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Tag u n g s b e r ich t 2/1994

Aigebraic Combinatorics
09.01.-15.01.1994

The conference was organized by E.Bannai (Fukuoka), A.A.Ivanov (Moscow), A.Kerber
(Bayreutb) and U.Ott (Braunschweig). This was tbe first Oberwolfach meeting on Al­
gebraic Combinatorics hut in asense it was a succesor of two earlier meetingS on the
subject held in Vladimir (Russia) in 1991 and in Fukuoka (Japan) in 1993. The confer­
ence brought together mathematicians from various Countries working in different ~eas
of Algebraj.c Combinatorics. There was always a eommon thread, namely an application
of association schemes and their analogs. O.Tamaschke.gave aseries of two expository
lectures on the theory of S-rings. This exposition of a subject fundamental to the the­
ory of association schemes was very helpful for the participants. Numerous other talks
were given on traditional aress of Algebraic Combinatorics such as the theory of CP
and Q)-polynomial schemes, representation theory of symmetric groups and the theory
of diagram geometries. Progress in these areas was reported, for instance the possibil­
ity of answering existence and uniqueness questions for the sporadie simple groups by
studying their diagram geometries. Moreover, a number of new and rapidly growing
a.reas of Algebraic Combinatorics were well represented at the conference. These new
subjects include the theory of spin models, originally motivated by certain problems in
theoretical physics, and the theory of Terwilliger algebrss which appeared as a highlight
of the theory of (P and Q)-polynomial association schemes. The high level of interac­
tioDS between participants has amply fulfilled the hopes of the organizers in bringing
together these diverse groups of researchers to foeus on the theme of association scheme
and representation theory.

The organizers wish to thank the "Mathematisches Forschungsinstitut Oberwolfach" for _
its very kind hospitality.

E. Bannai, A. A. lvanov, A. Kerber, U. Ott
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Vortr(.\'~sa,usziige

J. ANDRE:

Non-commutative ·Spaces and Algebraic Combinatorics
A (non-commutative) ",pllce is a structure (..\", F) with }( :1= 0, F ~ P(X2) and with:

(i) any (x, y) E ,.,y2 lies in exactly one f E F,

(ii) {(x,x) I x E X} E F.

A line xOy is defined by xOy := {x, (x,y)} U {z I (x, z) = (XI y)}, where (x, y) = f E F.
In general xOy #: yOx. Examples are the homogeneous coherent configurations in
the sense of D. G. Higman (Geom.Ded. 4(1975),1-32) which are also called strongly
skewaffine spaces. Generalizations of them are the skewaffine spaces. A skewaffine space •
with xOy = yOx is affine. Some modifications of the adjacency algebras belonging
to those spaces are considered and some applications, especially on group-theory, are
presented.

R. BACHER:

Generalized Hadamard Matrices
We are interested in constructing matrices M E GL(n, C) which satisfy

M-1 =.!.M-l

n

where M- 1 is defined by (M-!)jJk = (MA:J)-l. Dur method is to look for a finite group
G of order n and an element Q =E Qg9 in the group algebra CG such that

1
0'-1 = _ '"Q-lg-l.

n.LJ 9

We shall give examples and VIf! shaU outline some relations with association schemes.

E. BANNAI:

Spin Models and Association Schemes, II
This is a joint work with Etsuko Bannai and Franc;ois Jaeger.
Using the results explained in Jaeger's talk, we get the following
Main Theorem. Let X(G) be the group association scheme of any finite abelian group
G. (1) For each fixed dual map 1/1 of X(G) (Le., for each character table P of X(G)
satisfying P = t P), we determined explicitly all the diagonal matrices ~ satisfying the •
modular invariance property: (P~)3 = >"1. (2) For each solution ~ in (1), we can .
associate a generalized spin model on the group G.
Remark. Generalized spin models on finite abelian groups constructed for any even
Qalattice by V. Kac - M. Wakimoto al1 appear among these constructed in the main
theorem. Also, generalized spin models on abelian groups which generate the Bose­
Mesner algebra of the group association scheme are special cases of those constructed in
the main theorem.
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B. BAUMEISTER:

Flag-transitive Dual Extended Grids

Let G be a group acting ßag-transitively on a. dual extended grid r (~ : we hav~

points, lines and grids, and two lines which intersect in a point define exactly one grid.)
There are the following examples:
A family cf Rag-transitive geometries, whose members have as collinearity graph the
Hamming graph, the sporadie example G 9! J3 and its tripie cover 3J3 and finally
the extended temary Golay Code, whose universal 2--eover is a member of the family
mentioned above.
We proved

If Go/Kn is an almost simple group, n a grid, and K p = 1, P a point, then
G ~ J3 or 3J3•

How can we generalize the assumption of almost simplicity of GnlKn? For the moment
it seems reasonable to demand faithful and primitive action of GO/ Kn on the two parallel
classes of lines of the grid ll. We already know, that Go/Kn is not an affine group.

A. BLOKHUIS:

Extensions of Redei's Theorem
Let f : lFq -. lFq , q =p''', and N := I{ [(:2=;hd :x, y e lF~, x i= yH· .
In 1970 Redei showed that the value of N is restricted to a few intervals. A. E. Brouwer,
T. Szönyi and the speaker further restricted the possibilities in 1992. Recently T. Szönyi
observed that the same result applies if f is a partial function, assuming that IDorn{f) I >
q - .;q/2. A generalization in the other directions gives that if X ja a set of q+m points
such that there are less than (q + 1)/2 - vq directions corresponding to a passing li~e,

then m > ..jq/2 OI allIines in other directions intersect X in 1 mod p points.

M: CLAUSEN:

Fast Fourier Transforms and Efficient CODStructiQD pt Irreducible
Representations .. ,"
(Joint work with U. Baum). By Wedderbum Theorem, the complex group algebra of a
finite group Gisisomorphie to an algebra of block-diagonal matrices. Every such iso­
morphism D : fi)Di : ce --+ EDi:lce)(di is called a Discrete Fourier Transform (DF'r) for
CG. It involves a ~omplete list Dlt ... , Dn of pairwise inequivalent irreducible represen­
tatioDS of ce. The linear complexity L(G) of G is the minimum number of anthmetic
operations (addition, subtraction, scalar multiplication) to evaluate a suitable DFT for
G at a generic (input) vector. (H only multiplication by scalars of absolute value ~ 2 is
allowed, we get the 2-linear complexity L2( G).) Trivially, IGI - 1 ~ L(G) ~ 21G1 2 .

Theorem

(1) L(G) =O(IGI3/ 2), for any finite group G.

(2) L 2(G) = o(lGllog3 lGI), for GE {Sn, An}.
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(3) L~(!J)= ()(IGII()~ IGI), if G is sllpersolvable.

(4) L2 (G) > 1/4IGllogIGI, for any tinite G.

(5) L 2(G) > 1/2IGIl~~ IGI if G is abelian.

(6) If the sllpersolvable group G is given by a power-commutator presentation, then
the irreducible reprcsentations can be constructed in time O(IGllog IGI).

More information and proofs can be found in our book: M. Clausen / U. Baum: Fast
Fourier Transforms, BI, 1993.

A. E. COHEN:

On ·Chen Zhijie's Conjecture

Take k ~ IF3 ,G = GL(4,k), V = Sym3k4 j(cubes). Then dimG = dimV = 16. Thise
module came up in Liebeck's classification of group actions (G, V) with finitely many
orbits of G in V, but wasn't actually settled as 8.11 example. It was studied by ehen Zhijie
in "A new prehomogeneous vector space of char p" ,Chinese Annals 0/ Math. 8B(1987),
22-35, where he presented several orbits and conjectured tllat these are all. In joint
work, David B. Wales and I have shown (computations need to be double checked) that
his conjecture is true in spirit (there are finitely many orbits), but wrong in the sense
that an additional orbit was found.
As a byproduct, it was found that, for a.ny characteristic, GL(4, k) has an invariant
polynomial of degree 8 on Sym3k4

•

C. GODSIL:

p-Ranks cf Projective Planes
Let B be the incidence matrix of a projective plane P of order n. Bruen and Ott proved
that, if p divides n, the rank: of B over GF(p) is at least n3/

2 + 1. (lf p divides n then
rk,,(B) ~ n2 + n.) We improve Bruen and Ott's bound to

{
n3/2 + 1 + L!!±!J, n even ;

n3f2 +$!. nodd.

This is obtained' by estimating the p-rank of B <8> BT , making use of the fact that there
is a 5-class association scheme on the antiftags of P.

P. DE LA HARPE: e
Jenes' Basic Censtruction and Invariants of Cembinatorial Objects
Let X be a square complex matrix such that tXX-! = nI (where eX)j,k = X kJ and
(J'Y-!)j,k = ("Yj,k)-l). Mimicking part of V. Jones' theory for subfactOIS and operator
algebras, we associate to }( a Ucommuting square" of semi-simple algebras. Invariants
of this square (such as the Wey! group and the higher relative commutants) provide
interesting invariants of X. They can be computed for several examples related to
Hadamard matrices and stronlgy regular graphs.
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T. ITO:

The Terwilliger Aigebras of Cyclotomic Schemes

The Terwilliger algebra of an associatioD scheme was introduced by Pani Terwilliger in
bis study of P- and Q-polynomial schemes and he himself called it aT-algebra or a.
subconstituent algebra. It is a semi-simple algebra containing the Bose-Mesner algebra.,
and it captures something about one point stabilizers when the scheme comes from a
group action.
Terwilliger established the representatioD theory of T-algebras for thin P- and Q-polyno­
mial schemes. For other classes of association schemes, not much is known about the Ter­
williger algebras and the investigation of their representations has just recently started.
Here we analyze the representation of the Terwilliger aJgebras for cyclotomic schemes by
use of the Jacobi sums and determine the irreducible representations completely when
the ciass is two.

A. A. IVANOV:

On Geometries of the Fischer Groups

Tbe Fischer groups Fi22 , Fi23 and Fi24 are associated with a number of diagr~geome­
tries some of which have been recently characterized. Exploiting a relationship"hetween
these geometries we obtain some further characterizations. In particular we prove ~he

simple connectedness of the Ronan-Smith 2-local parabolic geometry of the lugest ,Fi­
scher group Fi:u and of its analogue related to the nonsplit tripie cover 3 · Fi2~' The
diagrams of these geometries are the following:

>----~O

>-----~O

Fi24: C 0 0 0

2 2 2 2

3·Fi24 : C : 0 0

2 2 2 2

F. JAEGER:

Spin Models and Association Schemes, Part I

This talk presents some joint work with Eiichi and Etsuko Bannai. In 1989 Vaughan
Jones introduced spin models as a way to construct invariants of links in 3-space, and
we deal here with the nonsymmetric generalization due to Kanaga, Munemasa, and
Watatani. Such spin models can be defined as pairs (w+, w-), where w+, w- are matrices
in Mn(C) which satisfy certain equatioDS. With every spin model we associate two
subspaces M, 'H. of Mn{C) containing 1, J, w+, w-, &uJ+, tw-. M is closed under
ordinary product and 11. is closed under Hadamard product.
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1. M a.n<! 'H are isonlorphic ,loS alge bras.

2, When)\.1 = H., we havp. the Bose -Mesner algebra of a self-dual association scheme.

3. In this case, if P is the first eigenmatrix of the scheme, there exists a diagonal
matrix ß and ..\ E ce - {O} such that (Pß)3 = AI (modular invariance),

4. for abelian group schemes, each such a gives a spin model.

G. D. JAMES:

Immanants of M-Matrices
Given a partiton A of n, one obtains a narmalized immanant d" of an n x n matrix
M = (Mi;) by defining _

" X~(M) •
d>.(M) = L.J -(1)mt.hrm 2.21r· • ·1nn.n... ,

1feS~ X"

where X..\ is the irreducible character of Sn which is indexed by A. Far various classes
of matrices, there appear to be many inequalities between normalized immanants. It
is known, for example, that det M ~ d~(M) for an Hermitian positive semidefinite
matrices, and the conjecture that d~ ~ permM for these matrices remains an intriguing
open problem. In our talk, based on joint work with C. R. Johnson and S. Pieree, we
discuss the problem of finding inequalities between immanants of M-matrices. The main
result coneerns the existence of a set of "test-matrices" for such inequalities. For eertain,
readily defined, matriees Mo (one for each partition Q of n), we have d>..(M) 2: dp(M)
for all n x n M-matrices M if and only if d,,(Mo ) 2: dp(Mo ) for all partitions Q of n.
Several examples are given which illustrate the power of this theorem.

M. H. KLIN:

On Classical and Direc~Versions of Strongly Regular Graphs
Aceording to A. Duval a directed regular graph r of valency k with v vertiees is called
a directed strongly regular graph (d.S.I.g.) or a {v, k, J,&, A, tl-graph if

A2 =tI + AA + ~(J - I - A) ,

where A = A(r) is the adjaceney matrix of r. The ease t = k is equivalent to the
classical definition of s.r.g.
1. For each n 2: 3 there exists (n(n - 1), 2n - 3,2, n - 2, n - 1)-graph which is invariant_
with respect to the natural action of the symmetrie group Sn on n(n - 1) points. TheW
ease n =5 gives a positive answer to a question of Duval.
2. Ta each projective plane of order q there eorresponds a «l( + q + l}(q + 1), q2 +
q, q, q-1, q)-graph which is obtained via merging of elasses of the association scheme on
flags.
3. There exists a primitive rank 3 s.r.g. (in a elassieal sense) with parameters v = 81,
k =40, ,\ = 19, Jj = 20, which admits a regular action of Zg x Zg. This gives a positive
answer to a question of K. T. Arasu, D. Jungnickel, S. L. Ma, A. Pott.

6
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R. LAUE:

Double-Cosets

For constructive purposes it is not sufficient to determine the number of double cosets.
Instead a set of representatives is needed. Of cours~~ a general solution is rliflicult and
would for example salve the graph isomorphism problem. Therefore we discuss special
situations using the homomorphism principle via achain of subgroups or by prescribed
stabilizers. .~ combination of both yields a tool which has been successfully applied
to the construction of new 6-designs by Schmalz and will now he developed for dOllble
eosets more generally. As an example the construetion of eyele permutation graphs is
shown.

V. I. LEVENSHTEIN:

• A New Lower Bound on the Size cf Classical t-Designs
A system S =S.\(t, k, v) of k-subsets of a v-set possessing the property that any t-subset
of the v-set belongs to ,\ k-subsets of S is referred to as a (elassical) t-design. A problem
of obtaining lower bounds on the size of a t-design is eonsidered. The following bounds
for t-designs are well known: :.: ~.

151 ~ (;) / (~) (Steiner. 1853) I

ISSI ~ (~)., (v ~ 1) (WJlson. Ray-Chaudhuri. 1971).

where t = 2l +1, 'Y E {O, I}, 2k ~ v.
A new lower bound on the size of t-designs is obtained which for some classes is attained
and better than the above mentioned bounds. The proof of the bounds is based on (i)
Delsarte's inequalities for codes and designs in P- and Q-polynomial association schemes,
(ii) the solution of the code problem for the system Q of orthogonal polynomials and
(iii) a duality of bounding the sizes of codes and designs for finite spaces. -'-

S. LÖWE:

Generalized Quadrangles with a Regular Point and their
Association Scheme

H r is a generalized quadrangle with regular point we can associate with it an assoeiation
scheme A(r) of class 4. Given an association scheme A with the same parameters as
A(r), is it possible to reconstruct r from -4.1 A partial answer to this question uses the
characterization of r as a cover of a net. From.A we construct two geometrie objects X
ud.N and a projection map p: X --+ N. Then the following are equivalent:

1. r can be reconstructed from A.

2. pisa triangle free cover of a net N with suitable parameters.

7
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3. Maximal c1iqlle~ uf A with respect to ODe or the relations are or eOll:stallt size
dcpellding on t,he para.n1(~ters of A, and .,V is a net with suitable parameters.

In this contcxt }! is a "llct if and only if any two of its lines meet in a. unique point and
any two of its points are joined by a unique line.

A.. MUNEMASA:

Graphs of Alternating, Symplectic, and Quadratie Forms

Let q be apower of 2. We eonsider the graph Alt(n + 1, q) (resp. Sym(n, q), Quad(n, q) )
whose set of vertices is the set of all altemating bilinear fonns on an n + l-dimensional
vectorspace over GF(q) (resp. al1 symmetrie bilinear farms on an n-dimensional vec­
torspace over GF(q), all quadratie forms on an n-dimensional vectarspace over GF(q». _
Two vertiees are adjacent iffrank(x-y) = 2 (resp. rank(x-y) = 1 or 2, rank(x-y) = 1 _
or 2). Alt(n + 1, q) is isomorphie to Sym(n, q) as graphs but not isomorphie as Schur
rings. Indeed, Alt(n+l, q) is self-dual as Schur ring, while Sym(n, q) has dual Quad(n t q),
which is not isomorphie to Alt(n + 1, q).

M. MUZYCHUK:

The Structure cf Schur Rings ovar Cyclle Groups of Square-Free Order

Let Zn be a cyeUe group, on is a square-free number. We give an explieit description af the
strueture of S-ring aver Zn. Every S-ring is uniquely determined by a pair (F, {QF }FEF),
where Fis a topology defined on the set of prime divisors of n and {QF }FEF is a family
of subgroups of Z: satisfying some additional conditions. .

S. NORrON:

Transposition Groups
The main topic was 3-generated 6-transposition groups, with emphasis on the Monster.
It was shown how the braiding operations could, by use of a standard homomorphism
from the 3-string braid group to the modular group, lead to a way of associating a
polyhedron, ealled a football with every set of 3-transpositions. Such a polyhedron
would have trivalent vertices and its faces would have at most 6 sides. Oue possibility
is for a genus 1 surface (called doughnut) where all faces were hexagons and there is
DO degeneracy; otherwise Euler's fonnula means the genus would have to be O. By
homological arguments the size of a football can be correlated with the order of thee
product of the 3 transpositions, and it is also possible in principle to calculate the total
number of footballs - estimated to be about 10000 for the Monster. A possible assoeiation
with Moonshine was discussed, hut this is not believed to be fruitful.

8
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D. V. PASECHNIK:

Combinatorial Characterizations cf Geometries far Sporadie Groups

We survey recent results concerning characterizations of sporadie group geometries with­
out assumptions on group actions, which may be viewed as an attempt to create a theory
unifying buildings and affine polar spaces with sporadie geometries.

1. D. V. Pasechnik: Geometrie characterization 0/ graphs jrom the Suzuki chaln.
Eur.J.Comb. 14(1993), 491-499.

2. D. V. Pasechnik: Geometrie characterization 0/ the spomdie groups Fi22 , Fi23 and
Fi24 • J.Comb.Th.(A), to app~.e 3. D. V. Pasechnik: E:rtended generolized octagons and the group He. preprint 1993.

eH. E. PRAEGER:

On Hexagonal Graphs
This is joint work with ManIey Perkel.
A hexagonal graph is a graph r with a set C of hexagons (cycles of length 6) such that
each 2-arc of r lies in a unique hexagon in c. We studied hexagonal graphs such that
Aut(r) is transitive on 2-arcs and Aut(r)~(Q) is 3-transitive. Two new infinite families
of hexagonal graphs with valencies 2", d ~ 2, were conStructed. It was shown that the
two smallest graphs, one from each. family, are the only two hexagonal graphs such that
Aut(r)~(Q) is 3-transitive, and such that the set of vertices a(a) which are antipodal
vertices of the cycles in C containing Q ~as minimal size Ir(o)l- 1. The two examples
are:

1.) Valency 4, 32 vertices, Aut(r) =55 x 53, and

2.) Valency 8, 270 vertices, Aut(r) =Sg.

A. SALI:

On the Rigidity of Spherical t-Designs

Spherical t-designs were introduced by P. Delsarte, J.M. Goethals and J.J. Seidel.

Definition A finite X C Sei is called a spherical t-design in Sei iff .

1 f 1
IS"I 15" f(x)dw(x) = IXI ..~ f(x)

holds tor all polynomials /(%) 0/ degree ct most t.
Definition A spherical t-design X is C4lled rigid iff any sufficiently close t·design X' to
X is an orthogonal trans/orm 01 X.

9
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Thc coucept of rigid :;pherkal f.-dcsigns was introduccd by Bannai. He conjectllrcd that
there i:; a fllnctioll f{f. d) such that if ~"( is a spherical t design in thc tl-dimensional
Euclidean space so t.hat I..YI > f(t, ci), then .'( is non-rigid. Furthermorc, he asked
to find examples of ri~id but not tight spherical designs. In the present talk we shall
investigate the case of t=2 anti find aseries of non-tight but rigid designs. Also an
important duality property of spherical 2-designs is discussed. In the second half we
take X as an orbit of a finite refiection group and prove that X is rigid iff tight for the
groups An, En , en , Dn , E6t E7t F4t 13 •

J. SAXL:

Exceptional Polynomials

A polynomial in lFq [Xl inducing a permutation on lFq is a pennutation polynomial. It is
an excep~ionalpolynomial, if it is apermutation polynomial over lFqt for infinitely many •
qt. Carlitz (1965), based on work of Dickson (1896), eonjectured that for n fixed, even,
there is a constant Cn such that there are no permutation polynomials for q odd with
q > Cn. This translates inta: There are Da exceptional polynomials of even degree in odd
characteristic. This has been proved in a joined work with M. Fried and R. Guralnick
(Israel J. Math. 82(1993), 157-225). Information was also obtained in the general case,
which has been used since by S. Cohen and R. Matthews to construct a. new family of
exceptioilal polynomials in even chara.cteris~icof degree n =2.-1(2' - 1), S odd.

R. SCHARLAU:

Glueing Integral Lattices
We study even integrallattices L with a prescribed decomposable sublattice L11..L2 ~ L.
Assuming L2 = QL2 n L, such a la.ttice is of the form

L = LI x4- ~:= {x+y E Lr eLf IxE S,c/>X=Y}

for a unique subgroup S ~ Tl and :n ~metry (~f ~~e quadratic farms) t/>: (S,q~ .....
(T2, -q2). Here, ~ = T(L,) ;= Li /Li 18 the discnmmant group of Li, where Li :=
{y E Li I (Li, y) ~ Z} denotes the duallattice, and q, : n ..... QjZ, q,(x) = (x, %}/2 +
Z, is the discriminant quadratic form. Assume moreover that Lisselfdual and LI,
L2 are characteristic sublattices. Then the possible L are described by double cosets
O(L2 )\Aut(T2 )/4lcQ(L1). We consider as a complicated example the esse n = rankL =
32, r = rankLl = 20, LI 2 20A1(root system), L2 = Lt n L, minL2 = 4 (in fact, •
L2 ~ 2D12 ).

J. J. SEIDEL:

Spherical Designs and Tensors
1. A spherical design of even index q is a finite set U such that

f cg)quda(u) = .!:. L 0 9u
1n n uEU

lO
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where IUI = n, U c n er, unit sphere n. qth tensor power ®qa = a ~ ... & a baving
coordinates the monomials of degree q in the coordinates (at, ... ad) = ß. Equivalently:

(1.1) U is extremal in the Sidelnikov's inequality:

o~ 111 @'udu(u) _.!. L @'ull = -6 + ~ L (u,v)' .
n n uEU n u.ueU

1 1·3·S···(q-l)
(1.2) n2 L (u,v)'=6:= d(d+2)"'(d+q-2)'

u.veU

(1.3) .! E heu) = f heu) da(u) .
n ueU Jn

2. Linear map F: r ~ JllN, x ..... Y = Fx, F = {rows of standard matrix}. For F the
following are equivalent:

(2.1) Condition (0): f ~9udu(u} =eS L @4l.
. 1n /EF

(2.2) Cubature: f heu) du(u) = fJ E h(f}, h E hOID.q(r) .
1n /eF

(2.3) Waring: IIxll9 =E (f, X)9, :z: E Ir' .
IEF

(2.4) Isometry: 11%112 = lIylI, := ~ f. y~, %er.
1'=1

3. Hilbert's Lemma (1909) for the solution of Waring's problem implies:

Theorem: Vd e N, Vq E 2N, 3N E Nand linear F : r ~ RN satisfying (0), Cubature,
Waring, Isometry and (multi)spherical design of index q.

L. H. SOlCHER:

Low Rank Representations and Graphs {ar Sporadie Groups
(Joint werk with Cheryl Praeger) We classify all transitive permutation representatioDS
t/J of rank at most 5 of the sporadie almost simple groups (the groups T with S :5
T :5 Aut(S), S a sporadie simple group). One application is the completion of the
classification of the primitive permutation representations of rank at most 5 of the finite
almost simple groups. For each representation q, above, we determine the intersection
matriees for the resulting orbital digraph& We then classify the distance--regular graphs
having a vertex-transitive action of rank at most 5 by a sporadie almost simple group,
and discover some new distan~regular graphs of diameter 2.
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S. Y. SONG:

Character Tables Or Association Schemes and their Fusions
and Fissions

For given commutativc association schemes, we cau construct many new commutative
association schem~ as their fusion schemes or as their fission schemes by using the char­
acter table of given schemes and their fusion and fission. In this talk, many known ex­
amples of fusion schemes and fiSsion schemes of orbital (group-case) association schemes
and some open problems related to the classification of commutative association schemes
will be discussed.

O. TAMASCHKE:

SCHuR-Ring Theory as an Extension cf Finite Group Theory.
Every subring T of the group ring ZG of any finite group G with the following properties
is called a SCHuR-ring (S-ring) on G:
There exists a decomposition G =1iu ... U 7; of G into non-empty trivially intersecting
subsets such that

•
(81)

(82)

(83)

'Vi E {1, ... , t} 3j E {1, ... , t} :

Vi,j,k E {1, ... ,t} 3Zi;k E Z:

'!i-I := {g-1 I9 E 1i} =T;
e

'L Lj = E ZijlcL
Je=l

t
T= EZ'L,

i=l

where L := Lge" 9 E ZG.
After historical remarlcs on BURNSIDE-groups and motivations via the double eoset
S-rings as the eentralizer rings of permutation representations the category of SCHUR­

algebras over C is introduced, followed by areport on T-subgroups. T-normal subgroups
and tbe homomorphism theorem for S-algebras over C.
This is abrief account of a theory presented in the book

DIa! Tamaschke: Schur-Ringe.
B.I. Hochschulskripten 735/735a*; Bibliographisches Institut Mannheim, 1970.

O. TAMASCHKE:

A Generalized Character Theory for Finite Groups.
Abrief account is given on the paper "On Schur-rings which Define a Proper Character •
Theory on Finite Groups" Math. Z. 117 (314-360) 1970. For any SCHUR-ring T on any
finite group G, decomposed into its G-classes G =1i u ... U 1; and any representation
F : C -+ (C)n of the SCHuR-algebra er by n x n-matrices aver eweset

"Ig E G <P(g):= troceF (i o1i) forg E 1i
and call t/J : G -t> C the T-character of G belonging to F. Any g, h e G are called T­
conjugate iff cP(g) = t{J(h) for every T-character c/J of G. If T is the number of irreducible
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T-characters and s the number of T-conjugacy classes, then r :S s. The T-character
table ~ is a r x s-matrix of rank T and orthogonality relations hold for the rows of <fiT·

If r = s, then T is called a eS-ring in which case orthogonality relations also hold for
the columns of <l»T and T-character theory on G ~as aß relevant properties of ordinary
character theory on G in that case.

P. TERWILLIGER:

The Q-Polynomial Property
We investigate four conditions on a" regular finite undirected graph r = ()(, E). They
are, in order of increasing regularity:

(1) r is distance-regular.e (2) risthin.

(3) r is Q-polynomial and thin.

(4) r is triply regular.

In fact (4) -+ (3) -+ (2) --+ (1). A graph r is said to be thin whenever for all distances
a, b, i,i, k, and al1 vertices x, 'g, z E X such that 8{x, y) = a, 8(x, z) = B, B{y, z) = b,
then

I{w Iw E X,8(w, x) = i, B(w, y) =j, a(fD,Z) =k}1
" = I{w Iw e X,8(w,z) = i,ö(w,y) =k,8(w,z) = j}l.

Theorem. Assume r is Q-polynomial and thin, with diameter 0 ~ S. Then for all
distances B, i,j, k, and all vertices~, y, z such that 8(z, y) = 1, 8(y, z) =B, 8(z, z) =a+l,
~~ -

I{w Iw E X, 8(w,x) =i, 8(w,y) =1, 8(w, z)" = k}1

depends only on B, i, j, k and not on x, y, z.

z.-x. WAN:

Representations of Forms by FarInS in a Finite Field
Let q be a prime power and 2 Yq. Let A and B be, respectively, m x m and t x t

symmetrie matriees over lFq • Denote by ~~I(A,B) the number of m x t matrices X
over Pq satisfying tX AX = B. Formulas for ~~t(A, B) were obtained by, L. Carlitz
in 1954. The case when A and B are both skew-symmetric and the esse when they
are both hermitian (when q is a perfect square) were also studied by L. Carlitz in 1954
and by L. Carlitz and J. Hodges in 1955, respectively. Now the problem is studied in
its full generality. On the oue hand, the assumption 2 Yq is removed. On the other
hand, besides the above three cases studied by L. Carlitz, the cases of altemate forms,
of quadratie forms when 2 I q, of symmetrie bilinear forms when 2 I q, and bilinear forms
are also studied. and complete results are obtained.
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v. WELI{ER:

Topological PraoEs of Some Decompositions of Same Sn-Characters

In this talk we prese~t two methods for obtaining filtrations of representations which
arise in the theory or Coxeter groups (joint work with S.Sundaram and M.Wachs). The
methods were developed in research on the theory of arrangements of linear subspaces
and its relations to configuration spaces and singularity theory. The first method can
be used to obtain a decomposition of the regular representation of a Coxeter group. We
show that for Sn the resulting decomposition is the decomposition also derived from
the Poincare-Birkhoff-Witt theorem by considering the Sn-action on the variables. This
method uses Coxeter-Arrangements and aG-module theoretic version of the Goresky-

. MacPherson formula. The second method, which can be used to obtain the filtration
of the character of Sn on the multigraded part of the free Lie-Algebra, first calculated
by Reu~enauer, is based on a spectral sequence introduced by Hanlon. We apply thise
spectral sequence in the order complex of the partition lattice to retrieve Reutenauer's
result.

P .-H. ZIESCHANG:

Geometrie and Representation-Theoretic Methods in the Structure
Theory of Association Schemes
Viewing finite groups as a distinguished class of association schemes we investigate the
question which parts of finite group theory can be generalized to a useful contribution to
the structure theory of association schemes. We introduce the concept of coset systems of
association schemes to abstract the way in which classica1 geometries arise from groups,
e.g., in which certain buildings arise from groups with a (B, N)-pair. Together with the
theory of coset systems the ordinary representation theory of association scbemes has
strong implications in the structure theory of association schemes, e.g., it is possible to
determine the association schemes generated by two involutions.

K.-H. ZIMMERMANN:

On a Basis for a Class of Weight Spaces
In my talk I present a. basis for a class of weight spaces. These spaces are weight spaces
of polynomial representations of the general linear group (in the usual sense) introduced
by G. D. James (in bis LNM-book, section 26).

Berichterstatter: St. Löwe
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