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Funktionalanalysis und nichtlineare partielle Differentialgleichungen
30.5.93 bis 5.6.93

- The meeting was organized by H. Amann (Zirich). The central theme of the conference
was the interplay between functional analysis and nonlinear partial differential equa-
tions. It presented the opportunity.of bringing together specialists of both areas so that
all could learn of and discuss the latest developments in the field. Thirtysix lectures
were given on a wide variety -of topics, including the following: systems of reaction-
diffusion equations, dynamical systems, parabolic equations, free boundary problemns.
Navier-Stokes equations. abstract evolution equations, and models from biology and
physics.

We very much regret that Professor Peter Hess. who originally was the co-organizer of

this meeting, is no longer with us. He died on November 29, 1992. It is onl) fitting that
thxs“Tagungsbencht. should be dedicated to his memory.
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Stable transition layers for the periodic bistable equation with small diffusion

N.D.Alikakos. Knozville
In this talk we consider the equation

we = 2uzz + u(l — u)(u — ofz, t)) , 0<z <]

with Neumann boundary conditions, v(z,t) 7T-periodic in ¢ and for conveniency
~(z,t) decreasing in z for each t. We are interested in those +’s for which the@®
equations

3(a) =

T
 3@) =3 [ty
0

N | =

has a (unique necessarily) solution zo € (0,1). Under these hypotheses we prove
Theorem (Joint work with Xiufu Chen and Peter Hess).

Let {u.} be afamily of nontrivial T-periodic solutions. Then

0 z < ITo
M i u'_'{l T >z

Let (2) n =222, U,(n,t) = u(zo +€nt), then Ue(n,t) — $(n+V(t)) as e =0
where  ¢(s) = m ,V(t) = V2(} = ¥(z0,t)) where the convergence in (1) is
uniform away from zo, and the convergence in (2) is unform over compacts. The main
point in this work is the solution of the “stretched” equation about f:U, = Uy, +U(1—
U)(U-=v(%,t) ), n € R, t > 0. The existence-uniqueness or nonexistence of travelling
waves is fullly settled. Regretably in our considerations the specific nonlinearity is of
paramount importance. Existence of nontrivial solutions presently is established under
the (presumably unnecessary) extra assumption that v(0.t) > % ,v(1,t) < 1 for all
t € [0,t]. A modification of y away from o to meet this requirement should not
be essential. This work together with previous work of the author with P. Hess an
work of Dancer and Hess on U, = ?Au + m(z,t)u(1 —u) strongly suggests that the =
transition of locations of periodic solutions of w, = s2Au+ f(u,z,t), T-periodic in ¢,

T
are determined by f(z,u) = % [ f(z ut)dt.
0
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Elliptic equations in L'
Philippe Bénilan, Besangon

We consider the problem
(E) —diva(r.Du) = fon Q. u =0 o0on 0N

: - . A . . . S J
where a(z.€) is measurable in £ € 2 ¢ RY | continuous strictly monotone in € € R

and satisties the Leray-Lions condition for some 1< p < x :
a(z,6) €2 A, la(z. &)1 < aolz) + AP as € L7(Q)

We want to solve (E) for f € L'(2) . For simplicity we assume her 2 bounded. In
the linear case (p = 2,a(z,£) linear in ) it is classical by duality of Di Giorgi-Nash
theorem, that for any f € L'(2), then musts

(1).

U € Miggentpmty/ms Wt (Q) . —diva(z, Du) = f € D'(Q)
But uniqueness of a solution u for (1) seems an open problemfor ¥ >3 .  non
smooth or a(z,§) non continuous. In the nonlinear case. for p > 2 — % (i.e. X%Ll'- >

1), the same existence result has been proved by Boccardo-Gallout: umqueness is a
forteriori openfor ¥ > p. If p <2~ — . one can easily see that there exists” f.€ L(2)

such that the problem u € wlt (Q) —dwa(.z Du) = fin D'(Q) has no solution. We
give an uniqueness-existence result for (E) in the general ¢ase by introducing the class

T (Q) = {u:  — R measurable Ty(u) € W7 (Q) for any k > 0 }

when Ti(T) = (sign T) min (|T|,k) in the classical turnover. For u € T,* (Q)
there exists a unique A: Q — RV measurable such that DTi(u) = RX (1ul<k) for any
k> 0; furthermore h € L} (0) iff v€ VV,'WI () and then h = Du. For general
u € T"" (2), we will call h the generalized gradient of © and denote it by Du. We
prove in the general case

Theorem. For any f € L'(2) there exists a unique solution u € Ty? () Such that

/ a(-, Du)-(Du — Dv) < /fr,,(u—v)

fu—v|<k

forany ve D(Q), k>0.

Furthermore a(-,Du) € L'() and —diva(-,Du) = f € D'(R) . These results are
joint wirk with Boccardo, Gallout, Gaziepy, Pierre and Vazquez; we actually handle
unbounded open set Q@ and f dependingon u.
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Multi-spike solutions to a singularity perturbated bistable elliptic equation
P.W. Bates. Provo

We consider
(1) Au—-Ag(u) = 0€0Q,8 bounded open in R" ,A >0
du/on = 0OondQ

g is bistable, for example g(u) = u® —u+c for some constant c¢. We are particularly
interested in solutions which have interior spikes, i.e. u(z) — m, a constant, except
at points €!,---,6N € Q where u > m; #m as A — co. We actually consider the
more general problem of finding equilibria to the Cahn-Hilliard equation which have
prescribed average value and N spikes:

uy = —-AO>E¥Au-f(u) inQ ' -
(CH) { Ou/dn = 0=0Du/dn on 80 o

where f is balanced bistable nonlinearity, e.g. f(u) = u® — u. Equilibria of (CH)
satisfy (1) with ¢ = f + constant and A =1 /€?. Since (CH) conserves the integral of -
u , we seek solutions with a fixed average value, m. We consider m, in the metastable
region: f'(m) >0, m between the extreme zeros of f. The main idea is to construct
a manifold of N-spike functions, the manifold parameterized by the spike locations,
€',-.., 6N and then show the existence of an “almost invariant” manifold, M, as a
graph over the first. The flow on M is such that equilibria of that finite dimensional
flow correspond to equilibria for (CH). A careful estimate of the flow on M allows one
to deduce the existence of equilibria and to give the asymptotic location of the spikes.
These locations are related to a sphere-packing problem. (In joint work with Paul Fife
and Giorgio Fusco.)

Well-posedness of the dynamic von Kdarman equations

M. Bohm, Berlin

The time dependent evolution of the vertical displacement u of a clamped plate and

the associated AIRY stress function ¥ are governed by the (nonlinear) von Karman -
(vK) equations. By means of nonlinear interpolation methods, applied to appropriate

regularizations of the initial-boundary value problem of the vK-equations, and a suitable
limiting process we show that the map . i

(initial values u(0),1,(0)) +~ solution u of v
H? NH***x H* +— Cloc([0,00); H***)

exists and that it is Holder-continuous for s € (0,2].
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Problems involving undefinite weight function

K.J. Brown. Edinburgh

The problem —An = Ag(r)f(u) for £ € R" .0 < u < 1- where y changes sign on
R™ with g(x) <0 for large |z] and f(u} >0 for 0 < u <1 with f(0)=0= f(1)
arises in population genetics. The existence of solutions for various values of \ can be
proved by the method of sub and supersolutions: this existence theory is very different
in the two cases n >3 and n = 1,2. Supersolutions can be contructed for all A > 0
and all n; if n >3 these supersolutions — 0 as |z|] — oc. Subsolutions can be
constructed provided

- | Vuld
/\>,\'___inf{w

' [ gu?az
® @
If n=1,2 and [gdz>0, \*=0 "and so there exist solutions for all A > 0; these
Rﬂ
solutions — 0 as |z| — co if and only if g(z) does not approach 0 too fast as
|z} = oco. If -fR" gdz, < 0 or |g(z)] =0(|z|7*°) and n >3 an inequality of the
form :

: u€ H'(R") and /gufdz >0}.
Rn

/, Vul?dz 2&/.., gudz Yu € C°(R")

holds; this inegality implies that A* > 0 and may be used to establish nonexistence
results when A is small. Existence results can also be obtained by proving the bifur-
cation of solutions from the zero solution; in order to do so the existence of a principal
eigenvalue for the corresponding linear problem is first investigated. An appropriate
space in which to consider these problems is the closure of the C§°(R™) functions in
the norm fg. [Vul?dz — & [o. guldz.

Elastic deformation of a membrane by a rolling ball
M. Chipot, Metz ‘ ) ard )

Let (p,h) be the positive of the center of a ball of radius r Asitting on zm.'e.lastic
membrane Q C R?((¢.h) € R? x R). When dist {#.00) > r the energy of the

configuration is
. 1 p
‘ E(p,h) = ;/ |Vul* — Gh
=-JQ

where G is the weight of the ball, « the solution to the obstacle problem
ueK={veH) (Q:v(z) <h-\r?—jz—o]? on Bly,r),z = (0.y)}
1 o
u minimizes - / |Vu|? on K.
2 Ja )

|
|
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We show that there exists an equilibrium positive (p,h) minimizing E wmong the
(¢, h) such that dist (,0Q) > r. h € R. (Remark that this set is not compact ).
We show in particular that E decreases when ¢ moves towards the interior of @ in
certain directions. (Joint work with J. Bemelinans - RWTH Aachen.)

Population models with diffusion and the effect of domain shape on the
number of positive solustions

E.N. Dancer, Armidale

In this talk, we discuss the existence uniqueness and stability of positive solutions of
the competing species system

-Au = u(a—uA— cv) . ’
-Av = v(d-v—eu) in Q
v - = v=0 on 99

where Q is a smooth bounded domain in R"™. Here by stability we mean stability
for the corresponding parabolic system. We include discussion of the case of large
interactions and we discuss briefly the corresponding problem for 3 or more equations.

Eigenvalue problems on R¥
D. Daners, Zirich

We shall be concerned with the stability of the zero solution of the linear parabolic

problem
Oyu — Au = Amu on R¥ x (0, c0)
(1) u(-,0) = up on RV
limp;|—eou(z) = 0,

where A > 0 is a parameter. m some weight function and u¢ an initial condition. The

stability is understood as stability in the ||-{|o-norm. The question of stability of the

zero solution is closely related to the existence of ‘a principal eigenvalue for the elliptic
eigenvalue problem

- -Ayp = Amg on RV
@ {, |
lmlzl—oo’v’('r)

By a principal eigenvalue we mean a A > 0 such that (2) has a positive solution ¢. The
function ¢ is then called principal eigenfunction. Theorem. Let m be Holder continuous
having compact support and being radially symmetric. Moreover, suppose that N > 3.
Then, there cxists a unique principal eigenvalue A; > 0 for (2) and the zero solution of
(1) is asymptotically stable with respect to initial values in

C(,(RN) ={ue C(RN):| llim u(x) =0}

5
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if 0 <\ < Ayand unstable if A > AL We give a simple proof using only the correspond.-
ing result in bounded domains and casy comparison arguments.
(Joint work with K.J. Brown, Edinburgh and J. Lopez-Gomez. Madrid.)

Differentiability of semigroups generated by semilinear operators

J.R. Dorroh. Baton Rouge

Two notions of differentiability in abstract Banach spaces are given: a-differentiability
and f-differentiability. Under suitable conditions an evolution system generated by
an a-differentiable operator is g-differentiable. There is a “good calculus™ for -
differentiability (chain rule, etc.). Sufficiently smooth partial differential operators are
a-differentiable if the Banach spaces are chosen approximately. These notions are ap-
- plied to semigroups generated by semilinear operators. The differentiability notions |
. involve a pair of Banach spaces, one densely and continuously embedded in the other. |
(Joint work with S. Oharu.)

On a free boundary problem in porous media

J. Escher, Besangon

We consider a standard model for the motion of a fluid in a fully saturated porous
medium. The corresponding mathematical formulation leads to a free boundary problem
for the surface separating the dry and the wet region. This free boundary problem is
reduced to a quasilinear equation for the unknown defining the free boundary. We prove

. the existence of a unique maximal classical solution of this problem. This result improve
considerably earlier results due to Kawavada and Koshigoe who proved the existence of
a local weak solution.

53

Life after life for quasilinear parabolic equations s i

- M. Fila, Ames

We consider two classes of parabolic equations with superquadratic growth in the gradi-
. . ent. For one class derivative blowup (without L°°-blowup) occurs on the boundary and
" for the other one in the interior. We deséribe the profile of the solution at the blowup
time and show that it is possible to extend the'solution beyond the blowup time.
(Joint works with G. Liebermann and S. Angenent.):
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f Method of sub- and super-solutions for some elliptic systems involving the
| p-Laplacian

J. Fleckinger, Toulouse

Consider the system:

(S) { “Qpui = Y oaglulPTui+ fi inQ

: u; = 0 on 990,
where 0 is a smooth and bounded domain in R¥, A, the p-Laplacian is defined
by Apu = div(|VulP~2Vu), p > 1, and where the coefficients a;j(1 < 4,7 < n)
are constant and a;; > 0 for ¢ # j (cooperative systems). We prove necessary and
sufficient condition for the Maximum Principle to some cooperative quasi-linear ellipti(’
systems. involving the p-Laplacian. We also show that under the same conditions)
we have existence of solutions for any f; € L? . The same condition appears for a
cooperative system defined on an unbounded domain  :

(T.a) (-A+qu = apu+bpv+ f z€Q
(T.b) (-A+qw = cputdpv+yg z€Q
(T.c) - | |ﬁr{li- u(z) = | |linl v(z) =0,z uz)=v(z)=0 ze 0.

¢ is a non negative function, p is a positive function, and p/q tends to 0 at infinity.
(Survey of joint works with L. Boccardo, J. Hernandez, R. Manasevich, F. de Thélin.)
(Joint work with L. Cardoulis, A. Djellit, H. Serag.)

Motion of a graph by nonsmooth weighted curvature
Y. Giga, Sapporo

Geometric evolutions of curves represented by graphs are studied when the interface
energy is not necessarily smooth. The resulting equation is of the form ‘

e = g(uz)z

with nondecreasing g but not necessarily continuous. We adapt the theory fo nonlinear
semigroups to formulate the problem and prove the existence of global solution for Lips,
schitz initial data. To avoid technical difficulty we impose periodic boundary condition.
We also calculate the generator of the evolution when interface energy is crystalline.
It turns out that usual adhoc evolution law for crystalline interface energy is justified.
Our theory applies to

(1) non admissible initial data and

(i) nonsmooth energy not necessarily crystalline.

(Joint work with my student T. Fulani.)
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DFG Forschungsgemeinschaft © @




Spectral theory and positive semigroups generated by differential operators

M. Hicber. Zurich

Let A, be a differential operator with constant coefficients and maximal domain on
LP(R™) (1 < p < o). Assume that A, generates a positive semigroup (Tp(t) )izo

on LP(R™). We show that in this case the spectral mapping theorem holds. i.e. we
have e'7{4P) = 5(T,(t)\{0} for all ¢t > 0. Moreover. the spectrum a(A4,) can
be calculated explicitly and we see that in particular o(A,} is independent of p.

Applications to the theory of bounded imaginary powers are given.

Invariant for fully nonlinear parabolic equations

H. Koch, Evanston/Heidelberg

Classical LP estimates allow a direct approach to center manifolds for fully nonlinear
parabolic equations, avoiding the problem of nonconstant domain of generators. It is
crucial to cut off the equation and to work in large Banach spaces.

L

v

On the uniqueness of coexistence states for some two species reaction-diffusion
systems )

J. Lopez-Gémez, Madrid
We consider the following reaction diffusion models

g—f—dlAu = (A—au-bvu

2 _dhAv = (pteu—doly {2 {0.20)
w0 = w/aQ = 0. i>0.
u(z,0) = wuo(z) 2 0, v(z,0) = vo(z) 2 0.

where d; >0,:=1,2a>0,56>0.¢c>0,d>0 and Q isa boundedidomain of
RY | N > 1, with regular enough boundary. We obtain the following results:
Predator-prey model (+): when N = 1. we show that the model has a unique coexis-
tence state (which is stable if ¢ is small enough). [Joint work with R. Pardo, Madrid.]
When Q is an arbitrary ball or annulus of RV we show that the model has a unique
radially symmetric coexistence state which is nondegenerate. [Joint work with E.N.
Dancer, Armidale and R. Ortega, Granada.] Competition model (-): We characterize
whether the model has a unique coexistence state. When this is the case the coexistence
state is a global attractor, so describing the dynamics of the model.

(Joint work with R. Pardo, Madrid and J.C. Sabina, Tenerife.)
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Regularity via general kernels and semilinear evolution equations with shocks
G. Lumer, Mons

\

1 We recall some recent results in modelling of periodic heat shocks (with specific applica-

| tions to communication satellites); where ill-posed problems arise which can be handled

| using 2-times integrated solutions. In this and other situations one is in fact regularizing

‘ the Banach space equation u’' = Au + F(t), u(0) = f, (inX), via the (convolution)

| kernels K(t) = t"~!/(n — 1)! We develop a general regularization scheme which con-

‘ tains the regularization of the above kind and regularizations the C-semigroup type.
Consider t — K(t) € B(X) i.e. operator-valued kernels, strongly C', commuting and
with A(t)Ad = AK(t) on D(A). Define Z; = {f € X : Jui(t, f) classical solution
of vi = Avy + K(t)f, vi(0) =0} and Sk(t)f = vi(t,f) for. f € Z;. Then fo:.
f, F(-) € Zi, the “variation of constants” formula holds under weak assumptions: 3

1 a solution vg of vi = Avg + K(t)f + Fi(t), vi(0) =0, (Fx = K * F), and (though

Sk(+) s Zk, need not be closed, Z; need not be dence) w(t) = v} is given by 8

| w(t) = Se(t)f + /S;(t —s)F(s)ds.
: _ 0

| - Many properties can be proved at this very general level; also with some appropriate
additional assumptions. setting K(0) = C, K(t) = C + Ko(t) ., one shows that:

+s s
Sk(s)Sk(t) = / Sk(r)K'(t + s — r)dr — /Sk(r)K'(t +s—r)dr
0

|
‘ Sk(t):ZkNZ, - ZyNZ,., and

: +/S'o(r)CK'(t+s—r)dr + So(s)CSk_c(t) + C Sc(t+s), onZy,NZ, . -
0

One of the main question now is classify the Kernels A, and comparing the difference’ -
K, concerning “regulanzing strength”.
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Floquet theory and center manifolds for elliptic PDEs
A. Mielke. Hannover

We consider elliptic problems in a eylinder with periodic dependence on the axial vari-
able. Studying the linearized problem leads to a Floguet theory which is more compli-
cated than in parabolic problems. In fact. systems with nondiscrete Floquet spectruin
exist. We sumnmarize this theory and give examples where this behavior appears or
can be excluded. The bifurcation of nonperiodic solutions from periodic ones is then
reduced by the help of a center manifold which carries the a time-periodic flow. Thus.
subharmonic branching as well as the existence of solutions homoclinic to a periodic
solution can be established.

Generic asymptotic properties in strongly monotone discrete-time dynami-
cal systems .

J. Mierczynski, Wroclaw

We investigate the asymptotic behavior of a generic point in strongly monotone discrete-
time dynamical systems. Such systems are generated. among others. by second order
parabolic partial differential equations for which the sirong maximum principle holds.
and by some weakly coupled svstems of such equations. The main tool used are the
so-called p-arcs /p for positive/. that is, totally ordered invariant compact sets dif-
feomorphic to the real interval. The results improve on and follow up those recently
obtained by P. Hess, P. Poldcik. P. Takac. I. Tereséik. and others.

On stability of exterior stationary Navier-Stokes flows

T. Miyakawa, Fukuoka

Stability property is discussed for stationary solutions of the Navier-Stokes equations
in three-dimensional exterior domains. under the assumption that the fluid velocity
vanishes at z = co. First. it is shown that the derivatives of the stationary flow belong
to the space L> N Ly?. Using this fact, as well as the well-known properties of the
stationary flow, it is then shown that the perturbation tends to 0 as t — oo in L?
and L*, with a definite rate, provided that the stationary flow is small enough.

10
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Singular perturbations of quasilinear parabolic equations

B. Najman, Bellingham/Zagreb

Let A(t,u), B(t,u) be uniformly elliptic operators of order 2m and 2’ ,m > m'.
Let A4.(¢,u) = cA(t,u) + B(¢,u). The Cauchy-Dirichlet problem

”,'—"'+A¢(t.'ue)ue = f(tf
u

at !)
w.(0) = . 1>e2>0

0
on a domain Q is considered. Under appropriate conditions on the data it is shown
that there exist a solution u, € C(J, H"?)NC'(J, H7~*™) on a common interval J
with ¢ < m' + 1, p sufficiently large. Moreover the solutions u, converge to ug ,

uniformly in H9? norm: for every 6§ >0 there exists Cs > 0 such that .

[fue — wollequ,er < Cs( ehta=5 [lwoe — uoollme.r )

g<m'+1-1

—29m’ =
where (2m — 2m')h(q) {m,+%_q m4lolcgam +L.

Partial differential equations, dynamical systems
P. Poldcik

Parabolic problems of the form

Uy

Au+ f(t,u,z), z€QCRV,
ulsgn =0,

(1)

with f r-periodic in t will be considered. It is known that a typical solution of such
a problem converges as t — oo to a periodic solution (of period possibly bigger than
r ) . Other solutions, however. may exhibit very complicated behavior. Results on
high dimensional w-limites and chaos in (1) will be given. Then for a special class of
problems, f = f(t,u), Q—a ballin R it will be shown that all nonnegative bounded
solution converge to a radially symmetric 7-periodic solution.

Stationary solutions via dynamical methods

P. Quittner, Bratislava

Using dynamical methods we prove existence and multiplicity results for positive solu-
tions of the boundary value problem Au=|Vu* = ? in Q,u=0 on 99,

where Q is a bounded domainin RY .2>p>1 and A >0.

11
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Elliptic equations in R* with nonlinearities in the critical range

B. Ruf. Milano

In two dimensions the notion of critical growth of nonlinearities is connected with the
inequality of Trudinger and Moser. which states for an HJ(2) function w« the inte-
gral fn exp(u®)dz is finite. Sufficient conditious for the solvability of equations with
nonlinearities which have subcritical and critical growth are provided. The proofs rely
on global variational methods. In the application of these methods one encounters the
problem of “lack of compactness”™; the mentioned sufficiency conditions ensure that the
critical points of the functional are in the level of compactness.

Stabilitat von Raum-periodischen Gleichgewichtslosungen von Reaktions-
Diffusionsgleichungen gegen L2-Stérungen

B. Scarpellini, Basel

Gegeben ist ein Reaktions-Diffusionssystem (#)u; = DAu + F(u), D = (§,7%). ™% >
¢ i,k £n und F(u) = (fi(u), -- fa{u)) , eine Nichtlinearitit die polynomial ist
in u = (ur;---,un);A ist der Laplace auf R™ ,m < 3. Es wird angenommen,
eine hinreichend glatte Gleichgewichtslésung v = (v1,:,v,) von (*) die beziiglich der
Raumvariablen zi,---,zm L-periodisch sei; DAv + F(v) =c. Es wird die Stabilitit
von v gegenuber glatten  L2-Stdrungen untersucht, d.h. Stérungen aus (H?( R™))".
Es wird gezeigt: Theorem: Ist v periodisch instabil. so instabil gegen glatten L.
Storungen. Wichtigstes Hilfsmittel: direkte Integrale.

The periodic parabolic logistic equation on R

G. Schatti, Zurich

We consider the time-periodic version of the diffusive logistic equation of Rgﬁ_ulation
dynamics on RV (N > 1) : :

Su—Au = ‘u(a(z,t)—b(z.t)u) on RY x (0.00)
" u(-,0) ug on RV.

i

The functions a and b are assumed to belong to the space BUC*%(R"zR), u € (0,1},
and to be periodic in time t with a given period T > 0. Moreover. b is everywhere
positive and a is for large |z| negative and bounded away from zero. Depending on the
stability of the zero solution we give a complete description of the asymptotic behavior
for nonnegative initial values in BUC(RVY). In particular, the existence of a unique

‘nontrivial positive T-periodic solution is proved. provided the zero solution is linearly

unstable.

12
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Sobolev vspaces of fractional order and superposition operators

W. Sickel, Jena

We consider the superposition operator Ty : f — G(f) with respect to Sobolev spaces
of fractional order.

Let W? = { W, s =m;m integer (Sobolev spaces)
i B,, s# integer (Besoy-Slovodecka spaces)

We ask for optimal conditions on G to guarantee an embedding Tg(W;) C W, . A
partly positive answer is given. We prove (in case 0 < s < u+ '; ,u>1)

A WS < el f WS ool . ’

forall f€ W, N Lo, where ¢ does not depend on f.

Bounded imaginary powers of elliptic operators

G. Simonett, Los Angeles

We consider systems of elliptic differential operators on R™. Using results on Fourier
multipliers and pseudodifferential operators, we prove the existence of bounded imagi-

nary powers, provided the coefficients satisfy some (weak) regularity assumptions.
(Joint work with H. Amann and M. Hieber.)

Elliptic equations in infinite cylinders

J. Sola-Morales, Barcelona

Let Q' be a bounded domain in R"™ and Q = (s,,00) x Q'. Let us consider the
following problem )

S aij(2) Usiz, + f(Vuw,z) =0 in

=0 ’ .
u(z) =0 for (zy.Z9, - .2,)€ O

w(z) = p(T1, &2, . £n) for zg =39, p €CYHQ")
|u(z)| uniformly bounded.

We claim that under appropriate smoothness assumptions on dQ' and on the functions

a;j(£) and f(p,z.z}, the previous problem is a well posed problem, as an initial value
problem in Cjj(Q') provided that

13
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(1) 2f(0.:.2) <0 for |z| > My and some M, >0

- (i1) f(p.z.0)] = 0(Jpl*) uniformly on r € @ and bounded :
(iii)  there exists an £ > 0 such that
17 g
& am,(c) + pf (p. :,r) + o—f(p L) S0 (pozor).

“ (Joint work with A. Calsina and M. Valéncia.)

The equation of a vibrating plate
A. Stahel, Biel

In a smooth bounded domain @ € R we consider the scalar function u. which
describes the vertical deflection of a vibrating plate. A mathematical model of this
phys:cal system is given by the dynamic von Karman equations
U + A%y = —[u, A~ [u,u]] ]
with appropna.te boundary and initial conditions, and =
[u,v] = Urzvyy + uyy vrs = Qizy Uszy W

Conservation of energy implies that ||u(t)|lw=.: is globally (with respect to t) bounded.
We show that [|lvfjiv+.2 grows at most exponentially. Using a Galerkin appréximation
we show that the problem admitts unique, global classma.l solutions for appropnate
initial values.

~ (Joint work with H. Koch.)

Large-time behavior of monotone discrete-time dynamical systems

P. Takdé, Nashville

Typical examples of strongly monotone dynamical systems are those generated by (1)
a Single parabolic PDE; (2) an irreducible cooperative system of ODE’s: and (3) an
irreducible cooperative system of weakly coupled parabolic PDE’s. If such an evolution
equation is periodic in time, the corresponding period map T generates a discret-time
dynamical system {T" i n > Ointeger} in a subset X of a strongly ordered Banach
space V." The mapping T is strongly monotone, i.e.

0#y-:r>0 = Ty-Tee Int(V+)V1:. ye X.
where Int(V,). denotes the interior of V, = {fveVv: v > 0} in V. Using only
the monotonicity and dlfferennablhty of T and the ('omp'\cmess of all trajectories we

will show that almost all trajectories are stable and approach a cycle. We give a full
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description of the set of all stable (unstable, resp.) points. The set of all unstable point
is the union of at most countably many Lipschitz hypersurfaces of codimension one in
V and hence, it has zero Gaussian measure. Under additional hypotheses on T we
obtain that every trajectory converges to a single point. However, if these hypotheses
are dropped. asymptotically stable cycles can occur. We give a few examples of such
cycles.

Blow up for some degenerate parabolic equations

M. Wiegner, Bayreuth

We consider for p > 2 degenerate parabolic equations of the (model-) type

ue = uP(Au+u) on @x(0,T)
u=0 on 90 x(0,T) and u(z,0)=@(z) > 0. If the domain is large (precisely if the
first eigenvalue A;(f2) < 1) then we have blow up after some finite time and the life
span can be estimated. If A;(Q) > 1, then the solution exists for all times and

lim u(a,t)(pt)* = W(z) € Cyyp (Q) with AW + W = —W' 7.

Abstract evolution equations and its applications

A. Yag:, Himey

We shall adopt an approach of using the semigroup theory towards the strongly coupled
parabolic systems in mathematical biology. In this talk two models will be discussed.

Spatial segregation of interacting species.

?9_‘: = div[V(aju + ay16? + arguv) + by (VE(z) Ju] + cyu — 1116% = 12uv  in Q x (0, 00),

%% = div[V(ayv + an uv + av?) + by(VE(z) Jv] + cpv — o uv — Y220 in @ x (0,00), -
(,—)a-;(alu-{-a“u'3 + ajpuv) +b‘a—;{;ﬂu=0 on 9 x (0.00),
%(agu+a2|uv+anv"')+bg%ﬂ v=0 ‘ " on Ot x (0,00),
u(0,z) = ug(z) and v(0,x) = vp(z) in Q. -

Aggregation of cellular slime mold by chemotaxis.

?,—’: =dyAa -V - [aVp] in  x (0,00),
%% = dsAp+ ca —cap in x(0,00),
::—::%ﬁ: 0 on OQX(0,00),

a(0,x) = ao(x) and p(0.x) = po(x)} n Q.
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- On free boundary problems for equations of viscous compressible fluids

W.M. Zataczkowski. Warszawa

The motion of viscous compressible barotropic fluid is considered in a domain bounded
" by a free surface. There are considered two cases: with the surface tension and without
it. We prove existence of global solution which is close to an equilibrium state for all
time. By the equilibrium state we mean a solution of the considered problem such that
the velocity vanishes. the density is equal constant and in the case of the surface tension
the domain is a ball. )

“

Berichterstatter: M. Hieber

P
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