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Die Tagung fand unter der Leitung von J.Cuntz (Heidelberg),U. Haagerup
(Odense) und L.Zsido (Rom) statt.Vortrage aus verschiedenen Zweigen der C*-
‘Algebrentheorie wie Klassifikation einfacher C*-Algebren, von Neumannalge-
bren sowie Anwendungen in Geometrie und Physik standen im Mittelpunkt des
Interesses. Dabei blieb Trotz vieler interessanter Vortrage Zeit fiir ausgedehnte

" Diskussionen und regen wissenschaftlichen Austausch.

Vortragsausziige:

Composing finite depth subfactors
Dietmar Bisch joint with U.Haagerup

Suppose N C P,P C M are inclusions of II)-factors with finite depth.We
study the "composed” inclusion N C P C M. Let & be the NV — P-bimodule
~L*(P)p and B =p L*(M)pm (P — M-bimodule), then p = a®p  =: afi gives
the N — M-bimodule yL?(M)s.Computing the N — N,N — M, M — N, M-
M bimodules associated to the inclusion N C M amounts to decomposing
(Pe)*, (Bp)*P, (pP)* and (pp)*p into irreducible bimodules. Let N C P C P be

- the Jones basic construction, then we have:

Prop.: Let N C P,P C M be as above. Then N C M has finite depht
iff {(pL?*(M)peppL?(P1)p)* k > 1} decompose into at most countably many
irred. P — P bimodules.

A nice class of subfactors of this type arises in the following way: Let G, H
be finite groups acting properly outerly on M, consider M¥ ¢ M C M % G
(e.g.: M = R, hyperfinte II,-factor). Then - S

Cor.: MH C M » G has finite depth if K = (G, H) (group generated in
Out(M)) is a finite group.

Note that M¥ C M » G is irreducible iff G N H = {e} (in Out(M)). It is
even more interesting to study these examples when K is infinite (2 extreme
situations: K =G x H,K = G « H). We show

Thm.: Let M¥ C M %G be as above with GNH = {e}. Then the inclusion
MH# C M » G is amenable (in the sense of Popa) iff the group K = (G, K) is
amenable. :

In the case where H = Z2,G = Z3,we can give explicitly the principal graphs
for Ry C R#Z;for K = ZyxZy (free product), K = (a,b | a® = 6% = (ab)® = 1).
In the latter case one gets a strongly amenable infinte depth (irred.) subfactor
of R, the hyperfinite [I,-factor.
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Bruce Blackardar and Eberhard Kirchberg

We consider generalized inductive systems (An, ¢m,») of C*-algebras where
the connecting maps ¢¥m,n : Am —+ An are only assumed to be asymptotically *
linear and multiplicative. The inductive limit can be defined as a C*-subalgebra
of ([T An)/(D An).

It is particularly interesting to consider generalized inductive systems of
finitedimensional C*-algebras, especially when the ¢m,, are *linear complete
order embeddings.This construction is a noncommutative analog of the pro-
cedure of writing a compact metrizable space X as lim_X,, where X, is a
polyhedron with specified triangulation,and so this can be regarded as giving a
”» combinatorial” describtion of the inductive limit.

Theorem 1 A separable C*-algebra can be written as lim_,(An, ¥m,a) With

A, finite-dimensional if and only if A has an essential quasidiagonal extension-

by K.Such an C*-algebra is called MF-algebra.

Theorem 2 A separable C*-algebra A can be written as lim_(4.,¥m,n)
with A, finite-dimensional and each ym . completly positive if and only if the
identitymap on 4 can be approximated in the pointnorm by completly positive
almost multiplicative contractions through matrixalgebras. A is called an NF-
algebra if this is satisfied. -

Theorem 3 A separable C*-algebra A can be written as lim_(An, ¥m,n)
with A, finite-dimensional and each ¢m . a complete orderembedding if and
only if the identity map on A can be approximated in the point-norm topology
by completly positive finite rank idempotent contractions.Such an algebra is
called a strong NF-algebra. _

It is possible that the classes of NF-, strong NF- and stably finite separable
nuclear C*-algebras coincide.Partial results are established in this direction.

Tensor Products of C(X)-Algebras over C(X)
Etienne Blanchard

Given a Hausdorff compact space X and two C(X )-a.lgebr&s A and B (Kas-
parov), we define the two ideals of the algebraic tensorproduct A ®aiy B

I=(af®b—a® fb|ac Abe B, f € C(X))
J={a € A®ay B|Vz € X,a* =0in A® Qaiy B*}

Then we can define a minimal and a maximal C*-norm on (A4 ®aiy B)/J.
Furthermore, as every semi-C*-norm on A ®qig B which is zero on [ is also zero
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on J, in order to finish the study of C*-norms on (A ®aig B)/I we only need to
answer the following question of Elliot: When does I = J holds ?

" Giordano and Mingo proved that this is true if C(X) is a von Neumann
algebra.lt is also true if A is a separable continuous field of C*-algebras, but
there are counterexamples in the general case.

Module maps and injectivity for von Neumann
algebras

Erik Christensen joint with Allan Sinclair

Let M be a von Neumann algebra on a Hilbertspace H. If pis a completly
bounded projection from the algebra B(H) of bounded operators on H onto M,
then M is injective. This result has also been obtained by Giles Pisier using
the operator Hilbert space O(H). The result has been extended by Haagerup

, Pisier and Christensen , Sinclair to prove that if there exists a ompletly
bounded projection of a C'-algebra A onto a subalgebra M which i W* then
there exists a projection of norm one of A onto M. The methods used unply
that for a pair A D M as above, where A is C* and M is W* there exists a
projection P of the space CB(A, M) (of completly bounded mappmgs of A into
M) onto Ba(A, M) the space of M-bimodule mappings (bounded) ‘of A mto
M) such that || P [|< 1. As a partial explanation of this the following result
explains that Ba((A, M) is non zero only if the inclusion of M in A is nice.

Theorem: Given A O M a C*-algebra containing a W* algebra M.If
Ba(A, M) # 0 then there exists a central pl‘OjeCtIOD and a projection 7 of A
onto M, of norm 1 s.t. By(A, My _.)=0.

The long exact sequence in periodic cyclic cohomoldgy
Joachim Cuntz '

The subject of the talk was the following theorem obtained recently in col-
laboration with D. Quillen.

Theorem Let 0 - J = A — 0 be an extension of (non-commutative)
algebras over C. There is a six-term exact sequence, connecting the periodic
cyclic cohomology groups HP* of J, A and B, of the following form

m:'(.r) ~ HP'(4) « m;f(a)
HPY(B) -+ HP'(A) » HP\(J)

This solves a natural open problem and gives the missing link between the
formal properties of topological K-theory on the one hand and periodic cyclic
cohomology on the other. The proof uses ideas from the formalism developped
by Quillen and the author for treating cyclic homology/cohomology.
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Discrete and Compact Quantum Groups
Alfons van Daele

There are different approaches to quantum groups. You have the approach of
Drinfeld and Jimbo and the one of Woronowicz. For compact quantum groups
there is the notion of Woronowicz and the one of Koernurudes. For discrete
quantum groups there is a concept by Effros and Ruan, by Kirchberg and by
myself. There is some confusion about all these concepts. Following the spirit

of quantization, we should think of a C*-algebra as a locally compact quantum

space. A locally compact quantum group then as a C*-algebra with a group like
stucture. In the case of a locally compact group G the corresponding C*-algebra
is Cy(G) and the multiplikation on G defines a »homomorphism A : Co(G) =
C»(G % G). In general one considers a »-homomorphism A : 4 -+ M(A® A) the
multipieralgebra of the completed tensor product. It should be non-degenerate
and ‘satisfy coassociativity (A ® ¢)A = (+ ® A)A where « is the identity map.

" Such a pair is a locally compact quantum semi-group.

In the above philosophy, a compact quantum group is such a pair where
A has an identity and A satisfies some extra properties. A discrete quantum
group is such a pair where A is a direct sum of full matrixalgebras and where
A satisfies similar properties. In both cases, there exists Haar measures. There

" is also a nice duality between these two cases.

' Quantum Spacetime
Sergio Doplicher joint with K.Fredenhagen,J .E.Roberts

We propose operationally motivated uncertainity relations between different
coordinates of events in spacetime, and discuss spacetime commutation relations
which do imply them. The C*-algebra describing the regular representation of
the spacetime commutation relations is constructed and defines our Quantum
spacetime. In the classical limit, when Planck’s length tends to zero our Quan-
tum Spacetime deforms to R* times a ghost manifold {+} x T'S®.

Starting with an ordinary interaction Hamiltonian, the pertubative approach
to quantum field theory over quantum spacetime leads to the same theory an
effective nonlocal Hamiltonian would define over ordinary Minkowski space.

Classification of symmetries on some amenable
C*-algebras

David E.Evans joint with H. Su

Ve consider a K-theoretic classification of certain C*-algegra dynamical sys-
tems (A, Zz,@) where a is an action of Z; on a certain infinite C*-algebra A.
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The classifaction of Elliott for AF-algebras by the ordered scaled group
Ko(A) was extended to classifying limit inner actions of compact groups on
AF-algebras [Fack a. Marchel,Kishimoto,Handelman a. Rossman] (i.e. where
A = lim_A,, and acts by an inner unitary action on finite dimensional A,)
and to limitactions of Z2 [Elliot a. Suj using the following complete invariant

i) Ko(4), (1], v

i) Ko(A x Z3) , [special element], G.

ii3) Ko(A) = Ko(A x Z3).

where the special element is the projection for eigenvalue 1 of the complemen-
tary unitary, and & is the dual action. The C*-algebras involved in the present
classification will be unital C*-algebras that can be expressed as inductive lim-
its of finte direct sums of matrix algebras over even Cuntz algebras. Rerdam
showed that a complete invariant for such algebras is P(A) = Ko(A) ,+([1}

We restrict ourselfes to actions of the type Ad(V) ® 8 on Mi ® On Where V'
is a selfadjoint unitary and 8S; = S;,i < ro, 8S; = —Si,i > ro for somerg < n.
For such algebras and actions, the following is a complete invariant:

i) P(A)  Ko(4), [1]

ii) P(A x Z3) = Ko(A x Z3) , [special element], G.

iii) P(A) & P(A x Z3) _

In particular | n —2rg + 1 | is a complete invariant for the action §, (as long
as rg # 0). [for these algebras and actions K (4) = 0= K (4 x Z2)] _

Invariants for Simple C*-Algebras
George A. Elliot

. gl

Invariants where described for simple C*-algebras, namely, Ko, as a pre-
ordered group, K\, as a group, and the topological convex cone T+ of positive
tracial functionals on the Peterson ideal, together with the natural pairing of
this with Ko. The question arises whether, for separable amenable simple C*-
algebras, these invariants are complete. Furthermore, in analogy with the Effros-
Handelman-Shen theorem, one might hope that all triples (Go, G1,C) where Go
is a simple pre-ordered countable abelian group, G is acountable abelian group,
and C is a topological convex cone with a base which is a compact metrizable
simplex, such that there is a pairing Go x C — R, arise (together with the
pairing) from a separable amenable simple C*-algebra.

The problem was divided into three cases :

(1)Kf=0,Tr #0;
(QKgn-K§ =0, K ~Ki =K,, T+ #0;
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(3)KF = Ko, T+ =0.

Progress in the various cases, due to a large number of people, was surveyed.

Commuting Squares
Pierre de la Harpg, joint work with R. Bacher and V. Jones

Many examples of subfactors are constructed via commuting squares of mul-
timatrix algebras. We investigate similar constructions for commuting squares
in which the inclusions of algebras are not necessarily *inclusions, and this over
fields possibly distinct from C. There are numerous examples from combina-
torics, involving e.g, Hadamard matrices, strongly regular graphs, symmetric
designs or finitely generated linear groups. We present examples of construc-
tions and of computations of higher relative commuting in this setting.

Computing Principal Graphs of Subfactors
Uffe Haagerup

Let N C M be an irreducible inclusion of II; factors of finite index, and
le¢e N ¢ M C M; = (M,e) be the first step in the basic construction. We
consider the pair (', ") of the principal graphs for the inclusions N C M and
M C M, and prove that for 4 < [M : N] < 3 + 3 = 4.732 at most the
following (unordered pairs) can occur:

(c): F"“."Au: ¥ om0 - -«

. '-o----m—tq{o v
Q) ). { — " " odd w33
: > b

o—ee - """“_..
n

@) (r',f")a }(' ¥ ::-\‘
s

G) e - ‘l e

" n odd ,»23

n

In particular either N C M has finite depth or has graph A and is non-
amenable in the sense of Popa.Of the possible finite depth subfactors we have
so far only been able to realize the case (L) for n = 3.It follows that when
4 < [M : N) < 1/2(5 + VI3) = 4.302 all subfactors have graph Aco, and
that there are precisely two conjugacy classes of finite depth subfactors of the
hyperfinite /1, -factor of index 1/2(5 + V13).
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Orbifold subfactors,central sequences, and the relative
Jones invariant

Yasuyuki Kawahigashi

We study the structure of central sequences in a subfactor. Suppose that
N C M is an AFD subfactor of type II with finite depth. Then Ocneanu’s
construction of the central sequence subfactor N¥ N M’ * © M, can be regarded
as an analogue of the quantum double construction for paragroups. By studying
this subfactor more carefully, we prove the following theorem. ’

Theorem In the SU(N),-orbifold construction with N | «, the relative
Jones invariant & or the relative Connes invariant x(M,N) is trivial iff the
resulting connection in the orbifold construction is flat.

Discrete Quantum Groups B
Eberhard Kirchberg

We study a class of Hopf salgebras which is characterised by the fact that
each finite dimensional corepresentations is unitary. We present several equiv-
alent properties of Hopf-algebras and argue, that Hopf-algebras fulfiling them
are the quantum analogs of discrete gruops. We find that like in the case of
a discrete group each unitary Hopf-+algebra is a quotient of a free product of
certain universal unitary Hopf-+algebra which are the quantum analogs of the
group Z. These free quantum gruops are described and classified.

Free Evolutions for Noncommutative Stationary
Process -

Burkhard Kimmerer

For the study of noncommutative processes it is essential to establish a "cou-
pling representation”. For a prosess with values in M, this amounts to decom-
posing a stationary automorphism group T; on a von Neumann algebra M, @e
with an invariant state ¢ ® ¢ into T; = Adu; o (Idp, @ St) with S a stationary
automorphism group on (i, ), the free evolution of the process, and (u¢)e an
adapted unitary cocycle for Ti, the coupling.

In discrete time the problem of establishing a coupling representation turns
out to be equivalent to the problem of understanding "stable unitary equiva-
lence” of states on von Neumann algebras.

Theorem If C is semifinite and v ® ¥, is unitarily equivalent to © @ ¥2,
some state on My, 1,2 normal states on C,then ¥, is unitarily equivalent to

Y2,
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There are counterexamples in the Type III case. In continuous time there
is an additional cohomological problem to which we can give answers in some
cases. It is related to the problem of classifying continuous R-actions on von
Neumann algebras.

C*-Algebras Generated by Smoothable and Liftable
Relations

Terry Loring

The C*-algebra gC = {f € Co([0,1}, M2) | £(1) € C?} is universally gener-
ated by elements h), Az and a subject to the following relations:

(*0<hi <1, lafl<1,a® =0, hsa=ahy, a*a=h, - h.

We prove these relations are smoothable, in the following sense: Given
hi,ha,a € B, where B is any C*-algebra with a "smooth” subalgebra B, sat-
isfying (*) (B is dense and closed under C*-functional calculus).Then there
are approximating elements A;,@ € B, also satisfying (*).There is a similar lift-
ing result, although not a complete lifting or there are K-Theory obstructions.
Applications to inductive limits and K-Theory are given.

Algebraic Indextheorems
Ryszard Nest joint with B.Tsygan

We prove general index theorem for formal deformations of foliations. Given
(M, F) a symplectic foliation of a smooth manifold M consider formal defor-
mation A”(M) of smooth functions C*(M) [[h]],i.e. an associative product »
satisfying:

f*g=/fg+h{f g} = Zax:h"Pua(/,9)

with {, } the Poisson bracket and P, bidifferential operators. Moreover
fxg=g.f = fgif f or g is leafwise constant.

Let Q},, denote the deRham complex of horizontal (leafwise constant) dif-
ferential forms. Then there exists a map of complexes

Tre : CCP" (A} (M)) = Qf,,

In particular, if the foliation is transversally oriented, [ Tre is the Connes’
transversal cocycle foliation. The following general result holds for e € projA" (M),
if e = eg + O(h) then

(Tre.e) = [yr ch(ea) A(M/F)
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© is a characteristic class in H?(M, Onor) canonically associated to the de-
formation. In the case when © is in the image of H?(M, C [[h]]), the deformed
algebra A? (M) admits a horizontal connection V = djor + adA with curvature
satisfying Bianchi identity VR = 0. Given such a pair (V, R) the equivariant
cochain Tre can be given as ch(V, R) = Tr(ezpV — R) and the index theorem
becomes .

(ch(V,€)) = Ta(-1)"(2n)!/n! / Tr(ee~R[V,ele™ R ... [V, ele™ ")
tod...+taa=1
- / ch(ea) A(M/F)e®/
M/F )
‘Braiding and ghosts for subfactors

Adrian Oeneacnu

Given a subfactor N C M construct a system of bimodules M = {srXa}
by decomposing into irreducibles » (M ®n M ®n ...®n M) y.We introduce the
notion of braiding € on M as a distinguished element in @y y Hom[X @Y, Y ®

X] which has the algebraic properties coming from the picture:

s--x\/\

Y X :
We show that if the braiding of the system (M, ¢) is nondegenerate, i.e.
X Y X Y T
X=X V¥ = x=4

,then going to the asymptotic inclusion My U M} C M where N = M. C
My C M C...C Myx =M, the Mo — M, bimodules Mo, are given by
pairs (X,Y) X,Y € M. In general, let D = {X € M- ¢ V(X,Y) € M}
.Then one constructs an extension M C A such that A is nondegenerate and
we describe Mo, — M, bimodules in terms of A”. We prove that for any system
M there are at most finitely many braidings by showing that a braiding € on
M corresponds to an embedding of sets €, : M — M, and is characterized by
the latter.

C*-Algebras constructed out of Hilbert bimodules
Michael Pimsner

To every C*-algebra 4 and to every Hilbert bimodule E over A4 -this is a
(right) Hilbert module E overA together with an isometric *-homomorphism

9
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¢ : A= L(E)-, we associate in a natural way a C"-algebra Op. If 4 is
commutative and finite dimensional and if E is projective and finitly generated
these are the Cuntz-Krieger algebras while if A is arbitrary but E = A, with
left module structure given by an automorphism, we get the crossed product
algebras by Z. The C*-algebras in this class satisfy universal properties and
their K-theory is computed in terms of the K-theory of the C*-algebra A and
of the class of the module E in K K.

Abstract Duality and Hopf Algebras ‘
C.Pinzari,T.Ceccherini,S.Doplicher,J.Roberts

. We defined model actions of locally compact quantum groups on C*-algebras
and discussed crossed product constructions. More specifically let Oy d =
2,3...,00 be the Cuntz algebra of order d. Then every Hopf C*-algebra (A, )
associated to a regular multiplicative unitary V on a Hilbert space H® H (in the
sense of Baaj-Skandalis) acts in a canonical way on Oy via it regular corepre-
sentation. Let A denote this coaction. If V contains the trivial corepresentation
the fixedpoint algebra O} carries a natural action of a compact dual given by
a faithful functor of tensor C*-categories with conjugates from a f.d. repre-
sentation category in the sense of Woronowicz’ C*-algebra (A,8) onto a full
subcategory of End(O}), the endomorphism category of O3 (this is a general-
ization of the Cuntz model). If V is non discrete (i.e. it does not contain the
trivial corepresentation) then the corresponding coaction is often ergodic.

Thus we introduced a generalized Cuntz algebra Oy associated covariantly
to a Hilbert space H and we generalized the above description to non discrete
unitaries. An abstract g-dual is now described by a natural C*-subalgebra Ov
of Oy together with an endomorphism pv.

We characterized algebraically pairs of the form (Ov, pv) in the case where
pv, and hence V, has a braided symmetry . We obtained in particular a duality
result for locally compact groups just requiering € to be a permutation symmetry
(i.e. € factors through a representation of the permutation group).

*-norms on B(H) @ B(H)
Giles Pisier joint with M.Junge

We prove the following (here H is a Hilbert space,dimH = 00):

Main Theorem : There is more than one C*-norm on B(H) ® B(H) ,or
eqmvalently B(H) Qmin B(H) # B(H) @maz B(H)

Following an approach proposed by Kirchberg it suffices to prove the non-
separability of a certain metric space, as follows.

10
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Let n > 1 be fixed. Consider OS, = {E C B(H) | dimE = n}. This is
the set of all n-dimensional operator spaces. We equip this set with the metric
§(E,F) = log des(E, F) where dey(E, F) = inf{|| u [lesll u™" lles| u: E = F}.
(we consider that E = F when E and F are completly isometric, or equivalently
when §(E, F) = 0.) It is easy to check that (OSh,, 8) is a complete metric space,
but it is not compact for n > 2 and more importly we have

Theorem (OSn,d) is fon separable if n > 2.

. Multlphers of Bimodules and Morita Equivalence of Crossed
Products

Ian Raeburn joint with S.Echterhoff

Just as each C*-algebra A has a multiplier algebra M(A), every imprimi-
tivity bimodule 4 X g has a natural multiplier bimodule M(X). Two coactions
84,68 of a locally compact group G on C"—a.lgebras A, B are Morita eqmva.lent
if there is an imprimitivity bimodule 4 Xg carrying a compatible ” coactxon
§x : X = M(X ® C*(G)). A theorem of Baaj-Skandalis says that Morita
equivalent coactions give Morita equivalent crossed products, and we dxscussed
a new proof of this result which uses spatial realizations of the crossed products
and the multiplier bimodule M (X ® C?(G)). As a corollary,we obtain a simpli-
fied proof of the corresponding result for twisted crossed products, due I:o Bui
(1991). TR

Classification of some Infinte Simple C*- Algebras

s

Mikael Rgrdam

Georges Elliot’s classification conjecture for simple infinite C*-algebras asks
. the following: Suppose that A and B are unital, separable, nuclear, purely
‘ infinite and simple C™-algebras so that the invariants (Ko(A4), 1}, K1(A)) and
(Ko(B), (1], K1(B)) are isomorphic (as abelian groups with a distinguished ele-
ment [1] of Ko). Does it follow that A and B are isomorphic ?
We have defined a natural subclass C (the classifiable C*-algebras) of purely
- infinite, simple C*-algebras inside which K-theory is a complete invariant, also in
the sense that the range of the invariant is complete: For every triple (Go, g0, G1)
where Go, G are countable abelian groups and gy € Go there is a unital C*-
algebra 4 in C with (Ko(A), (1], K1(A)) = (G, g0, G1).The class C is closed un-
der inductive limits,and it contains the Cuntz-Krieger algebras O 4 with Ko(O4)
of odd order.
It is my hope that the classifiable class C is closed under all "amenable” op-
erations, so that every simple infinite C*-algebra constructed by such operations
will belong to C.
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Novikov’s Conjecture for ”Bolic” Groups
Georges Skandalis joint with G.Kasparov

The Baum-Connes conjecture for discrete groups asserts that a natural map
s is an isomorphism from a group of topological X-theory onto the I(-Theory of
the associated reduced C*-algebra.The rational injectivity of 4 implies Novikov’s
conjecture.
We define a geometric property of a metric space called "bolicity”. :
Def. A metric space (X, d) is said to be §-"bolic” if
a) ¥r > 03R > 0 such that Va, b, z,y € X such that d(a,b) +d(z,y) <rand .
d(a, z)+ d(b,y) > R then d(a,y) +d(b, z) < d(a,z) +d(b,y) + 24
b) There exists a "middle point” map m : X x X — X such that

Va,b,z € X : d(z,m(a,b)) < [d(a,z)?/2 +d(b,z)?/2 — 2d(a,b)*]'/* + 6

. Our main theorem is

Theorem : Let I' be a discrete group acting properly on a weakly-4-
geodesic, uniformly locally finite, (weakly) bolic metric space. Then the cor-
reponding Baum-Connes map is injective (hence Novikov's conjecture holds for
T)

Dimension groups and minimal dynamical systems
Christian Skau joint with T.Giordano a.l.Putnam

Let (X, ) be a minimal Cantor system i.e. y is a minimal homeomorphism
of the Cantor set X.The group K°(X,¢) = C(X,Z)/B,, where B, = {f — f o
¢ | f € C(X,Z)}, endowed with the natural ordering, is a simple dimension
group. Moreover, all simple dimension groups arise in this way. Let C, = {f €
C(X,Z) | fx fdu = 0, for all p — inv.prob.meas. p}. Then B, C C, and
C,/B, is equal to the infinitesimal subgroup InfK°(X,¢) of K°(X,p). .

Theorem Let (Xi,©:),i = 1,2 ,be Cantor systems.The following are equiv-
alent: :

(i) K°(X1,91)/InfK°(X101) = K°(X2,2) as ordered groups with distin-
guished

order units. |

(ii) There exists a homeomorphism F : X, —+ X; carrying the p;-invariant

prob.measures onto the (2-invariant prob. measures.

(iii) (X1,91) and (X2,42) are (topologically) orbit equivalent, i.e. there
exists

I': X, = X, so that T'(orbit,, (z)) = orbit,,(z) , Vz € X:.
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Corollary Let (X,) be a uniquely ergodic Cantor system, i.ep has a
unique inv.prob.measure. Then (X, ) is either orbit equivalent to an odometer
system or to a Denjoy system.

(Recall: A Denjoy system is an aperiodic homeomorphism of the circle that
is not conjugate to a pure rotation - restricted to the support of the unique
invariant prob.measure.)

From Trace States to Trace States of the Ko-Group
Klaus Thompson

For any unital C*-algebra A we have naturally associated two compact con-
vex sets the tracial state space T(A) which is always a Choquet simplex and
the state space SKo(A) of the Ko group of A. There is also a wellknown way
to define an element r4(w) € SKo(A) from a trace state w € T(A) and we get
in this way a continuous affine map r4 : T(A) = SKo(A). The talk“was a
review of what is known about this map in case of a simple separable A.and a
presentation of the following new result: . =

Theorem Let A be a metrizable compact Choquet simplex, I' a metrizable
compact convex set and r : A — I" a continuous affine surjection.There exists a
unital separable nuclear C*-algebra A such that (T(A),r 4, SKo(A4)) = (A,r,T)

Toeplitz C*-Algebras and Quantization
Harald Upmeier

For a K-circular domain Q = K ezpV associated with a compact Lie’group
K and a cone V C ik, one can define a Toeplitz C*-algebra 75 (K ), where A C K
is the dual cone. Similarly, a discrete series representation A € G of a semisimple
Lie group G defines a Toeplitz C*-algebra 75(G/K) over the symmetric space
G/K. We analyse the spectrum and composition series of these C*-algebras.

Free Entropy
Dan Voiculescu

We introduce a free entropy function x(X,...,Xn) for N-tuples of selfad-
joint noncommutative random variables based on volumes of matrix approxi-
mants.Up to constants, for n = 1, this entropy is minus the logarithmic energy
of the distribution of the random variable. Moreover it has the right transfor-
mation properties under noncommutative functional calculus and in the case of
free random variables x(X\,...,X,) = x(X)) + ... + x(Xn)
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We also introduce a free entropy dimension function §(X},...,Xa) related
to x in a similar way Minkowski dimension is related to Lebesgue measure in
geometric measure theory. We use it to prove results, which can be roughly
stated:

If a II,-factor can be generated by selfadjoint elements X}, ..., X, and there
is also a semicircular system Y}, ..., Y., of generators, which are "smooth non-
commutative functions of X),...,X,” then n > m.

(Note: replacing "smooth” by L™ in the above statement would yield the
non-isomorphism of the free group II;-factors)

Connes Fusion in Conformal Field Theory
Anthony Wassermann

‘A precise and mathematically rigorous link is established between opera-
tor algebras and unitary conformal field theory.Three related aspects of the
multiplicative theory of von Neumann algebras are needed:V.Jones’ theory of
subfactors; Connes’ theory of bimodules or correspondences; and the algebraic
approach to quantum field theory of Haag, Doplicher and Roberts. In the WZW
or minimal models there are always generating primary fields ¢(z) of small con-
formal dimension which when smeared,turn out to be bounded just like fermions:
| #(2) I€ A || f ||l2.Smearing,i.e. the passage from a holomorphic theory to a
unitary ’boundary’ theory,translates formal algebraic properties of fields ¢(z),
such as braiding, into concrete facts about bounded intertwiners. Connes’ fu-
sion,a tensor product operation on bimodules over type /] von Neumann alge-
bras, leads to a manifestly unitary way of fusing two positive energy representa-

tions H;, H; to yield a third H; ® H; which is defined and computed using four -

point functions of bounded interwiners. The H;’s then become a braided ten-
sorcategory. The finite dimensional +-algebras End;gH®" describe quantum
invariant theory without recourse to quantum groups at roots of unity. They
lead to a non combinatorial construction of the type II, braid group subfactors
of Jones and Wenzel: Ny = (UC® EndcH®")" C (|J EndgH® )" = M,
These also arise in a simple but less obvious way from the type [1I, subfactors
defined jointly with Jones as a measure of the failure of Haag duality in non
vakuum representations 7: N = m(L;G)" C w(L;-G)' = M, where L;G denotes
the subgroup of loops supported in an interval I ¢ S* and I¢ = §' \ I. Using
work of Popa on finite depth subfactors,a localized endomorphism p: M = M
can be constructed with N = p(M) such thatif M, = (Up*(M) N M)" ,
N1 = p(M;) and M? is the fixed point algebra of p,then M = M; ® M”? and
N = N, ® M*?. Moreover the inclusion N, C M, is isomorphic to No C Mo,
confirming a joint conjecture with Jones. Other finite depth subfactors can be
manufactured from the above subfactors using conformal and Goddard-Kent-
Olive inclusions,for example the Jones subfactor of index 3 + V3.
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Exact C*-algebras and Continuous Bundles of
C*-algebras

Simon Wassermann joint with E.Kirchberg

A C*-bundle A = {X,A,7: : A = A} is a triple consisting of a lo-
cally compact Hausdorff space X,a C*-algebra A (the bundle algebra) and
homomorphisms of A onto fibre algebras A, such that || a [|= supzex | w=(a) |l
for each @ € A and such that for f € Co(X),a € A there is an element
fa € A satisfying 7:(fa) = f(z)7z(a) € X.(ie. Aisa Co(X)-module).
If each of the functions z +|| 7-(A) || is in Co(X) , A is a continuous C*-
bundle. If B is a fixed C*-algebra and A a continuous C*-bundle, the triple
A®B ={X,A®min B,®: ®@id: A®min B = Az ®min B} is a C*-bundle.We
consider the :

Problem When is A ® B continuous ?

The following theorems answer this (to a certain extend)
Theorem A Let B be a C*-algebra.Then the following conditions are'équiv-
alent: b

(i) B is exact

(i) For any continuous C*-bundle A ,A ® B is continuous. E

(iii) For any continuous C*-bundle A of the form {N, A, A} with A separa-
ble, A @ B is continuous. ' :

Theorem B Let A = {X, A, A.} be a continuous C*-bundle such that each
A, is exact.Then A is exact iff A® B is continuous for any C*-algebra B.

Since there exist inexact C*-algebras, e.g.C*(F2), it follows by Theorem A
that there are examples of B and continuous A such that A®B is not continuous.

We give an example of A as in Theorem B such that the bundle algebra A
is not exact. ’ .

(Note: The notions of continuous bundle and continuous field of C*-algebras
are essentially equivalent). :

The flow of weights on a subfactor
Carl Winslgw

The flow of weights on a factor of Type III was defined by Connes and
Takesaki in 1973 and has been extensively studied as a tool to classify factors of
Type IIT and their automorphisms. The purpose of this talk is to explain how
to adapt this approach to the classification of subfactors, in particular subfactors
of Type III and their automorphisms. In survey form, the talk will cover

e Popa’s classification of subfactors by the standard invariant
¢ The flow of weights on a subfactor and its computation
o The fundamental homomorphism in subfactor theory
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o Approximately inner and centrally free automorphisms
o Classification of strongly free actions on subfactors

Throughout, we shall observe the similarities - and differences - ‘with the single
factor case.

Berichterstatter: J. Zacharias
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