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The conference was organized by E.Bannai (Fukuoka), A.A.Ivanov (Moscow), A.Kerber
(Bayreuth) and U.Ott (Braunschweig). This was the first Oberwolfach meeting on Al-
gebraic Combinatorics but in a sense it was a succesor of two earlier meetings on the
subject held in Vladimir (Russia) in 1991 and in Fukuoka (Japan) in 1993. The confer-
ence brought together mathematicians from various countries working in different areas
of Algebraic Combinatorics. There was always a common thread, namely an application
of association schemes and their analogs. O.Tamaschke gave a series of two expository
lectures on the theory of S-rings. This exposition of a subject fundamental to the the-
ory of association schemes was very helpful for the participants. Numerous other talks
were given on traditional areas of Algebraic Combinatorics such as the theory of (P
and Q)-polynomial schemes, representation theory of symmetric groups and the theory
of diagram geometries. Progress in these areas was reported, for instance the possibil-
ity of answering existence and uniqueness questions for the sporadic simple groups by
studying their diagram geometries. Moreover, a number of new and rapidly growing
areas of Algebraic Combinatorics were well represented at the conference. These new
subjects include the theory of spin models, originally motivated by certain problems in
theoretical physics, and the theory of Terwilliger algebras which appeared as a highlight
of the theory of (P and Q)-polynomial association schemes. The high level of interac-
tions between participants has amply fulfilled the hopes of the organizers in bringing
together these diverse groups of researchers to focus on the theme of association scheme
and representation theory.

The organizers wish to thank the “Mathematisches Forschungsinstitut Oberwolfach” for .

its very kind hospitality.
E. Bannai, A. A. Ivanov, A. Kerber, U. Ott
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Vortragsauszige

J. ANDRE:
Non-commutative Spaces and Algebraic Combinatorics

A (non-commutative) space is a structure (X, F) with X # 0, F C P(X?) and with:

(i) any (z,y) € X? lies in exactly one f € F,

(ii) {(z,z)|z€ X} €F.

A line zQy is defined by 0y := {z, (z,y)} U{z | (z,2) = (z,y)}, where (z,y) = f € F.
In general zOy # yOz. Examples are the homogeneous coherent configurations in
the sense of D. G. Higman (Geom.Ded. 4(1975),1-32) which are also called strongly
skewaffine spaces. Generalizations of them are the skewaffine spaces. A skewaffine space
with zOy = yOz is affine. Some modifications of the adjacency algebras belonging
to those spaces are considered and some applications, especially on group-theory, are
presented. :

R. BACHER:
G lized Had | Matri
We are interested in constructing matrices M € GL(n,C) which satisfy
M—l = l M—!
n

where M~ is defined by (M~");x = (Mg ;)™*. Our method is to look for a finite group
G of order n and an element a = 3 a,g in the group algebra CG such that

! -1 -
als= - Yarlgh
We shall give examples and we shall outline some relations with association schemes.

E. BANNAL:
Spin Models and Association Schemes, II

This is a joint work with Etsuko Bannai and Frangois Jaeger.

Using the results explained in Jaeger’s talk, we get the following

Main Theorem. Let X(G) be the group association scheme of any finite abelian group
G. (1) For each fixed dual map ¥ of X(G) (ie., for each character table P of X (&)
satisfying P = ‘P), we determined explicitly all the diagonal matrices A satisfying the
modular invariance property: (PA)? = Al. (2) For each solution A in (1), we can
associate a generalized spin model on the group G.

Remark. Generalized spin models on finite abelian groups constructed for any even
Q-lattice by V. Kac - M. Wakimoto all appear among those constructed in the main
theorem. Also, generalized spin models on abelian groups which generate the Bose-
Mesner algebra of the group association scheme are special cases of those constructed in

the main theorem.
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B. BAUMEISTER:
Flag-transitive Dual Extended Grids

Let G be a group acting flag-transitively on a dual extended grid ' ( =< : we have
points, lines and grids, and two lines which intersect in a point define exactly one grid.)
There are the following examples:

A family of flag-transitive geometries, whose members have as collinearity graph the
Hamming graph, the sporadic example G 2 J; and its triple cover 3J; and finally
the extended ternary Golay Code, whose universal 2—cover is a member of the family
mentioned above.

We proved

If Gnyky is an almost simple group, 1 a grid, and Kp =1, P a point, then
G = Jyor 3J5.

How can we generalize the assumption of almost simplicity of Gn/x,? For the moment
it seems reasonable to demand faithful and primitive action of Gk, on the two parallel
classes of lines of the grid II. We already know, that Gk, is not an affine group.

A. BLOKHUIS:

E . £ Rédei’s Tl

Let f: F, — F,,q = p", and N := [{£2=L0) . 7.y € Fyp, 2 # g}, ,
In 1970 Rédei showed that the value of N is restricted to a few intervals. A. E. Brouwer,
T. Szonyi and the speaker further restricted the possibilities in 1992. Recently T. Szényi
observed that the same result applies if f is a partial function, assuming that | Dom(f)| >
g-+/3/2. A generalization in the other directions gives that if X is a set of ¢+m points
such that there are less than (g +1)/2 — /g directions corresponding to a passing line,
then m > \/g/2 or all lines in other directions intersect X in 1 mod p points.

Representatio -

(Joint work with U. Baum). By Wedderburn Theorem, the complex group algebra of a
finite group G is isomorphic to an algebra of block-diagonal matrices. Every such iso-
morphism D : ®D; : CG — @7%,C%*% is called a Discrete Fourier Transform (DF ) for
CG. It involves a complete list Dy, ..., D, of pairwise inequivalent irreducible represen-
tations of CG. The linear complexity L(G) of G is the minimum number of arithmetic
operations (addition, subtraction, scalar multiplication) to evaluate a suitable DFT for
G at a generic (input) vector. (If only multiplication by scalars of absolute value < 2 is
allowed, we get the 2-linear complexity Ly(G).) Trivially, |G| -1 < L(G) < 2|GJ*.
Theorem
(1) L(G) = O(|G|*/?), for any finite group G.

(2) L2(G) = o(|G|log® |GI), for G € {Sn, An}.
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(3) La(g) = O(|Gllog|F]), if G is supersolvable.
(4) Lyp(G) > 1/4]G|log |G|, for any finite G.
(5) L2(G) > 1/2|G|log |G| if G is abelian.

(6) If the supersolvable group G is given by a power-commutator presentation, then
the irreducible representations can be constructed in time O(|G|log|G|).

More information and proofs can be found in our book: M. Clausen / U. Baum: Fast
Fourier Transforms, BI, 1993. '

A. E. CoHEN:
On Chen Zhijie’s Conjecture

Take k = F3,G = GL(4,k),V = Sym®k*/(cubes). Then dimG = dimV = 16. This.

module came up in Liebeck’s classification of group actions (G, V) with finitely many
orbits of G in V, but wasn’t actually settled as an example. It was studied by Chen Zhijie
in “A new prehomogeneous vector space of char p”,Chinese Annals of Math. 8B(1987),
22-35, where he presented several orbits and conjectured that these are all. In joint
work, David B. Wales and I have shown (computations need to be double checked) that
his conjecture is true in spirit (there are finitely many orbits), but wrong in the sense

that an additional orbit was found.
As a byproduct, it was found that, for any characteristic, GL{(4, k) has an invariant

polynomial of degree 8 on Sym3k*.

C. GobpsiL:
p-Ranks of Projective Planes
Let B be the incidence matrix of a projective plane P of order n. Bruen and Ott proved
that, if p divides n, the rank of B over GF(p) is at least n%2 + 1. (If p divides n then
tk,(B) > n? + n.) We improve Bruen and Ott's bound to

n¥?+1+ %], neven;

n¥/2 4 YBREL | nodd.

This is obtained by estimating the p-rank of B ® BT, making use of the fact that there
is a 5-class association scheme on the antiflags of P.

P. DE LA HARPE:
Jones’ Basic Construction and Invariants of Combinatorial Objects

Let X be a square complex matrix such that ‘XX~ = nl (where (‘X);x = X, and
(X% = (X;x)™"). Mimicking part of V. Jones’ theory for subfactors and operator
algebras, we associate to X a “commuting square” of semi-simple algebras. Invariants
of this square (such as the Weyl group and the higher relative commutants) provide
interesting invariants of X. They can be computed for several examples related to

Hadamard matrices and stronlgy regular graphs.
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T. ITo:
The Terwilliger Algebras of Cyclotomic Schemes

The Terwilliger algebra of an association scheme was introduced by Paul Terwilliger in
his study of P- and Q-polynomial schemes and he himseif called it a T-algebra or a
subconstituent algebra. [t is a semi-simple algebra containing the Bose-Mesner algebra,
and it captures something about one point stabilizers when the scheme comes from a
group action.

Terwilliger established the representation theory of T-algebras for thin P- and Q-polyno-
mial schemes. For other classes of association schemes, not much is known about the Ter-
williger algebras and the investigation of their representations has just recently started.
Here we analyze the representation of the Terwilliger algebras for cyclotomic schemes by
use of the Jacobi sums and determine the irreducible representations completely when

the class is two.

A. A. IvaNov:
On Geometries of the Fischer Groups

The Fischer groups Fiz, Fizs and Figq are associated with a number of d:agram geome—
tries some of which have been recently characterized. Exploiting a relationship ‘between
these geometries we obtain some further characterizations. In particular we prove the
simple connectedness of the Ronan-Smith 2-local parabolic geometry of the largest Fi-
scher group Fizq and of its analogue related to the nonsplit triple cover 3 - Fiz. The
diagrams of these geometries are the following:

Fiyg: © O |
2 2 2 2
3Fiyy Oo—= —o— a
2 2 2 2
F. JAEGER:

Spin Models and Association Schemes, Part 1

This talk presents some joint work with Eiichi and Etsuko Bannai. In 1989 Vaughan
Jones introduced spin models as a way to construct invariants of links in 3-space, and
we deal here with the nonsymmetric generalization due to Kanaga, Munemasa, and
Watatani. Such spin models can be defined as pairs (w*, w™), where w*, w™ are matrices
in M,(C) which satisfy certain equations. With every spin model we associate two
subspaces M, H of M,(C) containing I, J, w*, w™, w*, w~. M is closed under
ordinary product and A is closed under Hadamard product.
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1. M and ‘H are isomorphic as algebras.
2. When M = H, we have the Bose -Mesner algebra of a self-dual association scheme.

3. In this case, if P is the first eigenmatrix of the scheme, there exists a diagonal
matrix A and A € C — {0} such that (PA)® = Al (modular invariance).

4. for abelian group schemes, each such A gives a spin model.

G. D. JAMESs:
Given a partiton A of n, one obtains a normalized immanant dy of an n x n matrix

M= (M.‘,') by deﬁning
x\(M) .

dy(M) = :Z‘;.. o) M112M22x - - - Mnnx
where x, is the irreducible character of S, which is indexed by A. For various classes
of matrices, there appear to be many inequalities between normalized immanants. It
is known, for example, that det M < d\(M) for all Hermitian positive semidefinite
matrices, and the conjecture that dy < permM for these matrices remains an intriguing
open problem. In our talk, based on joint work with C. R. Johnson and S. Pierce, we
discuss the problem of finding inequalities between immanants of M-matrices. The main
result concerns the existence of a set of “test-matrices” for such inequalities. For certain,
readily defined, matrices M, (one for each partition a of n), we have d\(M) > du(M)
for all n x n M-matrices M if and only if d\(M,) > d.(M,) for all partitions a of n.
Several examples are given which illustrate the power of this theorem.

M. H. KLIN:
On Classical and Directed Versions of Strongly Regular Graphs

According to A. Duval a directed regular graph I of valency k with v vertices is called
a directed strongly regular graph (d.s.r.g.) or a (v, k, i, A, t)-graph if

A =tI+ M +u(J-1-4),

where A = A(T) is the adjacency matrix of I'. The case t = k is equivalent to the
classical definition of s.r.g.

1. For each n > 3 there exists (n(n — 1), 2n — 3,2,n — 2,n — 1)-graph which is invariant

with respect to the natural action of the symmetric group S, on n(n — 1) points. The. -
case n.= 5 gives a positive answer to a question of Duval. ‘
2. To each projective plane of order g there corresponds a ((¢* + ¢+ 1)(¢ + 1),¢* +
¢,9,q— 1, q)-graph which is obtained via merging of classes of the association scheme on

flags.

3. There exists a primitive rank 3 s.r.g. (in a classical sense) with parameters v = 81,

k =40, A =19, p = 20, which admits a regular action of Zg x Zs. This gives a positive

answer to a question of K. T. Arasu, D. Jungnickel, S. L. Ma, A. Pott.
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R. LAUE:
Double-Cosets

For constructive purposes it is not sufficient to determine the number of double cosets.
Instead a set of representatives is needed. Of course, a general solution is difficult and
would for example solve the graph isomorphism problem. Therefore we discuss special
situations using the homomorphism principle via a chain of subgroups or by prescribed
stabilizers. A combination of both yields a tool which has been successfully applied
to the construction of new 6-designs by Schmalz and will now be developed for double
cosets more generally. As an example the construction of cycle permutation graphs is
shown.

V. I. LEVENSHTEIN:

A New Lower Bound on the Size of Classical ¢-Designs

A system S = S\(t, k, v) of k-subsets of a v-set possessing the property that any t-subset
of the v-set belongs to A k-subsets of S is referred to as a (classical) t-design. A problem
of obtaining lower bounds on the size of a t-design is considered. The following bounds
for t-designs are well known: =

ISl > (‘t’) / (’:) (Steiner, 1853),
Iss| > (z)’ ("’:")‘ (Wilson, Ray-Chaudhuri, 1971),

where t = 2l + v, v € {0,1}, 2k < v.

A new lower bound on the size of t-designs is obtained which for some classes is attained
and better than the above mentioned bounds. The proof of the bounds is based on (i)
Delsarte‘s inequalities for codes and designs in P- and Q-polynomial association schemes,
(i) the solution of the code problem for the system Q of orthogonal polynomials and
(#ii) a duality of bounding the sizes of codes and designs for finite spaces. <

S. LOWE:
Generalized Quadrangles with a Regular Point and their
! Stion Sl

If ' is a generalized quadrangle with regular point we can associate with it an association
scheme A(T') of class 4. Given an association scheme A with the same parameters as
A(T), is it possible to reconstruct I from A? A partial answer to this question uses the
characterization of I" as a cover of a net. From .A we construct two geometric objects X'
and NV and a projection map p: X — N. Then the following are equivalent:

1.T can be reconstructed from A.

2. pis a triangle free cover of a net N with suitable parameters.
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3. Maximal clignes of A with respect to one of the relations are of constant size
depending on the parameters of A, and .V is a net with suitable parameters.

In this context A is a net if and only if any two of its lines meet in a unique point and
any two of its points are joined by a unique line.

A. MUNEMASA:
Graphs of Alternating, Symplectic, and Quadratic Forms

Let g be a power of 2. We consider the graph Alt(n +1, q) (resp. Sym(n, q), Quad(n, q))
whose set of vertices is the set of all alternating bilinear forms on an n + 1-dimensional
vectorspace over GF(g) (resp. all symmetric bilinear forms on an n-dimensional vec-
torspace over GF(g), all quadratic forms on an n-dimensional vectorspace over GF(q)).
Two vertices are adjacent iff rank(z —y) = 2 (resp. rank(z —y) = Lor 2, rank(z —y) = 1
or 2). Alt(n +1,q) is isomorphic to Sym(n, q) as graphs but not isomorphic as Schur
rings. Indeed, Alt(n+1, g) is self-dual as Schur ring, while Sym(n, ¢) has dual Quad(n, g),
which is not isomorphic to Alt(n + 1,¢).

M. MUZYCHUK: 4
The Structure of Schur Rings over Cyclic Groups of Square-Free Order

Let Z,, be a cyclic group, n is a square-free number. We give an explicit description of the
structure of S-ring over Z,. Every S-ring is uniquely determined by a pair (F, {Gr}rer),
where F is a topology defined on the set of prime divisors of n and {Gr}rer is a family
of subgroups of Z¢, satisfying some additional conditions.

S. NORTON:
Transposition Groups

The main topic was 3-generated 6-transposition groups, with emphasis on the Monster.
It was shown how the braiding operations could, by use of a standard homomorphism
from the 3-string braid group to the modular group, lead to a way of associating a
polyhedron, called a football with every set of 3-transpositions. Such a polyhedron
would have trivalent vertices and its faces would have at most 6 sides. One possibility
is for a genus 1 surface (called doughnut) where all faces were hexagons and there is
no degeneracy; otherwise Euler's formula means the genus would have to be 0. By
homological arguments the size of a football can be correlated with the order of the
product of the 3 transpositions, and it is also possible in principle to calculate the total
number of footballs - estimated to be about 10000 for the Monster. A possible association
with Moonshine was discussed, but this is not believed to be fruitful.
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D. V. PASECHNIK:
Combinatorial Characterizations of Geometries for Sporadic Groups

We survey recent results concerning characterizations of sporadic group geometries with-
out assumptions on group actions, which may be viewed as an attempt to create a theory
unifying buildings and affine polar spaces with sporadic geometries.

1. D. V. Pasechnik: Geometric characterization of graphs from the Suzuki chain.
Eur.J.Comb. 14(1993), 491-499. .

2. D. V. Pasechnik: Geometric characterization of the sporadic groups Fin, Fiy and
Fize. J.Comb.Th.(A), to appear.

3. D. V. Pasechnik: Extended generalized octagons and the group He. preprint 1993.

CH. E. PRAEGER:
On Hexagonal Graphs

This is joint work with Manley Perkel.

A hexagonal graph is a graph I' with a set C of hexagons (cycles of length 6) such that
each 2-arc of " lies in a unique hexagon in C. We studied hexagonal graphs such that
Aut(T) is transitive on 2-arcs and Aut([)5(® is 3-transitive. Two new infinite families
of hexagonal graphs with valencies 2¢,d > 2, were constructed. It was shown that the
two smallest graphs, one from each family, are the only two hexagonal graphs such that
Aut(T')L@ is 3-transitive, and such that the set of vertices A(a) which are antipodal
vertices of the cycles in C containing a has minimal size |[[(a)| — 1. The two examples
are:

1.) Valency 4, 32 vertices, Aut(l'} = Ss x S3, and
2.) Valency 8, 270 vertices, Aut(l') = Se.

A. SALL

On the Rigidity of Spherical ¢-Designs

Spherical ¢-designs were introduced by P. Delsarte, J.M. Goethals and J.J. Seidel.
Definition A finite X C S¢ is called a spherical t-design in S? iff ‘

1 1
59 oo @) = 737 T 1(@)

holds for all polynomials f(z) of degree at most t.
Definition A spherical t-design X is called rigid iff any sufficiently close t-design X' to
X is an orthogonal transform of X.
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The concept. of rigid spherical t-designs was introduced by Bannai. He conjectured that
there is a function f(¢.d) such that if X is a spherical ¢ design in the (-dimensional
Euclidean space so that |.X| > f(t,d), then X is non-rigid. Furthermore, he asked
to find examples of rigid but not tight spherical designs. In the present talk we shall
investigate the case of =2 and find a series of non-tight but rigid designs. Also an
important duality property of spherical 2-designs is discussed. In the second half we
take X as an orbit of a finite reflection group and prove that X is rigid iff tight for the
groups An, Bn, Cn, Dn, Es, B, Fy, Is.

J. Saxv:
Exceptional Polynomials

A polynomial in F,[X] inducing a permutation on F, is a permutation polynomial. It is
an ezceptional polynomial, if it is a permutation polynomial over Fy for infinitely many
¢. Carlitz (1965), based on work of Dickson (1896), conjectured that for n fixed, even,
there is a constant ¢, such that there are no permutation polynomials for ¢ odd with
@ > ¢, This translates into: There are no exceptional polynomials of even degree in odd
characteristic. This has been proved in a joined work with M. Fried and R. Guralnick
(Israel J. Math. 82(1993), 157-225). Information was also obtained in the general case,
which has been used since by S. Cohen and R. Matthews to construct a new family of
exceptional polynomials in even characteristic of degree n = 2*~1(2* — 1), s odd.

R. SCHARLAU:
Glueing Integral Lattices

We study even integral lattices L with a prescribed decomposable sublattice Ly LL, C L.
Assuming L, = QL; N L, such a lattice is of the form

L=Lix¢Ly:={z+yelfaLf|zeS¢z=7)

for a unique subgroup S C 7 and an isometry (of finite quadratic forms) ¢ : (S,q1) —
(T3, —q2). Here, T, = T(L:) := L¥/L; is the discriminant group of L;, where L’ :=
{v € Li | (Li,y) C Z} denotes the dual lattice, and ¢; : T; — Q/Z, (@) = (z,z)/2 +
Z, is the discriminant quadratic form. Assume moreover that L is selfdual and L,,
L, are characteristic sublattices. Then the possible L are described by double cosets
O(L2)\Aut(Tz)/*O(L,). We consider as a complicated example the case n = rankl =

32, r = rankL, = 20, L, 2 20A,(root system), L = L{ N L, minL, = 4 (in fact, ‘

L, 2 %Dy,).

J. J. SEIDEL:

Spherical Designs and Tensors

1. A spherical design of even index ¢ is a finite set U such that

1
== e
/ﬂ@"uda(u) == uEeu® u
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where {U] =2, U C 2 C R?, unit sphere . ¢'* tensor power 3% =a®...3a having
coordinates the monomials of degree g in the coordinates (g, ... e4) = a. Equivalently:

(1.1) U is extremal in the Sidelnikov’s inequality:
1 1
a - Iyl = -6 + — .
05||/n®uda(u) nE ®'u 6+n2 Y. (u,v)

uel u,o€U
1 e 1.3.5...(q_1)
(1.2) n 2 (w,0)f=6:= dd+2)---(d+q-2)°

u,0€U

1
(13) = E{J h(u) = fn h(u) do(u) .
2. Linear map F : R® —= R¥, z — y = Fz, F = {rows of standard matrix}. For F the

‘ following are equivalent:

(2.1) Condition (D): / @udo(u) =63 8.
: a 1€F

oy

(2.2) Cubature: / h(z)do(u) = 6 T A(f), h € homg(R?).
e feF

(2.3) Waring: ||z]| = 3_(f,2)%, z € B¢, “
fEF -

N
(2.4) Isometry: ||zlz = [lyll == \'I ¥.eR.
v=1

3. Hilbert's Lemma (1909) for the solution of Waring's problem implies:
Theorem: Vd € N, ¥g € 2N, 3N € N and linear F : R? — R¥ satisfying (D), Cubature,
Waring, Isometry and (multi)spherical design of index g¢.

L. H. SOICHER:
Low Rank Representations and Graphs for Sporadic Groups

(Joint work with Cheryl Praeger) We classify all transitive permutation representations
¢ of rank at most 5 of the sporadic almost simple groups (the groups T with § <
T < Aut(S), S a sporadic simple group). One application is the completion of the
classification of the primitive permutation representations of rank at most 5 of the finite

. almost simple groups. For each representation ¢ above, we determine the intersection

UFG

matrices for the resulting orbital digraphs. We then classify the distance-regular graphs
having a vertex-transitive action of rank at most 5 by a sporadic almost simple group,
and discover some new distance-regular graphs of diameter 2.

11
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For given commutative association schemes, we can construct many new commutative
association schemes as their fusion schemes or as their fission schemes by using the char-
acter table of given schemes and their fusion and fission. In this talk, many known ex-
amples of fusion schemes and fission schemes of orbital (group-case) association schemes
and some open problems related to the classification of commutative association schemes
will be discussed.

O. TAMASCHKE:

ScHUR-Ring Theory as an Extension of Finite Group Theory.

Every subring T of the group ring ZG of any finite group G with the following properties
is called a SCHUR-ring (S-ring) on G:

There exists a decomposition G = T;U...UT; of G into non-empty trivially intersecting
subsets such that

(S1) vie{l,...,t}3je{l,....t}: T l'={¢g'|9geT}=T;
| (52) Vi gk € {1,...,t} Jmp € Z: LI,=§lz.~,~kL;
| (3) T=Y2-T,

i=1

where T, := Tyer; 9 € ZG.
After historical remarks on BURNSIDE-groups and motivations via the double coset
S-rings as the centralizer rings of permutation representations the category of SCHUR-
algebras over C is introduced, followed by a report on T-subgroups. T-normal subgroups
| and the homomorphism theorem for S-algebras over C.
This is a brief account of a theory presented in the book

Olaf Tamaschke: Schur-Ringe.
B.I. Hochschulskripten 735/735a"; Bibliographisches Institut Mannheim, 1970.

O. TAMASCHKE:
A Generalized Character Theory for Finite Groups.

A brief account is given on the paper “On Schur-rings which Define a Proper Character
Theory on Finite Groups” Math. Z. 117 (314-360) 1970. For any SCHUR-ring T on any
finite group G, decomposed into its G-classes G =T, U... U T; and any representation
F : C — (C), of the SCHUR-algebra CT by n x n-matrices over C we set

VgeG  ¢(g):= tmceF(—;j-T;) forge T;

and call ¢ : G — C the T-character of G belonging to F. Any g, h € G are called T-
conjugate iff ¢(g) = d(h) for every T-character ¢ of G. If r is the number of irreducible

12
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T-characters and s the number of T-conjugacy classes, then r < s. The T-character
table @y is a r x s-matrix of rank r and orthogonality relations hold for the rows of ®r.
If r = s, then T is called a CS-ring in which case orthogonality relations also hold for
the columns of ®r and T-character theory on G has all relevant properties of ordinary
character theory on G in that case.

P. TERWILLIGER:

The Q-Polynomial Property

We investigate four conditions on a regular finite undirected graph I' = (X, E). They
are, in order of increasing regularity:

(1) T is distance-regular.

(2) T is thin.

(3) T is Q-polynomial and thin.
(4) T is triply regular.

In fact (4) — (3) — (2) — (1). A graph " is said to be thin whenever for all distances
a,b,i,j,k, and all vertices z,y,z € X such that 3(z,y) = a, o(z,z) = a,8(y,2) = b,
then ;

Hw | w € X,8(w,z) = i,8(w,y) = j,0(w,2) =k}
= |{w |we X, a(wvz) =1i,0(w,y) =k, (w,z) = J}l

Theorem. Assume I is Q-polynomial and thin, with diameter o > S. Then for all
distances a, i, j, k, and all vertices z, 3, z such that 8(z,y) = 1,8(y, z) = o, d(z,z) = a+1,
then

{w | w € X,8(w,z) =1,8(w,y) = j,8(w, z) = k}|

depends only on a,i,j, k and not on z,y, 2.

Z.-X. WaAN:
Representations of Forms by Forms in a Finite Field

Let g be a prime power and 2 Jg. Let A and B be, respectively, m x m and t x ¢

symmetric matrices over F,. Denote by nf,'{),(.(A, B) the number of m x t matrices X

over ¥, satisfying ‘XAX = B. Formulas for n%),(A, B) were obtained by. L. Carlitz
in 1954. The case when A and B are both skew-symmetric and the case when they
are both hermitian (when g is a perfect square) were also studied by L. Carlitz in 1954
and by L. Carlitz and J. Hodges in 1955, respectively. Now the problem is studied in
its full generality. On the one hand, the assumption 2 } g is removed. On the other
hand, besides the above three cases studied by L. Carlitz, the cases of alternate forms,
of quadratic forms when 2 | ¢, of symmetric bilinear forms when 2 | ¢, and bilinear forms
are also studied and complete resuits are obtained.
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V. WELKER:
Topological Proofs of Some Decompositions of Some §,-Characters

In this talk we present two methods for obtaining filtrations of representations which
arise in the theory of Coxeter groups (joint work with S.Sundaram and M.Wachs). The
methods were developed in research on the theory of arrangements of linear subspaces
and its relations to configuration spaces and singularity theory. The first method can
be used to obtain a decomposition of the regular representation of a Coxeter group. We
show that for S, the resulting decomposition is the decomposition also derived from
the Poincaré-Birkhoff-Witt theorem by considering the S,-action on the variables. This
method uses Coxeter-Arrangements and a G-module theoretic version of the Goresky-

- MacPherson formula. The second method, which can be used to obtain the filtration

of the character of S, on the multigraded part of the free Lie-Algebra, first calculated
by Reutenauer, is based on a spectral sequence introduced by Hanlon. We apply this
spectral sequence in the order complex of the partition lattice to retrieve Reutenauer’s

result.

P.-H. ZIESCHANG:
Geometric and Representation-Theoretic Methods in the Structure
Theory of Association Schemes

Viewing finite groups as a distinguished class of association schemes we investigate the
question which parts of finite group theory can be generalized to a useful contribution to
the structure theory of association schemes. We introduce the concept of coset systems of
association schemes to abstract the way in which classical geometries arise from groups,
e.g., in which certain buildings arise from groups with a (B, N)-pair. Together with the
theory of coset systems the ordinary representation theory of association schemes has
strong implications in the structure theory of association schemes, e.g., it is possible to
determine the association schemes generated by two involutions.

K.-H. ZIMMERMANN:

On a Basis for a Class of Weight Spaces

In my talk I present a basis for a class of weight spaces. These spaces are weight spaces
of polynomial representations of the general linear group (in the usual sense) introduced
by G. D. James (in his LNM-book, section 26).

Berichterstatter: St. Liwe
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