inequalities relating the various lower bounds for ho-
mology, homotopy classes. The lower bound of a homology class, for example, for some
Riemannian metric g, is the infinum of the volume for g of the various cycles representing
that class (systole).

w




UFG

Deutsche

Forschungsgemeinschaft

The talk will consist to give a survey of the various results (positive and counter examples)
obtained since Loewner. All major theorems are due to Gromov in 1983 and 1992 - 1993.
Gromov also use the concept of systoles. in the case a general inequality is false, for two
objectives. _

The first is to characterize Riemannian metric on a Kahler manifold by their defect (mea-
suring their defect) of Kéhlerianity.

The second is a purely geometric characterization of Jacobians among flat tori (abelian
varieties).

W. GOLDMAN

Complex Hyperbolic Geometry

A bisector in complex hyperbolic n-space Hg is the set of points equidistant from a pair
of points. Faces of Dirichlet fundamental polyhedra of discrete groups are regions in
bisectors. A bisector is a real hypersurface which is not totally geodesic tHough it admits
two foliations by totally geodesic submanifolds - complex hyperplanes and totally real
submanifolds.

A construction is given of two bisectors in H% whose intersection is the union of a complex
geodesic HY and a totally real geodesic submanifold Hj . Such an intersection cannot be
transverse; by perturbing it slightly, one obtains disconnected intersections of bisectors.

Another approach to the intersection of bisectors was the orthogonal projection onto the
complex geodesics containing the spine. In particular compare the intersection of a geodesic
with the projection of a bisector corresponding to the components of the intersection of
two bisectors. It would be quite interesting to have exact formulas for the projection of a
bisector in a complex geoedesic. -

J. LOHKAMP

On the Geometry of Negative Ricci Curvature

- Negative Ricci curvature (Ric) fulfills a large (and unexpected) variety of flexibility con-

ditions.

Besides the general existence of Ric < 0-metrics on each manifold M™,n > 3 we can get
metrics fulﬁlling many additional properties. For instance: If M™ is open, we can find
such a metric in each conformal class, or we can construct metrics w1th negative pinched
Ricci curvature resp. with finite volume and Ric < —const.

Furthermore we can approximate any metric by Ric < O—metrics and indeed in C°-

topology for flat metrics. Moreover cach two Ric < 0-metrics an be continously deformed
into each other by a path consisting only of Ric < 0-mnetrics.

3
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R.L. BRYANT ‘ -

A Survey of the Holonomy Problem

The concept of the holonomy of a connection was introduced by E. Cartan as a measure of
the global “non-flatness” of a connection. Precisely, given a principal bundle B — M and
a connection V on B, the holonomy of V at z is the collection of all P.,Y : B, — B, where
7 is a (piecewise C!) loop in M based at z and P_,v is the V-parallel translation around 7.
Fundamental results are that the holonomy at z, HY , is a subgroup of the structure group
of B, in fact, a Lie subgroup, and that the identity component of H, ,v can be computed by
parallel translation of the curvature of V (this is the Ambrose-Singer Holonomy Theorem).

When the principal bundle is the coframe bundle of M, J — M, a connection has a  _
first order invariant, the torsion. The connections of greatest interest are the torsi(’
free connections, and the fundamental problem is to determine the possibilities for t!
holonomy of torsion-free connections.

This talk is a survey of what is known in the case that the holonomy acts irreducibly on
the tangent bundle of M. For simplicity, I assume that M is 1-connected, so that H is
connected.

First I explain how the torsion-free connection defines a holonomy bundle B C J which
is an H-structure on M. I then recall the notion of intrinsic torsion for an H-structure,
which is a section of an associated bundle B x pyH%?(h) and remark that the holonomy
bundle B of a torsion-free connection is torsion free (i.e., its intrinsic torsion vanishes).
Conversely, starting with a torsion-free H-structure B, the space of compatible torsion-free
connections is an affine space modeled on the sections of a bundle B x p;, A(V). I survey
the list of irreducibly acting subgroups H C GL(V) for which either H%?(k) = 0 (noting
that the standard list omits (Sp(2,IR) € GL(4,IR)) or else h{)) # 0 (combined work of
Cartan, Kobayashi and Nagano) and determine which of these can occur as holonomy, and
which of these torsion-free H-structure are necessarily flat.

In the remaining cases, where h{!) = 0, torsion-free connections with holonomy H are
essentially the same as torsion-free H-structures and the latter problem can be studied
by techniques from exterior differential systems. I review the lists of Berger and point
out serveral new "exotic” examples. Highlights are: Sp(n, R)- SL(2,IR) C S0(2n,2n) can
occur as holonomy, two noncompact forms of Es can occur as holonomy in IR?", there
are non-flat SL(p,R) - SL(2,R)(C SL(2p,R))-structures which are related to twistor -
constructions, an example of an H C GL(6,IR) for which the torsion-free equations

not formally integrable. :

* The spaces h{*) and H%?(h) are the kernel and cokernel, respectively, of the Spencer
map §: h@®V* — V ®A?V* where h C gl(V) is the Lie algebra of H C GL(V).
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T. H. COLDING

Ricci diameter sphere theorem

If (M, g) is a Riemannian manifold with sectional curvature greater than or equal to one
and diam > n, then M is isometric to the round sphere by Toponogov’s maximal diameter
theorem. If sec > 1 and diam > 7/2 then M is homeomorphic to a sphere by the
generalized sphere theorem of Grove-Shiohama. In the case of Ricci curvature one have
the analog of Toponogov’s maximal diameter theorem, namely Cheng's maximal diameter

theorem. It is therefore natural to ask what minimal geometric condition, if any, togehter

wioth a Ricci diameter condition give topological stability.
The purpose of this talk is to answer this, namely we show:
Theorem (C)

Given A > 0 and an integer m > 2 there exists an €(A,m) > 0 (which can be explicitly
estimated) such that any R.M., of dimension m, whith,

Ric > (m —~1),sec > - A? anddiam > (7 —¢) _i:“

is homeomorphic to a sphere.

Grove-Petersen proved this with the additional assumption of a lower volume bound. Their
work generalized a theorem of Eschenburg where a lower bound on the injectivity radius
was assumed. On the other hand, Anderson and Otsu showed independently that if the
lower bound on'the curvature is replaced with a lower bound on the volume then the
conclusion of the theorem does not hold. Namely they showed that $™ x § " L(p,q) x S™,
#5,5% x §%, CP™ and CP"#CP" admit sequences of metrics with diameter converging
to m, volume uniformly bounded away from zero and Ricci curvature greater or equal to
the one of the round sphere of the same dimension. G. Perelman has independently shown
the above theorem.

L

E. CALABI

The Weighted Isosystolic Problem for closed surfaces

Let M be a closed surface of genus G > 2, v a non-trivial homotopy class of free closed
curves, and g a Riemannian metric on M. The local systole sys,(M, g) is the greatest
lower bound of the length of closed paths representing v, in terms of the metric.

If (M) denotes the set of all free homotopy classes of paths in M (including the trivial
class {e}). and A(M,g) the area of M with respect to g, then the systolic ratio p(M,g)
is defined by

p(M.g) = sup  (A(M, g)/sys (M. g)).
YEL(M)\{e}
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It is known (Gromov) that, for each value of the genus g there is a.~pbsitive constant
¢(G) > 0 defined by
(M) = i(nfp(j\/l,g)
g

called the extremal systolic ratio, achieved by at least one extremal isosystolic metric
go, that may be scaled so that either A(M,g) or inf,(sys,(M.g)) is a suitable level. A
weight function g : I' — R* is a function, u({e}) = 0,u(y) > 0 otherwise subject to

other suitable axioms (symmetry, strong subadditivity, etc.), that helps define a weighted
(u-weighted) isosystolic ratio

pu(M,g) = sup  {A(M,g)u*(7)/(sys4(M,g))*} >0
YEM(M)\{e}

with the property that the space of all metrics ¢ in M such that sup,(M,g) 2 u(y)
every v and 4(M, g) < e is compact (Gromov-Hausdorff topology) and non-empty for any
¢ 2 co > 0; there exists therefore a compact family of extremal or isosystolic metrics.
This generalization of the isosystolic problem is essential in order to analyse the structure
of solutions of the original isosystolic problem (unweighted). Indeed, it is important to
know the set of critical free homotopy classes S, C T(M), i.e. the set of vy € I'(M) such
that, in extremal p- isosystolic metric with

sys, (M, g) = p(7)

" be finite, and the paths representing the shortest representatives in each critical class v be

in generic position, in order to derive the variational stability equations. Time permitting,
the Euler equations are derived.

Y. C. DE VERDIERE

UNSTABLE CLOSED GEODESICS AND SEMI-CLASSICAL LIMITS

Le probléme considéré est I'étude du comportement asymptotique des fonctiones propres
du laplacien sur une variété riemannienne compacte lorsque Aj — +oo. On introduit les
mesures de probabilité v; = |p;|?dz et leur relévement microlocal 15, mesures de probalités
sur le fibré unitaire cotangent, definies par: ‘

ni(a) =< Op*(a)pjlp; >,

ou a est le prolongement homogeéne de degré 0 de @ & T* X\0 et Op*(&) est donné par une
quantification positive. Les y; sont canoniques a O (7‘7;) pres. Leurs limites vogues sont
invariantes par le flot géodésique.

On a le théoréme ergodigue semi-classique: si le flot géodésique est ergodique, il existe une

sous-suite de densité 1 \;, de A; telle que ;, tend vers la mesure de Liouville (Schnirelman-
Zelditch-CdV).
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La question est de savoir s’il y a d’autres limites faibles, par exemple les mesures de Dirac
sur les géodésiques fermeés. Rudnick et Sarnak ont prouvé qui c'est impossible dans le
cas arithmetique si les >, sont aussi propres pour les opérateurs de Hecke. Nous avons
récemment prouvé avec Bernard Parisse (Grenoble) que des fonctions propres peuvent se
concentrer sur une géodésique instable d'une surface de révolution a courbure -1. De plus.
nous avons un résultat qui minore par

1

k=
log);

la vitesse de concentration.

figure

B. LEEB

Closed 3-manifolds with(out) metrics of nonpositive curvature

Thurston’s Hyperbolization Conjecture combined with Mostow's Rigidity Theorem asserts
that closed, orientable, irreducible, atoroidal 3-manifolds correspond bijégfi(tely to closed
orientable hyperbolic (i.e. of constant sectional curvature -1) 3-manifolds. Hence, the class
of hyperbolizable 3-manifolds can be described by simple topological conditions.

We raise the corresponding question of existence of a metric of nonpositive curvature. The
right class of closed orientable 3-manifolds to look at, i.e. where the well-known topological
obstructions are not present. are irreducible ones with infinite fundamental group. By
the Jaco-Shalen-Johannson topological decomposition theorem, such a manifold M can
be cut along disjoint, imcompressible 2-tori into pieces which are atoroidal or Seifert. A
minimal decomposition is unique. We consider the case complementary to hyperbolization.
where the topological decompositon is non-trivial, i.e. one cuts along more than zero tori.
Then the pieces of the decomposition admit geometric structures of nonpositive curvature:
the atoroidal pieces admit complete hyperbolic metrics of finite volume on their interior
(by Thurston’s Hyperbolization Theorem for Haken manifolds); the Seifert pieces admit
geometric structures modelled on H® x IR resp. R* according to whether the base orbifold

o
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is Euclidean or hyperbolic. We ask when M can be weakly geometrical in the sense that
one can put an npc (nonpositively curved) metric on all of M. We present partial results.
but do not see an easy-to-formulate criterion. :

Existence: If in the topological decomposition of M occurs at least one hyperbolic piece,
then M admits an npc metric. Hence the delicate case is the case of graph-manifolds (i.e.
manifolds glued from Seifert pieces). The reason for this is that every npc metric arises up
to isotopy by putting flat metrics on the Jaco-Shalen-Johannson tori and extending those
into the geometric (hyperbolic or Seifert) pieces. Hyperbolic pieces are flexible in the sense
that any prescribed flat metric on the boundary can be extended to an npc metric on the
interior. For Seifert pieces instead, the flat metrics on the boundary tori are interrelated
coming from the fact that an npc metric with totally geodesic flat boundary on a Seifert
piece splits locally as a product. This rigidity can lead to obstructions to the existence of

npc metrics on graph-manifolds. ’
fro

Non-existence: We give examples of graph-manifolds with linear gluing graph built
arbitrarily many Seifert pieces which do not admit an npc metric.

P. TONDEUR (joint work with Y. MAEDA / K. U / S. ROSENBERG)

Minimal Gauge Orbits

Consider an isometric action of a compact Lie group on a Riemannian manifold (M, g). If
an orbit O is of extremal volume among nearby diffeomorphic orbits, then O is a minimal
submanifold.

Gauge theory provides an infinite dimensional analogue for this set-up. The Faddeev-
Papov ghost determinant gives a regularization of the volume of a gauge orbit, so we can
define what it means for a gauge orbit to have extremal volume among nearby orbits in
terms of the infinitesimal variation of the ghost determinant. This allows to prove that

an irreducible gauge orbit O with extremal volume among nearby orbits has vanishing
trace for the second fundamental form of the orbit O inside all gauge fields. Using work of -
Fintushal-Stern, this yields the existence of minimal gauge orbits of flat SU(2)-connections
over certain Seifert homology 3-spheres.

J. JOST

Equilibrium between metric spaces

The aim of this lecture ist to generalize the concept of harmonic maps between Riemannian
manifolds to maps betwen metric spaces. Thus, let (M, d) and (N, d) be metric space, N a

8
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complete length space. Let 4 be a positive measure on M, u,(¢ >0,z € M) be measures
on M. We define the c-energyof f : M = N as

f,\] ([I(f(-'-')y Fy)dui(y)

E.(f):= Jar @z y)dps(y)

du(z)

A typical case is u; = p | B(x,¢). If M is a Riemannian manifold, then the usual energy
is

E(f) =T = lim, s E.(f)

where the I' — limit is taken in the sense of de Giorgi.

If the measures ¢ and uf satisfy a certain symmetry condition (satisfied if e.g. pE o =p|
B(z,¢), then f is a critical point of E, iff f(z) is the mean value of the measure f,u®z

‘ for all z € M. This suggests the following discrete evolution process: Given fo: M — N,
define

f:MxIN—=N by f(z,n+1)=meanvalueof f,(-,n)u: f(z,0):= fo(z).

This process converges to an ¢-equilibrium-map, i.e. a critical point of E, if N has nonpos-
itive curvature in the sense of Alexandrov. and certain obvious conditions on the measures
p; are satisfied. Taking I-limits then gives critical points of E, i.e. harmonic maps.
For the special case of M a Riemannian manifold, such a result was also obtained by
Korevaas-Schoen by a different method.

J. DODZUIK

Spectral degeneration of hyperbolic 3-manifolds

I consider the spectrum of the Laplace operator A on compact hyperbolic manifolds of
three dimensions. Let M, — My be a sequence of such manifolds converging to a complete
manifold My with cusps and of finite volume. Since Spec(A, Mp) D [1, 00) one expects that
the spectra of M,’s accumulate in [1,00). I discuss the proof of a precise estimate of the
accumulation rate. If

- . Ny(x) = #{A € Spec(A, M) | |1 < A < z?)

then T
IV,.(I) = ﬁdlm(Mn) + Oz(l)
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U. BUNKKE ’ \

Verklebeformeln fir n-Invariante und Spektralfiufl

Wir betrachten verallgemeinerte Dirac-Operatoren in der folgenden geometrischen Situa- |
tion: |
|
|

D=I% »0.,)

t)rodwk cMar

L, 'L,

Abbildung

D; wird mit einer APS-Randbedingung unter Verwendung des Raumes L; C V mit L; &+
IL; = V definiert. Seien n(D), n(D;) die n-Invarianten der Dirac-Operatoren.

Theorem: n(D)—n(D;)— n(Dg) =m(Ly,L;)+dimkerD+2d+dimLyNLy—dimKerD,—
dimKerD,

mit

(1) m(Ly,L2) = fAuz(v.1,<,>) T(kL, Ly, Ly)dh, r — Maslovindex

(2) d € Z — einIndex

Sei Ly, = {prveylnlp € kerDi,p | N € Epy(—0,0)}.La, ist Lagrangsch. Sei D; der
Operator auf der Verlingerung von M; zu einer vollstindigen Mannigfaltigkeit durch Auf-
kleben eines unendlichen Zylinders. Unter den Regularititsbedingung R : L%kerD; c’
{0}, Las, N Ly, = {0} gilt: Definiert man die selbstadjungierten Erweiterungen D,

L, und D, mit Ly, und ist der zylindrische Teil von M lang genug, so gilt

Theorem: n(D) — n(Dy) — n(D2) = m(Ly, La).

|
|
|
|
\
\
(V,1,< I,>),V = Ker Dy symplektisch. :
|
\
|
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H. PESCE

Representation theory and isospectral manifolds

Since Milnor’s famous example of flat tori which are isospectral but non- isometric, one
knows that the spectrum of a closed riemannian manifold doesn’t determine the manifold.
After this example, other examples arising from number theory were constructed (lower
dimensional flat tori, hyperbolic manifolds ...).

The situation changed in a dramatic way in 1989 when Sunada gave a general method
to construct isospectral manifolds. The situation he considers is the following: (M,m)
is a closed Riemannian manifold, H;,H, C K C Isom(M,m) = G and if the following
condition "for each k € K, #([k]x N H,) = #({k]x N H;) where [kl = {€ke"';2 € K} is
satisfied then the manifolds Hy\H and H;\M (with the induced metrics) are isospectral
(in fact, they are isospectral for every natural operator: Hodge-De Rham, Lichnérowicz
Laplacian ...).

In this talk, one shows that this condition is equivalent to the fact that the representations
wf‘,'l and 1r;‘,', are equivalent (7:’{_}.4 is the representation induced by the trivial representation
of H;, i.e. (‘rr{‘,"_(g)(,o)(s) = ¢(sg) if o € LL(H;\K)) and one proves that Sunada’s Theorem
can be easily proved by the use of the classical Frobenius reciprocity theorem. Finally one
looks at the converse of Sunada’s theorem: assume that finite subgroups H; and H, of
the isometry group G are such that H1\M and H,\M are isospectral, does it imply that
the representations wﬁl and ‘il'g_: are equivalent? The general answer to this question is no
but one shows that it is "generically” true for small gioups (i.e. 2dimp < dim M for each
irreducible representation p of G).

L. SCHWACHH(")FER

Connections with exotic Holonomy

R. Bryant gave the first examples of "exotic holonomies”, i.e. holonomies of torsion free
affine connections that do not occur on the classically known list compiled by Berger.

These holonomies are p3(S¢(2.IR)) C G&(R*) * and R - p3(S€(2,R)) C Ge(R?). A
subbundle B C F where F is the coframe hundle of a 4-manifold M? and where the fiber
of B is one of the above representations will be called an H; and G3-structure on M* resp.

The local existence of these structures was shown by Bryant using the method of exterior
differential systems. We give some more global properties of these structures. For example,
Hj-structures can be neither complete nor can they exist globally on closed manifolds.
Moreover, we give descriptions of those Hj-structures which admit a 3- or 5-dimensional
symimetry group:

The (unique) space with 5-dimensional symmetry group can be naturally identified with the
space of parabolas in IR? acted on by AS#(2.R). structures with 3-dimensional symmetry

* p3 is the (unique) irreducible representation of S€(2.IR) in dim. 4.
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groups are realized on certain IR?-vector bundles over surfaces £?, where £? carries some
homogeneous bilinear form; e.g. we can choose

- MY = TH?

- M* = TE? with £ = {z? + y* — z? =1} C IR, ;, which carries a metric of sign. (1,1)
- M* = TT? where £2 = IR? with the (degenerate) bilinear form < z,y >=z, 3

- M* = Taut(C'IP') where (CP') carries the metric with K = 1. -

The symmetry group of the connection is always the isometry group of the bilinear forms.
Also, note that in the first and last example (M = TH? or M = Taut(CP')) the Hj-
structure degenerates on the 0-sections of either bundle.

For G3-structure, we note that the symmetry group can only have dimension four or less.
Thus, any homogeneous G3-structure must be a left-invariant structure on a 4-dimensional
Lie group. These structures can be classified. The underlying Lie groups are G¢(2, R) and
a certain 2-step nilpotent group. In particular, since both groups admit compact quotient

there exist (locally homogeneous) G3-structures on compact manifold, in contrast to th
result for Hj-structures.

G. PATERNAIN

Geometric characterization of the topological entropy of the geodesic flow

Let M be a compact Riemannian manifold and for (p,q) € M x M and A > 0, let n(p, g, )
denote the number of geodesic segments between p and g with length < \. If (p,¢q) € M xM
is generic, n(p, g, ) is finite and we consider here "geodesic entropy” defined as

s & timsup Tlog [ n(p,g,\)dpda.
MxM

A—+oo0

Now let hyop denote the topological entropy of the geodesic flow on the unit sphere bundle.
Then as a result of combined efforts of the author and Manié we have:

Theorem hgeoq = hiop provided the metric is C.

As a result for a generic metric close to the standard metric on S2, the geodesic entropy
is positive. As a concrete example take the following metric g on the ellipsoid

z? 222 (1 —ex) ‘

y
E—+=—+—=1:¢g= JE
a1 a2 a4 010203(-7+1;+:

where gg is the metric on E induced by the embedding E C R®, and ¢ sufficiently small
(03 > ag > a; > 0).
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GANG TIAN

Cone structure of complete Ricci-flat manifolds at infinity

This is a joint work with J. Cheeger. Let M be a complete Ricci-flat manifold satisfying:

1) the volume growth of B.(p) is like er™. where e is a constant, n = dimp M; 2) the

curvature decays at quadratic order. Bando-Kasue-Nakajima proved that any sequence

of pointed rescaled manifolds (M, p, rj"2 9) has a subsequence which converges to a metric

cone (Moo, Poos oo )» Where p is a fixed point of M, lim T j = 00, g 1s a fixed Ricci-flat metric

on M. The problem we concern is whether or not the cone (Mo, Poo, goo) is independent

of choices of {I';}, i.e., the uniqueness problem of the cone structure of M at infinity. We

proved that if M is one of the manifolds given as above and some of tangent cones is

. integrable in the sense: the restriction of go, to one cross-section is integrable, then the

.1 cone (M, Poo, §oo) is unique, moreover, in this case, one has the following asymptotic
estimate:

g=dr’ +rlgny +0(r™®) forsome a>0

where gn is an Einstein metric on the cross-section which has distance one from Poo- In
case M is a Kahler Ricci-flat manifold, the cone M is also Kihler. We proved that if the
dimension of holomorphic Killing fields on M, is one, then M, is integrable, consequently,
M can be complex analytically compactified.

Le HONG VAN

Symplectic fixed joints, the Calabi invariant and Novikov homology

This is a joint work with K. Ono. We prove the following generalized Arnold conjecture.

Theorem: Let (M?",w) be a closed symplectic manifold. Suppose that’its first Chern
class satisfies the following monotonicity condition: =

C'Inu\n = /\[w}l':““,/\ # 0

; moreover if A < 0 then the minimal Chern number N is at least n — 3. Then the number of
‘ fixed point of a symplectomorphism ¢ isotopic to the identity through symplectomorphism
can be estimated from lower by the sum of the Betti number of the Novikov homology
over Z-, corresponding to the Calabi invariant of ¢.
It is well-known that symplectomorphism ¢ is exact if and only if its Calabi invariant
= 0. In this case the Theorem (also Arnld conjecture) was partially proved by Conley-
Zehnder (1983), Floer (1986 - 1988) Ouo (1993). To prove the Theorem we construct the
Floer-Novikov for ¢ and prove that

F - 'VH(‘P)L = "Bj:k(mml'leOVH([‘r’])
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and obtain the Theorem. We also construct a non-trivial application of our Theorem (this
means that our estimate is better than Leftschetz fixed point Theorem).

D. SCHUTH

Isospectral Deformations

In 1991, the following result about isospectral deformations of 2-step nilmanifolds was
proved independently by Hubert Pesce at He Ouyang:

If G is. a 2-step nilpotent, simply connected Lie group, g* a continuous family of left ‘
invariant metrics on it, and I’ a cocompact discrete subgroup of G, then isospectrality of
the compact Riemannian manifolds (I'\G, ¢*) implies the existence of a continuous fa.mil.

¢ € AIA(G,T) := {¢ € Aut(G)Vy€T'3a € G : ¢(7) = aya™"}

(almost inner automorphisms of G w.r.t. T') with ¢ = id and ¢g* = ¢7geVt. This result
implies that compact quotients (I'\Hm,g) of the classical Heisenberg groups H, (where
T is a discrete cocompact subgroup and g a Hm-left invariant metric) are infinitesimally
spectrally rigid within the family of H,,-left invariant metrics, since there are no non-trivial
almost inner automorphisms, i.e. AIA(Hp,;T') = Inn(G). In contrast to this fact, we show
that arbitrarily "near” to certain I'\H,, there are nontrivially isospectrally deformable
manifolds, namely:

Theorem: For every m > 2 there is a cocompact discrete subgroup I' of H,, and a 2-
parameter family g§ of metrics on ['\H, with the following properties: All the g% are left
invariant with respect to a certain solvable group structure on the manifold H,,, but only
g} is Hp-left invariant. For every fixed a € (0,1),g is a non-trivial continuous isospectral
deformation (t ranges over R); g{ is a trivial deformation. For every fixed t € IR,
(where a ranges over (0,1]) is a continuous deformation, which is however not isospectral.
It is an open question whether the Theorem of Pesce and Ouyang holds also in the n-step
nilpotent or solvable case. We can prove the following weaker result:

Theorem: (a) If G is simply connected and solvable with only real roots, and if T, is a
continuous family of cocompact discrete subgroups of G s.t. all the quasi-regular repr
sentations are unitarily equivalent, then there exists a continuous family ¢, € ATA(G; l"o'
with ¢ = Id and T’y = ¢(To)Vt.

(b) The same result holds if G is a 1-dimensional exponentially solvable extension of R",

if we assume that T'¢ is a C'-family. Here, the resulting ¢, are even inner.
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K. HABERMANN

Twistor spinors on Riemannian manifolds

We study n-dimensional Riemannian spin manifolds (M™, ¢),n > 3, admitting non-trivial

twistor spinors. A twistor spinor is a spinor field ¢ € [(S) satisfying the differential
equation

Vxp+— X Dy =0

for all vector fields .X', where D denotes the Dirac operator. A. Lichnerowicz introduced
the twistor spinors as zeroes of the conformally invariant twistor operator D and started
their systematical investigation.

Twistor spinors ¢ (together with Dy) correspond to parallel sections in a certain bundle
over M™. Hence the space of all twistor spinors is finite-dimensional.

A special class of twistor spinors are Killing spinors ¢ defined by the equation Vxo = AX ¢
for all vector fields X and A € €. If (M™,g) admits a non-trivial Killing spinor, then
(M™,g) is an Einstein manifold. On connected manifolds Killing spmors’“have no zeroes,
since they are parallel with respect to Vx — AX. On compact manifolds® the space of all
twistor spinors coincides - up to a conformal change of the Riemannian’ metnc - with the
space of all Killing spinors. Now, twistor spinors with zeroes are possnble

Th. Friedrich proved that the set of all zeroes of a twistor spinor is a dxscrete subset
of M™. Any twistor spinor defines a conformal deformation to an Einstein manifold (on
the complement of the zeroset). If (M™,g) is a complete connected Einstein manifold
admitting a twistor spinor vanishing at some point then (M™,g) is isometric either to the
standard sphere, to the Euclidean space or to the hyperbolic space.

Furthermore, we give a sufficient condition for completeness of the metric (which is men-
tioned above) on the complement of the set of all zeroes. In addition tc the conformal
invariance of the twistor equation the existence of non-trivial twistor spinors forces proper-
ties of the conformal structure of the manifold. A twistor spinor defines a conformal vector
field. Now Kiihnel and Rademacher proved that a manifold with twisior spinor having a
zero, such that the associated conformal vector field is non-vanishing, is conformally flat.

S. STOLZ

Manifolds of positive scalar curvature

Question: given a compact, smooth. closed manifold M, does it admit a Riemannian
metric of positive scalar curvature?

For spin manifolds, the Weitzenbock formula implies that the kernel of the Dirac operator
is trivial if the scalar curvature is positive. In particular, the index of the Dirac operator
vanishes. For a spin manifold M™ with fundamental group 7. Rosenberg constructed a

Dirac operator whose index a(M) lives in KQ,(C*r), the real L-theory of the group
C*-algebra.

o &
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Conjecture (Gromov-Lawson, Rosenberg): A spin manifold M™ of dimension > 5
has a positive scalar curvature metric iff (M) vanishes. )

Theorem (Stolz): Conjecture is true for simply connected manifolds.

This result foliows from the Gromov/Lawson. Schoen/Yau surgery Theorem for positive
scalar curvature metrics, and the following result which is proved using stable homotopy
theory:

Theorem (Stolz): Let M" be a spin manifold. Then a(M) =0 € KO,(IR) iff M is spin
bordant to the total space of an HIP?-bundle.

Theorem (Rosenberg-Stolz): Conjecture true for m M ~ Z,.

Theorem (Rosenberg-Stolz): The conjecture is stably true for finite m; M, i.e. if M™
is spin with r = 7, M finite, and a(M) € KO,(C*r) vanishes, then M x b x ... x B has -

: k
a positive scalar curvature metric for some k, where the ”"Bott manifold” B® is a spin
manifold with A(M) = 1.

C. PLAUT

Beginnings of Metric Geometry in Infinite Dimensions

An inner metric space X has curvature bounded below if every point lies in a region of
curvature > k for some k depending (possibly) on X. Our main example is topologicai

. groups:

Deutsche

Theorem: Every first countable locally compact group admits an invariant metric of
curvature > k for some k.

The proof uses the theory of locally compact groups of Yamabe. The basic theorem is an
extension of the Hopf-Rinow theorem:

Theorem: For each p € X3 dense G5 subset J, s.t. Vq € J,, there is a unique, almoé‘
extendable minimal curve from p to q.
Almost extendable means there is a complementary direction in the space of directions at

g. The first application is the global comparison theorem (Toponogov’s Theorem) (proved
independently by Burago, Perelman).

Theorem: If X has curve > L then all of X is a region of curvature > k. The proof is
by constructive induction when the comparison radius is bounded uniformly. From the
uniform case the general case follows by

16
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Theorem: If X has curv. > 1, contains a spherical set of 2(n + 1) clements. X contains
an n-sphere. This is a generalization of Toponogov’s maximal diameter theorem. We use
it to find spheres in the space of directions. If the size of such spheres is bounded, the
Hausdorff dimension is finite; i.e. the space is an Alexandrov space. If not. oue can find
separable infinite spheres at a dense G» set of points.

M. WEBER

Fundamental Domains for Picard-Mostow Complex Hyperbolic Surfaces

. Consider Thurston’s Description of these surfaces: Take 5 pts. Py,...,Ps on an ori-
. ented S? and "curvatures” x; € (0,27),i = 1...5 with S" ki = 4m. Set S(xy,...,K,) =
. {metricson 5% flat on S% — {P,... P,}; cone-sxngulanty around each P; with cone angle

= 2m — &;; area = 1}/ or. preserving diffeomorphisms of S? fixing each P;.

: For instance, Thurston proves: S( S5 s s s) = Sisa complex compact hyperbolic
orbifold of dimension 2. A fundamental domain is constructed as follows: Partition S into
S = Py U...U Ps and show that each P; is isometric to a certain complex hyperbolic
polyhedron, bounded by bisectors. The combinatorial structure of P; can.be described
explicitly in terms of the x;. For instances, P; has in the above example 8 faces which are
solid tetrahedra. All these polyhedra can be described quite explicitly. This can be used
to study submanifolds of the S(x;). One is the fixed point set of the mapping 5 — 5 € S
which inverts the orientation of S. This turns out to be a 2 — dimg manifold, which is
totally geodesic and non-orientable.

Berichterstatter: V.Cortés (Bonn)

17

Deutsche
DFG Forschungsgemeinschaft © @



Tagungsteilnehmer

Prof.Dr. Uwe Abresch Prof.Dr. Pierre Berard
Mathematisches Institut Laboratoire de Mathématiques
Universitat Minster Universite de Grenoble [

Botte Postale 74
D~-48149 Miinster

\

|

|

\

|

|

\

\

! .

‘ Einsteinstr. 62 Institut Fourier
| F-38402 Saint Martin d’Heres Cedex

Prof.Dr. Ivan K. Babenko Prof.Dr. Marcel Berger ‘
Chair of Higher Geometry & Topology IHES

| Dept. of Mathematics and Mechanics Institut des Hautes Etudes

| Moscow State University Scientifiques

35, Route de Chartres
Moscow {1 98 99

RUSSIA F-91440 Bures-sur-Yvette

Prof.Dr. Christian Baer Prof.Dr. Jean Pierre Bourguighon
Mathematisches institut Centre de Mathématiques
Universitat Bonn Ecole Polytechnique

Beringstr. & Plateau de Palaiseau

D-33115 Eonn F-31128 Palaiseau Cedex

Prof.Dr. Werner Ballmann Prof.Dr. Jochen Briining
Mathematisches Institut Institut fiir Mathematik

Universitdt Bonn Universitdt Augsburg ‘
Beringstr. 6

. D-86135 Augsburg
D-53115 Bonn

Prof.Dr. Victor Bangert Prof.Dr. Rabert Bryant
Mathematisches Institut Dept. of Mathematics
Universitat Freiburg Duke University

Hebelstr. 29

Durham , NC 27706
D-79104 Freiburg usa

DF Deutsche
Forschungsgemeinschaft ©




)]

oF

Ulrich Bunke

Institut Flir Reine Mathematik
Fachbereich Mathematik
Humboldt-Universitit Zerlin

0-10099 Rerlin

Prof.Dr. Sergei V. Buyalo

St. Petersburg Branch of Steklov
Mathematical Institute - POMI
Russian Academy of Science
Fontanka 27

191011 St. Petersburg
RUSSIA

Prof.Dr. Eugenio Calabi
Department of Mathematics
University of Pennsylvania
209 South 33rd Street

Philadelphia , PA 19104-6395
UsA

Prof.Dr. Toby Colding
Courant Institute

New York University

231 Mercer Street

New York
usa

+ NY 10012

Prof.Dr. Yves M. Colin de Verdiere
Laboratoire de Mathematiques
Universite de Grenoble I

Institut Fourier

Botte Postale 74

F-38402 Saint Martin d'Heres Cedex

- Deutsche .
Forschungsgemeinschaft

Prof.Dr. Vicente Cortés
Mathematisches Institut
Universitiat ZSonn
Beringstr. 3

D-53115 BRonn

Prof.Dr. Jozef Dodziuk

Ph.D. program in Mathematics
Graduate Center (CUNY)

33 West 42nd Street

New York , NY 10036
usa

Prof.Dr, Patrick B. Eberlein
Dept. of Mathematics
University of Nerth Carclina
Phillips Hall CE 325

Chapel Hill , NC 27599-3250
USA

Prof.Dr. Jost-Hinrich Eschenburg
Institut fir Mathematik
Universitit Augsburg

D-86135 Augsburg

Patrick Ghanaat
Mathematisches Institut
Universitit Rasel
Rheinsprung 21

CH-4051 Basel

o &




LY

| Prof.Dr. William Mark Goldman Prof.Dr. Ursula Hamenstadt

Department of Mathematics Mathematisches Institut

University of Maryland Universitdt Bonn
Beringstr.

College Park , MD 20742

|

‘ TN ' D-53115 Bann
Prof.Dr. Detlef Gromoll Prof.Dr. Ernst Heintze
Department of Mathematics Institut fir Mathematik
State University af New York Universitdt Augsburg ‘
Stony Brook , NY 11794-3651 D-84135 Augsburg
USA
Prof.Dr. Karsten Grove Prof.Dr. Hesheng Hu
Department of Mathematics Dept. of Mathematics
University of Maryland Fudan University
College Park , MD 20742 Shanghai 200433
usA CHINA

|

|
Prof.Dr. Chachao Gu Prof.Dr. Jirgen Jost
University of Science and Institut f. Mathematik
Technology of China Ruhr-Universitat Bochum
Hefei Gebdude NA
Anhui 230026 D-44780 Bochum
CHINA .
Prof.Dr. Katharina Habermann Prof.Dr. Bruce Kleiner
Institut f. Mathematik School of Mathematics
Ruhr-Universitat Bochum Institute for Advanced Study
Gebaude NA

Princeton , NJ 08540
D-44780 Bochum USA
20

Deutsche
DFG 20 i o




oF

Prof.Dr. Le Hong Yan
Max-Planck-institut fir Mathematik
Gottfried-Claren-Str. 26

D-5322S8 Bann

Dr. Bernhard Leeb
Mathematisches Institut
Universitdt Bonn
Wegelerstr. 10

D-53115 Bonn

Joachim Lohkamp
Max~-Planck-Institut. fiir Mathematik
Gottfried Claren Str. 26

D-53225 Bonn

Prof.Dr. Maung Min-0o
Department of Mathematics and
Statistics

Mc Master University

1280 Main Street West

. Hamilton Ontario L3S 4Kl

CANADA

Dr. Gabriel Paternain
Max-Planck—~Institut fiir Mathematik
Gottfried Claren Str. 26

D-53225 Bonn

Deutsche
Forschungsgemeinschaft

Dr. Xiao-Wei Peng
Institut f. Mathematik
Ruhr-Universitdt Bochum
Sebidude WA

D-44730 Bochum

Prof.Dr. Hubert Pesce
Laboratoire de Mathematiques
Universite de Grenoble I
Institut Fourier

Boite Postale 74

F-38402 Saint Martin d’'Heres Cedex

Prof.Dr. Ulrich Pinkall
Fachbereich Mathematik
Technische Universitdt Berlin
Strafie des 17. Juni 136

D-10623 Berlin

Prof.Dr. Canrad Plaut .
Dept. of Mathematics
University of Tennessee at
Knoxville

121 Ayres Hall

Knoxville , TN 379954-1300
USA

Dr. Hans-Bert Rademacher
Institut fiir Mathematihk
Universitdt Augsburg

D-86135 Augsburg




oF

Praof.Dr. Ernst A. Ruh
Département de Mathematiques
Chemin du musée 23

CH-1700 Fribourg

Prof.Dr. Marcos Salvai
Mathematisches Institut
Universitat Bonn
Beringstr. 6

D-53115 Bonn

Dorothee Schiith
Mathematisches Institut
Universitdt Bonn
Beringstr. 1

D-53115 Bonn

Lorenz Schwachhdfer
Dept. of Mathematics
Washington University
Campus Box 1146

One Brookings Drive

St. Louis , MO 63130-4899
usaA

Dr. Stephan Stol:z

Dept. of Mathematics
University of Notre Dame
Mail Distribution Center
P.0. Box 398

Notre Dame ., IN 46556-5683
USA

Deutsche
Forschungsgemeinschaft

I

Prof.Dr. Gudlaugur Thorbergsson
Dept. of Mathematics
University of Notre Dame

Mail Distribution Center

P.0. Box 398

Notre Dame , IN 46556-3633
usa

Prof.Dr. Gang Tian
Department of Mathematics

‘Princeton University

Fihe Hall .
Washington Road )

Princeton , NJ 08544-1000
usa .

Prof.Dr. Philippe Tondeur
Department of Mathematics
University of Illinois
273 Altgeld Hall MC-382
1409, West Green Street

Urbana , IL 61801-2975
USA

Matthias Weber

Mathematisches Institut

Universitat Bonn .
Beringstr. &6

D-53115 Bonn

Prof.Dr. Wolfgang Ziller
Department of Mathematics
University of Pennsylvania
209 South 33rd Street

Philadelphia , PA 19104-6395
USsA

o




