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Tagungsbericht 3/1994

Gruppentheorie (Permutationsgruppen)

16.1. - 22.1.1994

Die Tagung fand unter der Leitung von Prof. Dr. Otto H. Kegel (Freiburg) und Prof. Dr. Peter
M. Neumann (Oxford) statt. . .

An der Tagung, bei der Themen im Zusammenhang mit endlichen und unendlichen Permuta-
tionsgruppen im Mittelpunkt standen, nahmen 39 Mathematiker aus 10 Liindern teil.

Die Themen der 32 Vortrige waren weit gestreu; so reichten sie z. B. von Automorphismen-
gruppen von (partiell) geordneten Mengen oder Mengen mit einer Relation bis zum Zusammen-
hang zwischen Permutationsgruppen und Untergruppenwachswum. :
Neben den Vortrigen ergaben sich allabendlich intensive Diskussionen, ein reger Austausch
von Ergebnissen und Perspektiven, sowie Gelegenheit zur konzentrierten Zusammenarbeit.
Dazu trug die Atmosphiire des Mathematischen Forschungsinstitutes wie auch die groBziigigen
Moglichkeiten entscheidend bei.
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J. Bamblett
Groups of product type

We study primitive permutation groups which "look like" wreath products in their primitive
action. We define systems of product imprimitivity according to Kovécs, “Wreath decom-
positions of finite permutation groups”, Bull Austral. Math. Soc. 40 and, having defined a
partial order on the set of all such systems for a given group, we show that in many cases this
poset is in fact a lattice. This helps us with the question of recognising computationally groups
of product type as we do not have to search for systems of product imprimitivity but can then
just compute; the minimal element of the lattice of systems can be found from the socle of the

group.

B. Baumeister
Groups of product type with an application to Czc geometries

I mentioned two propositions about permutation groups which I used then for the classification
of flag transitive Cac-geometries supposing an aimost simple or affine stabilisator of a plane.
Proposition 1: Let H be an almost simple group and suppose H = AA® for an subgroup A
of H and @ € Au(H). Then Soc(H) = PQ §(q), M12, Spa(@)’, q even.
Proposition 2: Let V = p™M be an irreducible and faithful module for a group K with
F(K) =1.If K has a subgroup U, suchthat K:Ul=p2, a 2 m, then
p=2, Soc(K) = L3(2) x..x L3(2) and V is a direct sum of natural modules
for L3(2).

G. Behrendt -
Automorphism groups of ordered sets

The talk gives a survey of recent resuits and open problems in some areas of the theory of auto-
morphism groups of ordered sets. The subjects are the following:

Representations of groups as automorphism groups of "small” ordered sets; representations of
groups as automorphism groups of ordered sets with forbidden induced suborders; homogenity
conditions for finite ordered sets. :
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St. Bigelow

The truth about supplements of B)

Let A < x be infinite cardinals. A group G actingon aset Q of size k is a supplement of
Bj, if for every permutation s of Q thereisa ge G which agrees with s on all but fewer

than A points. Semmes has shown that if the Generalised Continuum Hypothesis holds then
there is a simple and powerful description of all such groups. Macpherson and Neumann
published a theorem giving a slightly weaker description which holds true in all models of set
theory. As a corollary this yields the exact set theoretic assumptions required for Semmes'’
result to hold. Unfortunately I have discovered a mistake in the proof of their theorem and can
construct a counterexample in certain models of set theory. However I have an alternative proof
that the co;ollary still holds. I will discuss these results and some ingredients that went into -
their proof. . :

Groups 2-transitive on a set of their Sylow subgroups

By Sylow's Theorem each finite group G is transitive on Sylp(G), the set of Sylow p-sub-
groups of G, via conjugation. We present some results that indicate how strong a condition it
is for this action to be 2-transitive. The work is joint with M. Ward (Bucknell U.). N
Using the classification of 2-transitive groups cited by Cameron, Bull. London Math. Soc. 13
(1981), aided by methods presented by Hering, J. Algebra 93 (1985), we obtain a precise
characterization of the groups G which are faithful and 2-transitive on Sylp(G) for some
prime p . From this we deduce:

G is 2-transitive on Syl{G) foreach r (i) G={x - ax +blab e GF(gh),a= 0}

and = where q is prime, q#p
faithful on Sylp(G) for some p q is not Mersenne or n#2

(ii) G=H <T(qM) with I[(g"):H! |2
if q is Mersenne and n=2
(iii) G=S4. p=3
or (iv) G=[C3xC3}-SL2.3), p=2
Consequenty if G is 2-transitive on Syly(G) for each r, G € N3 and if either

T 1Syl3(G)I =1 or ISyi2(G)l=1,Ge N2,

A. R. Camina
Linear spaces with line-transitive, point-imprimitive automorphism groups
I wish to discuss the following result (proved jointly with S. Meschke).

Let S be a line-transitive, point-imprimitive linear space with k (number of points on a
line) <9. Then S is one of the following:
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(a) A projective plane of order 4 or 7,
(b) one of 2 linear spaces with 91 points and k =

6 or
(c) one of 467 linear spaces with 729 points and k =

8.

A. R. Camina (for J. Siemons)

Modular Homology in the Boolean Algebra and Group Actions

Let Q be a set and denote by 2(€2] the finite sets of Q. Let R be a ring and consider the
R-module R 2[Q] . Let Ae 2(9) andlet 3(A)=ﬁ2$'-Ari, Al=k, ki=k-1.

Let Mk ={ZrpA|ASQ,IAI=k, 1s € R} . Consider the chain
00.eMgeM M.

If R haschar p the dP=o0.
Theorem All subsequence of the kind
 Mi.p & Mg psi & Mk & Miyi & Miyp ..
are exact for arbitrary k, 0<i<p aslongas 2(kk +p) < IQI.

M. Droste

McLain-groups over arbitrary rings and orderings
(joint work with R. Gobel, Essen)

We investigate McLain-groups G(R,S) over arbitrary rings R and posets (S,S) . The group
elements can be viewed as upper triangular matrices with only finitely many entries # O from
R, indexed by S.If R has no zero-divisors # O and (S,S) is locally linear (i.e. each
interval is a chain), we can recover the structures of R and (S,<), up to isomorphism or anti-
isomorphism, from G(R.S) . Also, Aut(G(R,S)) can be determined, and we can characterize
when G(R,S) is characteristically simple. As a consequence, using non-linear posets (trees)
(S,S) we obtain for each prime p, continuously many countable characteristically simple
locally finite p-groups G(Fp,S).

T. Gardiner
Imprimitive graphs. Regular maps. Coverings of complete graphs
I shall present a ‘geometrical’ approach to the study of imprimitive graphs which makes it

possible to decompose certain graphs as the 'product’ of a quotient graph and a 1-design
induced on each block. [ shall analyse some of the simplest cases in detail.
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M. Giraudet

Convenient languages for groups preserving or reversing chains or cyclic
orderings

(1) Itis well known (Holland 1963) that the groups of permutations of chains provided with
the pointwise order are exactly the ordered subgroups of the lattice ordered groups.

(2) Groups of monotonic permutations of chains can be characterized as structures in (1)
provided with a decreasing group automorphism of order two (Joint with F. Lucas).

(3) Groups of permutations of total cyclic orders have charaterisations among structures in (1)
enriched with a parameter in their center (Joint with M. Droste and D. Macpherson), or
enriched with a predicate for a normal subgroup which is a Z-group.

(4) Above (2) and (3) can be combined. _

(2), (3) and (4) provide languages which behave much better than the natural ones (= with
pointwise relations) towards usual class operations: direct sums, wreath product, ...A be-
ginning of exploration of the lattice of vaneties in (2) is undertaken (joint with I. Rachunek).

Ao y

Ch. Hering
On large prime divisors of the order of a finite linear group Sl
Starting point is a result proved by Feit and Thompson (1961) via modular representation

eory: ,
Theorem 1. Let r be a prime. If the finite group G has a faithful representation of degree n
over the complex numbers and if r > 2n + 1, then the Sylow r-subgroup of G is an abelian
normal subgroup of G .

This generalizes a Theorem of Brauer (1942) who treated the special case 12 4 IGI . Also
Blichfeldt (1903) solved the case r> (2n + 1) (n - 1) . We prove the following generalisation:
Theorem 2. Let GSGL(n,K). G finite, r a prime divisor of |Gl different from the
characteristic of K and r> 2n + 1 . Then one of the following conditions holds: -

a) 0(G)#1. _ .

b) CharK=p<eo and Op(G)=1. »

¢) CharK=p<oe and G contains a subnormal quasisimple subgroup H such that r e
and H/Z(H) is a simple Chevalley group of characteristic p (of ordinary or twisted type) or
H/ZH) =)y ,and p=11. The proof uses the classification of finite simple groups. It is joint
work with P. Munke. ) )

W. Ch. Holland
The partial orders of the group of order permutations of the real line

We let G denote the group of the title and R the real line. Among the interesting properties of
this group is that it admits a lattice order, the socalled pointwise order: If we define, for

fh e G,that fSh iffforall ae R, af Sah ,then G becomes a partially ordered
group (whose order is preserved by the group operation). In fact, G is a lattice. It has long
been known that every countable lattice-ordered group can be embedded in G .
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In this paper, we investigate other partial orders on G under which G is a partially ordered
group. There is exactly one other lattice order of G (the reverse of the pointwise order).
Among all non-trivial partial orders of G there are exactly 16 minimal ones and 40 maximal
ones. It is probable that the partially ordered set of all partial orders of G is well partially
ord‘e’lzn by containment, that is that there is no infinite descending chain and no infinite
antichain.

W. Knapp ' ' .
On Burnside's Method .

W. Bumnside gave in the second edition of his book [1911] a proof of the theorem stating that
any primitive permutation group G containing a transitive cyclic subgroup of composite prime
power order is doubly transitive.

P. Neumann pointed out in his recent article "Helmut Wielandt on permutation groups” that
Bumnside's f uses in the last but crucial step an argument about sums of roots of unity
which is f: (P. Neumann gave explicit counterexamples and stated that Burnside's error

'is not as easy to put right as one would like'.)

In my talk it is shown that Burnside's error can be repaired by the method used in his own
proof of the celebrated theorem on permutation groups of prime degree p and by an additional
result concerning sums of p™ -th roots of unity.

A. Kreuzer
Loops with an automorphism group related to the relativistic velocity addition

The relativistic velocity addition @ is a binary operation which is neither commutative nor

associative. For R3 := {ve R3 : vi<c}, (R3,®) is aloop with automorphisms

A:={83p:abe IR?;), at what for any abe IR% the automorphisms 8g b are defined by the -
equation a D (b @ x) =(a ® b) ® 83 b(x) . Such a loop, called K-loop, appears also as the

additive structure of a neardomain, which is a generalisation of a nearfield. The notion of a

neardomain was introduced by H. Karzel to describe infinite sharply 2-transitive permutation

groups. Further a construction method for K-loops is given. . )

F. Leinen
Irreducible representations of periodic finitary linear groups

Let V be a vector space over the field K. A finitary representation of the group G isa

homomorphism o: G = Autg(V) such that, forevery ge G, the endomorphism go - 1 has
finite rank. A group G is said to be finitary linear , if it has a faithful finitary representation.
During the last few years the theory of finitary linear groups has been an area of intense and
truitful research. Here, we report about the following generalization of a well-known theorem
of A. E. Zalesskii and D. J. Winter for linear groups.
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Theorem. Every irreducible finitary representation of a periodic group G over the alge-
braically closed field K is equivalent to a finitary representation of G over the smallest sub-
field of K containing the m-th roots of unity for every natural number m which occwrs as
the order of some elementin G .

The proof combines an ultraproduct argument with an induction on the cardinality of G . In
this setup, the theorem of Zalesskii and Winter is used locally. The Theorem has some con-
sequences conceming the size of periodic finitary linear groups.

Corollary, (a) Every infinite periodic irreducible group of finitary transformations ofa x-di-
mensional vector space has cardinality at most 2X.

(b) Every irreducible periodic locally solvable finitary linear group is countable.

M. Liebeck

Iln 9%3111( work with A. Shalev, we complete the proof of a conjecture of J. D. Dixon made in
Theorem Let Go be a finite simple group, and let G be a group with Go $G < Aut Go . If
P(G) denotes the probability that two randomly chosen elements of G generate a subgroup
containing G , then P(G) = 1 as IGl = oo.

This was proved by Dixon for Go alternating (using elegant combinatorial arguments) and by
Kantor and Lubotzky for Go a classical group or a small exceptional group (using CFSG).
The proof is based on a new result concerning the orders of maximal subgroups of simple
groups of exceptional type:

Theorem Let Go be of type Fa, 2F4, Eg, 2Es, E7 or Eg over Fgq, and let

Go <G <AutGo. If M isa maximal subgroup of G such that either MI2IGI%S or soc(M)
is non-simple, then M is known. In particular, there are at most ¢ + log q conjugacy cClasses
of such subgroups M. )

A. Lubotzky
Subgroup growth and permutation groups

Let T beaf.g. group, ap(l") = number of subgroups of " of index n . Groups of polyno-
mial subgroup growth (PSG) (i.e. with an(T") = O(n€) for some c ) were characterized:
Theorem 1 (A. Lubot_zky. A. Mann, D. Segal) Let T be a f.g. residually finite group. Then
T is PSG iff T is virtually soluble of finite rank. .

Other type of growth are provided by arithmetic groups satisfying the congruence subgroup
property (CSP).

Let T be an arithmetic group, e.g. T =SL{Z) , )n(D =#H<TI[T:H)<n and H isa
congruence subgroup}.
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Theorem 2 If I is arithmeticin char=0, then I cj,c3 s.t
pc2logn/loglogn o @D < nctlog n/log log n

Theorem 3 If [ is arithmetic in charp > O then Jc3,c4 s.t.

ac3logn @ S nS4log2n

Theorem4 If T is any f.g. linear group then an(I") 2 n® 108 Mloglogn

In the lecture we also present an example of a f.g. residually finite group which seems to have .
an() ~ nC 108 /(108 10g )2 Tyis hears the lower bound of linear groups. To finish the proof

one needs to prove: Vr: an(Sy) < n® 108 1/(log log 2

M. Lustig

How to analyse a free group automorphism via graphs and trees

We show that for every ¢ € Out(Fp) (the outer automorphism group of a f.g. free group)
some power ¢! (t 21) can be decomposed canonically into "prime"” factors which are either
"Dehn-twists" or "partial pseudo-Anosovs" (explained in the talk). This is based on funda-
mental work of Bestwina-Handel and on older work of myself.

If two automorphisms @; and @7 are conjugate in Out(Fp) then there is a correspondence
between the prime factors in the factorization of @1 and @2, such that corresponding factors
are conjugate. For both types of prime factors there have been developed algorithmic solutions
of the conjugacy problem,.in both cases coming with nice geometric interpretations on graphs
or trees (for Dehn-twists this is joint work with M. D. Cohen). Combining these algorithms
properly gives a solution to the conjugacy problem in Out(Fp) .

H. D. Macpherson ‘ ®
Jordan Groups’

If G is a permutation group on Q , then Z < Q is a Jordan set if 121> 1 and

G\r) ={ge G: gl q\x =id} istransitiveon X ;X is a proper Jordan set if in addition, if
INZ} =k €N, then G is not (k+1)-transitive. We say that Z is a primitive Jordan set if
G(Q\T) is primitive on . A Jordan group is a group with a proper Jordan set. Around 1983,
P. M. Neumann and Kantor independently classified finite primitive Jordan groups, using the
classification of the finite simple groups (and the result of Jordan that every finite primitive
Jordan group is 2-transitive). Around 1985 S. Adeleke and P. M. Neumann classified infinite
primitive Jordan groups with proper primitive Jordan sets: that is, they showed that such a
group is highly wransitive, or preserves a linear order. circular order, linear betweeness relaton,
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separation relation, semilinear order, or B.C or D relation (there are rejational structures
associated with semilinear orders). Recently, all infinite primitive Jordan groups were
‘classified’ in the above sense, in joint work with Adeleke. There are some additional families
of examples which arise; namely, groups of automorphisms of Steiner systems and certain
limits of B-relations, D-relations, and Steiner systems.

A. Mann

Counting primitive permutation groups and generating profinite groups

‘ A profinite group G is posisively finitely generated (PFG) if for some k , the set of k-tuples
generating G has a positive Haar measure in GK . E.g. a finitely generated pro-p group is

PFG (easy) while a finitely generated free profinite group is not (Kantor - Lubotzky). I will
discuss the proofs of the following two theorems:
Theorem 1. A finitely generated pro-soluble group is PFG . .
Theorem 2. A profinite group is PFG if and only if the number of maximal subgroups of G
of index n grows polynomially (at most) with n (Mann - Shalev).
In both proofs counting primitive permutation groups is essential. In the proof of Theorem 2
we also employ some probabilistic arguments.

P. Ncumann

A problem about permutation groups

o

A J-set for a permutation group (G,Q) is a subset £ of Q such that the pointwisé stabxhser
of Q-Z is transitive on X . Peter Cameron [Qligomorphic Permutation Groups, p- 129] has
asked for those (G,Q) with the property that for any finite & the pointwise stabiliser. G’
has only finitely many orbits, and each of them isa J-set. We answer this question by....
classifying a slightly more general class of groups.

Ch. E. Praeger
‘ Finite quasiprimitive permutation groups

A group G < Sym(Q) is said to be quasiprimitive on Q if each nontrivial normal subgroup of
G is transitive on . Quasiprimitive groups have arisen in an essential way in the study of
finite 2-arc transitive graphs: each finite, non-bipartite, 2-arc transitive graph is a cover of a
finite non-bipartite graph admitting a (sub)group of automorphisms quasiprimitive on vertices
and transitive on 2-arcs. A structure theorem, similar to the O'Nan - Scott theorem for finite
primitive permutation groups has been proved for finite quasiprimitive permutation groups. and
has been applied to describe finite quasiprimitive 2-arc transitive graphs. Several fundamental
questions remain unansweéred: ’

1. When is an imprimitive quasiprimitive group G contained in 2 primitive subgroup
H of Sym(Q).where H 1 Al(Q)? '
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2. If GSAutT and G is quasiprimitive and imprimitive on vertice, and transitive on
2-arcsof [, whencan AutT" be primitive; and when can Aut " not be quasiprimitive?

O. Puglisi
Outer automorphisms of hypercentral p-groups

In 1971 Zalesskii proved that an infinite nilpotent p-group always has a non-inner automor-

phism. This result can be viewed as a generalization of Gaschiitz's theorem about outer auto-
morphisms of finite p-groups. On the other hand Zalesskii himself produced an example of a .
torsion-free nilpotent group of class 2 such that Aut G = Inn G . It seems, therefore, that

p-groups behave better than other groups in questions related to the existence of outer automor-
phisms. For this reason M. Dixon was led to ask, during the meeting "Groups 1993" in Gal-

way, if it is true that a hypercentral p-group always has non-inner automorphism. In this talk

we examine the case of groups of hypercentral type w .

L. Pyber
On random generation of the symmetric group

We prove that the probability i(u,k) that a random permutation of an n element set has an
invariant subset of precisely k elements decreases as a power of k, for k <n/2 . Using this
fact we prove that the fraction of elements of Sp which belong to transitive subgroups other
than Sp or Ap tendsto C when n — oo, as conjectured by P. J. Cameron. Finally, we
show that for every € >0 there exists a constant C such that C elements of the symmetric
group Sp, chosen randomly and independently generate invariably Sp with probability at
least 1 - ¢ . This confirms a conjecture of J. McKay. (Joint work with T. Luczak)

A. Seress
On the diameter of permutation groups ‘ . -

For G = <S>, let I'(G,S) denote the undirected Cayley graph of G defined by S . The
"worst-case" diameter of G is defined as
diam(G) := max diam I'(G,S) .
S

Theorem 1: Let G <Sn. Then diam(G) < eV 9821 +0(1)) ang this bound is best
possible.

Theorem 2: If G S Sp is transitive then diam(G) < e€ log3n . diam(Am) , where A is the
largest alternating composition factor of G .

Theorems 1, 2 are joint work with L. Babai. -
We also discuss reductions and partial results toward the conjecture that for transitive G < Sp,

diam(G) is polynomial in n . In particular this holds if G is solvable.
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A. Shalev
The fixity of permutation groups

We say that a permutation group G has fixity f if f=maximal number of fixed points of a

nontrivial element of G . We study permutation groups of given fixity, thus generalizing the

theory of Frobenius groups, Zassenhaus groups, etc. Our main result shows that if G is a

(fin) primitive permutation group of fixity f, then either

(i) G has a soluble subgroup of f-bounded index and derived length <4, or

(ii) G is almost simple, and F*(G) = PSL2(q) or Sz(q) in their natural permutation
representations.

(Joint work with J. Saxl)

A. Shalev

e

Subgroup growth and priﬁitive permutation grbups

We show that there are < clog2n conjugacy classes of pnnuuve subgroups of Sp (improving
a result of Babai). This result has a number of applications in the study of the subgroup growth
of infinite groups. (Joint work with L. Pyber)

S. Thomas
The coﬁnallty of the infinite symmetnc group

Definition. Let G be a group which is not finitely generated. Then the cofinality of G
written cf(G) , is the least cardinal A such that G = UGa is the union of a chain of A

proper subgroups. bt
Theorem §. (Joint work with J. Sharp)

If A < x are uncountable regular cardinals, then it is consistant with ZFC that
cf(Sym(IN)) =A< x =20,

If M is a countable w-categorical structure, then
cf(Aut(M)) < cf(Sym(IN)) .

Is it consistant that there exists a countable structure M such that cf(Sym(IN)) < cf(Auy(M)) ?
Theorem 3
cf(Gl(w.Q) = d(Sm( IN)) .

It is consistant with ZFC that’
cf(AU<Q, <>) < cf(Sym(IN)) .
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J. K. Truss

Conjugate homeomorphisms of the rationals

I study the group ‘Hom Q of homeomorphisms of @ to itself under the usual topology. The

ultimate goal would be to characterize the conjugacy classes of Hom Q in terms of cycle
structure, but this is too ambitious.

For ge HomQ and ne {12,.} U (=} let Yg={xe Q:xliesinacycleof g of

: _ length n} . :
Theorem |: If f.ge Hom Q have cycles only of length 1 and n,n finite, then they are -
conjugate if and only if there is h € Hom Q such that Y¢h=Y; for i=1n.
Conjecture: If f.ge Hom(D hx.xveﬁnitcotdu' then they are conjugate if and only if there is
he Hom @ such that Yih=Yg,all i. :
Theorem2: Thereis ge Hom QQ of type 1.3.5.7.9... not conjugate to g2.

E I also make some remarks about members of Hom Q having just one (infinite) cycle, and
' "locally generic" elements:
|
|

l

R. M. Weiss

Graphs which are locally Grassmann
(joint work with Vladimir L Trofimov)

We report on prog'ess toward proving the following conjecture: Let X be the set of m-di-
mensional subspace of an n-dimensional vector space over Fq.Let H denote the projective

special linear group Lp(q) inits actionon X.Let I" be a connected graph and let x € V().

Let G < aut(l) be a group acting transitively on V(I) with IGxl <o . Suppose Gyl X
contains a normal subgroup isomorphic as a permutation group to HX . Then the pointwise
stabilizerin G of the ball of radius six around x is trivial.

J. Zhang ' )

Finite groups with many conjugate elements

As everybody knows, the symmetric group S3 of degree three has three conjugacy classes of
length 1,2 and 3 respectively. Thus distinct conjugacy classes of S3 have different lengths.
A finite group with the property is called a dc-group. It has long been conjectured that solvable
dc-groups (# 1) are isomorphic to S3 . Intensive study has been made on the conjecture. We
confirm the conjecture. This is in fact a by-product of our study with Prof. L. Puig on source
algebras.

We will also talk about the finite full p-defective groups. which are related to a problem posed
by Prof. C. E. Praeger.
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P.-H. Zieschang

On buildings and generalized groups

Generalized groups are algebraic objects the relationship of which to ordinary groups reflects
the relationship of generalized polygons to ordinary polygons (or, more generally, the relation-
ship of buildings to Coxeter complexes). We define coset systems of generalized groups to ab-
stract the way in which classical geometries arise from groups, e.g. in which certain buildings
arise from groups with a (B,N)-pair. Together with the ordinary representation theory of finite
generalized groups the theory of coset systems leads to structure theorems on generalized
groups, e.g., it is possible to determine the "dihedral” generalized groups.

Berichterstatter: Stefan Zimmermann
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