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Die Tagung fand unter der Leitung von U. Felgner (Thübingen),.:\. Prestcl (!{onstallz)
und M. Ziegler (Freiburg) statt.

. In1 Vordergrund standen die T.hemen "Modelltheorie 'Yon Gruppen·~. speziell die 'sluall
index property' für Strukturen, sowie Hrushovski's Beweis der ~\'lordell-Lang VernllltUng
im Funktionenk~rperfalLZu heiden Sch\verpunkten fanden nlehrere Hauptvort.räge statt.

Darüberhinaus \vurden in Kurzvorträgen Ergebnisse aus der Stabilit~theorieund aus der
. i\1o~elltheorie spezieller Strukturen '(Gruppen, Moduln, o-miJii~aleStrukturen. Graphen)
vorgestellt.

Vortragsausziige

The field Qlr of totally real algebraic ·numbers

is decidable
Dan HaraIl, Tel Avjv

(.~ joint. work with !vl. Fricd and H. Viilklt:ill.,
Thc rcsült in thc titlc reHes on two facts:

Theorem A (Pop): Qlr is pseuclo real dOSt'cl (rRC).
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Theorenl B: Thc absolut Galois group G(Qtr) of Qtr is the fn~e protinitc procltu:t b of
" copics ur 7l/2Z over thc Calltof spa.cc. Eqlli valt"!utly (as Qtr is COlllltahlc) G = G(Qtr) has

the following EIUbedc.lillg property (EP);
i) G is generated by luv(G), thc set of involutious in G;
ii) Given an epituorphislIl of finite groups 0': B --+ A, a contillllOllS Cpilllo"rphisin cp: G -+

A, and asubset Ia ~ Illv(B) closed under thc coujugation in B ,uld such that B = (lu)
and treIB) = <p(Illv(G», there is a continuons epimorphislll t/J: G -+' B such that
OlOVJ = <p and t/J(Inv(G» = IB.

By now standard lllodel-theoretic considerations we give an axioDlatization of Th(Q'r):
M 1= Th(Q'r) if and ooly if

(1) M is PRC;
(2) G(M) has EP;
(3) Qtr is the absolute part of M; änd e
(4) M /Q'r is totally real.

Finite covers with finite kerneIs
David M. Evans (Norwich)

Suppose C, W are countable No-categorical structures and 7r: C ~ {,V is a surjection with
finite fibres. If-the Dlap Prr: Aut(C) -+' Sym(W) given by Prr(g)(w) = 1r(g(1r- 1(w») (9 E
Aut(C), w E W) is well-defined and has image Aut(IV), we say thati is a finite cover of
W, with kernel ker{p1r)' We are interested in describing, for fixed W, all the finite covers
in which this is finite.

Apart from degenerate cases, we know of two types of constructions "of these finite covers.
In the first type, the covers arise as coverings of an invariant digraph on W. The second
constructioo is modelled on the example of a vector space covering its projective space.

We give various conditions on IV which guarantee that all finite covers of W with finite
kernel arise in one of these \vays.

Valuation theory for o-minimal expansions

of real closed fields

Lou \'all den Dries (Urh:uH\)

Let T be '(1 cOInplcte <.rulilliIllal thcury t~xtl"Ildiug the theory l1CF uf real closed fields, let
(R, V) F.Tco.nvex, let V = Vjrn(\/} )u! t.hc rcsiduc tit'lcl a.uc.llct r = v(R%)' be the value
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~roup. In ..rr·l·tlIl\·,·xit.y allel taille" ,·xl."l1siOlls·· (:\. 1.,'w('r1H'r,~ ~~ L,.\·"11 d"11 Dri,·s. t.u appt'ar

in JSL) w,~ lualh' C" illf,o a T-llH)dcl aud r tUlt) a lluHld 'lf a. .~..rt.aill "()lllplett~ I.heory T,.y
(,öthc thc~ory o( dlt~ v:dlle ~rolll"') wltich dq>t'llfls l)ll!y I)U T. !lot tHl du' structure (.n. V).
and which l~xtt'l1ds tlw theory or oreh'red ab\'liall .~rOllps. Tlte foll()will.~ n~s\llts flnswc'r
SOIllC qucstious ll~ft 0pC~1l in tht~ paper jllst ci ted, . D('tiuahlc! l)t~ll)\v llu'aus "clt'tillable \vi t.h

parcuIlctcrs' .

Th. Ir s ~ Rn is definablc in (R, V'), thell S <; V" is (lcoua,1Jlt:! in the T-1l10dcl V, where
5 = image or S Cl VU undcr the c:anouic:al ll1ap \/" -+ VII. .
If lnoreover S is dcfinable in R, thUll S is closcd iu V" and clillllllS) 2: dilllV(S).

Th. Suppose T is power botluded with field .of expoueuts !{ (so t.hat r is an oruered ./\.­
linear space). Then Tl,gis an l.~xtellsioll by definitions of t.hc thcory of llontrivial ordcrcd
[(-linear spaces. Ir s ~ (R·)" is tlefinable in (R, l/), thcn ,,(5) ~ r n is definable in the
Tvg-modcl r.
Th. Suppose T is power bOlluded tU1el (R, V) )- (5, I,V) f= Tcunvex \vith rk(S / R) < 00.

Then "k(S / R) ~ rk(lVJV) + dillln-( v(S· )Jv( nz: )).
Besides the rcsults of the paper cited the luain tools are ehe ~vlarker-Steinhorn th,eorem,
and in thc power-bounded case. a result of Loveys-PcterziL and the result that if /: V --., R
is definable in (R. V"), then v(fx) is ultilnately constant as :c ~ +00 hl V.

Zariski Geometries

David Marker (Chicago)

We survey' the work of Hrushovski alld Zilber. A Zariski geollletry on a field D is a family
of Noetherian topologies on D. D2, ... satisfying the followillg properties:

ZO) If f{x) = (fl(X), ... ,fn(x)) /:pn -. nn and each fi is either constant or a eoordi­
nate projection, then f is continuous

Zl) If C ~ Dn is closed and nonempty and 71": nn -+ Dm is a projection, then there is a
proper closed F C 1r( C) such that «( C) 2 1r( C) - F

Z2) If C ~ Dm X D is closed an for CL E Dm, G(a) = {x: (a. x) E. C} than there is an 1\'
such that for all IG(a)1 < IV or C(a) = D

23) IE C ~ Dn is closed irreducible and dirn C =: k then every nonempty irreducible
component of C n {x E Dn: Xi = Xi} has dilnension at least k - l.

Ir D is a Zariski gcometry and there is a sutficiently rieh faluily of curves in D2 then D
illtcrprcts a pure field 1{. Conditions are given to insnre D is isomorphie to thc Zariski
gcolllctry of a. smooth curve.
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Fields with Higher Derivations

Margi t !vleSSlller (South Bend)

joint \vork with C. Wood:

We define a first-order theory SHFe of separably closed fields of finite degree of imperfection
e which carry an infinite stack of Hasse derivations.
The language: {+, -, _,-1,0, I} U {Dpi: i < w} where Dpi are unary function symbols.

The axioms for F F= SHFe :

- Axioms for fields ofcharp

-'Ix, yDpi(X + y) = Dpi(:r) + Dpi(Y)

-'Ix, yDpi(X . y) = 2:. D,,(x). DIJ(Y)
V+I,=pi

where D" is some expression in theD~is

-'1xDp .(Dp i(X») = Dp.(Dpi(X»

-V'x(D(x) = 0 -+ 3y yP = x)
-V'xD;~e)(x)= 0

-3xD~~~d(x) :j; 0

- F is separably closed

We show that SHFe has quantifier· elimination and eliminates imaginaIies.

Definable Valuations

Jochen Koenigs~ann (I(onstanz)

The talk contributed to the following question:
Which valuations on a field !( are intimately enough related to the arithmetic of the field
K to be first-order definable in the language of fields (with parameters from K)?
On number fields, for example, all valuatiolls are definable (even by an existential formula),
whereas on Q, only the canonical henselian valuation and on separably or real closed
fields no valuation at all is definable. The following theorem has been reported on: •
henselian field (K, v) \~hich is not separably or real closed admits a definable valuation
which is dependent with v (i.e. induces the same topolgy on K), provided (K, v) is not
exceptional, where exceptional means: Gal( I::/!() is pro-p, char!( = 0, ·the residue field
Ku is algebraically closed, charI\v = p auu thc value group is divisible. We· do not know
whether or not the theorem extcnds to thc exccptional ease. For the proof, one has to
work with t-henselian fields as introcluccd by Prcstel-Zicglcr (ereIle 1978) and study various
notions of compatibility of a.n arbitrary lJlultiplicativc or aduitive subgroup G of a field K
\vith a valuation. Here the idea that iLUY s11ch snbgrou}> illduces a topology on K plays a
crucial role.
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Mittag-LefHer modules

Philipp R()tll111alt~r (Kit~l)

Following Raynaud anel Gruson a left R-tIlOdnlc Al is calle<1 Mittag-Leifier if thc canonical
map

is injective for e\'ery family or right R-tIludules lVi. Usillg 1vo Hcrzog's criterion ~f being
zero in tensor products in tCrIllS or positive primitive (pp) fonnulas und duals of thenl,
we show that the Mittag-Leffler rnodules are exactly thc t4positivelyatolnic" modules (i.e.
modules in which the pp type of every tuple is ilnplied - tnodulo the theory of all left
R-modules - .hy a single pp formula). -
Using this we derive various kno\vn features of Mittag.;Lcffier modules and characterize ­
among others - the rings over which every _reduced product of ~littag-L~mermodules is
Mittag-LefHer. These turn out to be precisely the left pure-semisinlple rings (= rings of
left pure global dimension zero). (This ans\vers a question of A. Facchini.)
We also point out that model-theoretically it is the Mittag-Leffler modules rather than the
pure-projective ones that playa role dual to that layed by the pure-injectives (=~'positively

compact" modules).
Finally, certain realizations - qf both, algebraic and model-theuretic nature - are mentio­
ned.

~utomorphi~msof co·untable strongly minimal sets

. Dugald Macpherson (QMW, Landon)

A paper by D. Lascar "Automorphismes d'un enselnble fortement minimale" (JSL 1992)
was surveyed. The setting is a countable saturated structure.1\1 algebraic over a O~definable

strongly minimal set D(lv!). If..4 ~ lv/ then an .4-.strong automorphism of M is an
automorphism fixing setwise the classes of any finite A.-defin.able equivalence relation, ancl
AutfA(M) denotes the group of these automorphisms.
An automorphism 9 of M is bounded if there is n E f'i such that for all )( ~ lvI,
Dim(.yg / X) ~ n, and B(M) clenotes th~ norrnal subgroup of bounded automorphisms.
The following theorems were provecl in Lascar's paper.

Theorem 1 If H ~ Aut 1\1 anel lAut ~\1: .-ll < 2No there is finite A. ~ D( j\1) such that
H ~ Aut fA(J\1)

Theorem 2 The grpup Aut JAI/ Bl J\I) n Aut f( 1\1) is siInple.

;j
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A characterization of lv-stability
via automorphisms

Michael C. La.'3kowski (Ulliv. of Maryland, College Park)

For any structure !vI n.lld any A ~ 1\{, let G = Aut(M) and let G{A} denote the setwise
stabilizer of A.

Theorem: Let M be n.ny cOllntably saturated structure.
The following are equivalent: .

(1) For all A ~ M, G{A} induces a closed subgroup of Sym(A) _
(2) For all X ~ M and all P E SI(X), {g(p):ß an eiern. permutation of X} is countablee
(3) Th(M) is w-stable. -

This work is joint with E. Bouscaren.

Topological automorphism groups

Wilfrid Hodges, QMW, London

The talk was an introduction to the talks of Evans, Herwig and Macpherson on aspects
of the small index property. It defined automorphism groups as topological gro~ps and
as complete metric spaces. The following theorem (from Hodges, Hodkinson, Lascar and
Shelah, 'The small index property for w-stable w-categorical structures and for the random
graph', J. London Math. 50c. 48 (1993) 204-218) ,vas proved:
If the topological group G is a complete metriespace and H is a measure subgroup of G,
then H has index ~ 2w in G.

Permutation G~oups of Finite Morley. Rank (fMr)

Ali Nesin, tiCI '.
We will_ survey the state of pernltlta.tion groups of fNlr.
The motivationis the Cherlill-Zil'ber conjccture: A sinlple group of fM'r is an algebraic
group over an algebraically closed neId.

1) Frobenius Groups: A grollp D is CL Frobt·tlillS group if it acts transitively but not
regularlyon a. set ..Y ~)f cardiuality ~ 2 in such iL way that unly the identity element
fixes 2 distinct points of _\.

G
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Ir D is a Frohenins ~r()up :lud T is a ,,)l1l! poiut sla),ilizt'r. t.llell T ..::: D :ultl for ;'Lll I,. t
D, Tb n T # I =>. b E T. COllv('rst"ly if ß has such a \ propt'r) sllb~rollp, tht~n D is :L

Frobcnius grO\lp. \Ve will say that T <. B is a Frobt~llitls ~r()llp if T has t.he pr()p..'rtit~s

abovc.

Ex: A sharply ~-tr. group is a. Frolu'llins gr<5up.
Ex: Let [( be a. neId, lct T < !{-" Theu [\.+ :-.J T is a FrolH"uillS grOll}>.

-Ex: Let B be a ba.d group (SiUlplc group uf ~..lr wherc allY prOpt'r ..:ounected subgroup i::i
nilpotent). Then B is a. Frobcnius gronp. (This is a theorclu). -
Ex: Let B be the free group Oll '2 generators & T Cl. cydic sllbgroup. Then T < B is Cl.

, Frobenius group.
Fact: If T < B is a finite' Frobellius grollp, thCll B = [I ~ T for SOllle U <J B which is

nilpotent.

ConjectuTe: A Frobenius group of finite ~1()rley rank ~plit.s a.s· [! >J T \vhere U is nilpotent.

Propo3ition. Let T < B be a Froh. grollp uf Ilv!r.
a) T is clefinable. (so that 'we Inay assume the aetion of n is interpretable).
b) If B = U ~ 'T then U is defillable.
c) If U is solvable then U is .nilpotent. ~",

cl) If B is sohable then the conjecture holds. F\~rthermore TU 1S abelian and all the
complements of U are conjugate.

,Theorem, (Epstein'-N.) Ir T < B is a Froh..grOtlp of flvlr with T finite. then B splits:
B ::= U)4 T.

Theorem (Epstein-N.) Let T < B be a Froh. group af fM:r. Assume every definable proper
section of B which is a Frobenius 'group splits. Then' either B splits or B is_~imple and a
counterexample to the Cherlin-Zil'ber conjecture. ...

Theorem (Epstein-N.) Let T < B be a~Frob.: grp .af f)..Jr. Assume every,.:simple and
definable proper section of B is an algebraic grollp. Then ei ther 1) B splits as U ~ T

, with U nilpotent and T is abelian-by-finite, or 2) B is sinlple and a counterexample to the
Cherlin Zil'ber conjecture.

Propo3ition (Delahan-N.). Let T < B be a Frob. grp. of flvIr, ,then. T has finitely many
involutions.

• ' 2) Sharply 2.transitive.groups

Conjecture An infinite sharply 2-transitive grp. of finite NIorley rank is isoffi<?rphic (i.e.
equivalent). to the following permutation grp: Let l{ be an alg. cL field. Let G =

{(a b)': "a, b E 1(, a=1= o}, x· ~ {( ~ ) :x E I\"}.
01-

Let G be a sh. 2-tr. group and let H be a. one point stabilizer. Recall that· H < G is a
Frobenius group, so that if G has ßtlr .then H is (lcfinable.

PropoJition Let G be a sh.2-tr. grp uf f1vlr.
CL) Ir G is 00 then H is connected. .
b) If G is solvable then thc conjecture holds.

-;
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Theorem (Chcrlin-Grl111dhijfcl'-N- Viilkleill) Let G = A. ~ H !Je au 00 split sharply 2-tr. grp
or flvfr. (A is ncccssarily abt~liall). If Ct::nd A"(H} is infillitc~ th(~u G is standard (i.c. thc
conjecturc holcls).

Corollary: G as ahovc. a} Ir 44 has (Ln elenlcnt of infinite order thCll G is standard.
b) If ZeH) is 00 thcll G is standard. -
c) Ir H has an CX) nornlal solvable subgroup, then G is standard.

Theorem (Delahan~Nesil1).Let·C be an 00 sh.2-tr. grp of flvIr. ASSUllle it has an involution
and is nilpotent, then G is standard.

3) . Zassenhaus Groups A doubly transitive pernlutation grp is called a Zassenhaus
- group if the stabilizer of any three distinct points is trivial.

Ex: Sh.2-tr. groups, sh. 3-tr. groups are Zassenhaus groups. - •
We· let G denote a Zassenhaus group. We take x, y E )( with x :/: y. We set B = G z , .

T = G ZtY = {g E·G:gx = x&gy = y}. We have-·T :5 B :5 G and T < B isa Frohenius
group. If B =U )3 T for some U, \ve s~y that G is a" split Zassenhaus group.

Conjecture: An 00 Zassenhausgroup of Mr where T i= 1 is PSL2 ( !().

Theorem (Delah;an-Nesin) ~et G be an 00 split Zassenhaus grp. If T has an involution
then the conjecture holels.

Theore"":" A sharply 3-tr. group of fMr is isomorphie to PSL2 (!().

The~rem (De B~nis-N) If G is an 00 split Zassenhaus group of flvIrand if U has a central
involution, then G ~ PSL2 (K).

4. - BN-pf!lirs

Theorem (Baronik-Corredor-Davis-De BOllis:-N) Assume G is a simple BN-pair of fMr and
of Tits r~··~ 3, then G is an algebraic grOtlp aver an alg. el. field.

5) CITand "CN g~oups

Theorem (De Bonis-N.) Let G be an 00 and nonsolv. group of flVfr with 02(G) = 1 (i.e.
has Da normal nontrivial 2-subgroups). Assume there exists U :5 G nilpotent änd with
involutions such that for u E U· ,Ca(u) :5"U, then one of.the following holds:
i) U h~ 00 many involutions alld G ~ SL2(!(), J( alg. cl of char 2
ii) U has a unique involution and G is aFrob. eOlnpL \vith U.-.as a Froh. camp!. •

Corollarjj (Oe Bonis-N.) ·Let G be au 00, llonsolv. grp \vith "involutions. Assume that G
is a CN-grp (i.e. the Centralizer ()f any nOlltrivial delncnt is Nilpotent). Then one of the
following hold
i)- G ~ SL2 (K) for SOllle !( aJg. closed Held of char 2.
ii) G is a Froh grp. \vith the centralizcr of an involution funning the Froh. complement.

Theorem (Boronik-De Bonis-Nesin) Let G he au 00 .~r()\lp of fM:r..A~sU:me G is a CIT
group (i.e. G has involutions and thc eentralizer of allY involution is a 2-grp.) Then one
oe the following hold:
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i) U·lG"# 1 (i.t a
• G ha.s a IlOrllla!. llolltrivial. :!-st1h~r()111L)

ii) G = If ~ S wlH~n: 11 is c!t'nna),hoo a)Holiau. :2.L-sHI,.~rotlp aud S~ is a iillitt~ 2-Syli>\v of C
with a. \luiqllt o iuvoilltiotl r.hat iIlvt'rts If.

iii) G:= SL·~( /\.) [()r :j(llUt: a.1~. d. fidd 1\' uf charactt'ristic 1.

Jordan G~oups and Going Forth

Pctcr M. NClllllClUIl (Queen \; College. ()xford)

When we speak of a ~back and forth' COllstruction for proving iSOlllorphislll of two countable
structures we call to mind the fatuous theoreUl of Cantor ahont l~ollnta.ble dense linearly
ordered sets. Cantor's proof. however, in fact requires only the °going forth' part of the
construction, and Adrian Mathias, when he lloticed this. asked for a. classifiction of those
No-categorical theories for which ~forth suffices'. Pcter Calueron heard of ,tJieproplem in
1986. His (not yet complete) ans\ver invoh'es properties of the autol11orphi~mgroups of
the countable models and leads to inter"esting questions about permutatioI{~OUp5.
Let n be a set, G a permutation group on n. A subset ~ of n is a. J -Jet if the pqinhvise
stabilizer G(O-E) is transitive on :B (it is a Jordan set if aiso lEI> 1); Cameron ~ks for
the groups G \vith the property that for every finite set <1>, the pointwise stabiliz~r G(~)

has only finitely many orbits and each orbit is a J -set. It turns out to be easier ~o work
with a wider dass of groups: we say that G has property P if for any finite set:. <), the
complement n - ~is a union of finitely ll1any J-sets.

THEOREM Suppose that Gis closed in the natural topology on Sym(S1), and that G is
primitive on n. If G has property P then oue of the follo\ving hoIds:
(1) n is finite;
(2) G = Sym(n);
(3) n = PG(d,q) and PGL(d + l,q) ~ G :5 prL(d + l,q) or

n = AG(d,q) and AGL(d,q) $ G $ .4fL(d,q)
for same cardinal number d and pritne-power q;

(4) G= Aut(n, R) ~here R is a dense hOluogeneous linear order relation,
linear betweeness relation.
cyclic order relation,
cyclic separation relation,
C-relation [chains in a semilinear ordering],
D-relation directions in a general hct\veeness relation].

This theorem can be proved by inspcction if Olle llses thc \'ery <leep classification theorem
for primitive Jordan groups proved by Saulsoll Aclelcke + Du~ald Macpherson. It eioes.
howcvcr, also have a quite short aud clirect pronf.
.o\n arbitrary group with property P is ··t"ssc.~Iltia.llyn a din:ct protluct of transitive groups
\vith property P. And a. transiti\'p ~rollp with prOpt~rty P is ,o~'sseutially" a wreath pr9cluct
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of fiuitcly lllany finite coVers or the groups in thc thcorcill. Thlls CiUl1erOIl'S question will
he' cOlnplctcly allsweretl when wc kllOW all the finite covers of those grOl1pS (Md David
Evml'5 techniques shuuld give these very easily) tuld when we know what "essentially"
mcans prccisely.

On atomic sets

Ludomir Newelski

IMPAN, I(opernika 18,51-617 Wroclaw, Poland

Assume T is 3table, 3mall, ~(x) is a formula. We study the relationship be~ween ~ ~ !I
and ~(C), and between TIcI> and T(a)I~. We consider mainly the cases of w-stable TI~,
whieh is 1-based or bounded. .

-For example we prove that_ if TI<) is w-stable w-categorical the!1 T(a)l<P is such.
We generalize aSteinhorn result a:bout existence of prime models over indiseerruble sets.
Now let Q = ~(N) for some countable N. Pseudo-type on 5(Q.) are.the or~its of the
action of Aut(Q) on S( Q). We discerned countab!e many "r-stable", "good" pseudo.,.·
typesof S(Q). The r-stäbility. conjecture says that if I(T, X o)-< 2xo , then every good
pseudo-type on S(Q) is r-stable.
Using the above results we prove the T-stability conjecture in case when:
(*) . Q is atomic and TI<I- is (superstable of finite rank or· w-stable) and (l-based or
bounded).. ."
Conjeeture 1. Assume Q = eJ?(J\1) is countable, ato~ic and leT, ","'(0) < 2xo . Then Yc S; .
M3a ~ Q Q is atomic over ac
2. Assume leT, .."'(0) < 2No is No-eategoric~l. Then" for every c ~ C," T( c)ltP is No-cat~gorieal.

I proved eonjecture 1 in ease (*), and conjecture 2 in case when Tlw is w-stable.
,.J

Highman's Embedding Theorem in general setting
arid its application to existentially

closed algebras .

Oleg v. Belegrade~, I(emerovo University, Russin

Let IK be a recursively axionlatizable (lUasivn.ricty of L-algcbras. \Ve say that the (Genera­
lized) Highman Theorem holds forlK if (for every f.g. algehra B in IK) every algebra which
is recursively prescnted in IK (over B) cün be cffectivdy (·~Illbcddcd intc;- an algebra which
is finitely prcsented in lK (over B). \Ve say that IK !las the Internal ·Mapping Property if

10
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thcrc is a11 [-tl"nU l(J:, y) sud. t.ltat. [ur c~\'(~ry .-\ iu !K auel ("\·."ry n: A - A, tllC"n~ a.n! n 2 ..l
in K .uul h ~ D sud. that cr{lL) '.= iJl(Il, b), for fL t::: ..t. \VC" say (.hat IK ha.s t.llt: lntt:rnttl

lIofnomorphi.:nn Property if, for ev(~ry 1& > U. tIH~n~ are a.n [.·tcrtn h,,(x,::) :uul a tillitt..· sc·t

of atoolic L-forIllUlas Su("x, Y. =), whel"l! X .uHl IJ :u'e 1l-tllph~s, such that, for (!very A. in ~{

and n-tuples 'ii. f, E .4 the following are l.~uivalellt; (i) thcre are C 2 A in IK anti c e C
such that Sn(a, b~ c) holds in C a.uu hu{ai, c) =bj , for 3011 i; _
(ii) thcre is a hOIllolllorphism froln (ü) iuto .-l scnc.lill~ (i to b.

Theorem. Suppose that Ir< has thc Joillt EIUhcddiug Propcrty, the Interna! HOlnolllor­
phism Property, the Internal ~1a.pping Propcrty, alld thc Highnlan Theorein holds for lK.
Then
(1) the Gencralizcd Highnlan ThcoreIll holds for K:
(2) for finitely generated .41 , Al in .iK, thc word problelll für .-ll is Q-rcducible to the

word problem far A2 iff Al is elnbeddable iuto any cxistentially dosed algebra in JE{

containillg .4.2 .

Re.mark. The quasivarieties of groups, tOfsion-free groups. and semigroups satisfy the
condi tions of the Theorem. . .,".i~",,:

For groups (1) and (2) are known. ~ .

The Ziegler, and other spectra

Mike Prest, University of Manchester

The right Ziegl~r spectrum, ZgR' over a ring R is a topological space whose points are the
isomorphism classes of indecomposable pure-injective right R-lnodules and'·whose basic
open sets are given by pairs rJ> ~ tjJ of pp formulas. By results of Ziegler and Herzog, the
qüotient of this space by the relation of topological indistinguishable (points' of ZgR belong
to the same open sets iff they are elenlentary equivalent) is nearly spectral in the sense of
Hochster.
The condition which fails is that the intersection of compact open sets need to be compact.
Nevertheless, one may clefine the dual topology \vhich has a sub-L basis open open sets
the complements of compact Ziegler-open sets. It turns out that this dual topology is the
Zariski topology on the set of (iso.classes) of indecompensable pure-injectives, where those
are regarded, via the map IV(E Z9R) 1-+ N & - E (R - lood, ..4b), as injective objects of
the functor category (R - moel, Ab). The Zariski topolo~y on this functor ca.tegory is
obtained by defining the Zariski ~pectruln over a cohcrcnt cOlnmutative ring in terms of
the module category over that ring and applyillg this cate~ory-theoreticdefinition to (R­
mou , ..-tb).
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Randomness, genericity and near model completeness

.lohn Daldwiu. Univ(~rsity of Illinois, Chicago

Shelah and Spenccr proved the 0-1 la\v far first order sentences about ralldo~ngraphs with
edge probability n -0 (a irrational). Call the theory of sentences with limit probability 1,
TO. Slightly modifyillg a construction of Hrushovski, Baldwin and Shi showed that the

. class [(Q of all graphs such that IHI - er (nulnber of edges of H) > 0 for all subgroups H
of G is an amalgamation class such that the theory T~ of the generic model A10 is strictly
(a-irrational)-stable. A theory T is nearly model complete if every formula is equivalent
in T to a Boolean combination of existential formulas.
Theorem. Ta =TQ. This theory· is nearly Inodel·conlplete, st.ahle and not finitely axiamae
tizable.

Homogeneous 3-graphs

.Alistair Lachlan (Simon Fraser University)

A 3-graph is a pair (V, E) such that E ~ (Vp. Let IF denote the class of all finite 3-graphs.
Subclasses of IF are considered which are alllalgamation classes in the sense of Fraisse. For
A,B EIFsuch that EA n [VA n \18 ]3 = Es n [VA n Va]3 the no-edge3 amalgam 01 A and
B is (VA U VB, E A U EB). For X ~ Ir, the no-edges closure cf X, denoted N E(X), is the
least subclass cf JF closed under isomoI:'phism, substructure, and no-edges amalgamation.
Complementary nations: all-edge3 amalgam and all-edge3 clo3tLre are defined in tbe obvious
way.
For X ~ JF,Exc(lF) ("exclude" X) denotes the dass of all G EIFsuch that no number of X
embeds in G.
et D = ({O, 1~ 2}, {{O, 1, 2}}) E IF anel C denote IVE( {D}).

Conjecture 1. (The strang conjecture) Let A ~ IF be an infinite amalgamation class, i.e.,
infinitely many isomorphism types are represented. Then A is either no-edges closed or
all-edges closed. •

Conjecture 2. (The W-conjeciure) <C is Ininimal a.Illongst the amalgamation classes ~ IF .
\vhich ~.ontain both D and its complement.

Conjecture 3. (The weak conjecturc) Let X ~ IF be finite 3.11d Exc(X) be infinite. Then
Exc(X) is either no·edges closed or all-edgcs closed if it is an a,lnalgamation dass.

Theorem. Conjecture 3 holds whell lXI = 1.
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Abstract tlleory of qlladratic forll1s

alld Boolean algebras

wtA. Didnnauu - CNRS - Uuiv. of Paris VII. Frallce

\Ve began by iutro(lucing a. Ilew ahstract theory of quadratic fonus. ('alled the theory of
;JpeciaJ gTOUpJ. A .'ipecial grO'ILp lSC) is a ~r()l1p of l~Xp()lleut :2. G. wi th a clistinguished
elcInent, - 1, ,uHl a quaternary relation Oll G (bettel'. a binary relation on G"!.) satisfying
seven.first-ordcr axiOlllS. The qUCltet'uary (;'spc('iaJ") relatioll is illtendt.~d to repre~ent the
'\isolnetry" relation for binary (<tua.dratil:) fUflus with COt.'tf1cients in G. Thc category of
these objects (with na.tural hOl110111orphistns) is eqllivalcllt to that of ILbstract Witt ringJ

(~'[arshall). Belo\v we consider SG 's satisfying an extra. aXi0I11, ca.lled reduced SC '5; The
category (and the 1st order theory) oE thern is deuoted SG red.

Results: _. '
(1) There is a duality - i.e. a COlltr~variant fUllctor - bebvcell the category SC red and that
of abstract spaces of orderings (Marshali) \vith naturallnorphisms. Indeed, both categories
are (contravariantly) ,equivalent. even isolnorphic. -
(2) Every Boolean Algebra (BA) is a. SC red under sYlnmetric difference, complement and
a ~~specia1" relation naturally illduced by the order. .
(3) Every SGred, G, is naturally enlbeddable in a ·~snlallest" BA (namely, the BA of clopens
of it~ space of order, see (1», its Boolean hull, denoted by Be. The correspondence G -+ Be
can be extended to morphisms so as ta give a functor of the category SCred t~ the category
BA of BA's with homomorphisms. Le., for every SG honloluorphism f: G-~·--+ H· (where
G" H F SGred) there is a (unique) BA homomorphisnl B(f): Be .--+ EH ~uch that the

G L H . .
diagram f(; ! 1 fH commutes (fG denotes the natural elnbedding afG inta BG).

. Ba B(f) BH

(4) Thus, the duality af ( 1) gets further decomposed into a pair of adjoint functors (namely
B and the' functor 3g : B.4 -+ SGred which assigns to evcry BA itself seen as a SGred),
followed by "the good, old, Stone duality for BA 's.
(5) The above allows to easily determine the illjective, projective and free objects in the
category SGred (namely, complete BA's, fans and fans, respectively), and to characterize
the monas and epis in this category (nanlely, injective homos. and homos f: G --+ H S.t.

Im (fH 0 f) generates EH as a BA, respectively).
(6) More generally, these taols allo\v a reinterpretatioll of the ~~funny" combinatorics used in
the algebraic theory of quadratic fornls in terms of n. cOlnbinatorics of filters and ultrafilters
in BA'5. As an illustration we ~ive a shol"t, strnctura.l prnnf uf the ·'.~mall" repre3entation
theorem.

At thc end we discussed SOllle IH~\v'tIXalllplesof ahstr:ll.:t spact's of orderins (joint \vork \vith
F. lvlirn~lia).
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Relative regularly closed fields

Y. Ershov, Novosihirks University

Let W be a Bqoleall faluily of the vn.luatioll rings of a field F. F is regularly.clo.sed relative
to the /amily W ((F, ltV) E Re or F E RC(J,V) iff far every regular extension Fo ~ F the
following equivalence hoIds:

F ~I Fo~ 'IR E W(Hn(F) $1 FoHn{F))

(where HR(F) - the henselization F relative,R: Hn(F) = qn(Rh )).

For a Boolean family lV let Rw ;::: n{RIR E ltV} . .Introduce the following conditions: •
(BAP) For every partition [ao, ... , On] of vV, every ao,. _. ,an E F, e E J(Rw) \ {
(J(Rw) - the Jackobson radical of R\v) there is a E F such that VR(a - ad > VR(e) for

. every i :5 n and R E lVOi •

(THR) For every absolutely irreducible f E Rw[x, y] monie in x, for any a, b E Rw if
f~(a,b) :f: 0 and f(a, b)f:x,(a, b)-1 E J(Rw), then there is c, d E Rw such that vR(b'- d) >
vR(e) for all R E W( {:::::? (e - d)f-1 E J(Rw)) and fee, d)= 0, (a - c)f(a, c)!:x,(c, b)-l is
a unit in Rw. '. .

Thm. 1 If {F, W) F (BA?) 1\ (THR) thus (F~ W) E Re.

Thm. 2 If W is a Boolean falnily of the valuation rings of F, then there is a regular
extension Fo of F, a Boolean. family Wo of the valuation rings of Fa such that the map_
Ro t-+ Ro n F, Ra E Wo is a homomorphism Wo and W; HRoilP(F) 51 HRo{Fo) for all

. Ro E Wo and (Fo, Wo) F (BAP) 1\ (THR). .

Thm. 3 If W consists on the 1I'"-valuation rings off (for same fixed 11'" E F), then

(F, vV) E Re ::::::} (F, IV) F= (BAP) 1\ (THR).

Hrushovski's proof of the MordeII-Lang conjecture
far function fields in all characteristics

E. Bouscarell, CNRS, Paris ••
We present abrief survey of recent work by E. Hrushovski:

Theorem: (in any characteristic):
Let /\ be a ficld, ku C /(, 1.:u algl'braieally dosed. Let S be asemi-abelian variety defined
over 1\, .."( a subvaricty ur 5 dt"ÖlWd o\'pr I{. and r ~ S( I{) a subgroup of finite type.
Suppose ..X" n r is dense in ..\.
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Tlal~n tlll~rt~ is a ratioJlal hUlllOlllOrphlSlll ", frOlll a .~r()Up sulnoarit'ty.)f Sinto a. s(~lni-ahc'lial1

varicty So, clt=til11~d OVe'r ku• ;Lud a slll,varic:ty .\0 ur S'u, ddillc·d o\~t"r k tl • sl1t:h r.hat .\ is a

translatc ()~ h -1,( .\u ).

In pn.rticular, if h'/{/ku(S):= O. tlll~'l1 .\ is a. cosct of a ~r()l1p- sul?\"ariety of S.

\Vc prcscnt the lliaill steps of this lllt)dcl-theon~tic-pl'O()[ wltil'h is utlllifoflll" in aB charac­
teristics, and the Inain model-theory results that are heillg lIscd.
Thc starting point is to expand the field, to a clitfcrentially doscd fiehl in c:hara.cteristic

0"0, and to cl separably closcd fieltl in charactcl'istic p. 111 these expansions, r can be re­
placed by a definable subgroup or S of finite diInensioll..-\.t this stage lllany results and
tcchniques developped these last yea.rs in '~Geolnetric Stability Theor)r" are used: Lanski
geoinetries, groups of finite dilllCIlSioll, non-orthogonality rf~lation b('t\\'t~cn tlimension 1

types in particulnr.

Groups with identities

F. Point, 1\10115 University, Bdgi~In

Let us first define certain identities which extend Illonoülal identities. Engel identities, m·
identities (an exaluple af,an ',n-ideIitity is an iclentity öf t,he form [X~ ym, ... yUl] = 1) (see
[Bof!a M., P<?int F.J, m-identities, C.R. Ac.ad. Sei. Pcu'is, t. 313, Serie I, p. 909-91,1, 1991).

Let a(x, y) be a reduced 'nontrivial ward in {x, y, X-I, y-l}. Let iI := (i?~y-ili E Z).
" - i l " . - ".' '

Thena(x"y) = ym . .n, (y.ixy-i)a i . '1, where '/ E H ai E Z, m, io, i l E Z and the i's

. .' _ ll, .
increasing..With a, we associate Rv = ,E aitl E Z[t, t-l]. \Ve. will call w(x, y) = 1

1=10

an Mt-identity if there exists v(x. y)with d~v = dyv = 0 (w,= 1 -+ v = 1) and Ru =
- .:t-n(ao + a'tt + ... + Gtt t ) := t-ripv is ~uch that ~cm(ad = 1. Moreover Alt := lcm{IGI: G

is a group' fo roots of p~ modul<;>.p in: _IF;, for each prirllep}.
We will say that G is of exponent m 'ifG satisfi~s V:rtxm = 1).

Transfer theorem- (~ee [Bofra M., Poi.nt F.] & [Poiut F.]: Conditions of quasi-nilpotency
in certain varieties of groups, to appear in Conlffiunications ~n algebra.) -
Let C be a class of groups closed under taking< subgr~up's, 'quotients· and ultr-apowers, Let
p be. a prime number, m a'naturall1~Inber and Cp thecyclic group with p elements.
TFAE:
(i) cvery finite group in C of -the [onu (Cp x .:. )( C'l'HIt)~(u(h).p) = 1 is nilpotcnt-by­
exponent m.
(ii) evcry finite solvable grollp 111 C is uilpOlt'llt-I'Y9l'xpollc=ut IIL.

(iii) cvery nilpotcnt-by-tinitcly gellerated solvable .~n)1lp iu C is uilpotc.:nt-IJY- a. fiIlit(~ ~rOHp

of exponent rn. '

L5

                                   
                                                                                                       ©



(iv) every solvable lil1(~a.r Kcout> in C i~ nilp()te~t-by- a finite gronp or ~xponent m.
, (v) cvery Wt-snturatcd solvable l\tlc -group in C (in particular every staule groupin C) is
nilpotcnt-by-exponcnt TU.

WC apply this transfer thcorcin to thc dass C of grollps \vhich satisfy Cl 'Mt-identity (or a.
finite di~junction of A1ri<.lentitics)~ Call such a cla.ss an l\t/t-class. '

Proposition: Auy Mt-class satisfies (v) of the transfer theorem above wi~h- m = Mt.
Using acriterion of Shalev for a. finitely generated pro-p-group to be analytic, a result
of Wilson on· finitely generated residuallY finite-nilpotent groups and the fact that Cop a
prime number the groups or the forn1 CI' or Cpn da not belong to an Mt-c1ass C if pR"> i,
we obtain bounds on the uilpotellcy class of the finitely generated group of C.

Proposition: Let C be an Mt-e1ass. Let G be a. llilpotent group in- C generated by r..
elements. The the nilpotency class of G is bOllnded in terms of r and e~

_Using the positive solution of the restricted Bllrnside problem, we show the following

Proposition: Let C be an Mt-cl(;lSs. Let G a solvable group in Cgenerated by r elements.
Then G is (nilpotent of elas:5 g(l', e))-by~(a finite group of exponent Mt).

We also show that we cau bOWld tbe exponent of the finite groups in an Mt-c1ass in terms
of eand M t .---

Value Groups of NonarchimedeCl:D Exponential Fields

F.-v. I<uhfmann, Heidelberg

Every expansion of the theory of the ordered fi«:ld 'IR h~ ~od~ls on -which the orderis
nonarchimedean. In that case, they have a natural valuation ~soeiating to every element
its arehimedean class. We study the ~,.!ation.theoreticalstrueture of nonarchimedean
models of the theory of the reaJs \vi th exponentiatiol1. -In particular, the exponential
induces a partial map on the value group which can be prolongated to a total map X called
a contraction and satisfying:
{ll xx = 0,~ x = 0 2} X- preserves:::; 3)=X( -x) = -xx
(4) n x and y are archimedean and have the same ~ign,then Xx = XY 5) (neverthelessle
X is surjecti.ve. - ' .
The growth axiom scheme

exp:.L >:c n for suffieiently -Iarge 'x (n E N)

translates to the axiom (CP) 'v'xlxxl -c:: Ixl;- a contradiction satisfying (CP) is ,called'
centripetal.

Tlun. 1: The theory of divisibl{~ l)rdt:n~d al~~liall·.~rotlpswith c~entripetal contraction is
model eomplete. complete~ dccidable alld cuhuits (~E. "
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Thm. 2: lt is lllOreOVt'r w(~akl\" o-luiuiluaJ.
Thc sccond thCOl"Plll is C)hta.ill:~cl l,y au analysis nl thc l .. 'nllS huildl up in t.llt' lall~\1:q.!;t'
{O, +, -, <, X} ur t~()lltracti()11 .l?;TOUpS. As 1I1apS 011 tlw ~r()\1p, loh" t.t'l"lIlS hnilt Hp withont

constants are (~Clllal to \,-polyuozuials =,..\".1: + ... + ':J \.1" + ':u J ' (=i t:: Z); all tllt~se an'

monotone.
For cvcry tenn bnilt ttp lJJith ("OU:iLallLs, thcre is a tlllite partitioll of tht~ gron)> illto C:Olln~x

subsets s. t. on l~ach of these subsets. litt! tenn is t"~q\lal (as a [llap) to a. ",e;cneralizcd \­
polynomial". Again, a.ll gcneralize<l X-polyuonlials are l11011utoue. Exaillplc (a E G)t(x) =
x(x + a) - x(x - u) has graph
v= natural valuation of the ordere<! gronp G

The Frattini Subgroup

(Frank O. \Vagner. Oxford)

In a finite group C, the intersection of all lua.xünal subgroups form a. characteristic sub­
group <1>(G), the Frattini subgroup, H is also characterized a.s the set· of all non-generating
elements. If H is normal in G, then H is l1ilpotent iff H ifJ( G)I ~(G) is nilpotent. T~is may
be (need to deduce the existence of nilpotent supplements (i.e. if JV <J G and GIN nilpo­
tent, there is H < C, G = IVHand H nilpotent) and uItimatively of Carter su~groups

(i.e. self-normalizing nilpotent subgroups) iu.solvable grou'ps. In astahle group, we define
~(G), to he the union of all definable nonnal subgroups \vhich da not have a supplement.
This is anormal subgroup, and a union oi definable ones (which~ however, may vary with
the model). We prove:
"Theorem 1: If A1 is a family of uniformly definable norn1{\1 subgroups \vith~ut supple­
ment, then modulo same definable normal subgroups N without supplement·M generates
a nilpotent group.

Theorem 2: If 1\4 is a type-definable normal subgroup of a saturated -R.~group G such
that H~ 4>(C)/ <1>(G) is nilpotent, then there is IV as above such that H<fJ /N is nilpotent.
Tbe proofs use the existence,of nilpotent supplelnents alld Carter subgroups in the Frattini
free component H4> of an R-group. So the order of thin~s is reversed in comparison to
finite group theory.

Finally, <1>( G) arises in a different context for a11 abdiall grollp a.s family of possible cohe­
rents of quasi-endomorphisms.
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Extending parti~l isomor.phisms

( D(~rllha.r(1 Her\vig, Paris)

The aim of the talk i~ to prescut Cl theoreUl of Hrushovski, which is nscd in the proof of
the small index property for the coul1table randonl graph as presellted by Wilfrid Hodges·
and David EWns~ We also present the follo\ving generalization of Hrushovski 's Theorem:

Theorem: Let A be a finite, relational structure. Let PI, ... ,pu be partial isomorphisIDS
on A. Thereexists a finite structure Band partial isolnorphisms 11, ... , f" on B extending

Pi,···· ,pn· .
The theorem of Hrushovski is the same statelnent where_ A and Bare graphs. In thes~
way Hrushovski's theorem can be used to prove the smaU index property for the countab.
random graph. The generalizatio,n can be used to prove the small index property for the
countable random structure in every finite relational strllcture.

Universality of the automorphi~m

group of the real line

Frieder. Haug, Tübingen

In this talk we discuss the following ques.tion abaut the automorphism-group Aut( (IR, ~})
of the realline ·(IR, :5) = -

Qu.estion (U. Felgner, 1991); 15 Aut(IR, :5)) universal?
Here we call the automorphism.,.group of a linear order (n,~) univer.5al, if for each linear
order (L,~) with IAut( (L, ~})I $ IAut( (n, $) )1, Aut( (L, ~)) is embeddable into Aut( (n, ~
). .

We show that the above question cannot be answered just with the .axioms of ZFC or .
ZFC + CHI by proving the following three theorems:

Theorem A (ZFC + 2No < 2Nt + SB): Aut( (IR,~)) is unviversal. •
Theoren:t B· (ZFC + 2No = 2N1 ): Aut( (IR, ~}) is not universal.
Theorem C (V = L): .Aut(JR; ~)) is not·universal.
Here SH denotes the Saishi Hypothesis: ·ir (L,~) is Cl. non+separable linear order, then
(L,:5) contains an uncountable faluily of clisjoint ap·eu intervalls..
Ir we view Allt( (IR, ~)) not just cL'» CL pure grotlp, hut also as a lattice-ordered group (e­
group), then \ve can tlefine aualogously as ahove the nation of a e·univerjalautomorphism
group of a linear order.- \Ve can provc: al1al()~otls tlH~()n~lllS for this nation.
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Definable slt'bgroups of algebraic groups

Qver finite fields

AUflud PillaYt Nut.r<~ Dauw (USA)

. I Jiscuss joint \'lork with Hrusliovski.
Unless other\visc said F dCllotes a. bOlludec.l IJl~rfc('t PAC neId (houudcd nll~ans small, i.c.

there are only finitely nlallY coutinl1uus hUIllU1l1oq>hislllS frolll Gal(F/ F) into a·llY given

fil1i te group.) .
Let G be a connecteu algebraie gruup dcfined over F. \Ve use rIlodel-thcoretic aud sta-
bility theoretic Inethods to study (dcfinable) subgToups of G(F), anti \ve have various

applications.

Theorem 1. Let {..Yi; i E I} be CL fanlily of Zariski-irreducible definable (in F) subsets of
G(F), each containing identity.
Let .G I be the subgroup of G(F) generated by all thc ..\i. Then GI is defina~le (in F) (and
is thus a finite-index subgroup of H( F), for H sOlne connected algebraic s~bgroup of G,
defined over F).

Theorem.2. Let GI be a definable (in F) subgroup of finite index of G(F). Then there is
a connected algebraic group H defined over F, and a surjective F -rational homomorphism
f: H -+ G, with finite kernei, such that f(H(F) < G, (and lTIOr'eover f(H(F)) has finite

index in GI).
...~~

A special case is where F is a pseudofillite field.· We have the following consequences

a) For F, G as above (i.e. F add perfect PAC); G(F) is definably simple iff ab.stractly

·simple.

Moreover if G is simple as an algebraic group, then ·there is a definabl[~ubgroup GI
of G(F) of finite index, such that Gis' simple on an a.bstract group.

b) (Nori) Let G be a connected simple algebraic group defined over Z. For p a prime, let
Gp be reduction of G mod p.
Let r < G(il) be finitely generated aud Zariski dense (in G). Then for all hut finitely
many p, r/p = Gp(IFp).

c) Let G be as in (h). Then the set of maximal subgronps of Gp(IFp) (p a prime) is
. uniformly definable (\vhere.Jl varics).

cl) Let G be a 3imply connected altnost sitnple al~cbraic group defined over F. Then
G(F) is sinlple (modulo its finite centre) as an abstract gn.)up.
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The Buillm-Manin homomorphism

Analld Pill~y, Notre Dame

Let J( be a differentially closed nelu of characte"ristic o. Let A. l}ea.n abelian variety, defined
over [(. Identify A. with .4( [().

"Proposition 1. Therc is a DCF-definable hOlnomorphisln f {roln A into Kn (some n)
such that Ker(f) has fihite Morley rank (in the differentially closed field ]().

Proposition 2. Let r ,be a subgroup of A \vhich is the divisible huH of a finitely generated
group. Then there is a finite M ar/iy r/lnk defin/lb/e subgroup of A, say r 1 , such that r < r•

. 'VVe give an outline of thc proofs uf the above resuIts.

Exponentiation and Formal Power Series

DavidMarker (UIC)

"We repott on joint work with Lou van den Dries and Angus Macintyre. Using formal
power senes we.' construct natural nOllstandard lnodels of IRan (exp), the real numbers with
exponentiation and analytic functions onbounded sets.
With these methods ~e prove:
1) f( x) = fo% et2 dt is ~ot IRan (exp) definable
2) Let f(x) = log x(log log x) alld let y be its compositional inverse. Then 9 is not

asymptotic to a. composition of exp, log and algebraic functions.

O-minimal groups and rings

Charley Steinhorn (Vas~ar College) •We discuss joint \vork \vith I\:obi Peterzil. Let A1 = (Ai, <, ... ) be an o-minimal structure
such that (M, <) is a dense linear order. A-group (G, *fis definable in 1.\1 if Gis a definable
subset of l'v/" for some n and * is a definable fUllctiol1. It \vas shown by A. Pillay that every
definable group in an o-millilnal structure admits a-uefinable topology via an un-manifold",
\vith finitely many charts. Defillablc rings are given siInilarly.
\Ve say thata lnanifold _\ is definnbly l'Olllpact if for every path p: ((1, b) ~ ..r definable in .
Al, both lirn p( t) and lim p( t) exist aud are dcments of .\. Abaut definable compactness~

t-4+ t-b-
we prove
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Theorcn~ ~~ ~ JJu is lh'Huably l"(uupa,·1. lh'n·.\ i~ a SIlI)s.,t ur .\1 wlt.h du' llsuaJ t.opolo.t!;y

- if autI olily if _\ is dost'<! auel IUHuld,'d.
H follows that th(~ '~()lltiJlllOtlS i1l1a.~t· nf a dnst'd alld IUHlIul('d S(~t \lElder a dt'tillablt~ Inappill.~

is closed .U1J LOlllldetl. TurniIlK 1l"(J\V tu ~r()\lp~ alld lila», W(' havl.' r.llt~ t~)llowill~

Theorem Let (G, *) he a clcnuable ~rO\lp i11 au o-Iuiuünal stnH:tlln~ ;\lwhich is not
definably cOlllpact. TIten thcn~ is Cl dl~fillahlc H -:; G, tlilll H = 1. an<! H is (livisahlt~ anel
abelian.

Theorem Let R = (R. +, *) be :L (h'öllaule ring in -1\1 which c[()l'S not have zero d~visors.
.Thcn R is eithcr a. real dused fiel< 1of ,1irnellsioll 1, R{ p) fur a detillablc real closed fielt.!
R (of dimension l)t ur R is thc ring of (luaterniolls OVf'1' a d~tinahle rea.l closed field R
(again or of dimension 1).

An unc.lassifiable unidimensional theory
without the OTOP

Bradd Hart, MCNlaster ·.Universi.ty

Using Shelah's !\1ain Gap for countable theories a,lld related results. one can prove the
following theorem; specialized in this case to acountable unidimensional theory:

Theorem (Shelah). If T is a countableunidiluensional theory then equivalently
1) For every AI F T there is 1v10· < M, IAt/ol S 21T1 and lV > Mo with q = tp(N/Mo)

dominated by a regular type such that lV[ is prima!")· Qver 1\10 and a basis for q.
2) T is not unclassifiable . -
3) 'F does ~ot have the OTOp
where T iS'üriclassifiable if for every reluar ,,\ >ITI there are Atl ; 1V/2 f= T of cardin<Jity A
such that MI ~ lvf2 but may be forced isomorphicby a forcing \vh~ch preservesall cardinals
and add the new subsets of..\ of cardinali ty < ..\

and

T has the omitting types order property (OTOP) if there i~ an .c-type p{x, y, z) such that
for all A there is lV F T and (an: (\' < A) <; lV such. that!V realizes p(x, ao, aß) iff~Q < ß.

In general, for an arbi trary lan~uage 1) => 2} ~ 3). It is hoped that in general 1) and 2)
are cquiValent. Ambar Cho\vdhury alld r have constructed allllidimensional. theory which
is unclassifiable hut d~es not havt:" tllt~ ()TOP so in .e;eIl~ral 3) 1> 2}.
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The small index property far w-categorical,
w-stable structures and for the random graph

David M. EV~U1S (Nor\vich)

Continuing the discussion or th~ paper of Hodges, Hodkinson, Lascar aud Shelah, intro­
duced hy Wilfrid Hodges, wc presented a praof of
Thm (HHLS) Suppose lvI is either an w-categorical, lU-stahle countable structure, or the
random graph. Then M has thc small index property: If H is a suhgroup of Aut(M) of
index< 2No , then H contains the pointwise stabiliser in A.ut(M) of a finite subset of M.
Tbe praaf uses the exis~ence of cOlneagre sets of generic automorphisms in (Aut(M)"1IIA.
which in turn relies on known facts about 1\1, due to Cherlin, Harrington and Lachlan andW
Hrushovski (for the w-categorical, w-stable Al) and Hrushovski (for M the random graph).

On simple groups of finite Morley rank

A. Borovili: (VMIST, Manchester)

Let G he a group of finite Modey rank (FMR). vVe say that G is bad, if every proper
definable connected subgroup is nilpotent.
A bad field is a structure of FMR of the form

(1\; +~ ., Al),

where (K; +, -) is an a.c. field and J\1 is (a predicate for) proper infinite subgroup ofK·.
G. Cherlin conjectured, specifying the \vell-known Cherlin-Zilber conjecture on groups of
FMR, that simple groups of finite Modey rank which do not interpret had field or bad
groups are simple algebraic groups aver a.c. fields.
\Ve call a simple group of FMR ta~e, if it eIoes not interpret a bad group or a bad field and
if, in addition, every proper definable cOI1uected sinlple section of G is a simple algebraic
group over an a.c. field. ObviollSly a minimal counterexample to Cherlin's conjecture is a.
tame group. .
The talk was devoted to discussion 2-Sylo\v theory and signalizer functors in tarne groups.
First results in the theory of tarne groups are very instiring and promising and give hopes
of eventual classification of this group.
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Elementary theories closed to Inodtlles und coverings

by 'classes of perll1utable equivalell.CeS

E..-\.. PalYlltiu t Rllssia. Novosibirxk)

Equivalences 0, ,d a.re perrnutable if the t:olupositioll Ü 0 ..i is au t'qtli\'alt~ncc. Let P be a.
sublattice of the lattice of all cquiva1<"ucc relatiolls Oll ~et .-t illlel all n . .tJ E P are permutable.
Equivalence (\' hrui finite index in S(~t }.~. if ü i Y' lla.."i finitdy [na.ny daSSl'S.

Der. A set .Y. has finite multiilLdex in a set }'.. rclativo to t.hc lattict~ P 'iff there cxists a
chaine Cl'o S; ... S; an of P·equivalellce relations, ~.t. .\ is an no-class. Y is an ll'n-class ,
..Y ~ Y and far any i < n equivalenccs O'j have finite illd~x in fl'i+l.\"

Next theorem is a. generalization of the fmnous Nel1llUlu'S lenulla.

n

Theorem Let }T, .Y'I"" , ...:rn be clru:iSCS of e,:&<luivulence rt"lations fronl P. r~ ~ U.ti und
.- I
-n .

y ~ UXi. Then ,.\'"1 has finite multiindex in Y. This theoreITI is used for the proof of
2 .-.

quantifier elimination for HOln stab~e theories with NDOP via positive primitive formulas.

Topological automorphism groups

Wilfrid Hodges, QM\V, London

The talk was an introduction to the talks of EvaIls~ Herwig and lvIacpherson on aspects
of the small index property. It defined aütolllorphisln groups as topological groups and
as complete metric spaces. The following theorenl (froIn Hodges, Hodkinson~'Lascar and
Shelah, uThe small index property for w-stable, w-categorical structures and for the ran­
dom graph", J. Landon Math. 'Soc. 4~ (1993), 204-218) ·\vas proved: If the topological
group G is a complete metric space and H is a neagre subgroup of G, then H has index
~ 2w in G.

Berichters~atter: M. Tressl
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