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Tagungsbericht 1/1994

MODELLTHEORIE

02.01. bis 08.01.1994

Die Tagung fand unter der Leitung von U. Felgner (Thiibingen), A. Prestel (Konstanz)

und M.

Ziegler (Freiburg) statt.

" Im Vordergrund standen die Themen "Modelltheorie von Gruppen®. speziell‘die ‘small
index property’ fiir Strukturen, sowie Hrushovski's Beweis der Mordell-Lang Vermutung
im Funktionenkoérperfall. Zu beiden Schwerpunkten fanden mehrere Hauptvortirige statt.

. Dartiberhinaus wurden in Kurzvortragen Ergebmsse aus der Stabilitasstheorie und aus der
“Modelltheorie spezieller Strukturen (Gruppen, Moduln, o-minimale Strukturen. Graphen)

vorgest

‘L DFG

ellt.

Vortragsausziige

The field ¢ of totally real algebraic numbers
' is decidable '

Dan Haran, Tel Aviv

* (A joint work with M. Fried and H. \"c'-}lkl«:in.)

The res

dlt in the title relies on two facts:

Theorem A (Pop): Q'" is pseudo real closed (PRC).
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Theorem B: The absolut Galois group G(Q'") of Q' is the free profinite product D of

* copies of Z/2Z over the Cantor space. Equivalently (as Q' is countable) G = G(Q'T) has

Deutsche

the following Embedding property (EP):

i) G is generated by Inv(G), the set of involutions in G;

ii) Given an epimorphism of finite groups a: B — 4, a continuous epimorphism ¢:G —
A, and a subset I'y C Inv(B) closed under the conjugation in B and such that B = (1)
and &(fg) = ¢(Inv(G)), there is a continuous epimorphism #:G — B such that
a oy = ¢ and Y(Inv(G)) = I.

By now standard model-theoretic considerations we give an axiomatization of Th(Q*"):

M = Th(Q*") if and only if
(1) M is PRC;

(2) G(M) has EP; ] i .

(3) Q' is the absolute part of M; and
(4) M/Q' is totally real.

Finite covers with finite kernels
David M. Evans (Norwich)

Suppose C, W are countable Ro-categorical structures and 7: C — W is a surjection with
finite fibres. If-the map p.: Aut(C) — Sym(W) given by p.(g)(w) = n(g(r~ (w))) (¢ €
Aut(C),w € W) is well-defined and has image Aut(W), we say that « is a finite cover of
W, with kernel ker(p,). We are interested in describing, for fixed W, all the finite covers

in which this is finite.

Apart from degenerate cases, we know of two types of constructions of these finite covers.
In the first type, the covers arise as coverings of an invariant digraph on W. The second
construction is modelled on the example of a vector space covering its projective space.

We give various conditions on W which guarantee that all finite covers of W with ﬁmte
kernel arise in one of these ways.

Valuation theory for ~-minimal expansions
of real closed fields

Lou van den Dries (Urbana)

Let T be a complete o-minimal theory nxtcml.ing the theory RCF of real closed fields, let
(R, V) | Teonvex, let V = V/m(V) be the residue ticld and let T = 9(R*) be the value
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group. In “T-convexity and tame extensions” (AL Lewerberg & L. van den Dries, to appear
in JSL) we maude 7 into a T-model and T into aomodel of a certain complete theory T,
(“the theory of the value gronp™) which depends only on T. not on the structure (f2 V),
and which extends the theory of ovdered abelian groups. The following results answer
some questions left open in the paper just cited. ‘Definable’ below means ‘definable with
parameters’.

Th. If § C R™ is definable in (R, V), then Sc 7" is detinable in the T-model V, where
S = image of SN V™ under the canonical map V" :"V". _ '

If moreover S is definable in R, then S is closed in Vo and dimp(S) 2 dimg(S).

Th. Suppose T is power bounded with field of exponents K (so that ' is an ordered K-
linear space). Then T,y is an extension by definitions of the theory of nontrivial ordered
K-linear spaces. If S C (R*)" is definable in (R, V), then v{S§) € T" is definable in the
Tyg-model T

Th. Suppose T is power bounded and (R, V) = (S, W) & Teonvex with rk(S/R) < oo.
Then rk(S/R) > rk(W/V) + dimu(v(S*)/v(R7)). - L

Besides the results of the paper cited the main tools are the Mzu‘ker-Steinﬁ_om theorem,
and in the power-bounded case, a result of Loveys-Peterzil. and the result that if f:V — R
is definable in (R. V), then v{fz) is ultimately constant as £ — +oo0 in V.

Zariski Geometries

David Marker (Chicago)

We sux"vey'the work of Hrushovski and Zilber. A Zariski geometry on a field D is a family
of Noetherian topologies on D, D?, ... satisfying the following properties:

20) If f(z) = (fi(z),... . fa(z)) f:D™ — D" and each f; is either constant or a coordi-

nate projection, then f is continuous
Z1) If C C D™ is closed and nonempty and m=: D — D™ is a projection, then there is a
proper closed F C #n(C) such that x(C) 2 n(C) - F
72) If C € D™ x D is closed an for « € D™,C(a) = {z:(a.z) € C} than there is an N
 such that for all [C(a)] < N or C{a) =D :
23) If C C D" is closed irreducible and dimC = k then every nonempty irreducible

component of C N {z € D":z; = z;} has dimension at least k& — 1.

If D is a Zariski geometry and there is a sufficiently rich family of curves in D? then D
interprets a pure field ;. Conditions are given to insure D is isomorphic to the Zariski

geometry of a smooth curve.
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Fields with Higher Derivations

Margit Messmer (South Bend)

joint work with C. Wood:

We define a first-order theory SHF, of separably closed fields of finite degree of imperfection
e which carry an infinite stack of Hasse derivations.
The language: {+,—-,-,”"',0,1} U {D i:i < w} where D, are unary function symbols

The axioms for F [= SHF.:

— Axioms for fields ofcharp —Vz(D(z) =0— Jy y? = z) ‘

—Vz,yD,i(z + y) = Dyi(z) + Dyily) -vzD% ) (z) =0
~Va,yDy(z-y) = X Du(z) Duly) = —3DI(z)#0
vtu=p* ’

where D, is some expression in theD, s —F is separably closed
=VzD,i(Dpi(z)) = Dpi(Dypi(z))

We show that SHF. has quantifier elimination and eliminates imaginaries.

Deﬁhable_ Valuations

Jochen Koenigsmann (Konstanz)

The talk contributed to the following question:

Which valuations on a field K are intimately enough related to the arithmetic of the field
K to be first-order definable in the language of fields (with parameters from K)?

On number fields, for example, all valuations are definable (even by an existential formula),
whereas on Q, only the canonical henselian valuation and on separably or real closed
fields no valuation at all is definable. The following theorem has been reported on: 4’
henselian field (K, v) which is not separably or real closed admits a definable valuation
which is dependent with v (i.e. induces the same topolgy on K), provided (K,v) is not
exceptional, where exceptional means: Gal( K/K) is pro-p, charK = 0, the residue field
K, is algebraically closed, charK, = p and the value group is divisible. We do not know
whether or not the theorem extends to the exceptional case. For the proof, one has to
work with ¢-henselian fields as introduced by Prestel-Zicgler (Crelle 1978) and study various
notions of compatibility of an arbitrary multiplicative or additive subgroup G of a field K
with a valuation. Here the idea that any such subgroup induces a topology on K plays a
crucial role. A
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Mittag-Leffler modules

Philipp Rothmaler ([\'iuli

Following Raynaud and Gruson a left R-module Af is called Mittag-Leffler if the canonical
map

mN;OM — ﬂﬂ'(N,‘ @ M)

is injective for every family of right R-modules ¥;. Using Ivo Herzog's criterion of being
zero in tensor products in terms of positive primitive (pp) formulas and duals of them,
we show that the Mittag-Leffler modules are exactly the “positively atomic” modules (i.e.
modules in which the pp type of every tuple is implied - modulo the theory of all left
R-modules - by a single pp formula). '

Using this we derive various known features of Mittag:Leffler modules and characterize -
among others - the rings over which every reduced product of Mlttag-Lefﬂer modules is
Mittag-Leffler. These turn out to be precisely the left pure-semisimple rings (= rings of
left pure global dimension zero). (This answers a question of A. Facchini.)

We also point out that model-theoretically it is the Mittag-Leffler modules rather than the
pure-projective ones that play a role dual to that layed by the pure-mjectlves (= “positively

' compact” modules).

Finally, certain realizations - of both, algebraic and model-theoretic nature - are mentio-
ned.

Automorphisms of countable strongly minimal sets

. Dugald Macpherson (QMW, London)

A paper by D. Lascar “Automorphismes d’un ensemble fortement minimale” (JSL 1992)
was surveyed. The setting is a countable saturated structure M algebraic over a 0-definable
strongly minimal set D(M). If 4 C M then an 4-strong automorphism of M is an
automorphism fixing setwise the classes of any finite 4-definable equivalence relation, and
Autf4(M) denotes the group of these automorphisms. ‘

An automorphism ¢ of M is bounded if there is n € N such that for all X C M,
Dim(X?/X) < n, and B(M) denotes the normal subgroup of bounded automorphisms.
The following theorems were proved in Lascar's paper.

Theorem 1 If A < Aut Af and JAut A7: 4] < 2% there is finite -l C D(M) such that
H 2 Aut fo(M) '

Theorem 2 The group Aut fM/B(M) 0 Aut f(M) is simple.

2




A characterization of w-stability
via automorphisms

Michael C. Laskowski >(Uuiv‘ of Maryland, College Park)

For any structure M and any 4 € M, let G = Aut(M) and let G{4) denote the setwise
stabilizer of A.

Theorem: Let M be any countably saturated structure.

The following are equivalent: )

(1) Forall A C M, G4y induces a closed subgroup of Sym(4)
(2) Forall X C M and all p € 51(X), {g9(p): ¢ an elem. permutatlon of .\’} is countable.

(3) Th(M) is w-stable.

This work is joint with E. Bouscaren.

. Topological automorphism groups

Wilfrid Hodges, QMW, London

The talk was an introduction to the talks of Evans, Herwig and Macpherson on aspects
of the small index property. It defined automorphism groups as topological groups and
as complete metric spaces. The following theorem (from Hodges, Hodkinson, Lascar and
Shelah, ‘The small index property for w-stable w-categorical structures and for the random

graph’, J. London Math. Soc. 48 (1993) 204-218) was proved:
If the topological group G is a complete metric space and H is a measure subgroup of G,

then H has index > 2% in G.

Permutation Groups of Finite Morley Rank (fMr)

Ali Nesin, UCI : ‘

We will survey the state of permutation groups of fMr.
The motivation is the Cherlin-Zil'ber conjecture: A simple group of fMr is an algebraic

group over an algebraically closed field.

1) Frobenius Groups: A group B is a Frobenius group if it acts transitively but not
regularly on a set X of cardinality > 2 in such a way that only the identity clement

fixes 2 distinct points of X.
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If B is a Frobenius group and T is a_one point stabilizer. then T < B and for all b
B,T*NT # | = b e T. Couversely if B has such a {prope r) subgroup, then B is a
Frobenius group. We will say that T < B is a Frobenius group if T has the properties
above.

Ex: A sharply 2-tr. group is a Frobenius group.

Ex: Let K be a field, let T < K*. Then K% n T is a Frobenius group.

Ex: Let B be a bad group (simple group of fMr where any proper connected subgroup is
nilpotent). Then B is a Frobenius gronp. (This is a theorem).

Ex: Let B be the free group on 2 gencrators & T a L}(ll( subgroup. Then T < B is a

- Frobenius group.
Fact: If T < B is a finite Frobenius group, then B = 7 x T for some U a B which is

‘ nilpotent. . .
Conjecture: A Frobenius group of ﬁnite Morley rank splits as'I7 x T where U is nilpotent.
B ' Proposztzon Let T < B be a Frobh. group of fMr. ’ ' :
a) T is definable. (so that we may assume thé action of B is mterpretable)
b) If B=U xT then U is definable.

c) IfU is solvable then U is nilpotent. ) : -
d) If B is solvable then the conjecture holds. Furthermore TV is abelian and all the

complements of U are conjugate.

Theorem (Epstein-N.) If T < B is a Frob. group of fMr with T ﬁmte. then B sphts
B=UxT.

Theorem (Epstein-N.) Let T < B be a Frob. group of fMr. Assume every definable proper
section of B which is a Frobenius group splits. Then’ either B splits or B is sxmple and a
counterexample to the Cherlin-Zil'ber conjecture.

Theorem (Epstein-N.) Let T < B be a_ Frob. grp of fMr. Assume every.-simple and
definable proper section of B is an algebrmc group. Then either 1) B splits as U » T

- with U nilpotent and T is abelian-by-finite, or 9) B is sxmple and a counterexample to the
Cherlin Zil’ber conJect.ure

Proposition (Delahan-N.). Let T < B be a Frob. &rp. of fMr, then T has ﬁmtely many
involutions.

._ 2) Sharply 2-transitive groups

Con]ecture An infinite sharply 2-transitive grp. of finite Morley rank is 1somorph1c (i.e.
equivalent). to the following permutation grp: Let K be an alg. cl. field. Let G =

((8 ’1’) a,b€K.a#0}, X = {(I):xe k).
Let G be a sh. 2-tr. group and let H be a one point stabilizer. Recall that. H < G is a
Frobenius group, so that if G has fMr then H is definable. :

Proposition Let G be a sh.2-tr. grp of fMr.
a) If Gis oo then H is connected.
b) If G is solvable then the conjecture holds.

7
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"ii) U has a unique involution and G is a Frob. compl. with U-as a Frob. compl.
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Theorem (Cherlin-Grundhofer-N-Vélklein) Let G = A x H bLe an oo split sharply 2-tr. grp
of fMr. (4 is necessarily abelian). If Ciua A(H) is infinite, then G is standard (i.c. the
conjecture holds).

Corollary: G as above. a) If 4 has an element of infinite order then G is standard.

b) If Z(H) is oo then G is standard. .
¢) If H has an oo normal solvable subgroup, then G is standard.

Theorem (Delahan-Nesin) Let'G be an oo sh.2-tr. grp of fMr. Assume it has an involution
and is nilpotent, then G is standard. :

3) - Zassenhaus Groups A doubly transitive permutation grp is called a Zassenhaus
" group if the stabilizer of any three distinct points is trivial.

Ex: Sh. 2-tr. groups, sh. 3-tr. groups are Zassenhaus groups. .

We let G denote a Zassenhaus group. We take z,y € X withz # y. Weset B = G, @

T =G,y = {g €G:gz = z&gy = y}. We have-T < B < G and T < B is a Frobenius

group. If B = U x T for some U, we say that G is a split Zassenhaus group.

Conjecture: An co Zassenhaus group of fMr where T # 1 is PSLy(1V).

Theorem (Delahan-Nesin) Let G be an oo split Zassenhaus grp. If T has an involution
then the conjecture holds. . '

Theorem A sharpli 3-tr. group of fMr is isomorphic to PSLy(K).

Theorem (De Bonis-N) If G is an oo split Zassenhaus group of fMr and if U has a central ‘
involution, then G = PSLy(K).

4. BN-palrs

Theorem (Boronik-Corredor-Davis-De Boms-N) Assume G is a simple BN-pair of fMr and
of Tits rank 2 3, then G is an algebraic group over an alg. cl. field.

5) CIT and CN groups

Theorem (De Bonis-N.) Let G be an oo a.nd nonsolv group of fMr with 02(G) =1 (i.e.

has no normal nontrivial 2-subgroups). Assume there exists U < G nilpotent and with
involutions such that for u € U*,Cq(u) <'U, then one of the following holds:

i) U has oo many involutions and G = SLy(K), K alg. cl of char 2 : .

Corollary (De Bonis-N.) Let G be an oo, nonsolv. grp with involutions. Assume that G
is a CN-grp (i.e. the Centralizer of any nontrivial element is Nilpotent). Then one of the

following hold
i) G = SL,(K) for some I\ alg. closed hdd of char 2
ii) G is a Frob grp. with the centralizer of an 1molutum forming the Frob. complement.

Theorem (Boronik-De Bonis-Nesin) Let G be an oo group of fMr. Assume G is a CIT
group (i.e. G has involutions and the centralizer of any involution is a 2-grp.) Then one
of the following hold:
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i) 0,G # 1 (i.e. G has a normal, nontrivial, 2-subgronp.)

i) G = H » S where I is deinable, abelian, 24 slllu_,lunp and S s a finite 2-Sylow of G
with a unique involution that inverts f.

iii) G = SLa(K) for some alg. cl. ficld K of characteristic 2.

Jordan Groups and Going Forth

Peter M. Neumann (Queen's College. Oxford)

When we speak of a ‘back and forth’ construction for proving isomorphism of two countable
structures we call to mind the famous theorem of Cantor about countable dense linearly
ordered sets. Cantor’s proof, however, in fact requires only the "going forth’ part of the
construction, and Adrian Mathias, when he noticed this. asked for a classifiction of those
Ro-categorical theories for which ‘forth suffices’. Peter Cameron heard of the problem in
1986. His (not yet complete) answer involves properties of the automorphxsm groups of
the countable models and leads to interesting questions about permutation groups.
Let  be a set, G a permutation group on 2. A subset T of Q is a J-set if the pointwise
stabilizer G(q_gx) is transitive on T (it is a Jordan set if also [E| > 1): Cameron asks for
the groups G with the property that for every finite set ®, the pointwise stabilizer G(q)
has only finitely many orbits and each orbit is a J-set. It turns out to be easier to work
with a wider class of groups: we say that G has property P if for any finite set. &, the
complement 2 — ® is a union of finitely many J-sets.
THEOREM Suppose that G is closed in the natural topology on Sym(f), and that G is
primitive on Q. If G has property P then one of the following holds: -
(1) 9 is finite;
(2) G =Sym(Q); "
(3) 2= PG(d,q) and PGL(d+1,9) < G < PTL(d+1,g)or

Q = AG(d, q) and AGL(d,q) < G < AT'L(d,q)

for some cardinal number d and prime-power g;
(4) G = Aut(Q, R) where R is a dense homogeneous linear order relation,

linear betweeness relation.

cyclic order relation,

cyclic separation relation,

C-relation [chains in a semilinear ordering],

D-relation directions in a general betweeness relation).

This theorem can be proved by inspection if one uses the very deep classification theorem
fqr primitive Jordan groups proved by Simson Adeleke + Dugald Macpherson. It does,
however, also have a quite short and direct proof.

An arbitrary group with property P is “essentially” a direet product of transitive groups

~ with property . And a transitive group with property P is “essentially” a wreath product

Deutsche
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of finitcly many finite covers of the groups in the theorem. Thus Cameron’s question will
be completely answered whien we know all the finite covers of those groups (and David
Evan’s techniques should give these very casily) and when we know what “essentially”
means precisely. ’

On atomic sets

Ludomir Newelski

- IMPAN, Kopernika 18, 51-617 Wroclaw, Poland

Assume T is stable, small, ®(z) is a formula. We study the relationship between a C L‘
and ¢(C), and between T|® and T(a)l@ We consider mainly the cases of w-stable T,
which is 1-based or bounded.

‘For example we prove that if T|® is w-stable w-categorical then T'(a)|® is such.

Deutsche
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We generalize a Steinhorn result about existence of prime models over indiscernible sets.

Now let Q@ = ®(N) for some countable N. Pseudo-type on S(Q) are.the orbits of the
action of Aut(Q) on S(Q). We discerned countable many “r-stable”, “good” pseudo-
types of S(Q). The r-stability conjecture says that if I(T Xo) < 2%, then every good

pseudo-type on S(Q) is 7-stable.
Using the above results we prove the r-stability con_]ecture in case when:
(*) - @ is atomic and T|® is (superstable of finite rank or w-stable) and (1-based or

bounded)..
Conjecture 1. Assume @ = ‘D(z\l) is countable, atomic and I(T, Xo) < 2X°. Then Ve C

M3a € Q Q is atomic over ac
2. Assume | (T, Xo) < 2R s No-ca.tegoncal Then for every ¢ C C, T (c)|® is No-categoncal

I proved conjecture 1 in case (*), and conjecture 2 in case when T|® is w- sta.ble

Highman’s Embedding Theorem in general setting
and its application to existentially -
closed algebras. .

Oleg V. Belegradek, Kemerovo Uni?ersity, Russia

Let K be a recursively axiomatizable quasivaricty of L-algebras. We say that the (Genera-
lized) Highman Theorem holds for K if (for every f.g. algebra B in K) every algebra which
is recursively presented in K (over B) can be cffectively embedded into an algebra which
is finitely presented in K (over B). We say that K has the Internal Mapping Property if

10
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there is an L-term #z, 7) such thae, for every A in Kand every e 4 — A, thereare B 2 A

in K and & € B such that «{a) = i, b)), for w € AL We say that K e the Internal

Homomorphism Property if, for cvery 1 > 0. there are an L-term hy, (2, T) and a finite set

of atomic L-formulas $,(Z, 7, 3), where T and 7 are n-tuples, such that, for every 4 in K

and n-tuples @b € A the following are equivalent; (i) there are COAmKandze C

such that Sa(@,b,c) holds in C and hy(a;,€) = b;, for all 15 _

(ii) there is a homomorphism from (@) into A sending @ to b.

Theorem. Suppose that K has the Joint Embedding Property, the Internal Homomor-

phism Property, the Internal Mapping Property, and the Highman Theorem holds for K.

Then

(1) the Generalized Highman Theorem holds for K: .

(2) for finitely generated A;,A» in K, the word problem for 4, is Q-reducible to the
word problem for A, iff 4, is embeddable into any existentially closed algebra in K

containing 4,.
Remark. The quasivarieties of groups, torsion-free groups. and semigroups satisfv the

conditions of the Theorem. e
For groups (1) and (2) are known.

The Ziegler, and other spectra

Mike Prest, University of Manchester

The right Ziegler spectrum, Z,,, over a ring R is a topological space whose points are the
isomorphism classes of indecomposable pure-injective right R-mnodules and-whose basic
open sets are given by pairs ¢ > % of pp formulas. By results of Ziegler and Herzog, the
quotient of this space by the relation of topological indistinguishable (points of Z,, belong
to the same open sets iff they are elementary equivalent) is nearly spectral in the sense of
Hochster. . :

The condition which fails is that the intersection of compact open sets need to be compact.
Nevertheless, one may define the dual topology which has a sub-L basis open open sets
the complements of compact Ziegler-open sets. It turns out that this dual topology is the
Zariski topology on the set of (iso.classes) of indecompensable pure-injectives, where those
are regarded, via the map V(€ Zy,) — N ® — € (R — mod , Ab), as injective objects of
the functor category (R — mod ,Ab). The Zariski topology on this functor category is
obtained by defining the Zariski spectrum over a coherent commutative ring in terms of
the module category over that ring and applying this category-theoretic definition to (R —
mod , .4b).
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Randomness, genericity and near model completeness

John Baldwin, University of Illinois, Chicago

Shelah and Spencer proved the 0-1 law for first order sentences about random graphs with
edge probability n~* (a irrational). Call the theory of sentences with limit probability 1,
T=. Slightly modifying a construction of Hrushovski, Baldwin and Shi showed that the

" class K4 of all graphs such that |H| — « (number of edges of H) > 0 for all subgroups H
of G is an amalgamation class such that the theory T, of the generic model M, is strictly
(a-irrational)-stable. A theory T is nearly model complete if every formula is equivalent
in T to a Boolean combination of existential formulas.
Theorem. T, = T°. This theory is nearly model complete, stable and not finitely axioma-.
tizable.

Homogeneous 3-graphs

Alistair Lachlan (Simon Fraser University)

A 3-graph is a pair (V, E) such that E C [V]*. Let F denote the class of all finite 3-graphs.
Subclasses of IF are considered which are amalgamation classes in the sense of Fraissé. For
A,B € F such that E4 N [Va N Vg]* = EgN[Va N Vg]® the no-edges amalgem of A and
Bis (V4UVg,E4U Eg). For X C F, the no-edges closure of X, denoted NE(X), is the
least subclass of F closed under isomorphism, substructure, and no-edges amalgamation.
Complementary notions: all-edges amalgam and all-edges closure are defined in the obvious
way.

For X C F, Ezc(F) (“exclude” X) denotes the class of all G € F such that no number of X
embeds in G. '

et D =({0,1,2},{{0,1,2}}) € F and C denote NE({D}).

Conjecture 1. (The strong conjecture) Let A C F be an infinite amalgamation class, i.e.,
infinitely many isomorphism types are represented. Then A is either no-edges closed or

- all-edges closed. .

Conjecture 2. (The W-conjecture) C is minimal amongst the amalgamation classes C F '
which contain both D and its complement.

Conjecture 3. (The weak conjecture) Let X C F be finite and Ezc(X) be infinite. Then
Ezc(X) is either no-edges closed or all-edges closed if it is an amalgamation class.

Theorem. Conjecture 3 holds when [X| = 1.

Deutsche
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Abstract theory of quadratic forms
and Boolean algebras

M.A. Dickimnanu - CNRS - Univ. of Paris VII, France

We began by introducing a new abstract theory of quadratic forms, called the theory of
special groups. A special group (SG) is a group of exponent 2.G. with a distinguished
clement, - 1, and a quaternary relation on G (better, a binary relation on G?) satisfying
seven first-order axioms. The quaternary (“special”) relation is intended to represent the
“isometry” relation for binary (quadratic) forms with coctficients in G. The category of
these objects (with natural homomorphisms) is equivalent to that of abstract Witt rings
(Marshall). Below we consider SG's satisfying an extra axiom, called reduced SG's; The
category (and the 1°! order theory) of them is denoted SGreq.

Results: . . e
(1) There is a duality - i.e. a contravariant functor - between the category SGreq and that

of abstract spaces of orderings (Marshall) with natural morphisms. Indeed, both categories
are (contravariantly) equivalent, even isomorphic. .

(2) Every Boolean Algebra (BA) is a SGr.q under symmetric difference, complement and
a “special” relation naturally induced by the order. . '

(3) Every SGred, G, is naturally embeddable in a “smallest” BA (namely, the BA of clopens
of its space of order, see (1)), its Boolean hull, denoted by Bg. The correspondence G — Bg
can be extended to morphisms so as to give a functor of the category SGreq to the category
BA of BA’s with homomorphisms. le., for every SG homomorphism f:G — H (where
G,H [= SG,.4) there is a (unique) BA homomorphism B(f): Bg -— By such that the

¢ L ,
d}agra.m ec | | ey commutes (e denotes the natural embedding of G into Bg).
Be g5 B

(4) Thus, the duality of (1) gets further decomposed into a pair of adjoint functors (namely

- B and the functor Sg: BA — SGr.q which assigns to every BA itself seen as a SGred),

Deutsche
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followed by the good, old, Stone duality for BA’s.

(5) The above allows to easily determine the injective, projective and free objects in the
category SGr.4 (namely, complete BA's, fans and fans, respectively), and to characterize
the monos and epis in this category (namely, injective homos. and homos f:G — H s.t.
Im (e o f) generates By as a BA, respectively).

(6) More generally, these tools allow a reinterpretation of the “funny” combinatorics used in
the algebraic theory of quadratic forms in terms of a combinatorics of filters and ultrafilters
in BA’s. As an illustration we give a short, structural proof of the “small” representation
theorem.

At the end we discussed some new exanples of abstract spaces of orderins (joint work with
F. Miraglia).
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Relative regularly closed fields

Y. Ershov, Novosibirks University

Let W bea qulezm' family of the valuation rings of a field F'. F is reqularly closed relative
to the family W ((F, W) € RC or F € RC(W)) iff for every regular extension Fy > F the
following equivalence holds: ‘

F <\ Fy < VR € W(Hg(F) <, FoHp(F))

(where Hg(F) - the henselization F relative R: Hr(F) = qn(R*)).

For a Boolean family W let Rw = N{R|R € W}. Introduce the following conditions:
(BAP) For every partition [aq,...,as] of W, every aq,...,a, € F, ¢ € J(Rw) \ {
(J(Rw) - the Jackobson radical of Ry ) there is a € F such that vg(a — a;) > vgr(e) for
‘every t <nand Re W,,.

(THR) For every absolutely irreducible f € Rw/(z,y] monic in z, for any a,b € Rw if
f.(a,b) # 0 and f(a,b)f!,(a, b)'l € J(Rw), then there is ¢,d € Rw such that vn(b d) >
vp(e) for all R € W(< (¢ - d)e'l € J(Rw)) and f(c,d) =0, (a — - ¢)f(a,€) fio(c, 5l

a unit in Rw.

‘Thm. 1 If (F,W) = (BAP) A (THR) thus (F, W) € RC.

Thm. 2 If W is a Boolean family of the valuation rings of F', then there is a regular
extension Fy of F, a Boolean family Wy of the valuation rings of Fy such that the map
Ry —» RyNF, Ry € Wy is a homomorphism Wy and W; Hp,nr(F) <1 Hr,(Fy) for all
. Ry € Wy and (Fy, Wy) = (BAP) A (THR).

Thm. 3 If W consists on the 7-valuation rings of f (for some fixed 7 € F'), then

(F,W) € RC = (F,W) = (BAP) A (THR).

Hrushovski’s proof of the Mordell-Lang conjecture -
for function fields in all characteristics ’

E. Bouscaren, CNRS, Paris

We present a brief survey of recent work by E. Hrushovski:

Theorem: (in any characteristic):

Let I be a field, ky C K, ky algebraically closed. Let S be a semi-abelian variety defined
over I, X a subvaricty of S defined over A and [' € S(K') a subgroup of finite type.
Suppose X NT is dense in .\,

14
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Then there is a rational homomorphism i from a gronp subvariety of § into asemi-abelian
varicty Sg, defined over by, and o subvaricty Xy of Sy, defined over by, such that X s a
translate of A~ \y). -

In particular, if tr K'/ko(S) = 0. then X is a coscet of a group subvariety of S.

We present the main steps of this model-theoretic.proof, which is "uniform” in all charac-

teristics, and the main model-theory results that are being nsed.

The starting point is to expand the field, to a differentially closed field in characteristic
0, and to a separably closed field in characteristic p. In these expansions, I' can be re-

placed by a definable subgroup of S of finite dimension. At this stage many results and

techniques developped these last years in “Geometric Stability Theory™ are used: Lanski

geoinétries, groups of finite dimeusion, non-orthogonality relation between dimension 1

types in particular.

Groups with identities

F. Point, Mons Universﬁ.y, Belgium

Let us first define certain identities which extéx_ld monoidal identities, Engel identities, m-
identities (an example of an m-identity is an identity of the form [x,y™,... y™] = 1) (see
(Boffa M., Point F.], m-identities, C.R. Acad. Sci. Paris, t. 313, Série [, p. 909-911, 1991).

Let a(z,y) be a reduced nontrivial word in {z,y,z7',y~'}. Let H= (3}‘;y"|i € Z).
Then a(z,y) =-y"‘ . f[ (y'zy=")% - 4, where v € H a; € Z,m,ig, 11 E':Z and the ¢’s

i=ig
. . . iy . .

increasing. With a, we associate R, = Y a;t' € Z[t,t7']. We will call w(z,y) =1

' . i=ig

an M,-identity if there exists v(z.y) with d;v = dyv =0 (w=1—v =1)and R, =
“.t7™(ag + ait + -+ + agt’) = t~"P, is such that €em(a;) = 1. Moreover M¢ = fem{|G|: G

is a group fo roots of P; modulo p in F;, for each prime p}. e -

We will say that G is of exponent m if.-G satisfies Ya{z™ = 1).

Transfer theorem: (see [Boffa M., Point F.] & [Poiut F.]: Conditions of quasi-nilpotency
in certain varieties of groups, to appear in Communications in algebra.) - :

Let C be a class of groups closed under taking subgroups, quotients and ultrapowers. Let
p be a prime number, m a natural number and C, the cyclic group with p elements.
TFAE: - ) . : : :

(i) every finite group in C of the form (C, % -:- x Cpj{h).(o(h).p) = 1 is nilpotent-by-
cxponent m.

(i1) every finite solvable group in € is nilpotent-hy-cxponent me.

(1it) every nilpotent-by-finitely gencrated solvible sroup in € is nilpotent-by- a finite group
of exponent m. ’ )

o
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(iv) every solvable linear group in C is nilpotent-by- a finite group of e’(ponent m.

" (v) every wy-saturated solvable Mc-group in € (in particular cvery stable group in C) is

nilpotent-by-exponent m.

We apply this transfer thcorem to the class C of groups which satisfy a Me-identity (or a
finite disjunction of M-identities). Call such a class an M-class.
Proposition: Any M,-class satisfies (v) of the transfer theorem above with m = M,.
Using a criterion of Shalev for a finitely generated pro-p-group to be analytic, a result
of Wilson on- finitely generated residually finite-nilpotent groups and the fact that fo p a
prime number the groups of the form C, or Cp» do not belong to an M-class C if p™ > ¢,
we obtain bounds on the nilpotency class of the finitely generated group of C.

Proposition: Let C be an M,-class. Let G be a nilpotent group in-C generated by r
elements. The the nilpotency class of G is bounded in terms of r and £. ‘

Using the positive solution of the restricted Burnside problem, we show the following

Proposition: Let C be an M-class. Let G a solvable group in C generated by r elements.
Then G is (nilpotent of clas < g(r, £))-by-(a finite group of exponent M¢).

We also show that we can bound the exponent of the finite groups in an Mj-class in terms
of £ and M- ) . B

Value Groups of No'narchirnedea_n Exponential Fields

F.-v. Kuhlmann, Heidelberg

Every expansion of the theory of the ordered field IR has models on which the order is
nonarchimedean. In that case, they have a natural valuation associating to every element
its archimedean class. We study the valuation-theoretical structure of nonarchimedean
models of the theory of the reals with exponentiation. In particular, the exponential
induces a partial map on the value group whxch can be prolongated to a total map x called

_a contraction and satisfying:

(1) xz=0<>z=0 2)xpreserves< 3) Y(—z)

(4) If z and y are a.rchxmedea.n and have the same sign, then Xz =Xy 5) (nevertheless)‘
X is surjective. . )

The growth axiom scheme

. expz > " for sufficiently large = (neN)

translates to the axiom (CP)  Vrjyz| < |zl; a contradiction satisfying (CP) is called
centripetal. '

Thm. 1: The theory of divisible ordercd abelian-groups with «eumpenl contraction is

- model complete. complete, decidable and admits QE.

" 16
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Thm. 2: It is morcover weakly o-minimal.
The second theorem is obtained by an anal
{0, 4, -, <,x} of contraction groups. As maps ou the
constants are equal to y-polynomials zex™e + -+ g + zor (5 € 2); all these are
monotoue.

For every term built up with cons
subsets s.t. on cach of these subsets. the term is equal (as map) to a “gen
polynomial”. Again, all generalized y-polynomials are monotone. Example (a € G)t(x) =
x(z +a) - x( — «) has graph

v= natural valuation of the ordered group G

ysis of the terms buildt up in the langnage
group, the terms built up without

tants., there is a finite partition of the group into convex
eralized \-

The Frattini Subgroup
(Frank O. Wagner. Oxford)

b
SEed.

In a finite group G, the intersection of all maximal subgroups form a characteristic sub- -

group $(G), the Frattini subgroup, H is also characterized as the set of all non-generating
elements. If H is normal in G, then H is nilpotent iff H®(G)/®(G) is nilpotent. This may
be (need to deduce the existence of nilpotent supplements (i.e. if N aG and G/N nilpo-
tent, there is H < G, G = NH and H nilpotent) and ultimatively of Carter subgroups
(i.e. self-normalizing nilpotent subgroups) in solvable groups. In a stable group, we define
®(G), to be the union of all definable normal subgroups which do not have a supplement.
This is a normal subgroup, and a union of definable ones (which, however, may vary with
the model). We prove: )
Theorem 1: If M is a family of uniformly definable normal subgroups without supple-
ment, then modulo some definable normal subgroups N without supplement M generates
a nilpotent group. B

Theorem 2: If M is a type-definable normal subgroup of a saturated R-'gg'roup G such
that H®®(G)/®(G) is nilpotent, then there is N as above such that H?®/N is nilpotent.
The proofs use the existence of nilpotent supplements and Carter subgroups in the Frattini
free component H® of an R-group. So the order of things is reversed in comparison to

finite group theory.

Finally, ®(G) arises in a different context for an abelian group as family of possible cohe-
rents of quasi-endomorphisms.
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Extending partial isomorphisms

(Bernhard Herwig, Paris)

The aim of the talk is to present a theorem of Hrushovski, which is used in the proof of
the small index property for the countable random graph as presented by Wilfrid Hodges -
and David Evans. We also present the following generalization of Hrushovski's Theorem:

Theorem: Let A be a finite relational structure. Let py,...,p, be partial isomorphisms
on A There exists a finite structure B and partial isomorphisms f, ,---»fn on B extending
P1,--+,Pn-

The theorem of Hrushovski is the same statement where. 4 and B are graphs. In the sam
way Hrushovski’s theorem can be used to prove the small index property for the countab
random graph. The generalization can be used to prove the small index property for the
countable random structure in every finite relational structure.

Univeréalit’y of the automorphism
group of the real line

Frieder Haug, Tiibingen

In this talk we discuss the following question about the automorphlsm-group Aut((R, <))
of the real line (R, <): -

Question (U. Felgner, 1991); Is Aut((lR, <)) universal?

Here we call the automorphism-group of a linear order (Q, <) universal, if for each linear
order (L, <) with IAut((L <))| < |Aut((Q NI, Aut({L, <)) is embeddable into Aut({2, <
))-

We show that the above question cannot be answered just with the axioms of ZFC or
ZFC + CH, by proving the following three theorems:

Theorem A (ZFC + 2% < 2% + SH): Aut((R, <)) is unviversal. )
Theorem B (ZFC + 2% = 2% ): Aut((R, <)) is not universal. , .
Theorem C (V = L): Aut((R; <)) is not umversal

Here SH denotes the Saishi Hypothesis: if (L, <) is a non- -separable lmear order, then
(L, <) contains an uncountable family of disjoint open intervalls. -

If we view Aut((R, <)) not just as a pure group, but also as a lattice-ordered group (¢-
group), then we can define analogously as above the notion of a £-universal automorphism
group of a linear order. We can prove analogous theorems for this notion.

18
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Definable subgroups of algebraic groups
over finite fields

Anand Pillay, Notre Dame (USA)

I discuss joint work with Hrushiovski.

Deutsche

Unless otherwise said F denotes a bounded perfect PAC field (bounded means small, i.e.
there are only finitely many continuous homomorphisms from Gal(F/F) into any given

finite group.) o o
Let G be a connected algebraic group defined over F. We use model-theoretic and sta-

bility theoretic methods to study (dcfinable) subgroups of G(F), and we have various
applications.

Theorem 1. Let {X;;i € I} be a family of Zariski-irreducible definable (in F) subsets of
G(F), each containing identity.

Let G, be the subgroup of G(F) generated by all the X;. Then G, is definable (in F) (and
is thus a finite-index subgroup of H(F), for H some connected algebraic subgroup of G,

defined over F).

Theorem 2. Let G, be a definable (in F') subgroup of finite index of G(F). Then thereis
a connected algebraic group H defined over F, and a surjective F-rational homomorphism
f:H — G, with finite kernel, such that f(H(F)) < G, (and moreover f(H(F)) has finite

index in Gy). o

A special case is where F is a pseudofinite field. We have the following consequences

a) For F,G as above (i.e. F add perfect PAC); G(F) is definably simple iff abstractly
simple. . . :
Moreover if G is simple as an algebraic group, then there is a deﬁnabl'e:"—éubgroup G,
of G(F) of finite index, such that G is simple on an abstract group.

b) (Nori) Let G be a connected simple algebraic group defined over Z. For p a prime, let

G, be reduction of G mod p.
Let T < G(Z) be finitely generated and Zariski dense (in G). Then for all but finitely

many p, I'/p = G,(F,).
c) Let G be as in (h). Then the set of maximal subgroups of G,(F,) (p a prime) is
-uniformly definable (where p varies). '

d) Let G be a simply connectéd almost simple algebraic group defined over F. Then
G(F) is simple (modulo its finite centre) as an abstract group.

Forschungsgemeinschaft
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The Buium-Manin homomorphism

Anand Pillay, Notre Dame

Let K bea d;ﬂ'erentially closed field of characteristic 0. Let 4 be an abelian variety, defined

over . Identify 4 with A(K).

. Proposition 1. There is a DCF-definable homombrphism f from A into K™ (some n)
such that Ker(f) has finite Morley rank (in the differentially closed field K).

Proposition 2. Let I -be a subgroup of A which is the divisible hull of a finitely generated
group. Then there is a finite Morley rank definable subgroup of A, say I'y, such that T’ < F.

- We give an outline of the proofs of the above results.

Exponentiation ‘and Formal Power Series

David Marker (UIC)

‘We report on joint work with Lou van den Dries and Angus Macintyre. Using formal

Deutsche
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power series we construct natural nonstandard models of R,,(exp), the real numbers with

exponentiation and analytic functions on bounded sets.

With these methods we prove:

1) fz)y=/f; et’dt is not Ran(exp) definable

2) Let f(z) = logz(loglogz) and let ¢ be its compositional inverse. Then g is not
asymptotic to a composition of exp, log and algebraic functions.

O-minimal groups and rings

Charley Steinhorn (Vassar College)

We discuss joint work with Kobi Peterzil. Let M = (M, <,...) be an o-minimal structure
such that (M, <) is a dense linear order. A group (G, +) is definable in M if G is a definable
subset of M™ for some n and * is a definable function. It was shown by A. Pillay that every
definable group in an o-minimal structure admits a definable topology via an “n-manifold”,
with finitely many charts. Definable rings are given similarly.

We say that a manifold X is definably compact if for every path p:(a,b) — X definable in ~
M, both lim p(t) and ‘lirzl_ p(t) exist and are elements of .X. About definable compactness,

t—at
we prove

20
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Theorem X C M" ix detinably compact here X is asubset of M with the usual topology

- if and only if X is closed and hounded.
It follows that the continnous image of i close d and bounded set under a detinable mapping

is closed and bounded. Turning now to groups and wap, we have the following

Theorem Let (G,+) be a definable group in an o-minimal structure M which is not
definably compact. Then there is a definable H <G, dim H = 1, and H is divisable and
abelian.

Theorem Let R = (R, +, «) be o definable ring in "M which does not have zero divisors.

Then R is either a real closed field of dimension 1, R( v—1) for a definable real closed field
R (of dimension 1), or R is the ring of quaternious over a definable re d closed field R

(again of of dimension 1).

An unclassifiable unidimensional theory
without the OTOP e

Bradd Hart, McMaster A,Universi_ty

Using Shelah’s Main Gap for countable theories and related results, one can prove the
following theorem, specialized in this case to a countable unidimensional theory:

Theorem (Shelah). If T is a countable unidimensional theory then equivalently

1) For every M |= T there is My < M, [M,| < 271 and N > My with ¢ = tp(N/M,)
dominated by a regular type such that M is primary over My and a basis for g.

2) T is not unclassifiable ’

3) T does not have the OTOP

where T is'unclassifiable if for every reluar A > |T| there are M;, Mz = T of cardinality A

such that M; % M> but may be forced isomorphic by a forcing which preserves all cardinals

and add the new subsets of A of cardinality < A

and

T has the omitting types order property (OTOP) if there is an L-type p(z,y, z) such that
for all A there is N k=T and (aqa: @ < A) € N such that NV realizes p(z, aq,ag) iff-a < 3.

In general, for an arbitrary language 1) = 2) = 3). It is hoped that in general 1) and 2)
are equivalent. Ambar Chowdhury and [ have constructed a unidimensional theory which
is unclassifiable but does not have the OTOP so in general 3) 74 2).



The small index property for w-categorical,
w-stable structures and for the random graph

David M. Evans (Norwich)

Continuing the discussion of the paper of Hodges, Hodkinson, Lascar and Shelah, intro-

duced by Wilfrid Hodges, we presented a proof of

Thm (HHLS) Suppose M is either an w-categorical, w-stable countable structure, or the
random graph. Then M has the small index property: If H is a subgroup of Aut(M) of

index < 2% then H contains the pointwise stabiliser in Aut(M) of a finite subset of M. -
The proof uses the existence of comeagre sets of generic automorphisms in (Aut(M))®
which in turn relies on known facts about M, due to Cherlin, Harrington and Lachlan an
Hrushovski (for the w-categorical, w-stable M) and Hrushovski (for M the random graph).

On simple groups of finite Morley rank

A. Borovik (VMIST, Manchester)

Let G be a group of finite Morley rank (FMR). We say that G is bad, if every proper

definable connected subgroup is nilpotent.
A bad field is a structure of FMR of the form

(K +,-, M),

where (K;+,-) is an a.c. field and M is (a predicate for) proper infinite subgroup of K*.

G. Cherlin conjectured, specifying the well-known Cherlin-Zilber conjecture on groups of

FMR, that simple groups of finite Morley rank which do not interpret bad field or bad

groups are simple algebraic groups over a.c. fields.

We call a simple group of FMR tame, if it does not interpret a bad group or a bad field and

if, in addition, every proper definable connected simple section of G is a simple algebraic

group over an a.c. field. Obviously a minimal counterexample to Cherlin’s conjecture is a. |
tame group. . -
The talk was devoted to discussion 2-Sylow theory and signalizer functors in tame groups.

First results in the theory of tame groups are very instiring and promising and give hopes

of eventual classification of this group.
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Elementary theories closed to modules and coverings
by classes of permutable equivalences

E.A. Palyutin (Russia, Novosibirsk)

Equivalences a, J are permutable if the composition a0 .3 1s an equivalence. Let P be a
sublattice of the lattice of all equivalence relations on set 4 and all . 4 € P are permutable.
Equivalence « has finite index in set Y, if o [ ¥ has finitely many classes.

Def. A set X has finite multiindez in a set ¥ relative to the lattice P iff there exists a
chaine ap C --- C a, of P-equivalence relations, s.t. X is an ag-class. ¥ is an a,,-class,

X CY and for any i < n equivalences ; have finite index in wip1-Y.

Next theorem is a generalization of the famous Neuman's lemma.

n
Theorem Let Y, X\,...,Xn be classes of equivalence relations from P, Y C X, and
’ | .
3 1

Yy¢g CJX.-. Then X, has finite multiindex in Y. This theorem is used for the proof of

2 o
quantifier elimination for Hom stable theories with NDOP via positive primitive formulas.

Topological automorphism groups

Wilfrid Hodges, QMW, London

The talk was an introduction to the talks of Evans, Herwig and Macpherson on aspects
of the small index property. It defined automorphism groups as topological groups and
as complete metric spaces. The following theorem (from Hodges, Hodkinson, Lascar and
Shelah, “The small index property for w-stable, w-categorical structures and for the ran-
dom graph”, J. London Math. ‘Soc. 48 (1993), 204-218) was proved: If the topological
group G is a complete metric space and H is a neagre subgroup of G, then H has index

>2¥inG.

Berichterstatter: M., Tressl
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