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MATHEMATISCHES FORSCHUNGSINSTITUT OBERWOLFACH

Tag u n g s her ich t 24/1993

Differentialgeometrie im Großen

23.5. bis 29.5.1993

Die Tagung fand unter der Leitung von W. Ballmann (Bonn), J .P. Bourguignon (Palaiseau)
und W. Ziller (Philadelphia) statt.

qeometrie überzeugte als idealer kultureller und programmatischer Rahmen, in dem eine
Vielfalt an Fragestellungen und Methoden in produktive Wechselwirkung treten können.

Neben genuin geometrischen Themen wir.cl man ·auch algebraische, analytische, topolo­
gische und andere Orientierungen an den Vortragsauszügen erkennen.

Außerhalb cl.es Vortragsprogramms gab es Gelegenheit zu vertieftem fachlichen und per­
sönlichen i~.ustausch.

Unter anderen Sch\verpunkten seien hier genannt:

- Starrheit,

- negative Ricci- bzw. Schnittkrümmung,

- topologische Entropie.

- Holonomie,

- isospektrale Deformationen,

- elliptische Operatoren,

- positive Skalarkrümmung,

- isosystolische Ungleichungen.
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Vortragsauszüge

K.GROVE

Curvature and Packing radii

It' seems natural to divide metric invariants into two kinds: (1) Size invariants such as
diameter, volume etc., and (2) Shape invariants like curvature, excess etc.

Typically the shape of aspace will influence its size: ~'Big curvature implies small size".
For example, if curv M ~ 1 then diamM ~ tr.

The size of M can also be measured in terms of its sequence of packing radii, pack2 1\1 ~

... ~ packqM ~ ... "0 where 2· packql\t/ = max(z.....zq)minä<jdist(Xä,Xj). For each.
standard eomparison yields

if curvM;::: 1.

If on the other hand packqM is not too small we have .
Theorem (Grove, Markvorsen). There is an c = c(n) > 0 such that any closed Rie­
mannian n-manifold M with sectional curvature curvi\1 ~ 1 and packn +21\1 ~ tr /4 - c is
homeomorphic to sn or diffeomorphic to lRpn.

The proof uses convergence techniques and the following

Theorem (G, M). Any n-dimensional Alexandrov space ..;r with curvX ~ 1 and
packn+1X = tr/4 = 1/2diamX is isometrie to Sr/H, where H. C (71~dn+l (the group of
reflexions in coord. hyperplanes) acts without fixed points on Sf.
Another non-convergence application of singular spaces yields

Theorem (Grove, Wilhelm) Auy n-manifold J\1 with curvAf ~ 1 and packn - 1 l\1 > rr/4
is diffeomorphic to sn.

M.BERGER

Systoles & Applications According to Gromov

In 1949 Loewner proved that, for any Riemannian metric 9 on the 2-dimensional tone
one has ~;::~;; ~ ~, the equality holding exactly ooly for the equilateral Hat torus.

Here Area(g) is the area of 9 and Sys(g) = systole of 9 ,denotes the length of the smallest
curve which is not homotopic to zero.

This Loewner theorem, as Thom remarked in 1962, is the founding stone of a general
program. Namely found universal inequalities relating the various lower bounds for ho­
ffiology, homotopy classes. The lower bound of a homology class, for example, for some
Riemannian metric g, is the infiul1ffi of the volume for 9 of the various cycles representing
that class (systole).
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The talk will consist to give a survey of the various results (positive and counter examples)
obtained since Loewner. All major theorems are due to Gromov in 1983 and 1992 - 1993.

Gromov also llse t.he concept of systoles. in the case a general inequality is false, for t\\,O

objectives.

The first is to charact.erize Riemannian metrie on a I(ähler manifold by their oefect (nlea­
surin~ their defect) of I\:ählerianity.

The second is a purely geometrie characterization of Jacobians among Bat tori (abelian
varieties ).

w. GOLDMAN

Complex Hyperbolic Geometry

Abisector in complex hyperbolic n-space H~ is the set of points equidistant from a pair
of points. Faces of Dirichlet fundamental polyhedra of discrete grouP§. are regions in
bisectors. Abisector is areal hypersurface whieh is not totally geodesic all.B~ugh it admits
two foliations by totally geodesic submanifolds - complex hyperplanes to:ahd totally real
submanifolds. .~

A construction is given of two bisectors in Hi whose intersection is the union of a complex
geodesie H~ and a totally real geodesic submanifold HJk.. Such an intersection cannot be
transverse; by perturbing it slightly, one obtains disconnected intersections of bisectors.

Another approach to the intersection of bisectors was the orthogonal projection onto the
complex geodesics containing the spine. In particular compare the intersection of a geodesie
with the projection of abisector corresponding to the components of the intersection of
two bisectors. It would be quite interesting to have exact formulas for the .projection of a
bisector in a complex geoedesic.

J. LOHKAMP

On the Geometry of Negative Ricci Curvature

. Negative Ricci curvature (Ric) fulfills a large (and unexpected) variety of flexibility con­
ditions.

Besides' the general existence of R-ic < O-metrics on each manifold Mn, n ~ 3 we can get
metrics fulfilling many additional properties. For in~tance: If Mn is open, we can find
such ametrie in each conformal class, or we cau construct lnetrics with negative pinched
Ricci curvature resp. with finite volume and Rie < -const.

Furthermore \ve can approxinu\te any metric by Ric < O-metrics and indeed in Coo_
topology for Hat metries. !vloreover cach hvo Rie < O-lnetrics cUl be 'continollsly deformed
into each other by a path consisting ollly of Rie < Q-ulctrics.
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R.L. BRYANT

A Survey of the Holonomy Problem

The concept of tbe holonomy of a connection was introduced by E. Cartan as a measure of
the global ~'non-flatness"of a connection. Precisely, given a principal bundle B --+ lvI and
a connection \l on B, the holonomy of V at x is the collection of all P;', : B z ~ B x where
I is a (piecewise Cl) loop in M based at x and P;' is the V-parallel translation around /.
Fundamental results are that the holonomy at x, H~, is a subgroup of the structure group
of B, in fact, a Lie subgroup, and that tbe identity component of H~ can be computed by
parallel translation of the curvature of V (this is the Ambrose-Singer Holonomy Theorem).

When the principal bundle is the coframe bundle of M, J ~ !vI, a connection has a
first order invariant, the tor3ion. The connections of greatest interest are the torsicA
free connections, and the fundamental problem is to determine the possibilities for lfI'
holonomy of torsion-free connections.

This talk is a survey of what is known in the case that the holonomy acts irreducibly on
the tangent bundle of M. For simplicity, I assume that 1.\1. is l-connected, so that H is
connected.

First I explain how the torsion-free connection defines a holonomy bundle B ~ J which
is an H -structure on }vf. I then recall the notion of intrinsic torsion for an H -structure,
which is a section of an associated bundle B x poHOt2(h) and remark that the holonomy
bundle B of a torsion-free connection is torsion free (i.e., its intrinsie torsion vanishes).
Conversely, starting with a torsion-free H-structure B, the space of compatible torsion-free
connections is an affine space modeled on the sections of a bundle B x PI, h(1). I survey
the list of irreducibly acting subgroups H ~ GL(V) for which either HOt 2 (h) = 0 (noting
that the standard list omits (Sp(2, R) ~ GL(4, R)) or else hel) =F 0 (~ombined work of
Cartan, Kobayashi and Nagano) and determine which of these can occur as holonomy, and
which of these torsion-free H -structure are necessarily Hat.

In the remaining cases~ where hel) = 0, torsion-free connections with holonomy H are
essentially the same as torsion-free H-structures and the latter problem can be studied
by techniques from exterior differential systems. I review the lists of Berger and point
out serveral new "exotic" examples. Highlights are: Sp(n, R)· 5L(2, R) ~ SO(2n, 2n) can
occur as holonomy, two noncompact forms of E6 can occur as holono~y in m27

, there
are non-Hat SL(p, IR) . SL(2, lR)(~ SL(2p, R))-structures which are related to twistor
constructions, an example of an H ~ GL(6, ffi.) for which the torsion-free equations e
not formally integrable. .

• The spaces h(l) and HOt 2 (h) are the kernel and cokernel, respectively, of the Spencer
map 6 : h 0 V· ~ V ® 1\2 V· where h S; gl(V) is the Lie algebra of H ~ GL(V).
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T. H. COLDING

Ricci diameter sphere theorenl

If (NI, g) is a R.ieuHuluian Inanifold \vith sectional curvature greater than or equal to one
and diam ~ rr, then 1.1,1 is isometrie to the rOllnd sphere by Toponogov~smaximal diameter
theorem. If sec ~ 1 and diam > rr/2 then M is homeomorphic to a sphere by the
generalized sphere theorem of Grove-Shiohama. Ip the ease of Rieci curvature one have
the analog of Toponogov's maximal diameter theorem, namely Cheng's maximal diameter
theorem. It is therefore natural to ask what minimal geometrie condition, if any, togehter'
wioth a Ricci diameter eondition give topological stability.

The purpose of this talk is to answer this, namely we show:

Theorem (C)

Given A > 0 and an integer m ~ 2 there exists an c(", m) > 0 (which can be explicitly
estimated) such that any R.M., of dimension m, whith,

Ric ~ (m - 1), sec ~ - 1\2 anddiam ~ (tr - e)

is homeomorphic to a sphere.

Grove-Petersen proved this with the additional assumption of a lower volume.bound. Their
work generalized a theorem of Eschenburg where a lower bound on the injectivity radius
was assumed. On the other hand, ,A.nderson and Otsu showed independently that if the
lower bound on' the curvature is replaced with a lower bound on the volume then the
conclusion of the theorem does not hold. Namely they showed that sm X sn,- L(p, q) X sn ,
#~= 152 X 52, er;pn and fLpn # (Cpn admi t sequences of metries .with diameter converging
to 7r, volume unifonnly bouncled away from zero and Rieci eurvature greater or equal to
the one of the round sphere of the same dimension. G. Perelman has independently shown
the above theorem.

E. CALABI

e The Weighted Isosystolic Problem for c10sed surfaces

Let AI be a closed surface of genus g ~ 2, , a non-trivial homotopy class of free closed
curves, and 9 a Riemannian metric on M. The Ioeal systole sys.,.(M, g) is the greatest
lower bound of the length of closed paths representing " in terms of the metric.

If r( Al) denotes the set of all free hOlnotopy elasses of paths in lvI (including the trivial
class {e}) ~ and A( lvI, y) the aren of A1 wi th respect to 9, then the systolic ratio p( M, g)
is defined by

p(111.!J) = sup (.4(1\./, !I )/sys"'Y(AJ~ g)).
-rer( An\ {e}
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It is known (Grolnov) that, for each value of the genus 9 there is a positive constant
c(g) > 0 defined by

c(M) = inf p(l'v/,g)
(g)

called the extremal systolic ratio, achieved by at least one extremal isosystolic metric
90, that may be scaled so that either A(A-f, g) or inf"'(sys..,.(lltf, g») is a suitable level. A
weight function p. : r - lR+ is a function, p.( {e}) = 0, p.(I) > 0 otherwise subject to
other suitable axioms (symmetry, strong subadditivity, etc.), that helps define a weighted
(Jl-weighted) isosystolic ratio .

pp(i\1,g) = sup {A(Al,g)J.L2(i)/(Sys"'((1Vf,g»)2} > 0
'Yer{M)\{e}

with the; property that the space of al1 metries 9 in M such that sUP-y( M, g) ~ J.L( I) •
every 1 and A(M,g) $ eis compact (Gromov-Hausdorff topology) and non-empty for any
C ~ Co > 0; there exists th~refore a compact family of extremal or isosystolic metries.
This generalization of the isosystolic problem is essential in order to analyse the structure
of solutions of the original isosystolic problem (unweighted). Indeed, it is important to
know the set of critical free homotopy classes Sp C reM), i.e. the set of , E r(M) such
that, in extremal J1.- isosystolic metric with

sys..,.(i\1, g) = J.L( i)

be finite, and the paths representing the shortest representatives in each critical class I be
in generic position, in order to derive the variational stability equations. Time permitting,
the Euler equations are derived.

Y. C. OE VERDIERE

.UNSTABLE CLOSED GEOOESICS AND SEMI-CLASSICAL LIMITS

Le probleme considere est l'etude du c;omportement asymptotique des fonctiones propres
du laplac'ien sur une variete riemannienne compacte lorsque Aj ~ +00. On introduit les
mes'ures de probabilite Vj = Icpjl2dx et leur relt~vementmicrolocal JJj, mesures de probalitcs
sur le fibre unitaire cotangent, definies par:

DU ä est le prolongement homogene de degre 0 de a cl T* ..Y\O et Op+(ä) est donne par une
quantification positive. Les Jlj sont canoniques a 0 (*") pres. Leurs limites vogues sont

invariantes par le flot geodesique. J

On a le theoreme ergodiquf Jemi-cla.s.sique: si le Hot geodesique est ergodique, il existe une
sous-suite de densite 1 Ajt de Aj teIle que J.lj" tend vers la mesure de Liouville (Schnirelrnan­
Zelditch-CdV).
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La question est de savoir s~il y a d'autres limites faibles~ par exemple les mesures de Dirac
sur les geodesiques fermees. Rudnick et Sarnak ant prouve qui c'est impossible dans le
cas arithmetique si les :,:;} sont aussi propres pour les operateurs oe Hecke. :'-Ious avons
recemment pro\lve avp.c Bernard Parisse l Grenohle) que des fonctions propres p~uvent se
concentrer sur une .geodesique instable cl'une surface de revolution ä. courbure -1. De plus.
nous avons un resultat qui minore par

k=: _1_
logAj

la vitesse de concentration.

figure

B.LEEB

Closed 3-manifolds with(out) metries oe nonpositive curvature

Thurston's Hyperbolization Conjecture combined with Mostow's lligidity.1'J:eorem asserts
that closed, orientable, irreducible, atoroidal 3-manifolds correspond bijectively to closed
orientable hyperbolic (i.e.of constant sectional curvature -1) 3-manifol.ds. Hence, the class
of hyperbolizable 3-manifolds can be deseribed by simple topological condi~ions.

We raise the corresponding question of existence of ametrie of nonpositivp. curvature. Tbe
right class of elosed orientable 3-manifolds to look at, i~e. where the \vell-known topologieal
obstructions are not present. are irreducible ones with infinite fundamental group. By
the Jaco-Shalen-Johannson topological decomposition theorem, such a manifold 1\{ ean
be cut along disjoint, imcompressible 2-tori ioto pieces whieh are atoroidal or Seifert. A
minimal decomposition is unique. We consider the case eomplementary to hyperbolization.
where the topological decompositon is non-trivial~ i.e. one cuts along more than zero tori.
Then the pieces of the decomposition admit geometrie structures of nonpositive curvature:
the atoroidal pieees admit complete hyperbolic metries of finite volume on their interior
(by Thurston's Hypp.rholization Theorem for Haken manifolds); the Seifert pieces admit
geolnetric structures modelled on Ilfl x m. resp. lRJ according to whether the base orbifold

;
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is Euclidean or hyperbolic. We ask when M can be weakly geometrical in tbe sense that
one can put an npc (nonpositively curved) metric on all of J.\I/. We present partial results.
hut do not see an easy-to-formulate criterion.

Existence: If in the topological decomposition of M occurs at least one hyperbolic piece,
then M admits an "npc metric. Hence the delicate case is the case of graph-manifolds (i.e.
manifolds glued from Seifert pieces). The reason for this is that every n.pc metric arises up
to isotopy by putting Bat metrics on the Jaco-Shalen-Johannson tori ~d extending those
into the geometrie (hyperbolic or Seifert) pieces. Hyperbolic pieces are flexible in the sense
that any prescribed Bat metric on tbe boundary can be extended to an npc metric on the
interior. ForSeifert pieces instead, the Bat metries on the boundary tori are interrelated
coming from the fact that an npc metric with totally geodesic Bat boundary on a Seifert
piece splits locally a.s a product. This rigidity can lead to obstructions to the existence of
npc metrics on graph-manifolds. •

Non-existence: We give examples of graph-manifolds with linear gluing graph built fr~
arbitrarily many Seifert pieces which do not admit an npc metric.

P. TONDEUR (joint work with Y. MAEDA / K. U / S. ROSENBERG)

Minimal Gauge Orbits

Consider an isometr~c action of a compact Lie group on a Riemannian manifold (M,g). If
an orbit 0 is of extremal volume among nearby diffeomorphic orbits, then 0 is a minimal
submanifold.

Gauge theory provides an infinite dimensional analogue for this set-up. The Faddeev­
Papov ghost determinant gives a regularization of the volume of a gauge orbit, so we can
define what it means for a gauge orbit to have extremal volume among nearby orbits in
terms of the infinitesimal variation of the ghost determinant. This allows to prove that
an irreducible gauge orbit 0 with extremal· volume among nearby orbits has vanishing
trace for the second fundamental form of the orbit 0 inside all gauge fields. Using work of
Fintushal-Stern, this yields the existence of minimal gauge orbits of flat SU(2)-eonnectio~s
Qver certain Seifert homology 3-spheres.

•
l. lOST

Equilibrium between metric spaces

The aim of this leeture ist to generalize the coneept of harmonie maps between Riemannian
manifolds to ~aps betwen metric spaces. Thus, let (M, d) and (N, d) be metric space, lV a
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complete length space. Let J.l be a positive measure on Al, Jl~, (€ > O,x E 1\11) be Ineasures
on M. We define the € -energy of f : lvI -+ lV ns

A typical case is JL~ = Jl I B( x, c). If At/ is a Riemannian manifold, then the usual energy
IS

E(f) = f - lim~_oE~(f)

where the r - limit is taken in the sense of de Giorgi.

If the measures J.l al1d Jl~ satisfy a certain symmetry condition (satisfied if e.g. J.l~ == J1. I
B(x,c), then f is a critical point of E~ iff fex) is the meanvalue of the measure f.J.l~x

for all x E M. This suggests the follo~ing discrete evolution process: Given fo : M -+ N,
define

f: lvI x lN -+ iV by f(x, n + 1) = mean valueof I.C·, n)J.l~ f(x,O):= Jo(x).

This process converges to an €-equilibrium-map, i.e. a critical point of E€ if,lY has nonpos­
itive curvature in the sense of .Alexandrov, and certain obvious conditions:'on the measures
Jl~ are satisfied. Taking f-limits then gives critical points of E, Le. harmonie maps.
For the special ease of lvI a Riemannian manifold, such a result was also obtained by
Korevaas-Schoen by a different methode

J. DODZUIK

Spectral degeneration of hyperbolic 3-manifolds

I consider the spectrum of the Laplace operator ~ on compaci hyperbolic manifolds of
three d~mensions. Let l.'\Iln ~ 1"10 be a sequence of such manifolds convergingto a complete
manifold 1\1[0 with cusps and of finite volume. Since Spec(ß, 1\110 ) ::> [1,00) one expects that
thespectra of Mn 's accumulate in [1,00). I discuss the proof of apreeise estimate of the
accumulation rate. If

then
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U.BUNKKE

Verklebeformeln rür 71-Invariante und Spektralftuß

\Vir betrachten verallgemeinerte Dirac-Operatoren in der folgenden geometrischen Situa­
tion:

D
'1

Abbildung

•
(V, I, < I, », V = KerDN symplektisch.

D i wird mit ein:er APS-Randbedingung unter Verwendung des Raumes Li C V mit Li $..L

I Li = V definiert. Seien l1(D), 1](Di) die 1J-Invarianten der Dirac-Operatoren.

Theorem: 1J(D) -71(D1 )-1](D2 } = m(L t , L 2 }+dimkerD+2d+dimLt nL2 -dimKerDt ­

dimKerD2

mit
(1) m(L1,L2 ) = JAut(V.I.<.» r(kL,L 1,L2 }dh, T - Maslovindex

(2) d E 7L - ein Index

Sei LMi = {prVl;?INlcp E kerDi,f./J 11V E EDH(-OO,O)}.~Mi ist Lagrangsch. Sei Di der
Operator auf der Verlängerung von Mi zu einer vollständigen Mannigfaltigkeit durch Auf­
kleben eines unendlichen Zylinders. Unter den Regularitätsbedingung R : L2kerDi _ ­
{O}, LM1 n LM2 = {O} gilt: Definiert man die selbstadjungierten Erweiterungen D t ~

LM, und D2 mit LM1 und ist der zylindrische Teil von M lang genug, so gilt

Theorem: TJ(D) - '7(D1 ) - '1(D2 ) = m(L), L 2 ).
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H.PESCE

Representation theory alld isospectral Dlanifolds

Since Nlilnor:s famous exanlplc of Bat tori which are isospectral but 110n- iSOlnetrie, one
knows that the spectruln of a elosed riemannian luanifold doesn't detennille t.he manifold.
After this example, other examples arisilig froln number theory were eonstructed (lower
dimensional Hat tori, hyperbolic manifolds ... ).

The situation changed in a dramatic way in 1989 when Sunada gave a general method
to construct isospectral· manifolds. The situation he considers is the following: (lvI, m)
is a closed Ri~mannian manifold, Ht ,H2 C ]( C Isom(M,m) = G and if the following
condition "for each k E K, #([k]K n H t ) = #([k]J( n H2 ) where [k]K = {eke- 1

; e E K}" is
satisfied then the manifolds H t \H and H2 \/v! (with the induced metries) are isospectral
(in fact, they are isospectral for every natural operator: Hodge-De Rham, Lichnerowicz
Laplacian ... ).

In this talk, one shows that this condition is equivalent to the fact that the representations
7r~1 and trI}, are equivalent Crrft is the representation induced by the trivial representation
of Hit i.e. (1rjii(g)tp)(S) = <p(sg) if<p E L~(Hi\I(» and one proves that Sunada's Theorem
can be easily proved by the use of the classical Frobenius reciprocity theorem. Finally one
looks at the converse of Sunada's theorem: assume that finite subgroups H 1 and H2 of
the isometry group G are such that BI \lv! and H2 \ lvI are isospectral, does it imply that
the representations tr~l and 1r~, are equivalent? The general answer to this question is no
hut one shows that it is "generically" true for small groups (i.e. 2 dirn p ~ dinl.NI for each
irreducible representation p of Cl.

L. SCHWACHHÖFER

Connections with exotic Holonomy

R. Bryant gave the first examples of "exotic holonomies", i.e. holonomies of torsion free
affine connections that do not occur on the classically known list compiled by Berger.

These holonomies are P3(Se(2.IR)) <; Gf(IR4
) * and lR· P3(Sf(2,lR)) ~ Gf(IR4

). A
subbundle B ~ F where F is the coframe bundle of a 4-manifold At!4 'and where the'fiber
of B is one of the above representations will be called an H 3 and G3-structure on M 4 resp.

The loeal existence of these structures was sho\vn by Bryant using the method of exterior
differential systems. We give some more global properties of these structures. For example.
H 3-structures eau be neither complete oor eau they exist globallyon closed manifolds.
Moreover, we give descriptions uf those H 3 -structures \vhich admit a 3- or 5-dimensional
symmetry group:
The (unique) space with 5-dilllellsional synlnletry group can be naturally identified with the
space of parabolas in rn? acted on hy .-15f.(2. IR). strnctures with 3-dimensional sYlnmetry

* P3 is the (unique) irreducible represelltation of SC(2. m.) in dinl. 4.
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groups are realized on certain m? -vector bundles over surfaces E2 , where ~2 carries some
homogeneous bilinear form; e.g. we can choose
_ M4 =T1H 2

- M 4 = TE2 with ~2 = {x 2 + y2 - z2 = I} C m.;2,l) which carries ametrie of sign. (1, 1)

- lW4 = T~2 where E2 = rn.2 with the (degenerate) bilinear form< x, Y >= Xl Yl
- M 4 = T~ut( (;lJPl) where (<<CIP 1) carries the metric with K == l.
The symmetry group of the connection is always the isometry group of the bilinear forms .

.Also, note that in the first and last example (M = TlH 2 or 1.\1 = Taut«(]jIP 1 » the H3 ­

structure degenerates on the O-sections oi- either bundle.

For G3 -structure, we note that the symmetry group can ooly have dimension four or less.
Thus, any homogeneous G3 -structure must be a left-invariant structure on a 4-dimensional
Lie gioup. These structures can be classified. The underlying Lie groups are Gi(2, IR) an~
a certain 2-step nilpotent group. In particular, since both graups admit compact quotientA
there exist (locally homogeneous) G3 -structures on compact manifold, in contrast to th~
result for H 3 -structures.

G. PATERNAIN

Geometrie eharacterization of the topological entropy of the geodesie ftow

Let M be a compact Riemannian manifold and for (p, q) E 1Vf x A1 and A > 0, let n(p, q, A)
denote the number of geodesie segments between p and q with length < A. If (p, q) E lvI x lvI
is generic, n(p, q,"x) is finite and we consider here ngeodesie entropy" defined a.s

h dei. 1 j
geod = hmsup \" log n(p, q, ,,\)dpdq.

A-+oo '" MxM

Now let htop denote the topological entropy of the geodesie flow on the unit sphere bundle.
Then as a result of combined efforts of the author and Maiie we have:

Theorem hgeod = htop provided the metric is Coo.

As a result for a generie metric elose to the standard metrie on 52, the geodesie entropy
is positive. As a eoncrete example take the following metrie 9 on the ellipsoid

where gE is the metric on E induced by the embedding E C m.J, and f sufficiently small
(a3 > a2 > a. > 0).
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GANG TIAN

Cone structure of conlplete Ricci-8at l11anifolds at inflnity

This is a joint \vork \vith .J. Cheeger. Let 1.\1 he a complete Ricci-fiat manifold satisfying:
1}" the volulne growth of Br(p) is like eru. where e is a constant, 11 = dimn lvI; 2) the
curvature decays at quadratic order. Bando-I(asue-Nakajima proved that any sequence
of pointed rescaled manifolds (lVI, p, rj2!J) has a subsequence which converges to ametrie
cone (Moo,Poo, 900)' \vhere pis a fixed point of 1\1, lim rj = 00, 9 is a fixed Ricci-flat metric
on M. The problem \ve cancern is whether or not the cone (M'X), Poo, 900) is independent
of choices of {rj }, i.e., the uniqueness problem of the cone structure of M at infinity. We
proved that if M is one of the manifolds given as above and some of tangent cones is
integrable in the sense: the restriction of 900 to one cross-section is integrable! then the
cone (Moo ,PexH9oo) is unique, moreover, in this case, one has the following asymptotic
estimate:

where gN is an Einstein metric on the cross-section which has distance one from Pex>' In
case M is a !(ähler Ricci-flat mailifold, the cone Moo is also Kähler. We proved that if the
dimension of holomorphic I(illing fields on 11,1/00 is one, then lvI'X) is integrable, consequently,
1\1 can be complex analytically compactified.

Le HONG VAN

Symplectic fixed joints, the Calabi invariant and Novikov homology

This is a joint work with !(. Ono. We prove the following generalized Arnolcl conjecture.

Theorem: Let (lv/2n
, w) be a closed symplectic Inanifold. Suppose thatj~s first ehern

classsatisfies the follo\ving mOl1otonici ty condi tion: ...." ...

Inoreover if .A < 0 then the minilual ehern number lV is at least n - 3. Then the number of
fixed point of a symplectolnorphisIn <p isotopic to the identity through symplectomorphism
can be estimated from lower by the sum of the Betti nUlnber of the Novikov homology
over 7L2 , corresponding to the Calabi invariant of <po

It is well-known that symplectonlorphism <.p is exact if and only if its Calabi invariant
= O. In this case theTheorenl (also Arnld conjectnre) \vas partially proved by Conley­
Zehllder (1983), Floer (1986 - 1D88) Ouo (lD93). To provc the Theorem we construct the
Floer-Novikov for t.p and prove that
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and obtain the Theorem. We also construct Cl. non-trivial application of our Theorem (this
means that our estimate is better than Leftschetz fixed point Theorem).

D. SCHÜTH

Isospectral Deformations

In 1991. the following result about isospectral deformations of 2-step nilmanifolds was
proved independently by Hubert Pesce at He Ouyang:

If Gis. a 2-step nilpotent, simply connected Lie group, gt a continuous family of left
invariant metries on it, and r a cocompact discrete subgroup of G, then isospectrality of
the compact Riemannian manifolds (f\G,gl) implies the existence of a continuous fami_

4>t E AIA(G,f) := {4> E Aut(G)I'v'i E r3a E G : 4>(,) =a,a- 1
}

(almost inner automorphisms of G w.r.t. r) with 4>0 = id and gt = 4>;go'v't. This result
implies that compact quotients, (f\Hm, g) of the classical Heisenberg groups H m (where
r is a discrete cocompact subgroup and 9 aHm -left invariant metric) are infinitesimally
spectrally rigid within the family of Hm-left invariant metries, since there are 00 non-trivial
almost inner automorphisms, i.e. AIA(Hm; r) = Iun( C). In contrast to this fact, we show
that arbitrarily "near" to certain r\Hm , there are nontrivially isospectrally deformable
manifolds, namely:

Theorem: For every ·m ~ 2 there is a cocompact discrete subgroup r of Hm and a 2­
parameter family g~ of metries on r\Hm with the following properties: All the g~ are left
invariant with respect to a certain solvable group structure on the manifold Hm, hut ooly
g~ is Hm-Ieft invariant. For every fixed 0: E (0, 1), g~ is a non-trivial continuous isospectral
deformation (t ranges over ffi..); g: is a trivial deformation. For every fixed t E ffi.., g~
(where Q ranges over (0,1]) is a continuous deformation,-which is however not isospectral.
It is an open question whether the Theorem of Pesce and Ouyang holds also in the n-step
nilpotent or solvable case. We can prove the following weaker result:

Theorem: (a) If G is simply connected and solvable with only real roots, and if r t is a
continuous family of cocompact discrete subgroups of G s. t. all the quasi-regular r~pr.
sentations are unitarily equivalent, then there exists a continuous family <Pt E AIA(G;r~
with <Po = Icl and r, = ePtcro)'v't.
(b) The same result holds if G is aI-dimensional exponentially solvable extension of mn

,

if we assume that r t is a C1-family. Here, the resulting 4>t are even inner.
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V'x<;, + .!:.~~ . 'Dr.p = 0
n

.'

K.HABERMANN

Twistor spillors on RieUlannian tnanifolds

VVP. study n-dilllcnsional R.ieolannian spin tnanifolds (A1 n
, g), 11. ~ 3~ adluitting non-trivial

hvistor spinors. A twistor spinor is a spinor field <.p E r( S) ~atisfying the differential
equation

for all vector fields }(, .where 'D denotes the Dirac operator. A. Lichnerowicz introduced
the twistor spinors as zeroes of the conformally invariant twistor operator V and started
their systematical investigation.

Twistor spinors t.p (together with Vr.p) correspond to parallel sections in a certain bundle
over l\1 n • Hence the space of all t\vistor spinors is finite-dimensional.

A special class of twistor spinors are Killing spinors <p defined by the equation V' X<P = A..,Y"·'P
for all vector fields· ..l[ and A E ce. If (lvI n , g) admi t5 a non-trivia! I(illing spinar, then
(Mn, g) i5 an Einstein manifold.· On connected manifold5 I~illing spinors";-!have no zeroes,
since they are parallel with respect to V'x - A..,Y. On compact manifolds1=ihe space of all
twistor spinors coincides - up to a conformal change of the Riemannian' rhe"tric - with the
space of all I(illing spinors. Now, t\vistor spinors with zeroes are possible.·~~··

Th. Friedrich proved that the set of all zeroes of a t\vistor spinor is a discrete subset
of Mn. Any twistor spinor defines a conformal deformation to an Einsteiri manifold (on
the complement of .the zeroset). If (l'v'!n, g) is a complete connectedEinstein manifold
admitting a twistor spinor vanishing at some point then (lvf n ,"g) is isometrie either to the
standard sphere, to the Euclidean space or to the hyperbolic space.

Furthermore. we give a sufficient condition for completeness of the metric (which is men­
tioned above) on the complement of the set of all zeroes.. In addition to the conformal
invariance of the twistor equation the existence of non-trivial twistor spinors "forces proper­
ties of the conformal structure of the manifold. A twistor spinor defines a cqnformal vector
field. Now !(ühnel aod Radenlacher proved that a manifold \vith twistor~:s'pinorhaving a
zero, such that the associated conformal vector field is nOll-.vanishing, is conformally Bat.

s. STOLZ"

Mallifolds of positive scalar curvature

Question: given a compaet, smooth. elosed Inallifold l'tu , does it admit a Riemannian
metric of positive scalar curvature'!

For spin manifolds, thc vVeitzenböck fornulla implies that the kernel of the Dirae operator
is trivial if the scalar curvature is positive. In partieular, the index of the Dirac operator
vanishes. For a spin Inanifold Alu \Vi th fllndalncntal group ;r. Rosenberg constructed a
Dirac operator whosc indpx 0'(1\/) lives in l\-On(C*7r), the real I\-theory of the group
C* -algebra.
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Theorem (Rosenberg-Stolz): Conjecture true for 1r}.i\t/ ~ Zl2.

Conjecture (Gromov-Lawson, Rosenberg): A spin manifold Mn of dimension ~ 5
has a positive scalar curvature metric iff o( M) vanishes. .

Theorem (Stolz): Conjecture is true for simply connected Inanifolds.

This result follows from the Gromov/Lawson. Schoen/Yau surgery Theorem for positive
scalar curvature metrics, and the following result which is proved using stahle homotopy
theory:

Theorem (Stolz): Let Aln be a spin manifold. Then o(A1) = 0 E KOn(lR) iff M is spin
bordant to the total space of an IHlP2-bundle~

e
Theorem (Rosenberg-Stolz): The conjecture is stably true for finite 1r}M, i.e. if i\1n

is spin with 1r = 1r1M finite, and a(M) E KOn (C·7T') vanishes, then M x Px ... x ~ has
"'"k

a positive scalar- 'curvature metric for same k, where the "Bott manifold" B 8 is a spin
manifold with Ä(M) = 1.

C.PLAUT

Beginnings of Metric Geometry in Infinite Dimensions

An inner metric space .Y has curvature bounded below if every point lies in a region of
curvature 2:: k for some k depending (possibly) on X. Dur main example is topological

. groups:

Theorem: Every first countable locally compact group admits an invariant metric of
curvature ~ k for some k~

The proof uses the theory of locally compact groups of Yamabe. The basic theorem is an
extension of the Hopf-Rinow theorem:

Theorem: For each p E X3 dense G6 subset Jp s.t. Vq E Jp , there is a unique, almose
extendable minimal curve from p to q.

Almost extendable means there is a complementary direction in the space of directions at
q. The first application is the global comparison theorem (Toponogov's Theorem) (proved
independently by Burago, Perelman).

Theorem: If )( has curve ~ k then all of ~:r is a region of curvature ~ k. The proof is
by constructive induction when the cOluparison radius is bounded uniformly. From the
uniform case the general case follows by
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Theoreln: If 4\ has CllrV. ;::: 1, contains a spherical set of 2( 11 + 1) cleUlellt.s..\ contains
an n-sphere. This is a generalizatioll of Toponogov's maxinlal din.meter theorenl. \Ve use
it to find sphen:,s in t.he space of dircctiolls. If the size of such sphercs is uOl1uded.. the
Hausdorff diulcnsion is finite~ i.e. the space is a11 Alexaudrov space. Ir not. Olle can find
separable infinite sphen~s at a. dense Gf, set of points.

M. WEBER

Fundamental Domains for Picard... Mostow Complex Hyperbolic Surfaces

Consider Thurston's Description of these surfaces: Take 5 pts. PI, ... , Ps on an ori­
ented 52 and "curvatures" Ki E (0, 21r), i = 1 ... 5 with 2: I\.i = 47T. Set S( 1\.1,"" ~,,) =
{metrics on 52: Hat on 52 - {PI' .. P,,}; cone-singularity around each Pi with cone angle
=21r - "'i; area = I} / or. preserving diffeomorphisms of 52 fixing each Pi.

For 'instance, Thurston proves: S( ~, 3sTr , ~, 3
S
Tr, 8sTr) =: S is a complex compact hyperbolic

orbifold of dimension 2. A' fundamental domain is constructed a.s follows: Partition S inta
S = PI U ... U P6 and show that each p. is isomett~i'c to a certa1n comPlex hyperbolic
polyhedron, bounded by bisectors. The combinatorial structure of Pi can -.be described
explicitly in terms of the "'i. For instances, Pi has in the above example 8 faces which are
solid tetrahedra. All these polyhedra can be described quite explicitly.' 'This can be used
to study submanifolds of the S( K.j). One is the fixed point set of the mapping S t-+ SES
which .inverts t4e orientation of S. This turns out to be a 2 - dimR manifald, which is
totally geodesie and non-orientable.

Berichterstatter: V.Cortes (Bonn)
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