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MATHEMATISCHES FORsCHUNGSINSTITUT OBERWOLFACH

Tag u n g s b e r ich t 3/1994

Gruppentbeorie (Permutationsgruppen)

16.1. • 22.1.1994

•

Die Tagung fand unter der Leitung von Prof. Dr. Otto H. Kegel (Freiburg) und Prof. Dr. Peter
M. Neumann (Oxforo) statt.

An der Tagung, bei der Themen im Zusammenhang mit endlichen und unendlichen Pennuta­
tio~sgroppen im Mittelpunkt standen, nahmen 39 Mathematiker aus 10 Ländern teil.

Die Themen der 32 Vorträge waren weit gestreut; so reichten sie z. B. von Automorphis~en­
gruppen von (panieIl) geordneten Mengen oder Mengen mit einer Relation bis zum Zusammen-
hang zwischen Pennutationsgruppen und Untergruppenwachsttlm. .
Neben den Vorträgen ergaben sich allabendlich intensive Diskussionen, ein reger.Austausch
von Ergebnissen und Perspektiven, sowie Gelegenheit zur konzentrierten Zusanunenarbeit
Dazu trug die Atmosphäre des Mathematischen Forschungsinstitutes wie auch die groß~gigen
Möglichkeiten entscheidend bei.
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J. Bamblett

Groups 01 product type

We study primitive pennutation groups which "look like" wreath produets in their primitive
action. We define systems of product imprimitivity according to KovacsynWreath decom-
positions of finite pennutation groups", Bull Austral. Math. Soc. 40 and, having defined a .­
partial order on the set of all such systems for a given grouPy we show that in many cases this .,
poset is in fact a lattice. This he1ps os with the question of recognising computationally groups
of product type as we do nothave to search for systems of produet imprimitivity but can then
just compute; the minimal element of the lattice of systems can be found from the seele of the
graupe

B. Baumeister

Groups of product type witb an application to C1C geometries

I mentioned two propositions about pennutation groups which I used then for the classification
of flag transitive C2C-geometries supposing an almost simple or affine stabilisator of aplane.
Proposition 1: Let H be an almost simple group and suppose H = AAa for an subgroup A

of H and a e .Aut(H). TIten Soc(H) == pa 'ä(q),. M12 , SP4(q)', q even.

Proposition 2: Let V == pm be an iIreducible and faitbful module far a group K with

F(K.) =1. If K has a subgroup U , such that IK: UI = pa, a ~ m, then
p =2 y Soc(K) == L3(2) x...x L3(2) and V is a direct sum of natural modules
for L3(2).

G. Behrendt

Automorpbism groups 01 ordered sets

The talk gives a survey of recent results and open problems in some areas of the theory of ~to­
morphism groups of ordered sets. The subjects are the following:
Representations of groups as automorphism groups of "small" ordered sets; representations of
groups as automorphism groups of ordered sets with forbidden induced suborders; homogenity
conditions for finite ordered sets.
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St. Bigelow

The truth about supplements of BA.

Let Ä. S K be infinite cardinals. A group G acting on a set 0 of size k is a supplement of

BÄ. if for every pennutation S of {} there is a g E G which agrees with s on all but fewer

than Ä. points. Semmes has shown that if the Generalised Continuum Hypothesis holels then
mere is a simple and powerful description of all such groups. Macpherson and Neumann
published a theorem giving a slighdy weaker" description which holds true in all models of set
theory. As a corollary this yields the euet set theoretic assumptions required for Semmes'
result to hold Unfortunately I have discovered amistake in the proof of their theorem and can
construet a cOUDterexample in certain models of set theory. However I have an alternative PrPof
that the corollary still holels. I will discuss these results and same ingredients thaI went into .
their proof. "

B. Brewster

Groups 2-transitive on a set 01 their Sylow subgroups

By Sylow's Theorem each finite group G is transitive on Sylp(G), the set of Sylow~'p-su~
groups of G, via conjugation. We present same results that indicate how strang a condition it
is for this action 10 be 2-transitive. The work isjoint with M. Ward (Bucknell U.). '.
Using the classification of 2-transitive groups cited by Cameron, Bull. London Math. Soc. 13
(1981), aided by methods presented by Hering, 1. Algebra 93 (1985), we obtain a p~ise
characterization of tbe groups G which are faithful and 2-transitive on Sylp(G) for same
prime p. From this we deduce:
G is 2-transitive on Sylr<G) for each r

and
faithful on SylP(G) for some p

(i) G == (x -+ ax + b I a,b E GF(qD), a ;c O}

where q is prime, q ~ p

q is not Mersenne or n;c 2

(ü) G == H S r(qD) with Ir(qD):HI I 2
if q is Mersenne and n =2

(iii) G == S4, P =3
or (iv) G == [C3 x C3] . SL(2,3), p.= 2

Consequendy if G is 2-transitive on Sylr(G) for each r, G e N3 and if either
, ISy13(G)1 =1 or ISy12(G)1 =1 , G E N2.

-.
A.R.Camina

Linear spaces witb line-transitive, point-imprimitive automorphism groups

I wish to discuss the following result (proved jointly with S. Meschke).
~t S be a line-~sitive, point·imprimitive linear space with k (n~mber of points on a
line) < 9. Theo 5 15 one of the following:
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(a) A projective plane of.order 4 or 7 ,
(b) one of 2 linear spaces with 91 points and k =6 or
(c) one of 467 linear spaces with 729 points and k = 8.

A. R. Camina (for J. Siemons)

Modular Homology in tbe Boolean Algebra and Group Acti~ns

Let 0 be a set and denote by 2[0] tbe finite sets of n. u:t R be a ring and consider the

R-module. R 2[0] . Let a e 2[Q] and let a(a) = 1: ri, 141 = k, lril =k - 1 . •
riSA

Let Mk ={1: rAJi I~ S C, lAI = Je. rA eR} . Consider the chain

o ~ 0 .•• +- Mo +- MI ~M2+-·..

If R has char p the ap = 0 .

Theorem All subsequence of the kind

~ Mk-p +- Mk.p+i +- Mt +- Mk+i +- Mk+p +- ...
are exaet for ~trary k, 0 < i < P as long as 2(k + p) Stnl .

M. Droste

McLain-groups over arbitrary rings and orderings
(joint work with R. Gäbel, Essen)

We investigate McLain..groups G(R,S) over arbitrary rings R and posets (S~. The group

elements can be viewed as upper ttiangular mattices witb only finitely many cotties *0 from
R , indexed by S. If R has no zero.divisors ~ 0 and (S,s) is locally linear (Le. eacb
interval is achain), we can recover the struetures of R and (S~, up to isomorphism or anti­
isomorphisrn, from G(R,S). Also, Aut(G(R,S» can be detennined, and we can characterize
when G(R.,S) is characteristically simple. As a consequence, using non-linear posets (trees)
(S,~ we obtain for each prime p, continuously many countable characteristically simple
locally finite p-groups G(Fp,S).

T. Gardiner

Imprimitive graphs. Regular rnaps. Coverings 01 complete grapbs

I shall present a 'geometrieal' approach to the study of imprimitive graphs which makes it
possible (0 decompose cenain graphs as the 'praductt of a quotient graph and a I-design
induced on each block. I shall analyse some of the simplest cases in detail.
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M. Giraudet

Convenient languages ror groups preserving or' reversing chains or eyclie
orderings

(1) It is weil known (Holland 1963) thal the groups ofpennutations of chains provided with
the pointwise order are exacdy the ordered subgroups of the lattice ordered groups.
(2) Groups of monotonie permutations of chains can be characterized as suuctures in (1)
provided with a decreasing group automorphism of order two (Joint with F. Lucas).
(3) Groups of pennutations of total cyclic omers have charaterisations among sttuctures in (1)
enriched with a parameter in their center (Joint with M. Droste and D. Macpherson), cr
enriched with a predicate for a nonna! subgroup which is a Z-group.
(4) Above (2) and (3) can be combined.
(2), (3) and (4) provide languages whieh behave much better thari the natural ODes (= with
pointwise relations) towards usual class operations: direct sums, wreath product, ...A 00­
ginning of exploration of the laaiee of varieties in (2) is undertaken (joint with I. ~hunek).

Ch. Hering

On large prime divisors of tbe order of a finite linear group

.,....

~.

Starting priint is a result proved by Feit and Thompson (1961) via modular representation
theory:
Theorem 1. Let r be a prime. If the finite group G has a faithful representation of degree n
over the complex numbers and if r > 2n + 1, then the Sylow r-subgroup of G is an abelian
nonna! subgroup of G . .

This generalizes a Theorem of Brauer (1942) who treated the special case r2 ~ IGI . AlSo·
Blichfeldt (1903) solved the case r> (20 + 1) (n - 1) . We prove the folloWing generalisation:
Theorem 2. Let G S GL(n,K), G finite, r a prime divisor of .IGI different from the
characteristic of K and r > 2n + 1 . Then one of tbe following conditions holds: .- .
a) Or(G) ~ 1 .

b) Char K =P < 00 and Op(G);! 1 .

c) Char K = P < 00 and G contains a subnonnal quasisimple"subgroup H such that r IIHI
and HlZ(H) is a simple Chevalley group of characteristic p (of ordinary or twisted type) cr
HIZ(H) == J1 ,and p = 11 . The proof uses the classification of fmite simple groups. It is jomt
work with P. Munke. .

w. Cb. Holland

Tbe partial orders 01 tbe group 0' order permutations of tbe real line

We let G denare the group of the title and R the realline. Among the interesting properties of
this group is that it admits a lattiee order. the socalled poinrwise order: If we define. for
f,h e G • that f S h iff for all a eR. af Sah. then G becomes a panially ordered
group (whase order is preserved by the group operation). In fact. G is a lattice. It has lang
been known thal every countable Jattice-ordered group can be embedded in G.
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In this paper, we investigate other panial orders on Gunder which G is a partially ordered
group. There is exacdy one other lattice order of G (the reverse of the pointwise order).
Among alt non-trivial partial orders of G there are exacdy 16 minimal ones and 40 maximal
ones. It is probable that the partially ordered set of all partial orders of G is weil partiaJly
ordered by containment. that is that there is no infinite descending chain and DO infInite
antichain.

w. Knapp

On Bumside's Metbod

W. Bumside gave in the second edition of bis book [1911] a proof of the theorem stating that
any primitive permutation group G containing a transitive cyclic subgroup of composite prime
power order is doubly transitive.
P. Neumann pointed out in bis recent article ·"Helmut Wielandt on permutation groups" that
Bumside's proof uses in the last OOt crucial step an argument about sums of roots of unity
which is false. (p. Neumann gave explicit counterexamples and stated that Bwnside's enor
'is not as easy to putright as one would like'.)
In my talk it is shown that Bumside's error can be repaired by the method used in bis own
proof of the celebrated theorem on pennutation groups of prime degree p and by an additional
result conceming sums of pIt1-tb roots of unity.

A. Kreuzer

Loops witb an automorphism group related to tbe relativistic velocity addition

•

The relaJivistic velocity addition EB is a binary operation which is neither commutative nor

associative. For IR~ := {v e 1R3 : tvl < c} , (IRA,EB) is a loop with automorphisms

A := {Sa,b : ~b e IR~}, at what for any a,b E IR~ the automorphisms 8a,b are defined by the

equation a EI) (b EB x) =(a EB b) ED Öa,b(x) . Such a loop, called K-Ioop, appears also as the
additive structure of a neardoma.in. which is a generalisation of a nearfield The notion of a
neardomain was introduced by H. Karzel 10 describe infinite sharply 2-transitive permutation
groups. Funher a construction method for K·loops is given. • -

F. Leinen

Irreduc~ble representations 01 periodic nnitary linear groups

Let V be a vector space over the field K. Afinitary representalion ofthe group G is a

homomorphism a: G -+ AutK(V) such thal, for every g E G , the endomorphism ga - 1 has
finite rank. A group G is said to be finirary linear. if it bas a faithful fmitary representation.
During the last few years the theory of fmitary linear groups has been an area of intense and
fruitful research. Here. we report about the following generalization of a well-known theorem
of A. E. Zalesskii and D. J. Winter for linear groups.
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Theorem Every irredu.cible jinitary representaJion 0/aperiodie group G over (he alge­
braicaJly closedjield K is equivaJent to a jinitary representation 0/ G aver ehe smallest sub-
jield 0/ K containing lhe m-th roolS 0/unityfor every natural number m which occzus os
the ortkr 0/some element in G.
The proof combines an ultraproduet argument with an induction 00 the cardinality of G . In
this setup, the theorem of zaIesskii and Winter is used locally. The Theorem has some con­
sequences conceming the size of periodic finitary linear groups.
CorolIm:. (a) Every infinite periodie i"educible group offinitary transformations 0/a 'tC-di-

mensional vector space /ws cardinaJiry at most 21C •

(b) Every irreducible periodic locally solvablefinitary linear group is countabJe.

M. Liebeck

Subgroups of exceptional groups

In joint wolk with A. Shalev, we complete the proof of a conjecture of J. D. Dixon ni3de in
1969: .,,-
Theorem Let Go be a finite simple group, and let G be a group with Go S G SAut Go . If
P(G) denotes the probability that two randomly chosen elements of G generate a subgroup
containing Go, then p(G) ~ 1 as 101~ 00 •

This was proved by Dixon for Go alternating (using elegant combinatorial arguments) and by
Kantor and Lubotzky for Go a classical group or a small exceptional group (using CFSG).
The proof is based on a oew result conceming the orders of maximal subgroups of simple
groups ofexceptional type:
Theorem Let Go be oftype F4, 2F4, E6, 21:6, E7 or Eg over Fq , and let ...'
Go S G ~ Aut Go . If M is a maximal subgroup of G such that either IMI ~ IGI1JS or soc(M)
is non-simple, then M is known. In particular, there are at most c + log q conju~y.:clas~
of such subgroups M. . ~ .

....~ -

A. Lubotzky

• Subgroup growtb and permutation groups

Let r be a f.g. group, an(ll = number of subgroups of r of index n. Groups of polyno­
mial subgroup growth (PSO) (i.e. with an(I) =O(nC) for some c) were characterized:
Theorem 1 (A. Lubo~,A. Mann. D. Segal) Let r be a f.g. residually finite group. Then
r is PSG iff r is vinually soluble of finite rank.
Othet type of growth Ire provided by arithmetic groups satisfying the congruence subgroup
property (CSP).

Let r be an arithrnetic group, e.g. r = SLr(71) , 'Yn(I) = #f H S r I [r : H] S n and H is a
congruence subgroup }.
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Theorem 2 If r is arithmetic in char = 0 ,then 3 Cl,C2 s.L

nC210g nIlog log n S Yn(O S nCtlog n/log log n

Theorem 3 If r is arithmetic in charp > 0 then 3 C3,C4 S.L

nC310g 0 S Yn(IJ ~ nC41og2n

Theorem 4 If r is any f.g. linear group then an(I) ~ oC log nIlog log n .

In the.lecriJre we also present an example of a f.g. residually finite group which seems to bave
an(I) - nC log n/(log log n)2 . This beats the lower bound of linear groups. To finish the proof

one needs to prove: \:Ir. an(Sr) S ne log n/(log log 0)2 .

M. Lustig

How to analyse a free group automorphism via grapbs and trees

We show that for every cp e Out(Fn) (tbc outer automorphism group of a f.g. free group)
some power cpt (t ~ 1) can be decomposed canonically into "prime" faetors which are either
"Dehn-twistsn or "partial pseudo-Anosovs11 (explained in the talk). This is based on funda­
mental work of Bestwina-Hande1 and on oider work of myself.
If two automorphisms <PI and <p2 are conjugare in 0ut(Fn) then there is a correspondence

between the prime factors in the faetorization of «Pt and <P2, such that corresponding faetors
are conjugate. For both types of prime faetors there have been developed algorithmic solutions
of the conjugacy problem,. in both cases coming with nice geometrie interpIetations on graphs
or trees (for Dehn-twists this is joint work with M. D. Cohen). Combining these algoritbms
properly gives a solution 10 the eonjugacy problem in Out(Fn).

H. D. Macpherson

Jordan Groups'

If G is a pennutation group on ,n ,then 1: ~n is a Jordan set if IIJ > 1 and

G(Q\I) := {g E G: g IC\t = id} is transitive on I; I is a lWmCI Jordan set if in addition, if

I~ = kEIN, then G is not (k+1)-transitive. We say that 1: is a primitive Jordan set if

0(0\1:) is primitive on 1: . A Jordan group is a group with a proper Jordan set Around 1983,
P. M. Neumann and Kantor independently classified finite primitive Jordan groups, using the
c1assification of the finite simple groups (and the result of Jordan that every finite primitive
Jordan group is 2·uansitive). Around 1985 S. Adeleke and P. M. Neumann classified infinite
primitive Jordan groups with proper primitive Jordan sets; that is. they showed that such a
group is highly transitive. or preserves a linear order. circular order, linear betweeness relation.
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separation relation. semilinear order. or B.C or 0 relation (there are relational sauetures
associated with semilinear orders). Recently. all infinite primitive Jordan groups were
'classified' in the above sense. in joint work with Adeleke. There are same additional families
of examples which arise; namelYt groups of automorphisms of Steiner systems and cenain
limits of B·relations. D-relationst and Steiner systems.

A.Mann

Counting primitive permutation groups and generating profinite groups

A profinite group G is positiye)y finite!y &eDerated (PFQ) iffor some k t the set of k·tuples
generating G has a positive Haar measure in c;k. E.g. a finitely generated pro-p group is "
PFO (easy) while a finitely generated free profinite group is not (Kantor· Lubotzky). I will
discuss the proofs of the following two theorems:
Theorem 1. A finitely generated pro-soluble group is PFO. . :
Theorem 2. A profinite group is PPO if and only if the number of maximal subgroups of 0
of index n grows polynomial1y (at most) with n (Mann - Shalev).
In both proofs counting primitive pennutation groups is essential. In the proof of Theorem 2
we also employ same probabilistic arguments.

P.Neumann

A problem about permutation groups

A J-set for a pennutation group (G,n) is a subset 1: of n such that the pointwise' ~iabili$er
of 0-1: is transitive 00 1:. Peter Cameron fOligomorpbic Peunutation Qmups, p. i,~9] has
asked for those (G,.Q) with the property that for any finite cl» the pointwise stabiliser.' Gell"
has only finitely many orbits, and each of them is al-set We answer this question'by.<~,.
classifying a 'slighdy more general class of groups.

Ch.E.Praeger

Finite quasiprimitive permutation groups

A group G S Sym(Q) is said to be quasiprimitive on n ifeach nontrivial nonnal subgroup of

Gistransitive on n. Quasiprimitive groups have ansen in an essential way in the study of
finite 2-arc transitive graphs: each finite, noo·bipartite, 2-arc transitive graph is a cover of a
finite non·bipartite graph admitting a (sub)group of automorphisms quasiprimitiv~ on vertices
and transitive on 2-arcs. A strueture theorem. similar to the O'Nan - Seott theorem for finite
primitive pennutaJion groups has been proved for finite quasiprimitive pennutation groups. and
has~n appli~ to describe finite quasiprimitive 2-arc transitive graphs. Several fundamental.
quesbons rel1131n unanswered:

1. When is an imprimitive quasiprimitive group G contained in a primitive subgroup
H of Sym(O). where H i2 Alt(O) ? .
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2. If G SAut r "and G is quasiprimitive and imprimitive on vertice, and transitive on

2-arcs of r ,when can Aut r be primitive; and when can Aut r .mu be quasiprimitive?

o. Puglisi

Outer automorpbisms of hypercentral p-groups

In 1971 Zalesskii proved that an infinite nilpotent p-group always has a non-inner automoT-
phism. This result can be viewed as a generalization of Gaschütz's theorem about outer auto- •
morphisms of finite p-groups. On the other hand Zalesskii himself produced an example of a
torsion-free nilpotent group of class 2 such that Aut G =Inn G . It seems, therefore, that
p-groups behave hetter than other groups in questions related 10 the existence of auter automor­
phisrns. For this reason M. Dixon was led 10~ during the meeting "Groups 1993" in Gal-
way, if it is ttue that a hypercenttal ~group always has non-inner automorphism. In this ta1k
we examine the case of groups of hypercentral type w.

LPyber

On random generation of tbe symmetrie group

We prove that the probability i(u,k) thlt a random pennutation of an n element set has an
invariant subset of precisely k elements decreases as apower of k, for k S n/2. Using this
fact we prove tbat the fraction of ~lementsof Sn which belang to transitive subgroups other
than Sn or An ten~ 10 C when n ~ 00 , as conjectured by P. ]. Cameron. Fmally, we
show that far every e > 0 there exists a constant C such thal C elements of the symmetrie
group Sn, chosen randomly and independendy generate invariably Sn with probability at

least 1 - e . This confinns a conjecture of ]. McKay. (loint werk witb T. Luezak)

A. Seress

On tbe diameter of permutation groups

For G =<S>, let r(G,S) denote the undirected Cayley graph of G defined by S. The
"worst-ca.se" diameter of G is defined as

diam(G) := max diam r(G,S) .
S

Theorem 1: Let G S Sn. Then diam(G) S e"n log n(1 + 0(1» , and this bound is best
possible.

Theorem 2: If G S Sn is transitive then diam(G) Sec log3n . diam(Am) , where Am is the
largest altemaring composition factor of G .

Theorems 1. 2 are joint work with L. Babai.
We also discuss reductions and panial results toward the conjecture that for transitive G ~ Sn .
diam(G) is polynomial in n. In panicular this holds if G is solvable.

•
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A. Shalev

The fixity of permutation groups

We say that a permutation group G has fIXity f if f =maximal number of fIXed points of a
nonttivial element of G . We study pemtutation groups of given fixity. lhus genera1izing the
theory ofFrobenius groups. Zassenhaus groups. etc'. Our main result shows that if G is a
(tin) primitive pemtutation group of fixity f. then either
(i) G has a soluble subgroup of f-bounded index and derived length S 4. or
(il) G is almost simple, and F*(G) =PSL2(q) or Sz(q) in their natuml pennutation

representations.
(Joint work with J. Sax!)

A. Shalev

Subgroup growtb and primitive permutation groups

We show that there are S clog2n conjugacy classes of primitive subgroups of Sn (improving
a result of Babai). This result has a number of applications iit the study of the subgroup groWth
of infinite groups. (Joint work with L. Pyber)

s. Thomas

The cofinality of tbe inrmite symmetrie group

•

Definition. Let G be a group which is not finitely generated. Then the cofinality of G •

written cf(G) , is the least cardinal Ä. such that G = U Ga is the union of achain of A.
, ad

propersubgroups. -
Theorem 1. (Joint work with J. Sharp)

If Ä. S Je are uncountable regular cardinal~ then it is consistant with ZFC that

cf(Sym(IN» =Ä,·S Je = 2m.
Theoem2.

If M is a countable c.o-categorical Sb'Ueture, then
cf(Aut(M) S cf(Sym(IN» .

Open problem .
Is it consistant that there exists a countable strueture M such that cf(Sym(IN) < cf(Aut(M) ?
Theorem 3 ".

cf(GL(m.q» = cf(Sym(IN» .
Cogjecture
It is consistant with ZFC thal"

cf(Aur<cp. <» < cf(Sym(IN» .
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J. K. Tross

Conjugate homeomorphisms of tbe rationals

I study the group Horn ~ of homeomorphisms of ~ to itself uncler the usual topology. The
ultimate goal would be to characterize the conjugacy classeS of Horn <p in tenns of cycle
strueture, but this i$ lOo ambitious.
For ge Horn <p and ne {1,2,... } u {oo} let Y~ = (x e Cl): x lies in acycle of g of

. length n} .

Theorem 1: If f,g e Hom <p have cycles only of length 1 and D,n finite. then they are

conjugare if and only if there is h e Hom<p such tha1 Y} h =Y~ for i =I,n . e
COQjecture: If f,g e Horn ~ have finite order then tltey are conjugate if and only if there is
hE Horn <p such that Y}h = Y~, all i.

Theorem 2:" There is g e Horn~ of type 1.3.5.7.9... not conjugate 10 g2.
I also make same remarks about members of Horn <P having just one (infinite) cycle, and
"locally generic" elements~

R. M. Weiss

Graphs wbich are locally Grassmann
Goint work with Vladimir L Trofimov)

We repott on progress 10ward proying the following conjecture: Let X be the set of rn-di­
mensional subspace of an n--dimeDsional vector spare over Fq . Let H denare the projective
special linear grouP Ln(q) in its action on X. Let r be a connected graph and let xe V(I) .

Let G Saut(!) be a group seting transitivelyon V<n with IGxI < 00 • Suppose Gx
r x

contains a DOnna! subgroup isomorphie as a permutation group to HX. Then the pointwise
stabilizer in G of the ball ofradius six around x is trivial.

J. Zhang

Finite groups witb many conjugate elements

As everybody knows. the symmetrie group 53 of degree three has three conjugacy classes of
length 1,2 and 3 respectively. Thus distinct conjugacy classes of 53 have different lengths.
A fmite group witb the propetty is called a dc-group. It has lang been conjectured that solvable
dc-groups (~1) are isomorphie to 53. Intensive study has been made on the conjecture. We
confinn the conjecture. This is in fact a by..product of our study with Prof. L. Puig on source
algebras.
We will also talk about the fmire full p-defective groups. which are related [0 a problem posed
by Prof. C. E. Praeger.
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P.-H. Zieschang

On buildings and generalized groups

Generalized groups are algebraic objects the relationship of which to ordinary groups reflects
the relationship of generalized polygons to ordinary polygons (or. more generally, the relation­
ship of buildings to Coxeter complexes). We define coset systems of generalized groups to ab­
stract the way in which classical geometries arise from groups, e.g. in which eenain buildings
arise from groups with a (B,N)-pair. Together with the ordinary representation theory of fmire
generalized groups the theory of coset systems leads 10 structure theorems on generalized
groups, e.g.,it is possible to determine the "dihedra1" generalized groups.

Berichterstatter: Stefan Zimmermann
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