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Die Tagung fand unter der Leitung von J.Cuntz (Heidelberg),U. Haagerup
(Odense) und L.Zsido (Rom) statt.Vorträge aus verschiedenen Zweigen der C*~
·Algebrentheorie wie Klassifikation einfacher C*-Algebren, von Neumannalge­
bren sowie Anwendungen in Geometrie und Physik standen im ~fittelpunkt des
Interesses. Dabei blieb Trotz vieler interessanter Vorträge Zeit für ausgedehnte

. .Diskussionen und regen wissenschaftlichen Austausch.

Vortragsauszüge:

Composing finite depth subfactors
Dietmar Bisch joint with U.Haagerup

Suppose N c P, P C !vI are inclusions of III·factors with finite depth. "yVe
study the "composed" inclusion N C P C M. Let i:t be the lV - P-bimod~le

NL2(P)p and ß =p L2(wf)kl (P -l\;f-bimodule), then p = a (l)p ß =: aß gives
the N - M~bimodule NL2(Atf)M.Computing the N - iV,N - M,lvf -I.V,AJ­
}vf bimodules associated to the indusion N C ~\/ amounts to decomposing
(pp)., (pp)'?i, (pp)' and (pp)lcp into irreducible bimodules. Let N C P C PI :be
the Jones basic constroction, then we have:

Prop.: Let N c P, P c lvt be as above. Then iV C ~/ has finite depht
iff {(pL2(M)peppL2 (Pl)P)",k ~ I} decomposeinto at most countably many
irred. P - P bimodules.

A nice elass of subfactors of this type arises in the following way: Let G, H
be finite groups acting properly outerly on M, consider AIH C ~vf C 1\;1 )4 G
(e.g.: M = R, hyperfinte lll..factor). Then . ..

Cor.: MH C M )4 G has finite depth ifJ [( = (G, H) (group generated in
Out(M») is a finite group.

Note that MB C M )4 G is irreducible iff G n H = {e} (in Out(A-f)). It is
even more interesting to study these examples ",ben K is infinite (2 extreme
situations: K =G x H, K = G * H). We show

Thm.: Let MN C M)4 G be as above with GnH = tel. Then the inclusion
MH C M )4 G is amenable (in the sense of Popa) iff the group /( = {G, !() is
amenable.

In the case where H = Z2, G =Z3,we ean give explicitly the principal graphs
for R'l C R)4 Z3 for [( = .22*'3 (free product), [( = (a, b I a 2 =b3 = (ab)6 = 1).
In the latter case one gets a strongly amenable infinte depth (irred.) subfactor
of R, the hyperfinite II1·factor.
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Generalized inductive limits of finitedimensional C*-Algebras
. Bruce Blacka.rdar and Eberhard Kirchberg

We consider generalized inductive systems (An, 'Pm,n) of C*-algebras where
the connecting maps CPm.n : Am -+ An are only assumed to be asymptotically 1t­

linear and multiplicative. The inductive limit can be defined as a C*-subalgebra
oi <fI An)/(EB An).

It is particularly interesting to consider generalized inductive systems of
finitedimensional C*-algebras, especially when the C{)m,n are ......linear complete
order embeddings.This construction is a noncommutative analog of the pro- ~
cedure of writing a compact metrizable space X as lim...X n , where X n is a .,
polyhedron with specified triangulation,and so this can be regarded as giving a
"combinatorial" describtion of the inductive limite

Theorem 1 A separable C*-algebra can be written as lim....(An, <Pm.n) with
An finite-dimensional if and only if A has an essential quasidiagonal extension'
by A:.Such an C*-algebra is called ~-algebra.

Theorem 2 A separable C*-algebra A can be written as lim-+(An,<Pm,n)
with An finite--dimensional and each 'Pm.n completly positive if and only if the
identitymap on A. can be approximated in the pointnonn by completly positive
almost multiplicative contractions through matrixalgebras. A is called an NF­
algebra if this is satisfied. "

Theorem 3 A separable C*-algebra A can be written as lim-+(An, <Pm.n)
with An finite.dimensional and each ~m,n a complete orderembedding if and
only if the identity map on A can be approximated in the point-nonn topology
by completly positive finite rank idempotent contractions.Such an algebra is
called a strong NF-algebra. .

It is possible that the classes of NF-, strang NF- and stably finite separable
nuclear C*-algebras coincide.Partial results are established in this direction.

Tensor Products of C(X)-Algebras over C(X)

Etienne Blanchard

Given a Hausdorff compact space X and two C(X)-algebras A and B (Kas­
parov), we define the two ideals of the algebraic tensorproduct A ~QIg B

I = (a/~b-a~ fb la e A,b E B,I e C(X))

J = {Q E A l8)alg B I 'r/z' E X, a% =0 in AZ ~alg B%}

Then \ve can define a minimal and a maximal C ...·norm on (A 0019 B)jJ.
Furthermore, as every semi-C...·nonn on A 00lg B which is zero on I is also zero

2

e-

                                   
                                                                                                       ©



-e

on J, in order to finish the study of C*-nonns on (..4.®olg B)/1 we oo1y need to
answer the following question of Elliot: When.does I = J holds ?

Giordano and Mingo proved that this is true if C(X) is a von Neumann
algebra.lt is also true if A is a separable continuous field of C"-algebras, but
there are counterexamples in the general case.

Module maps and injectivity far von Neumann
algebras

Erik Christensen joint with Allan Sinclair

Let M be a von Neumann algebra on a Hilbertspace H . .H pisa completly
bounded projection from the algebra B(H) cif bounded operators on H onto M,
then M is injective. This result has also been obtained by Gües. Pisier usjng
the operator Hilbert space O(H). Tbe result has been extended by. ~.aag~p
, Pisier and Christensen , Sinclair to prove that if there exists a~~Eompl~tly
bounded projection of a C*-algebra.A onto a subalgebra M wbich ~~:W*:t~en
there exists a projection of norm one of .A onto M. The methods ·Usi!d. imply
that for a pair .A ~ M as above, where A is C* and M is ~V* there. exis~~s a
projection P of the space CB(A, M) (of completly bounded mappingä-'of A ipto
M) onto BM{A,M) the space of M-bimodule mappings (boundedfof A ~to

M) such that 11 p·lI:S 1. As a partial explanation of this the following r~ult

explains that BM(A, M) is non zero only if the inclusion of M in A is nice.
Theorem: Given A :> M a C*-algebra containing a l-V*-alge.~ra M.If

BM(A, M) # 0 then there exists a eentral projection : and a projecti~n 11' eif A
onto M z of norm 1 s.t. BM{A, Ml-:) =O. .' I.

The long exact sequence in periodic cyclic cohomology
Joachim Cuntz

The subject of the talk was the following theorem obtained recently in col­
laboration with D. Quillen.

Theorem Let 0 -+ J -. A ~ '0 be an extension of (non-eommutative)
algebras over C. Tliere is a six-term exact sequence, connecting the periodie
cyclic eohomology groups HP* of J, A andB, of the following fonn

HPO(J) ~ HPO(A) 4- HpO(B)
J,. t

HPl(B) ~ Hpl(A) -+ Hp1(J)

This solves a natural open problem and gives the missing link between the
formal properties of topological K-theory on the one hand and periodie eyeUe
cohomology on the other. The proof uses ideas from the formalism developped
by Quillen and the author for treating cyeUe homology/ cohomology.
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Discrete and Compact Quantum Groups

Alfons ~Daele

There are different approaches to quantum groups. You have the approach of
Drinfe1d and Jimbo and the one of Woronowicz. For compact quantum groups
there is the notion of Woronowicz and the one of Koemurudes. For discrete
quantum groups there is a concept by Effros and Ruan, by Kirchberg and by
myself. There is same confusion about all these concepts. Following the spirit
of quantization, we should think of a C*-algebra as a locally compact quantum
space. A locally compact quantum group then as a C*-algebra witha group like 'e
stucture. In the case of ~ locally compact group G the corresponding C*-algebra
is Co(G) and the multiplikation on G defines a il-homomorphism ~ : Co(G) -+
Cb(G x G). In general one considers a ....homomorphism ~: A -+ M(A0A) the
multipieralgebra of the completed tensor product. It should be non-degenerate
and ·satisfy coassociativity (~ <8> ,,)~ = (I. l8) ~)a where" is the identity map.
Such a pair is a locally compact quantum semi...group.

In the above philosophy, a eompact quantum group is such a pair where
A has an identity and a satisfies some extra properties. A discrete quantum
group is such a pair where A is a direct sum of fu1l tnatrixalgebras and where
6 satisfies similar properties. In both cases, there exists Haar measures.There

. is also a niee duality between these two cases.

Quantum Spacetime

Sergio Doplicherjoint with I(.Fredenhagen,J.E.Roberts

\Ve propose operationally motivated uncertainity relations between different
coordinates of events in spacetime, and discuss spacetime commutation relations
which do imply them. The C*...a1gebra describing the regular representation of
the spacetime commutation relations is eonstructed and defines our Quantum
spacetime. In the classicallimit, when Planck's length tends to zero our Quan-
tum SpacetimE7 deforms to lR4 times a ghost manifold {±} x T 52. _

Starting with an ordinary interaction Hamiltonian, the pertubative approach ., ­
to quantum field theory over quantum spacetime leads to the same theory an
effective DOnlocal Hamiltonian would define over ordinary Minkowski space.

Classification of symmetries on same amenable
C*-algebras

David E.Evans joint with H. Su

\Ve consider a I{-theoretic classification of certain C·-algegra dynamical sys­
tems (A, Z2, 0) where a is an action of Z2 on a certain infinite C"'-algebra A.

4
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The classifaction of Elliott for AF-algebras by the ordered scaled group
[(0 (A) was extended to classifying limit inner actiODS of compact groups on
AF-algebras [Fack a. Marche1,Kishimoto,Hande1man a. Rossman] (i.e. where
A = lim~An, and acts by an inner unitary action on finite dimensional An)
and to limitactions of Z2 (Elliot a. Su] using the following complete invariant

i) [(o(A), [1] ,Q* .

ii) Ko(A X Z2), [special element], ö.
iii) Ko(A) -+ [(o(A x Z2).

where the special element is the projection for eigenvalue 1 of the complemen­
tary unitary, and a is "the dual action. The C·-algebras involved in the pres~t

classification will be unital C*-algebras that can be expressed as inductive liril­
its of finte direct sums of matrix algebras over even Cuntz algebras. R0rd~
showed that a complete invariant for such algebras is P(A) -+ !(o(A) ~d:1.l

We restriet ourselfes to actions of the type Ad(V) ~ ß on Atflc ~On· \Ybere V
is a selfadjoint unitary and ßSi = Si, i :5 ro, PSi =-Sä, i > ro for soine:~r;o :S n.
For such algebras and ~tions, the following is a complete invariant: .;

i) P(A) -+ !fo(A), [1]
ii) P(A x Z2) -+ [(o(A x Z2) , [special element] t Q.

iii) P(A) -+ P(A x Z2)

In particular I n - 2ro+ 1 I is a complete invariant for the action ß, (as long
as ro :F 0). [for these algebras and actions K 1(A) =0'= I\I(A x Z2)]

Inv~iants for Simple C*-Algebras

George A. Elliot

Invariants where described for simple C·-algebras, namely, [(0, as a. pr~
ordered group, [(I, as a group, and the topological convex cone T+ of positive
tracial functionals on the Peterson ideal, together with the natural pairing of
this with [(0. The question arises whether, for separable amenaQle simple C"'­
algebras, these invariants are complete. Furthermore, in analog)" with theEffros­
Handelman-Shen theorem, one migbt hope that a1l tripies (Go, GI, C) where Go
is a simple pre-ordered countable abelian group, GI is acountable abelian group,
and eisa topological convex CODe with a base which is a compact metrizable
simplex, such that there is a pairing Go x C -+ R, arise (together with the
pairing) from a separable amenable simple C*-algebra.

The problem was divided into three cases :

(1) [(t = 0, r+ :/; 0;

(2) Kt n -1ft =0, [(t - [(: = [(0 , T+ ;e 0 ;
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{3} Kt = [(0 ,.r+- =O.

Progress in the various cases, due to a large n~ber of people, was surveyed.

Commuting Squares
Pierre de la Harpe, joint work with R. Bacher and V. Jones

Many examples·of subfactors are constructed via commuting squares of mul­
timatrix algebras. We investigate simi1ar constroctions rar commuting squares
in which the inclusions of algebras are not necessarily *",inclusions, and this over •
fie1dS possibly distinct from eThere are numerous examples from combina-
tories, involving e.g, Hadamard matrices, strongly regular graphs, symmetrie
designs or finitely generated linear groups. \Ve present examples of constroc-
tions and of computations of higher relative commuting in this setting.

Computing Principal Graphs of Subfactors
Uffe Haagerup

Let N C M be an irreducible indusion of 111 factors of finite index, and
let N C A-f C MI = (J\f, e) be the first step in the basic constmction. We
consider the pair (r, r') of the principal graphs for the inclusions N c M and
Atl C kIlt and prove that for 4 < [M : N] < 3 + v'3 ~ 4..732 at most the
following (Unordered pairs) can occur:

e-

In particu1ar either N C M has finite depth or has graph Ace and is non­
amenable in the sense of Popa.Of the possible finite depth subfactors we have
so far only been able to realize the case (L) for n = 3.It follows that when
4 < [M : N) < 1/2(5 + v'i3} ~ 4.302 all subfactors have graph Aco , and
that there are precisely two conjugacy classes of finite depth subfactors of the
hyperfinite. IIt-factor of index 1/2(5 + v'i3).

6
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Orbifold subfactors,central sequences, and the relative
Jones invariant K,

Yasuyuki Kawahigashi

We study the structure of central sequences in a subfactor. Suppose that
N C M is an AFD subfactor of type 11 with finite depth. Then Ocneanu's
construction of the central sequence subfactor NW n M' c kfw can be regarded
as an analogue of the quantum double construction for paragroups. By studyirig
this subfactor more carefully, we prove the following theorem. ~.

Theorem In the SU{N)IC-orbifold construction with J.V I 1<, the relative
Jones invariant IC or t~e relative Connes invariant X(kf, N) is trivial iff the
resulting connection in the orbifold constroction is Bat.

Discrete Quantum Groups

Eberhard .Kirchberg

We study a dass of Hopf ....a1gebras which is characterised by the·,l~t that
each finite dimensional corepresentations is unitary. We present severalequiv­
alent properties of Hopf-algebras and argue, that Hopf-algebras fulfiling th~
are the quantum analogs of discrete gruops. \Ve find that like in t~e case· of
a discrete group each unitary Hopf......algebra is a quotient of a free prQduct.of
certain universal unitary Hopf-...algebra which are the quantum analogs of. the
group Z. These free quantum gruops are described and classified.

Free Evolutions for Noncommutative Stationary
Process

Burkhard Kümmerer

For the study of n~ncom.mutativeprocesses it is essential to establish a "cou­
pling representation". For a prosess with values in Mn this amounts to decom­
posing a stationary automorphism group Tc on a von Neumann algebra Mn ~ e
with an invariant state tp0 t/J into Tc = Aduc 0 (IdM.. ~ Sc) with Sc a stationary
automorphism group on ("", t/J), the free evolution of the process, and (u,')c an
adapted unitary cocycle for 7i, the coupling.

In disaete time the.problem of establishing a coupling representation tums
out to be equivalent to the problem of understanding "stable unitary eq~va­

lence" of states on von Neumann algebras.
Theorem If eissemifinite and r.p ~ tPl is unitarily equivalent to 'P 01/;2, c.p

some state on Mn, tPl, t/J2 normal states on C,then t/11 is unitarily equivalent to
tP2.

7
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There are counterexamples in the Type 111 case. In continuous time there
is an additional cohomologica1 problem to which we can give answers in some
case5. It is related to the problem of classifying continuous R·actions on von
Neurnann algebras.

C*-Algebras Generated by Smoothable and Liftable
Relations

Terry Loring

The C*.algebra qC = {I e Co([O, 11,M2 ) 1/(1) e C2} is universally gener·
ated by elements h l , h2 and 0 subject to the following relations:

(*) 0 S hi $ 1, 11 a 11$ 1, 0
2 =0, h20 = ahtt a*a =h1 -~.

We prove these relations are smoothable, in the following sense: Given
ht ,h2,a e B, where Bisany C*·algebra with a "smooth" subalgebra Boo sat·
isfying (*) {Boa is dense and dosed under Coo-functional calculus).Then there
are approximating elements hi,a E Boo also satisfying (*).There is a similar lift­
ing result, although not a complete lifting or there are K-Theory obstructions.
Applicati~ns to inductive limits and K-Theory are given.

Aigebraic Indextheorems

Ryszard Nest joint with B.Tsygan

We prove general index theorem for formal deformations of foliations. Given
(M, F) a symplectic foliation of a smooth manifold lv! consider formal defor­
mation Ah (M) of smooth functions COO{M) [(h]],i.e. an associative product *
satisfying:

. I
1

f * 9 = Ig + h{/, g} = En '22h" Pn(/,g)

with {, } the Poisson bracket and p.. bidifferential operators. Moreover e _
1 * 9 = g./ =Ig if / or 9 is leafwise constant.

Let flhor denote the deRham complex of horizontal (leafwise constant) dif-
ferential forms. Then there exists a map of complexes

Tre : CCr;er{Ah (M» -+ 0hor

In particular, if the foliation is transversally oriented, f Tre is the Connes'
transversal cocycle foliation. The rollowing general result holds ror e E projAh (M),
if e =eo + O(h) then

8

                                   
                                                                                                       ©



a is a characteristic dass in 1P(Mt Ohor) canonica11y associated to the de­
formation. In the case when e is in the image of J(2(M,C [[h))), the defonned
algebra Ala (M) admits a horizontal connection V = dlaor + adA with curvature
satisfying Bianchi identity VR =O. Given such a pair (V, R) the equivariant
cochain Tre can be given as ch(V, R) =Tr(ezpV - R) and the index theorem
becomes

(ch(V,e» = En(-1)n(2n)!/n!1 Tr(ee-RIO[V,e)e-RI • ... [V,e)e-Rh
.. )

Co+·..+'2.. =1

= r ch(eo) A(At//F) e8 / h

JM/F

,Braiding and ghosts for subfactors

Adrian Oeneacnu

·-t~••

Given a subfactor N C At! construct a system of bimodules ~ = {J,jXM}
by decomposinginto irreducibles M{M~Nlv[~N o. o~N !Y/)MoWe introduce the
nation ofbraiding Eon M as a distinguished element in Eax,Y Hom[X~~ Y~0
Xl which has the algebraic properties coming from the picture:

X y

€= Xy 'x
We show that if tbe braiding of the system (M,e) is nondegenerate,.~.e.

X y )( y
X -= X V y .-) X ="

,then gaing to the asyrnptotic inclusion Mo U kl~ C Atloo wbere N = M -1 C
Mo C MI C 00. C Moo = U}.i[n tthe Moo - Moo bimodules Moa are given by
pairs (X, Y) X, Y e Mo In general, let l' ={X e M:XY

- ,,><y V(X, Y) e M}
.Theu ODe constructs an extension M C N such that JI is nondegenerate and
we describe Moa - Moo bimodules in tenns of No We prove that for any system
M there are at most finite1y many braidings by showing that a braiding E on
M corresponds to an embedding of sets E. : M -+ M oo and is characterized by
the latter.

C*-Algebras constructed out of Hilbert .bimodules

Michael Pimsner

To every c--algebra A and to every Hilbert bimodule E over A -this is a
(right) Hilbert module E overA together with an isometrie *-homomorpmsm

9
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<p : A'·· -+ 'c(E)-, we associate in a natural way a C*-algebra OE. If A is
commutative and finite dimensional and if E is projective and finitly generated
these are the Cuntz-Krieger algebras while if A is arbitrary but E =A, with
left module strocture given by an automorphism, we get the crossed product
algebras by Z. The C*-algebras in this dass satisfy universal properties and
their K-theory is computed in terms of the K-theory of the C*-algebra A and
of the dass of the module E in K [(.

Abstract Duality and Hopf Algebras

C.Pinzari,T.Ceccherini,S.Doplicher,J.Roberts

, W~ defined model actioos.oflocally compact quantum groups on C*-algebras
and discussed crossed product constroctions. More specmcally let 0 d d =
2,3 ... ,00 be the Cuntz algebra of order d. Then every Hopf C*'-algebra (A, eS)
associated to a regular multiplicative unitary V on a Hilbert space HfiJH (in the
sense of Baaj-Skandalis) acts in a canonical way on 0 d via it regular corepre­
sentation. Let ,,\ denote this ·coaction. If V contains the trivial corepresentation
the fi.."(edpoint algebra 0; carries a natural action of a compact dual given by
a faithful functor of tensor C*-categories with conjugates from a f.d. repre­
sentation category in the sense of \Voronowicz' C'"-algebra (A, 6) onto a full
subcategory of End(03), the endomorphism category of 0; (this is a general­
ization of the Cuntz mo~el). H V is non discrete (i.e. it does not contain the
trivial corepresentation) then the corresponding coaction is often ergodie.

Thus we introduced a generalized Cuntz algebra OB associated covariantly
to a. Hilbert space H and we generalized the above description to non discrete
unitaries. An abstract q-dual is now described by a natural C*-subalgebra Ov
of 0 H togetber with an endomorphism pv.

\Ve characterized algebraically pairs of the fonn (Ov, pv) in the case where
pv, and hence V, has a braided symmetry E. We obtained in particu1ar a duality
result for locally compact groups just requiering E to be a pennutation symmetry _
(i.e. E factors through a represe~tation of the permutation group). • -

C*-norms on B(H) ® B(H)

Giles Pisier joint with M.Junge

"vVe prove the following (here H is a Hilbert space,dimH = 00):
Main Theorem: There is more than one C*-norm on B(H) ® B(H) ,or

equivalently B(H) ~min B(H) ~ B(H) ®moz B(H).
Following an approach proposed by Kirchberg it sulfices to prove the noo­

separability of a certain metric space, as follows.
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Let n 2: 1 be fixed. Consider OSn = {E C B(B) I dimE = n}. This is
the set of all n-dimensional operator spaces. We equip this set with the metric
6(E,F) = logdc6(E,F) where dc6{E,F) = in/{If u IIc611 u- 1 IIcbl u: E -+ F}.
(we consider that E =F when E and F are completly isometrie, or equivalently
when 6(E, F) =0.) It is easy to check that (OSn, eS) is a complete metric space,
but it is not compact for n > 2 and more importly we have

Theorem (05n ,6) is non separable if n > 2.

Multipliers of Bimodules and Morita Equivalence of Crossed
Products

lan Raebum joint with S.Echterhoff

Just as each C*-algebra A has a multiplier algebra A-f(A), every imprimi­
tivity bimodule AXS has a natural multiplier bimodule ~[(X). Two co~tions
JA, 6B of a locally eompact group G on C"-algebras A, B are Morita eQU:1Va1ent
if there is an imprimitivity bimodule AXS carrying a compatible "coaCtio~"
6x : X -+ M(X ® C*(G». A theorem of Baaj-Skandalis says that ~Iori~a

equivalent coactions give ~Iorita equivalent crossed products, and we dis~sect
a new proof of this result which uses spatial realizations of the crossed products
and the multiplier bimodule M(X ~C:(G». As a corollary,we obtain a simp~­

Bed proof of the eorresponding result for twisted crossed products, due ~o. B~

(1991). .:.:- .

.. ..

Classification of some Infinte Simple C*-Algebr~.

Mikael R0rdam -~'u

Georges Elliot's classifieation conjecture for simple infinite C*-algebras asks
the following: Suppose that A and B are unital, separable, nuclear, purely
infinite and simple C*-algebras so that the invariants (l(o(A), [1],1(1 (A» and
(Ko{B), [1J, ](1 (S» are isomorphie (as abelian groups with a distinguished ele­
ment [1] of [(0). Does it follow that A and B are isomorphie?

We have defined a natural subclass C (the classi6able C'"-algebras) of purely
. infinite, simple C*-algebras inside which K-theory is a complete invariant, also in

the sense that the range of the invariant is complete: For every tripie (Go, 90 t GI)
where Go, GI are eountable abelian groups and 90 E Go there is a unital C*­
algebra A in C with (Ko(A), [1], K 1(A» ~ (Go,f/Ot Gt).The dass C is dosed UD­

der inductive limits,and it eontains the Cuntz-Krieger algebras 0 A with [(0(0A)
of odd order.

It is my hope that the classifiable class C is closed under all "amenable" op­
erations, so that every simple infinite C·~algebraconstructed by such operations
will belang to C.

11

                                   
                                                                                                       ©



,.
r. '

Novikov's Conjecture far "Bolic" Groups

Georges Skandalis joint with G.Kasparov

The Baum-Connes conjecture ror discrete groups asserts that a natural map
JJ is an isomorphism from a group of topologicaJ [(-theory onto the I(-Theory of
the associated reduced C*-algebra.The rational injectivity of JJ implies Novikov's
conjecture.

We define a geometrie property of ametrie space called "bolicity".
Der. Ametrie space (X,d) is said to be 6-"bolic" if
a) Vr > 03R > 0 such that Va,b,x,y E X such that d(a,b)+d(x,y) S r and e
d(a, x) + d(b, y) 2: R then d(a, y) + d(b,:c) ~ d(a, x) +d(b, y) + 26
b) There e.~ts a "middle point" map m : X x X -+ X such that

_ Va, b, % EX: d(z, m{a, b» ~ [d(a, %)212 + d(b, x)2/2 - 2d(a, b)2j1/2 +6

. Our main theorem is

Theorem : Let r be a discrete group acting properlyon a weakly-6­
geodesie, uniformly locally finite, (weakly) bolle metric space. Then the cor­
reponding Baum-Connes map is" injective (hence Novikov's conjecture holds for
r)

Dimension groups and minimal dynamical systems

Christian Skau joint with T.Giordano a.I.Putnam

I'

I

Let (X, r,o) be a minimal Cantor system Le. V' is a minimal homeomorphism
of the Cantor set ..~.The group [(O(X,ep) = C(X,Z)lB"" where B", ={f - f 0

Cf' I f e C(X,Z)},endowed with the natural ordering, is a simple dimension
group. ~loreover, all simple dimension groups arise in this way. Let CVJ ={f E
C{X,Z) I fy fdl-J = O,for all ~ - inv.prob.meas. IJ}. Then BVJ C C", and ~

C",/Bcp is equal to the infinites~malsubgroup Inl[(0 (X, cp) of 1(° (X, ep). .'
Theorem Let (Xi, ~i), i =1,2 ,be Cantor systems.The following are equiv- - .

alent:
(i) J<O{X}, <PI)IInlI(O(X1'Pl) 5!! 1(°(X2 , e,?2) as ordered groups with distin-

guished
order units.
(ü) There exists a homeomorphism F : Xl .... X, carrying the tpl-invariant
prob.measures onto the «t'2-invariant prob. measures.
(ili) (XIt ','t) and (X2, 'P2) are (topologically) orbit equivalent, Le. there

exists
r : .Y t -+ .Y2 so that f{orbitlr'l (x» =orbit""(x) , Vx E )[t.
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Corollary Let (X, CI') be a uniquely ergodie Cantor system, i.e.<p has a
unique inv.prob.measure. Then (X, rp) is either orbit equivalent to an odometer
system or to a Denjoy system.

(Recall: A Denjoy system is an aperiodie homeomorphism of the circle that
is not conjugate to a pure rotation - restricted to the support of the unique
invariant prob.measure.)

From Trace States to Trace States 'of the Ko-Group

Klaus Thompson

For any unital C*-algebra A we have naturally associated two compact eon­
vex sets the tracial state space T(A) which is always a Choquet simplex and
tbe state space SKo(A) of the [(0 group of A. There is also a wellknowu·~y
to de1ine an element rA(w) e SKo(A) from a trace state w E T(A) and we get
in this way a continuous affine map rA : T(A) -+ S[<o(A). Tbe talk·-was a
review of what is known about this map in case of a simple separable A~~da
presentation of the following new result: :...

Theorem Let ~ be a metrizable compact Choquet simplex, r a metrizable
compact convex set and r : ~ 4' r a CODtinuoUS affine surjection.There exists a
unital separable nuclear C*-algebra A such that (T(A), r A, S[(o(A» ~ (~, r, f)

Toeplitz C*-Algebras arid Quantization

Harald Upmeier
;..

For a [(-circular domain n = [( ezpV associated with a compact Li~';group
l( and a cone V C ik, one can define a Toeplitz C*-algebra TA (l(), wher.e A C i<
is the dual cone. Similarly, a discrete series representation'\ e Gof a semisimple
Lie group G defines a Toeplitz C*-algebra 7).(G/[() over the symmetrie space
G/ [(. \Ve analyse the spectnun and composition series of these C'"-algebras.

Free Entropy

Dan Voiculescu

We introduce a free entropy function x(Xb ••• , X n ) for N-tuples of selfad­
joint noncommutative random variables based on yolumes of matrix approxi­
mants.Up to constants, for n = 1, this entropy is minUs the logarithmic ene~gy

of the distribution of the random variable. Moreover it has the right transfor­
mation properties under noncommutative functional calculus and in the case of
free random variables X(XI1 ••• ,.~") =X(X.) + ... + X( ..Y'n)

13
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\Ve also introduce a free entropy dimension function 6(X1 , ••• , X n ) related
to X in a similar way Minkowski dimension is related to Lebesgue measure in
geometrie measure theory. We use it to prove results, which can be roughly
stated:

Ha III-factor can be generated by selfadjoint elements X., ... ,Xn and there
is also a semicircular system 1'1, ... ,Ym of generators, which are "smooth non­
commutative functions of X I, •.•• , X n" then n ~ m.

(Note: replacing "smooth" by Loo in the above statement would yie1d the
non-isomorpmsm of the free group 11.-factors)

Connes Fusion in Conformal Field Theory e
Anthony vVassermann

.A precise and mathematically rigorous link is established between opera­
tor algebras and unitary confonnal field theory.Three related aspects of the
multiplicative theory of von Neumann algebras are needed:V.Jones' theory of
subfactors; Connes' theory of bimodules or correspondenees; and the algebraic
approach to quantum field theory of Haag, Doplicher and Roberts. In the \VZ'\V
or minimal models there are always generating primary fields cjJ(z) of small eon­
formal dimension which when smeared,turn out to be bounded just like fermions:
11 4>(z) II:S A 11 f 112.Smearing,i.e. the passage from a holomorphic theory to a
unitary 'boundary' theory,translates formal algebraic properties·of fields cjJ( z),
such as braiding, into conerete facts about bounded interhviners. Connes' fu­
sion,a tensor product operation on bimodules over type I I I von Neumann alge­
bras, leads to a manifestly unitary way of fusing two positive energy representa­
tions H;, Hj to yie1d a third Hi 0 Hj which is defined and computed using four .
point functions of bounded interwiners. The Hi's then become a braided ten­
sorcategory. The finite dimensional .....a1gebras EndLGH0n desaibe quantwn
invariant theory without recourse to quantum groups at roots of unity. They
lead to a non eombinatorial eonstruction of the type 111 braid group subfactors
of Jones and \Venzel: lVo = (U C ® EndLGH~n)" C (U EndLG H'8l(n+ ll )" = !v[o
These also arise in a simple but less obvious way from the type 111. subfactors
defined jointly with Jones as a" measure of the (aHure of Haag duality in non
vakuum representations 11': N = 1r(LIG)" C 1f'{LlcG)' = Al, where LrG denotes
the subgroup of Ioops supported in an interval I C 51 and 11: = S· \ I. Using
work of Popa on finite depth subfactors,a localized endomorphism p : M ~ M
can be constroeted with N = p(M) such that,if MI = (Up~(M)' n M)" ,
NI = p(MI ) and J'dP is the fixed point algebra of p,then J\I = MI 0 MP and
N = N. ® lv/Po Moreover the indusion NI C lWl is isomorphie to No C Mo,
confirming a joint conjecture with Jones. Other finite depth subfactors can be
manufactured {rom the above subfaetors using eonformal and Goddard-Kent­
Olive inclusions,for example the Jones subfactor of index 3 + 13.
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Exact C*-algebras and Continuous Bundles of
C*-algebras

Simon Wassermann joint with E.Kirchberg

A C*-bundle .A = {X, A, 'Irz : A -+ Az } is a tripie consisting of a 19­
cal1y compact Hausdorff space X,a C*-algebra A (the bundle algebra) and ....
homomorphisms of A onto fibre algebras Az such that 11 Q 11=supzEX 11 'Irz (a )'11
for each Q E A and such that for J e Co(X),o E Athere is an element
Ja E A satisfying 1rz(!a) = /(%)lI'z(o) z e X.(i.e. A is a Co(X)-modu1~).

If each of the functions % .-+11 1rz (A) 11 is in Co(X) , .A is a continuous C*­
bundle. H B is a fixed C*-algebra and A a continuous C*-bundle, the tripie
.A ~ B ={.t', A 0min B, 1f'z ~ id : A ~min B -+ A z (g)min B} is a C*'-bundle.\Ve
consider the .

Problem \Vhen is .A ~ B continuous ?
The following theorems answer this (to a certain extend) -=~:;?:
Theorem A Let B be a C*-algebra.Then the followingconditions ar~::equiv-

alent: .-0;:"'.

(i) B is exact "
(ü) For any continuous C*-bundle A ,A~ B is continuous. .?

(ili) For any continuous C*-bundle A of the form {N, A, Ac} with A _separa­
ble, A ~ B is continuous.

Theorem B Let A = {X, A, Az } be a continuous C*-bundle such th.~t each
Az is e.~t.Then A is exact iff A l8) B is continuaus for any C*-algebra }3.

Since there exist inexact C*-algebras, e.g.C'*{lF2 ), it follows by Th~rem A
that there are examples of B and continuous A such that A®B is not contmuoUs.

We give an example of .A as in Theorem B such that the bundle algebra A
is not exact.· ..

(Note: The notions of continuous bundle and continuous field of C*-älgebras
are essential1y equivalent).

The flow of. weights on a subfactor

Carl Wins10w

The ftow of weights on a. factor of Type I I I was defined by Co~es and
~akesaki in 1973 and has been extensively studied as a tool to classify factars of
Type 111 and their automorphisms. The purpose of this talk is to explain how
to adapt this approach to the classification of subfactors, in particu1ar subfactors
of Type 111 and their automorphisms. In survey fonn, the talk will cover

• Popa's classification of subfactors by the standard invariant
• The flow of weights on a subfactor and its camputation
• The fundamental homomorphism in subfactor theory
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• Approximate1y inner and centrally free automorphisms
• Classification of strongly free actions on subfactors

Throughout, we shall observe the similarities - and differences •.with the single
factor case.

Bericllterstatter: J. Zacharias
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