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Die Tagung fand unter der Leitung der Herren G. Frank (Berlin),
W. K. Hayman (York) und N. Steinmetz (Dortmund) statt. Von
den insgesamt 40 in- und auslindischen Teilnehmern berichteten
30 in Vortragen iber ihre aktuelle Forschung.

Die Tagung hatte zwei Schwerpunkte: Differentialgleichungen
im Komplexen / Nevanlinnatheorie und Komplexe Dynamische
Systeme, es wurde aber auch vereinzelt iber andere Themenkreise
referiert. Die Vortrage fanden reges Interesse, was in eingehenden
und lebhaften Diskussionen im grofien und kleinen Rahmen zum
Ausdruck kam.

Yortragsausziige

Analytic Continuation of Dirichlet Sums
M. Anderson

H f(z)is analytic near z = ( , the p-fold symmetrization is

p-1

fo(z) = - Z fwz),

Now let f(z) = ): @, expnz where 0 < hmsup latr=6<1.

Then f(z) is not enhre, and fa(z) is not entlre, but f,(2) can be entire for
p 2 3. In fact, f,(2) can be identically zero if 6 > b, = exp(—mctgZ ), but
is not entire if § < exp(—m:tg ) . (with D. Khavinson and H. Shaplro)
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A somewhat simple proof of the subharmonicity property of the
=-function
Albert Baernstein

Let A= {:€ R*: R, < |z| < Ry}, u € L'(A). Define v : AN(Imz > 0) —

R by u*(re®) = sup [ u(re’®) d¢ where the sup is over all sets £ C [, 7]

with Lebesgue measure 26.

Theorem. Suppose Au = —A in the sense of distributions, where ) is a

signed Borel measure in A. Then Au® > —\* in A%, where A" is a certain

measure associated to A.

If A < 0 then A* < 0, so a corollary of the theorem is that if u is subharmonic ~
in A then u* is subharmonic in A*.

In the lecture I present a proof of the theorem which mvolvm general
principles about rearrangements and works when IR? is replaced by R",
A by an arbitrary domain, circular symmetrization by various types of
other symmetrizations, and A by various other linear or nonlinear elliptic
or parabolic operators.

A problem on factorization of meromorphic functions
I. N. Baker

All cases when

fle) = fla),
f meromorphic, p, ¢ polynomial, are determined. The method involves the
iteration of the algebraic function p(¢g™') .

Boundary behaviour of polyanalytic functions
Mark B. Balk

Polyanalytic (p.a.) functions (which have important applications in plane
elasticity) are solutions of the “generalized Cauchy-Riemann equation” .
d"w/0z" = 0 in some region of the complex plane. Though such functions -
seem to be close to anmalytic functions the famous classical statements
concerning boundary properties of analytic functions (such as the theorems of
Fatou, Luzin-Privalov, Lindelsf a.0.) in their generally accepted formulations
do not survive in the case of p.a. functions of arbitrary order n > 1. In
this talk some recently obtained results about boundary behaviour of p.a.
functions. as weil as some important problems still awaiting their conquerers.
will be discussed. )
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Multisummability - a method to compute a function from an
everywhere divergent power series
Werner Balser

We shall define Ecalle’s multisummability method and discuss some of its
properties. For an explicit example, we indicate in which way one may use
this method to analyze the Stokes’ phenomenon of (non-linear) ODE in the

complex domain.

Singularities of inverse functions, value distribution, and iteration
(joint work with Alexander Eremenko)
' Walter Bergweiler

Let f be a transcendental meromorphic function of finite order. Qur main
result is that if the inverse function of f has an indirect singularity over
a € €, then a is a limit point of critical values of f . A corollary is that
if f has only finitely many critical values, then f has only finitely many
asymptotic values. Combining this result with results from iteration theory
we can deduce that f'f takes every finite non-zero value infinitely often.
This answers (in the case of finite order) a question of Hayman. Our main
theorem also provides a unified proof of recent results of Clunie, Eremenko,

Langley, and Rossi on the existence of zeros of f' and f'/f for functions of -

small order.

Gromov hyperbolicity and the quasi-hyperbolic metric
Mario Bonk

Let X be a geodesic metric space. For z,y € X we denote by [z, y] a geodesic
joining z and y . Given § > 0 we call the space é-hyperbolic, if for arbitrary
points z,y,z € X and u € [z,y] we have dist(u, [z,y]U[z,y]) < & . The space
X is called (Gromov) hyperbolic, if it is é-hyperbolic for some § > 0 . '
Consider a proper subregion @ C IR" equipped with the quasi-hyperbolic
metric kg . By fo we denote the internal euclidean distance in {2, by d(.i, Q)
the euclidean distance of a point z € Q to the boundary 90 of Q , by £(7)
the euclidean length of an arc v and by ¥(z,y) for z,y € X the subarc of v
joining z and y .

The following theorem gives a sufficient condition for ({2, kq) to be hyperbolic.
Theorem. Suppose ( satisfies the following condition. There is a constant
K > 1 such that two arbitratry points r,,z2 € © can be joined by an arc
v in Q with a) £(y) < Klqa(z,, z2) and b) minje(1.2) €v(zj,2)) < Kd(z,d0)
for z € v . Then (0. kq) is hyperbolic.
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Polynomial Recursion and Iteration
Nikolai Busse

The consideration of polynomial recursion sequences of the form
Pn+1(z) = Pn(z)d + Q(Zy DPny--- 7Pn—c+l)

with dominating first term leads to a division of € into an outer domain
A= {z:|pa(z)] = o0 as n — oo} , and a compact set K = C\A . Iterating
each polynomial p, gives a Bottcherdomain B, , the attractor of co . We
prove the

Theorem. The outer domain A is the kernel of the domain sequence (B,) ,
and B, — A in the sense of Carathodory. This is, for example, valid in case
of the Mandelbrot-sequence, where K is the Mandelbrot set.

In this example, on the other hand, there is no convergence of the filled-in
Julia sets K, = €\B, of p, to the Mandelbrot set K in the Hausdorffmetric.

Vollstindige Klassifizierung der komplexen linearen
Differentialgleichungen nach dem Wachstum der Lésungen in
' ihren singuldren Stellen.

Volker Dietrich

Das Wachstum der Losungen einer linearen DGL im Komplexen ist in jeder
ihrer singularen Stellen nach unten beschrinkt durch Groflen, die sich aus
dem NP-Diagramm der DGL direkt berechnen lassen. Eine DGL, die in einer
Umgebung jeder singularen Stelle in € ein Fundamentalsystem von Losungen
besitzt, welches genau das aus dem NP-Diagramm abgelesene Wachstum
realisiert, heiBt (global) ausgezeichnet. Wichtige DGLen, insbesondere die
linearen DGLen der Mathematischen Physik zweiter Ordnung, zeichnen
sich dadurch aus, daB sie in Umgebungen von singuliren Stellen besonders
schwach wachsende Lésungen zulassen. Damit 1aBt sich der Begriff “wichtige

DGL" durch den Begriff global ausgezeichnet vollstindig prazisieren. Die aus

dem NP-Diagramm ablesbaren WachstumsgroBen charakterisieren jeweils
einen ganz speziellen DGL-Typ, so z.B. den DGL-Typ: Konfluente
hypergeometrische DGL. Solche DGL-Typen lassen sich fir jede Anzahl
von singularen Stellen auf kanonische Weise ordnen und liefern damit eine
vollstindige Klassifizierung. Bis auf gewisse Ausnahmefille sind dies DGL-
Typen global ausgezeichnet, d.h. sie enthalten eine global ausgezeichnete
DGL. die dann auch konstruiert werden kann. Diese Konstruktion beinhaltet
u.a. eine Losung des bekannten Umkehrproblems von Wittich unter sehr
allgemeinen Voraussetzungen.
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Minimum modulus of functions of order 1
David Drasin

In 1975 W. K. Hayman proved that it f is entire, order 1 with
(1) log M(r) = O(r)
and

log M(r) +log L(r) = O(1)

(L(r)= minimum modulus) then f(z) = Ae®* . Thus there are few extremals
for the cos 7p theorem when p = 1, a situation very different than for p < 1.
Using a method developed by A. Fryntov, we give a family of other extremals,
for functions of order 1 for which (1) fails.

Geodesics of Riemann surfaces
J. L. Fernandez

The lecture describes joint work with M. V. Melizin and D. Pestana.

Consider a Riemann surface R , endowed with its Poincar distance, p = Pn
Let f be a holomorphic functlon from the unit disc ID into R . Then the set'
of bounded radial images under f has dimension at least §( R)=exponent of
convergence of R ; more precisely:

(+)  Dim{0: sup p(f(re®), S(0)) < +o0} 2 ().

If we take for f the universal cover of R then one has equality in (*) and the
result says that the dimension of the set of geodesics emanating from a given
point of R and remaining at a bounded distance from p, is exactly 6(R) ..

On the coefficients of conjugatiné functions . e
Fritz v. Haeseler o

We discuss several properties of the coefficients of Battcher’s function of a
monic polynomial which has zero as a fixed point. In particular, we were
concerned with the question if it is possible to decide from a knowledge of
the coefficients whether the Julia set is connected.

Theorem Let g(z) = 2? + 634,29 4 ... be a rational function such that
00 g A*(0) . Then g : A*(0) — A"(0) is conjugate to ¢ — ¢4 on D if and only
if the coefficients of @(£) = € + 6% + --- , where g(p(£)) = w(£?) , satisfy
leal <nforalln>2.

This Theorem has several consequences.

Corollary The Julia set J, of p(z) = 2% +--- + 4,z is connected if and only
if |en] < n, where p,(£) = E+ % +-- - is the solution of R(2,(€)) = wpl€?)

o




and R(z)=p(z7")" .

Lemma If max{|p'(z)||z € J,} > d* then J, i3 not connected.

Lemma Let J, be connected. Then the Hayman index of 2, is zcro if o, is
not a rotation of the Koebe function.

Measure of Julia Sets
D. H. Hamilton

We proved a rigidity theorem for inner functions (special cases due to

Sullivan and Schub): Let f be an inner function. Then there is a nontrivial -
conjugation  : T — T which is absolutely continuous on T to inner
f* =ypo fop!if and only if f is nonergodic.

This implies that if F' is meromorphic with Julia set J a curve then J is a R
“circle-line” or dimJ > 1.

We discuss possible extensions.

Semigroups of rational functions
Aimo Hinkkanen -

Let G be a semigroup of rational functions under compositon of functions.

The speaker and G. J. Martin have developed the foundations for the Fatou—

Julia theory of semigroups of rational functions. The set of normality N(G)

consists of those points on the Riemann sphere that have a neighbourhood U

such that the restrictions of the elements of G to U form a normal family. The

Julia set J(G) is the complement of N(G) . The theory of rational semigroups

forms a generalization of the iteration theory of a single rational function, but

it also has unexpeced connections to the theory of moduli spaces of discrete

groups.

This talk presents a survey of our results so far. There are many similarities to -
the iteration of a single function, for example, the repelling fixed points of the

elements of G are dense in J(G) . Among the differences, one may note that

J(G) is, in general, only backward invariant under G , and J(G) may have . }
non-empty interior even if J(G) is not the whole sphere. The dynamics of G

on components of :V(G) can be complicated; we have obtained a complete

description in the case when G is “nearly abelian”. We have further shown

that if G is finitely generated then J(G) is uniformly perfect.
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Sharp answer to Baker’s problem concerning boundedness of
stable domains
Xin-hou Hua

In this paper. we shall solve a problem due to I. N. Baker concerning
boundedness of the stable domains of entire functions, some examples show
that our result. is best. . .

Theorem. Let f(z) be a transcendental entire function with order A less
than % , then any component of the Fatou set F(f) is bounded. Furthermore.
for any number p > % , there exists an entire function f, with order p such

that at least one component of F(f,) is unbounded.

On the Convergence of Hyperbolic Components in
Transcendental Families
Hartje Kriete S

One of the questions in iteration of transcendental functions is, which results
carry over from the rational case and which do not. An interesting approach
to this question has been suggested by Devaney / Goldberg / Hubbard.
namely to study certain dynamical properties of a family of entire functions
by studying this properties for an- approximating sequence of polynomial-

families, and look how these properties carry over to the limit (e.g. ps(A,z) = °

A(1 + z/d)? approximates Ae?). The main results are: -

(a) An answer to the question whether or not a hyperbolic component of:t._he
limit family is kernel of a sequence of hyperbolic components in the parameter
space of the approximating functions and/or vice versa. -

(b) Description of the limits of attracting cycles.

(c) For any parameter value chosen from a hyperbolic component of the limit
function the Julia sets of the approximating functions converge with respect
to the Hausdorfl metric to the Julia set of the limit function.

Second Order Linear Differential Polynomials
J. K. Langley

In 1959 Hayman conjectured that the only functions f meromorphic in the
plane such that f and f**! have no zeros for some k > 2 are of form e**+* or
(az 4+ b)™" , with a,b € € and n € IN . This was proved by Frank for k£ > 3
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in 1976. Further. Steinmetz and Briiggemann have determined those f such
that f and /' have no zeros. where )

k=1
F=L(f)=fM+3" af
=0

with £ > 3 and the a; polynomials. We consider the analogous problem for
k =2, with the a; rational, and determine all f such that f and F = La(f)
have only finitely many zeros. ,

Factorization of meromorphic solutions of (f')" = R(z, f)
Ilpo Laine :

We consider factorizations of admissible meromorphic solutions of
(f)? = ao(=)(f =m)(f — ma)(f — q(2))* (1)
and

(F) = ao()(f =)’ (f = 7)"(f —75)* . ()

These differential equations appear via the Malmgquist- Yosida-Steinmetz-von
Rieth-He-Laine theorem as two of the possible six types of equations (f')* =
R(z, f) with admissible solutions. Jointly with He Yuzan, we have proved:

(1) If a solution f of (1) can be factorized as f = hog , where his
nonconstant meromorphic with simple 7i-points (or 7z-points) only and g
ist transcendental entire, then T'(r,g) = O(max T'(r,ao), T'(r,q),1) .

(2) In the case of (2), if A is meromorphic and g is transcendental entire,
then T(r,g) = O(T(r,ao)) outside of a possible exceptional set £ of upper
logarithmic density less than one. To prove the case (2), we are using the
Steinmetz-Gross-Osgood theorem and a weak form of admissibility, while for
(1), the second main theorem is our essential device.

On Linear Combinations of Logarithmic Derivatives
J. Miles

Let F\.F,, ..., FL be entire functions of finite order and let ¢),¢s,...,cL be
complex numbers whose convex hull does not contain 0 . A lower bound in
terms of the counting functions of the zeros of the Fj's is obtained for

L
Z (:l"",’ld FJ’( re')/ F,(re"’)

|1=l
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valid for r in a set of positive logarithmic density and 0 in a set {7 C [l) 27

of fixed positive measure.

This bound is used to extend a result of Bank and Langley concerning the
exponent of convergence of the zero sequences of solutions of certain linear
differential equations with entire coefficients.

On iteration and composition sequences
Ch. Pommerenke

Let 9, : D — D be analytic and consider the forward composmon sequence
fa=9n0---0p30p . Unter a certain mild conditioa, it is shown that the

normalized sequeni:e
fn(z) - fn(o) 1- Ifﬂ(o)lz
1-fa(0)fa(2)  f2(0)
converges locally uniformly in ID as n — oo . This generalizes resuits abdut’

iteration (the case that ¢, does not depend on n). If .(z) = fa(2) =
z(A + z)/(1 + Az) then, as A — Ag € GID radially,

a(z) =z if =€ agqQ

=z 4

but -
ar(z) = 2(1 = (=200 if Do =2

Zeros of homogeneous differential polynomials
Martin Reinders 2

N

We give sharp upper and lower bounds for the number of zeros of certa.m ,

homogeneous differential polynomials.
Theorem 1. Let g be an entire function and define ¢ by

@= W(gu"),g(k’), . .g(kn))
where W denotes the wronskian determinant. If ¢ #0 , then
1 1
NT,'— S"Nr,’ +ST, .
( ‘P) ( g) (r9)

Theorem 2. Let g be an entire function which is not an
exponential polynomial and let ¢ be one of the functions W(g,g'®) , or
W(g,g".9¥,...g%"?) or W(g,9",¢'®),...,g""=) . Then

1 1 .
N Y_ZV y S y .
(r (;) N(r g)+ (r9)
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Asymptotic Values of Subharmonic Functions
P. J. Rippon

A subharmonic function u in the unit disc A belongs to the MacLane class
A if it has asymptotic values at a dense set of points on the unit circle C .
A theorem of Hornblower states that u belongs to A if and only if 4 has no
Koebe arcs.

We prove a related result for functions which are merely continuous (or even
fine continuous) in A , and this leads to an alternative proof of Hornblower’s
theorem. OQur result holds also in the unit ball B in R™ , and this
suggests the possibility of characterizing the corresponding MacLane class
for subharmonic functions in B .

Kcenigs functions, quasicircles and BMO
S. Rohde

Report on joint work with J. Heinonen

Consider the basin of attraction G of a rational function R , together with
the Kcenigs function (linearizing map) f . The largest subdomain of G that
is mapped univalently by f onto a disk is known to have several interesting
properties. In the case that R is a Blaschkeproduct, we show that these
domains are K-quasi-circles, where K depends only on the degree of R . We
also show that a function f analytic in the unit disk preserves (real) BMO
under composition if and only if f has bounded valency in disks of bounded
hyperbolic radius. It turns out that Kcenigs functions belong to this class of
functions. A generalization of the Fernandez-Heinonen-Martio subinvariance
principle provides the link to the above geometric statement.

Asymptotic Functions for entire functions
John Rossi

Let f be an entire function. A function a(z) . entire, is called an asymptotic
function if there exists a path ' from 0 to oo such that f(z) —a(z) — 0 as
s — oo on I'. A classical theorem of Ahlfors shows that if f has n distinct
asymptotic values (i.e. identically constant asymptotic functions) then its
order is no less than n/2 . A similar question can be asked about n distinct
asymptotic functions. (Examples show that we must assume that the order
of the asymptotic functions are less than 1/2 .)

A result of Fenton shows that if a function f has n distinct asymptotic
functions then the order of f is at least 1/4 . Recent results of Hinkkanen
and Rossi show how to improve the constant 1/t provided the asymptotic
paths are not “too” far apart with respect to angular measure.

1
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A Covering Theorem for a Composite Class of Ahalytic Functions
Rudolf Rupp

Let S denote, as usual. the class of normalized schlicht functions and let F
denote the class of analytic functions in the open unit disk ID , having no
fixed point there. We prove the following covering

Theorem. For every function f-g,f € S,g € F , the image covers at least
the open disk )
D:={w:|w <3.6-107'% .

! As is shown in the proof, the class S can be replaced by a larger class Sp .

Repelling periodic points in the Julia set
Wilhelm Schwick

One of the most important characterizations of the Julia set J; of a rational
function with degree > 2 or an entire function g is given by the following -

Theorem. The Julia set J, is the closure of the repelling periédic poingg:f

A

The theorem is due to Fatou (1920) in the rational case. For entire functions -
it was proved by Baker (1968), who used Ahlfors’ famous five island theorem.
In later papers the question has been asked, whether there exists a more
elementary proof in the entire case. Such a proof is the subject of the talk.
Instead of Ahlfors’ theorem we make use of Nevanlinna’s second fundamental
theorem and Zalcman’s criterion to describe non-normality.

On the sectorial oscillation theory of f'; + A(z)f =0.
- Wang Shupei

. Let f(z) be a meromorphic function in €. For any 8 € [0,2x) , we define the
radial ezponent of convergence of zeros of f as follows:

log n;-—:.ﬂ-e(ra })
logr

o(f) = lim limsup
when nj_,4,.(r, }) denotes the oumber of zeros of f in {z =te®:0—¢ <

@ <8+¢,1 <t <r}, counting multiplicity. We obtain the following resuits.
Theorem 1. Let A(z) be a polynomial of degree n > | of the form A(z) =

DFG Deutsche
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2" tag,an O Denote 0 = (2rj—argay)/(n+2) forj = 0.1, .n+
1. Let fy and fy be any two linearly independent solutions of the equation

P A f=0.

Then there exists at least two adjacent rays 0, and 0,4+, say, such that
X0, (J1f2) = Ko, (fif2) = (n+2)/2.

Theorem 2. Let P(z) = Gnz" 4 -+ + ao where a, = a + i3 #0andn > 2,
and let Q(z) be a polynomial of degree m such that m < 2(n ~ 1). Set
§(P,8) = acosnf — Bsinnd. Then for any solution f # 0 of the equation

"+ (PP + Q) =0,

As(f) = oo holds for any 0 satisfying 6( P,8) = 0. The same conclusion also
holds if n = 1 and Q is identically zero.
The proof of our results depends on the sectorial value distribution theory.

Some isoperimetric inequalities for polygons
Alexander Yu. Solynin

Several extremal problems for polygons are considered on the Euclidean and
hyperbolic planes. In particular we shall prove the following theorem solving
the Plya-Szegd problem for n-gons with a fixed area:

Theorem 1. Let D, be an n-gon in the plane and R(D,) the maximal
conformal radius of D,; then

R*(Dy) _ 24T%(1 - Lintg(Z)

area(D,) — (-1

Equality here is attained only for the regular n-gon D, .

Also we shall prove that the regular hyperbolic n-gon has the maximal
conformal radius among all hyperbolic n-gons with a given Dumber of sides.
So we get the complete solution of a problem posed by J. Hersch.

Existence of extremal Teichmiiller mappings with given
asymptotic behaviour
Kurt Strebel

Let R be a compact Riemann surface and let 2 be a rational quadratic
differential of deagree two on I . The leading coefficients a; of its second
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order poles (}, are supposed 10 be real: besides, p can have lirst order poles
P; . For arbitrary A > 1.  induces a Teichmiller mapping f of R . with
complex dilatation k%, k = :—;: . onto a Riemann surface R’ . Let 2w be
local parameters at ; and Q} = f(Q;) respectively: Then. for = — 0. [ has
the asymptotic behaviour

(#) 4 I=1VK < | < |z|KB (a; < 0)
~ (*+) similar, with K instead of & ifa; >0,

for some fixed B > 1.
A necessary and sufficient condition is given, that there exists an extremal
mapping with this behaviour. It is shown that if R is the Riemann sphere,
it is a Teichmiiller mapping.

On quasianalytic functions and a new unicity theorem for

Borel-monogenic functions
J. Winkler

P. Turan’s definition of quasianalytic classes of functions is as follows: A
class F of functions is quasianalytic, if for any two functions with “local
identical behaviour” follows that they have “global identical behaviour”.
This definiton came up from the question of Hadamard: What are the
neccesary and sufficient conditions for an infinitely differentiable function
f such that from f(*)(z,) = 0 for some point zq follows f(z) = 0 in whole
the region of definition of f . E. Borel considered also the following (Borel
monogenic-) functions: Let be a,a2,a3,... a sequence of points from C,
1,73, .. and g1, gs,. .. two sequences of reals with 0 < 7, < g,, 3 g, < ©
and Y r,/g2 < oo for all n . Then the functions defined and differentiable in

each C, = G\ U {z| |z — a,] < 27Pr,} are arbitrarily often differentiable iz
v=1

s .
C; =G\ U{z| |z —a,] <277g,} (G any region G C €). Borel proved that
r=1

these functions are quasianalytic in the sense of Hadamard in C = (JC, if
»

gy = (loglog 1)=! . In this lecture the result was given that these functions
are quasianalytic in Hadamards sense if gv = (log £)~' .

Berichterstatter: N. Steinmetz
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